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contrast to E lines, NE lines were composed of multicel-
lular aggregates lacking polarity, and they were character-
ized by the presence of significantly lower transcript levels 
of embryogenesis-related genes and higher global DNA 
methylation. Furthermore, the detection of vibrational 
markers of DNA conformation indicated that DNA samples 
obtained from E lines presented the common B-DNA con-
formation, while NE samples presented Z-conformation. 
Taken together, our results highlight the role of epigenetic 
mechanisms such as DNA methylation in regulating the 
expression of embryogenesis- related genes, having impact 
on the embryo patterning and cell differentiation.

Keywords  Somatic embryogenesis · DNA methylation · 
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Introduction

Pinus radiata D. is native of California and is widely grown 
in the Southern hemisphere for plantation forestry. Over 
the last decades, significant genetic gains have been made 
in P. radiata forestry using conventional breeding tech-
niques (Bishop-Hurley et al. 2003). Now, procedures allow-
ing rapid capture of the benefits of breeding are expected 
to play an important role in increasing the productivity, 
sustainability and uniformity of forest plantations. Clonal 
propagation by somatic embryogenesis (SE) is the primary 
enabling technology to achieve these objectives in conifers 
(Humánez et al. 2012). Also, because this system includes a 
large number of events such as changes in the gene expres-
sion and cell division patterns, and cell fate determination, 
SE has also become an appropriate method for studying 
the morpho-physiological and molecular aspects of cell 
differentiation (Rocha et al. 2016). Although protocols for 
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P. radiata SE have been considerable improved in recent 
years (Hargreaves et  al. 2009; Montalbán et  al. 2012), 
problems such as low SE initiation frequency, reduction or 
cessation of regeneration capacity, low genotype capture, 
among others, still limit the production that this technique 
offers (Lelu-Walter et al. 2016).

Somatic embryogenesis is a multistep regeneration pro-
cess starting with initiation, which is the induction of pro 
embryogenic masses (PEMs). PEMs are cell aggregates 
which can pass through a series of three stages distin-
guished by cellular organization and cell number (Stages 
PEM I, PEM II, and PEM III) (von Arnold et al. 2002). In 
conifers, within the growing embryonic masses two differ-
ent cell types can be distinguished based on their morphol-
ogy. Small densely cytoplasmic cells composed the embry-
onic head of the filamentous embryos, whereas elongated 
cells with large vacuoles form the suspensor apparatus 
(Stasolla and Yeung 2003). In pines, SE is initiated most 
efficiently from immature zygotic embryos, most frequently 
at early to late cleavage polyembryony stage (Lelu-Walter 
et al. 2016). cell lines can have quite variable potential of 
forming embryos (Palovaara and Hakman 2008), so embry-
ogenic (E) and non embryogenic (NE) cell lines can be 
obtained and maintained.

SE involves the reprogramming of gene expression pat-
terns including cascades of genetic triggers turning on 
and off the expression of specific genes (Feher et al. 2003; 
Karami et al. 2009). Previous studies about the molecular 
mechanisms regulating the early phase of SE in gymno-
sperms have revealed genes with expression patterns regu-
lated differentially between embryogenic and non- embry-
ogenic tissue (Bishop-Hurley et  al. 2003; Stasolla et  al. 
2003; Aquea and Arce-Johnson 2008). Recently, epige-
netic mechanisms have emerged as being critical in control 
of both somatic and zygotic embryogenesis by ultimately 
determining gene expression patterns through modula-
tion of access to DNA and definition of distinct chroma-
tin states (Lelu-Walter et al. 2016). Among the epigenetic 
mechanisms, a special attention has been given to DNA 
methylation, which plays its role not only preventing bind-
ing of transcription factors and enzymes, but is also related 
to chromatin structure (Valledor et al. 2007). In plant and 
animal models, DNA methylation has become accepted 
as an essential epigenetic mechanism for maintenance of 
cell patterning and one of the most important alternatives 
of gene control during the progress of plant development 
(Viejo et  al. 2010). DNA methylation has shown to be 
important in the induction and development of both zygotic 
and somatic embryogenesis (Santos and Fevereiro 2002; 
Nic-Can et al. 2013).

In this work, we described cellular and molecular dif-
ferences between cell lines previously characterized in 
terms of their embryogenic potential (capacity to produce 

embryos) as embryogenic (E) or non embryogenic (NE), 
obtained from immature zygotic embryos of P. radiata, and 
treated with identical protocols. Our results suggest a role 
of DNA methylation in regulating embryogenesis- related 
genes, influencing the embryo patterning and cell differen-
tiation, and having impact in the embryogenic potential.

Materials and methods

Plant material

Plant material consisting in somatic embryogenic tis-
sues were provided by the culture laboratory of the “Cen-
tro de Biotecnología CMPC Mininco S. A.”, Los Ange-
les, Chile. Cultures were initiated from immature zygotic 
embryos of P. radiata obtained by controlled pollination 
of elite trees. The megagametophytes containing immature 
embryos were excised under sterile conditions and placed 
in Petri plates. Somatic embryogenesis was performed with 
a method based in Smith et  al. (1994). For the induction 
phase all megagametophytes were maintained in initiation 
EDM medium containing 4.5  µM 2,4-dichlorophenoxy-
acetic acid (2,4-D) and 2.7 µM BA (EDM6). Embryogenic 
lines with different genotypic background were used in this 
study. All the lines show embryogenic appearance after 1 
month in induction phase. The lines were previously classi-
fied by the “Centro de Biotecnología CMPC Mininco S.A.” 
being defined as E for lines with full capacity of differenti-
ate somatic embryos when they passed to maturation phase 
(higher than 20 somatic embryos per 100 mg of callus) and 
NE for lines that do not differentiate somatic embryos in 
maturation phase (<5 somatic embryos per 100 mg of cal-
lus). The embryogenic lines were maintained in culture (in 
darkness at 21 °C) for four multiplication cycles. After 10 
days of the fourth cycle they were processed for the follow-
ing assays. Both E and NE lines were previously studied in 
terms of their outer appearances (color and texture of the 
calli) and growing rates, and no differences were detected.

Microscopic analysis

A total of 10 E lines and 10 NE lines were studied by light 
microscopy. Three samples were obtained from each line. 
Tissues were fixed in FAA (ethanol, glacial acetic acid 
and formalin 85:5:10 v/v), dehydrated in an alcohol gradi-
ent and embedded in paraffin. Longitudinal sections were 
obtained with a glass knife on a microtome and stained 
with Fast Green. Cellular density was determined as the 
average number of cell aggregates of three fields from the 
same slide, considering one slide per sample. T student test 
was applied.
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RNA extraction and gene expression profiling using 
conventional PCR and relative real‑time qPCR

Total RNA was extracted from 3 E and 3 NE lines using 
CTAB buffer as in Chang et  al. (1993). Total amount of 
recovery was determined using a Nanoquant Infinite Pro 
M 200 spectrophotometer (Tecan, Switzerland) and ana-
lyzed by 1% agarose gel electrophoresis. Reverse transcrip-
tion was made using the commercial kit Thermo Scientific 
RevertAid First Strand cDNA Synthesis (Thermo Fisher 
Scientific #K1622, United States) following the manufac-
turer’s indications. Conventional PCR amplification was 
conducted with a Mastercycler termocycler (Eppendorf, 
Germany). For this was used a reaction containing 15  ng 
cDNA, 1X PCR buffer (Invitrogen # 11615-010, United 
States), 0.2 mM dNTPs, 2mM MgCl2 (Invitrogen # 11615-
010, United States), 0.5  µM forward and reverse primer-
sand 1U Taq DNA polymerase recombinant (Invitrogen 
# 11615-010, United States). Primers used for detecting 
WOX2, SEPR9, SEPR39 and B-expansin were taken from 
conifer literature as it is detailed in Supplementary Table 1. 
For the detection of the other genes, primers were designed 
using the Pinus taeda genome as reference. Sequences of 
all primers are included in Supplementary Table  1. The 
thermal cycling conditions were as follows: 3 min at 94 °C, 
followed by 30 amplification cycles of 45 s at 94 °C, 30 s at 
60 °C, and 60 s at 72 °C, with final extension to 72 °C for 
10 min. Their identity was verified by automatized sequenc-
ing and bioinformatic analysis. For the real-time qPCR the 
amplification was conducted with a Rotor Gene termocy-
cler (Qiagen, Germany) (normal ramping) using the com-
mercial kit 5× Hot FirePol EvaGreen qPCR Mix Plus (Rox) 
(Solis BioDyne, Republic of Estonia). The cycling param-
eters included 15 min at 95 °C, followed by 40 amplifica-
tion cycles of 15 s at 95 °C, 20 s at 60 °C and 20 s at 72 °C, 
with final extension to 72 °C for 2 min, a melting curve was 
obtained immediately after amplification. Raw fluorescence 
readings were imported into Minner software for determine 
the Ct and relative expression. T-student test was applied 
for comparing the relative transcription level of quantitative 
PCR results. Standard errors of the mean were incorporated 
in the graphs.

Genomic DNA extraction

Genomic DNA was obtained from 3 E and 3 NE lines 
(the same lines used for gene expression profiling) pow-
dering in liquid nitrogen, using a plant DNA extraction 
kit (DNeasy Plant Mini, Qiagen, Hilden, Germany), fol-
lowing the instructions of the manufacturer, with the 
exception of starting step, since in our conditions the 
best results were obtained using 200  mg of fresh tissue 
in presence of Polyvinylpolypyrrolidone. The resulting 

DNA samples were analyzed for its integrity by agarose 
gel electrophoresis and total amount of recovery was 
determined using a Nanoquant Infinite Pro M 200 spec-
trophotometer (Tecan, Männedorf, Switzerland). Alterna-
tively, DNA samples of additional lines, commercial kits 
and extraction protocols were evaluated, being DNeasy 
Plant the most efficient method for both E and NE lines. 
T student test was applied for comparing the total recov-
ered DNA of 10 E and 10 NE lines. Standard errors of the 
mean were considered.

FT‑IR microspectroscopy and multivariate analysis

FT-IR microespectroscopy was applied to 3 genomic 
DNA samples obtained from each of the 3 E (E1-E3) 
and 3 NE (NE1-NE3) lines. Each DNA sample was 
scanned in three independent experiments. Equal quanti-
ties of DNA (200  ng in 50  µl of nanopure water) were 
dried in a reflective glass Mirr IR (Kevey technologies, 
Chesterland, Ohiao, United States) in the dark to prevent 
photo and atmospheric oxidation. IR spectra were col-
lected with Spoltlight 400 imaging system (Perkin Elmer, 
Middlesex, Massachusetts, United States), from 4000 to 
600  cm− 1, in transflectance mode. For each DNA sam-
ple, scans of 15 points within an area of 100 × 100  µm 
were made, providing a spectral resolution of 2  cm−1. 
Minimum and maximum normalization (extreme values 
taken from data within the interval of 1800–600  cm−1) 
and linear baseline correction using the interval limits of 
1800 and 750 cm−1, were applied. The spectral pre-treat-
ments were done using Spectrum 10.03 software (Perkin 
Elmer,Middlesex, Massachusetts, United States). Five 
representative spectra of each group (E and NE) were 
used to obtain main spectra and second derivative data 
(25 points). Band assignment was made as in Banyay 
et al. (2003).

DNA methylation assay

A total of 3 E and 3 NE lines (the same lines used for 
the previous assays) were included for the determination 
of the content of DNA methylation. Three samples per 
lines were analyzed in triplicate. Quantification of DNA 
methylation content was determined as % of methylated 
cytocines, by ELISA assay using the commercial kit 
MethylFlash (Epigentek), following the manufacturer’s 
indications. Three independent experiments were per-
formed. T student test was applied for comparing global 
methylation content of DNA from E and NE lines. Stand-
ard errors of the mean were incorporated in the graphs.
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Results and discussion

Aberrant cell aggregates and down‑regulated 
expression of embryogenesis‑related genes 
characterized NE cultures

The dynamic and fate of cells committed to the somatic 
embryogenesis can be studied by microscopy techniques, 
and the cytological changes that have occurred during 
this process can also be of great value, by associating the 
observed cytological changes with the expression patterns 
of several genes (Rocha et  al. 2016). The E and NE calli 
were indistinguishable by their outer appearance (Fig.  1a, 
d), both were composed by white, friable, and mucilagi-
nous tissue. Microscopically, E lines were characterized 
by PEMs II-like structure (Fig.  1b, c), which are defined 
as cell aggregate composed of a small compact clump of 
densely cytoplasmic cells adjacent to more than one vacuo-
lated cell (Filonova et al. 2000). Polarized clusters of differ-
ent sizes were found in the same visual field, corresponding 
to early steps of embryogenesis. PEMs present in E lines 
were able to form proper cotyledonary embryos, which 
appear between 12 and 16 weeks of culture (Supplemen-
tary Fig. S1). Histological analysis of NE lines shown that 
in contrast to E lines, PEMs lack polarity, failing in differ-
entiate the two cellular types characteristic of embryogenic 
PEMs (Fig. 1e, f). These lines do not produce cotyledonary 
embryos. No statistically significant differences between 
E and NE lines were detected in cellular density (data not 
shown).

The comparative analysis of E and NE material appeared 
critical to identify differentially expressed genes (Trontin 
et al. 2016). Based on conifer literature, we identified a set 
of embryogenesis-related genes as candidate for somatic 

embryogenesis markers and a set of housekeeping genes 
potentially useful as normalizing gene during maintenance 
stage of P. radiata SE. The expression level of the selected 
genes was evaluated by detecting their transcript abundance 
in E and NE lines (Fig. 2).

The gene WOX2 (WUS homeobox  2) codifies for a 
transcription factor highly expressed at early stage of SE 
(Mahdavi-Darvari et  al. 2015). Conifer WOX2 homolog 
expression has been shown to be highest at early stages of 
embryogenesis in response to auxin 2,4-D in Picea spe-
cies (Klimaszewska et al. 2010), and it has been proposed 
as embryogenic potential marker, having a role in embryo 
patterning, since it is not present in NE lines (Palovaara 
and Hakman 2008). In Lodge pole pine, WOX2 was 
expressed mainly in embryonal mass-like structures 
(formed by tightly packed meristematic cells adjacent 
to long vacuolated cells) and it has been suggested as 
early genetic marker to discriminate embryogenic cul-
tures from non embryogenic callus (Park et al. 2010). We 
detected P. radiata WOX2 homolog in E and NE lines by 
conventional (Fig. 2), and quantitative RT PCR (Fig. 3). 
Our results shown that in NE lines, levels of transcript 
are significantly lower than in E lines (p = 0.041), in 
accordance to previous reports. BABY BOOM (BBM) is 
an AP2-L2 (Apetala 2-like 2) transcription factor prefer-
entially expressed in developing embryos. Its overexpres-
sion promotes cell proliferation and morphogenesis, and 
it has been proposed as marker gene for embryo devel-
opment (Boutilier et  al. 2002; Passarinho et  al. 2008; 
Nic-Can et al. 2013; Hand et al. 2016). In Picea glauca 
somatic embryos initiated from primordial shoots, AP2-
L2 was present in embryogenic tissue but not in non 
embryogenic tissue (Klimaszewska et  al. 2011). We 
detected P. radiata BBM homolog by conventional and 

Fig. 1   Macro and micro-mor-
phological features of E and NE 
cell lines. a and d macroscopic 
appearance of representative E 
and NE calli, respectively, in 
maintenance medium. b and c 
representative light micrographs 
of longitudinal sections of E 
calli, showing polarized embryo 
structures. e and f representative 
micrographs of longitudinal sec-
tions of NE calli, showing aber-
rant multicellular aggregates. P: 
proembryo forming-like cells 
characterized by its small size 
and round shape. S: suspensor-
like cells distinguishable by its 
large size and vacuolated aspect
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quatitative RT-PCR (Figs. 2, 3). The differences observed 
were not statistically significant, which can be explained 
by the genotypic heterogeneity of the E lines used. Nev-
ertheless, a tendency to down-regulation was observed in 
NE lines, which is in accordance with literature. SERK1 
(SOMATIC EMBRYOGENESIS RECEPTOR KINASE 
1) is a leucine-rich repeat receptor-like kinase that plays 
an important role in changing development fate of cells 
in SE (Hand et al. 2016), having an specific role in stem 
cell formation and maintenance, being a suitable marker 
of pluripotency/tot potency and embryogenic competence 
(Feher et  al. 2003; Savona et  al. 2012; Altamura et  al. 
2016). The expression of conifer homolog of SERK1 has 
been reported in Araucaria angustifolia, where was found 
to be transcriptionally active in embryogenic cell clusters 
but not in non-embryogenic cell aggregates (Steiner et al. 
2012) and in Picea glauca, where it was ubiquitously 
expressed in embryonal masses and non-embryogenic 

callus regenerated from primordial shoots (Klimaszewska 
et al. 2011). In Picea balfouriana, SERK homolog among 
other genes has been suggested as putative molecular 
marker of the early stages of somatic embryogenesis (Li 
et  al. 2014a). We detected P. radiata SERK 1 homolog 
by conventional and quantitative RT-PCR (Figs.  2, 3). 
The results shown a general tendency to down regula-
tion in NE lines, as in the previous reports, but the dif-
ferences were not statistically significant because of the 
variability among E lines. The same expression pattern 
was observed when P. radiata AGO (ARGONAUTE) 
homolog was detected by conventional and quantita-
tive RT-PCR (Figs.  2, 3). AGO genes codify for effec-
tors of RNA silencing, and are able to bind small RNAs 
and mediate mRNA cleavage, translational repression or 
DNA methylation (Havecker et  al. 2010). The expres-
sion of AGO genes during SE has been studied in several 
gymnosperms (Altamura et  al. 2016). In Picea glauca 
and in A. angustifolia AGO-like genes were upregu-
lated at early embryo stages and its deregulation resulted 
in severe embryo abnormalities (Stasolla et  al. 2003; 
Schlogl et al. 2012). The expression of homolog AGO1 is 
also required for embryo development in Pinus pinaster 
(de Vega-Bartol et al. 2013), Pinus taeda (Oh et al. 2008) 
and Picea glauca (Tahir et  al. 2006). Our results shown 
a general tendency to down regulation in NE lines, but 
the differences were not statistically significant. Taken 
together, the embryogenesis-related gene expression pro-
file presented by E lines of P. radiata is in agreement 
with the role attributed previously in conifer literature to 
WOX2, BBM, SERK1 and AGO. The general tendency 
to down regulation observed in NE lines can explain the 
manifestation of aberrant histological features. The vari-
ability among E lines might be reflecting the different 
embryogenic potential of each individual line, while NE 
lines were more homogenous.

In P. radiata somatic embryos, ß-expansin, Uridilate 
kinase (SEPR9) and Enolase (SEPR39) have been reported 
as differentially expressed between E lines and NE lines 
(Bishop-Hurley et  al. 2003; Aquea and Arce-Johnson 
2008). Our results showed (Fig.  2b) that these genes are 
equally expressed in E and NE lines. The discrepancy with 
previous report can be explained by the use of different 
sources of explant, since NE lines used in the present work 
were obtained from immature zygotic embryos, which can 
be closer to the embryogenic pattern of expression than 
the NE lines derived from needle of P. radiata by Aquea 
and Arce-Johnson (2008). In Pinus species adult tissues 
are considered as recalcitrant with regard to the initiation 
of somatic embryogenesis (Bishop-Hurley et  al. 2003). 
The genes ACTIN, UBIQUITIN, and GAPDH were stably 
expressed in E and NE lines and any of them can be used as 
normalizing gene for qRT-PCR assays.

Fig. 2   Transcript detection of candidate genes by conventional RT-
PCR. a Agarose gel electrophoresis of RNA extracted from E and NE 
calli. No qualitative or quantitative difference was detected between E 
and NE material. b Transcript detection of candidate genes. Embryo-
genesis-related genes showed differential expression pattern in E and 
NE lines. The figure is representative of three independent experi-
ments
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Differences in genomic DNA conformation and in global 
DNA methylation between E and NE lines

As result of the application of DNA extraction proto-
col, mean values of extracted DNA for E lines were three 
times higher than NE lines (p = 0.001). These differences 
were confirmed using a larger number of samples and other 
methods for DNA extraction (data not shown).To further 
investigate these unexpected differences, equal amount of 
genomic DNA were subjected to FT-IR microspectros-
copy, a well-validated technique to detect subtle structural 
changes occurring at chemical level in DNA molecules 
(Taillandier and Liquier 1992; Banyay et al. 2003; Whelan 
et al. 2011).The spectra obtained in the range between 1800 
and 800 cm− 1 represent the IR vibration peaks of the bonds 
present in DNA samples of E and NE lines (Supplementary 
Fig. S2). Band assignment was made for each peak (Sup-
plementary Table  2). The comparison between E and NE 
spectra showed main differences detected at 1408, 1220 and 
964 cm− 1, related to different DNA conformation. Spectra 
obtained from E lines presented 2 markers of B-form of 
DNA, that are absent in NE samples. In turn, NE samples 
only presented a marker of Z-form of DNA (Table 1). These 
differences in DNA structure could explain the unexpected 
differential output to the extraction protocol between E and 
NE lines, since it was designed for the most common con-
formation, which is B-DNA. The biological significance of 
Z-DNA (the left handed double helical version version) has 
not yet been clarified (Li et al. 2014b), but is believe to play 
important roles in gene expression and regulation (Bothe 

et  al. 2012). In human cancer, the epigenetic regulation 
by Z-DNA silencing has been described as occurring by a 
mechanism that involves methyl-CpG-binding protein (Ray 
et al. 2013). Transcription factors that bind specifically to 
sequences that form Z-DNA have been described in plant 
model Arabidopsis (Gangappa et al. 2013). To our knowl-
edge, this is the first report describing Z-DNA conforma-
tion in conifers.

It has been previously reported that the formation of 
Z-DNA is enhanced by DNA methylation (Zacharias 
et al. 1990; Temiz et al. 2012). Methylation of DNA has 
been associated with transcriptional silencing and is con-
sidered a determining factor in the imposition and main-
tenance of the ontogenic developmental stages, being 
essential for correct plant development to such extent that 
variation in DNA methylation profile lead to abnormal 
development patterns, such as non-differentiating callus 
(Lambé et al. 1997; Viejo et al. 2010).Global content of 
DNA methylation was quantified in 3 E and 3 NE lines by 
ELISA assay. By using this technique, NE lines DNA was 
shown to be hypermethylated (Fig.  4). This difference 

Fig. 3   Transcript levels of 
embryogenesis-related genes 
detected by qRT-PCR. The tran-
script abundance of embryogen-
esis-related genes AGO, BBM, 
SERK1 and WOX2, tend to be 
lower in NE compared with E 
lines, although this difference 
was statistically significant for 
WOX2. The figure is repre-
sentative of three independent 
experiments

Table 1   DNA conformation 
markers in E and NE samples

Confor-
mation 
marker

Wave 
number 
(cm−1)

E NE

Z-form 1408 − +
B-form 1220 + −
B-form 964 + −
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was statistically significant (p = 0.0001). Several recent 
reports in SE of different conifer species have suggested 
causal relationships between global DNA methylation 
and in vitro morphogenetic competence and proliferation 
(LoSchiavo et  al. 1989; Causevic et  al. 2005; Klimasze-
wska et al. 2009; Noceda et al. 2009; Tyssier et al. 2014; 
Fraga et  al. 2016). In Pinus nigra, by quantification of 
global genomic DNA methylation levels, it was revealed 
the existence of specific DNA methylation levels for par-
ticular embryogenic potentials, where the line consid-
ered embryogenic showed the lowest methylation levels 
(Noceda et al. 2009). Hypermethylation of DNA has been 
also associated with a fail in expression of key genes, 
impairing embryo formation and embryogenic potential 
(Valledor et al. 2007). Recently, it has been reported that 
the changes in DNA methylation patterns are associated 
with the regulation of genes involved in SE such as WUS 
and BBM among others, indicating that DNA hypometh-
ylation is involved in the signal that leads to the induction 
of SE (De la Peña et al. 2015). Therefore, our results are 
in agreement with the previously assigned role to DNA 
methylation in early embryogenesis.

Concluding remarks

Deciphering the molecular determinants for SE can con-
tribute to revealing the genetic program underlying the 
phenomenon of stem cell totipotency and pluripotency, and 
somatic embryo formation (Altamura et  al. 2016).Under-
standing these fundamental molecular events could guide 
the improvement of the rate of success in the first stages 
of SE, which is not only important for developing varietal 
lines, but is critical for the management of genetic diver-
sity, genetic engineering and molecular tree breeding (Park 
et al. 2006).

Taken together, our results highlight the contribution of 
epigenetic mechanisms such as DNA methylation to regu-
late the expression of key developmental-related genes, 
which is critical for the formation of proper embryos in SE. 
Besides, our work may offer valuable molecular tools for 
evaluating embryogenic potential of P. radiata SE cultures.
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