
Vol.:(0123456789)1 3

Plant Cell Tiss Organ Cult (2017) 130:47–59 
DOI 10.1007/s11240-017-1203-x

ORIGINAL ARTICLE

Cloning and elucidation of the functional role of apple MdLBD13 
in anthocyanin biosynthesis and nitrate assimilation

Hao‑Hao Li1 · Xin Liu1 · Jian‑Ping An1 · Yu‑Jin Hao1 · Xiao‑Fei Wang1 · 
Chun‑Xiang You1 

Received: 11 December 2016 / Accepted: 14 March 2017 / Published online: 25 March 2017 
© Springer Science+Business Media Dordrecht 2017

Abbreviations
LBD	� Lateral organ boundaries domain
MBW	� R2R3 MYB TFS, basic helix–loop–helix TFS 

and WD40 proteins
RT-qPCR	� Real-time quantitative polymerase chain 

reaction
MYB1	� MYB domain protein 1
PAP1/2	� Production of anthocyanins pigment 1/2
CHS	� Chalcone synthase (CHS; EC 2.3.1.74)
CHI	� Chalcone flavanone isomerase (CHI; EC 

5.5.1.6)
F3H	� Flavanone 3-hydroxylase (F3H, EC 1.14.11.9)
DFR	� Dihydroflavonol 4-reductase (DFR, EC 

1.1.1.219)
ANR	� Anthocyanidin reductase (ANR, EC 1.3.1.77)
UFGT	� UDP-glucose:flavonoid 3-O-glucosyltrans-

ferase (UFGT; EC 2.4.1.9 1)
NRT	� Nitrate response transporter
NIA1/2	� Nitrate reductase1/2
NR	� Nitrate reductase (NR, EC 1.7.1.1)
NRA	� Nitrate reductase activity
WT	� Wild type

Introduction

Nitrogen (N) is an indispensable nutrient element for plant 
growth. It is well-known that nitrate (NO3

−) is the main 
source of nitrogen that is absorbed by plants. Nitrate is 
taken up by the roots and subsequently transported to the 
shoots by several NRT family transporters, such as CHL1 
(NRT1.1) (Tsay 1993), NRT1.2 (Huang et  al. 1999), 
NRT1.5 (Lin et  al. 2008), NRT2.1 (Little et  al. 2005), 
NRT2.2 (Li et al. 2007), NRT2.4 and NRT2.5 (Kiba et al. 
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2012; Lezhneva et al. 2014), which is subsequently assimi-
lated by the NIAs or the nitrate reductases (NRs).

In addition to being a major nutrient, nitrate also acts 
as an important signaling molecule that regulates many 
aspects of plant growth and development, such as seed ger-
mination (Alboresiet al. 2005), root architecture (Zhang 
et al. 1999), shoot development (Scheible et al. 1997), leaf 
expansion (Walch-Liu et al. 2000), stomatal opening (Guo 
et al. 2003), flowering (Bernier et al. 1993), and senescence 
(Crawford and Forde 2002).In recent years, many molecu-
lar components that are involved in regulating the nitrate 
response have been characterized in Arabidopsis. ANR1, 
a transcription factor of the MADS box family, is a well-
characterized component that is involved in nitrate-stim-
ulated lateral root elongation (Gan et  al. 2005). Nin-like 
proteins (NLPs) bind the nitrate-responsive cis-element 
(NRE) and activate the expression of nitrate–responsive 
genes (Konishi and Yanagisawa 2013). In Arabidopsis, 
three LBD transcription factors, AtLBD37/38/39, have 
been reported as negative regulators in the nitrate-response 
(Rubin et  al. 2009). In recent years, SPL9, TGA1/TGA4, 
AFB3, NAC4 and NRG2 have been identified as important 
nitrate regulators involved in nitrate signaling (Krouk et al. 
2010; Vidal et al. 2010, 2013; Alvarez et al. 2014; Xu et al. 
2016).However, additional molecular components that are 
associated with N/nitrate signaling transduction need to be 
further explored.

In addition to plant growth and development, nitrate also 
affected many secondary metabolic pathways (e.g., antho-
cyanin accumulation) (Scheible et al. 2004). Anthocyanins 
not only provide color to fruits and flowers but are also 
important antioxidants for both plant growth and human 
health (Nagata et al. 2003). The accumulation of anthocya-
nin is stimulated by multiple environmental factors, such 
as high sugar, light, low temperature, drought, phytohor-
mones, and phosphate and nitrate depletion (Nakabayashi 
and Saito et  al. 2015; Ji et  al. 2015). The biosynthesis of 
anthocyanin occurs via the flavonoid pathway, which is 
regulated by a series of structural genes involved in antho-
cyanin biosynthesis (F3H, DFR, CHS, CHI, UFGT, etc.) 
that are, in turn, regulated by the MBW complex (R2R3 
MYB TFs, basic helix–loop–helix TFs and WD40 proteins) 
(Ramsay and Glover 2005).

The research on MBW complex-mediated anthocyanin 
synthesis has covered many plant species, such as Arabi-
dopsis, petunia, apple, maize, snapdragon, and tomato 
(Allan et al. 2008; Li 2014; Albert et al. 2011). MdMYB1, 
a R2R3 MYB TF, which is an allele of MdMYB10 and 
MdMYBA, has been characterized as a key regulatory 
gene for anthocyanin accumulation (Ban et al. 2007; Esp-
ley et  al. 2007). MdMYB1 is degraded by MdCOP1 via 
the 26S proteasome pathway to influence anthocyanin 

accumulation (Li et  al. 2012). MdMYB1 also interacts 
with MdbHLH3 to activate the expression of structural 
genes in anthocyanin biosynthesis leading to anthocyanin 
accumulation (Espley et al. 2007; Xie et al. 2012). Even 
so, several other regulators upstream of the MBW com-
plex remain uncharacterized.

LBD genes encode zinc-finger DNA binding transcrip-
tion factors, which are divided into two classes accord-
ing to the structure of the LOB domain at their N termini 
(Matsumura et  al. 2009). In Arabidopsis and apple, 43 
and 58 members, respectively, of the LBD gene fam-
ily have been identified (Shuai et  al. 2002; Wang et  al. 
2013). Recently, several LBD genes involved in growth 
and development in different plants have been function-
ally characterized (Majer and Hochholdinger 2011; 
Porco et al. 2016). AtLBD37/38/39 are strongly induced 
by nitrate and negatively regulate anthocyanin synthesis 
(Rubin et  al. 2009), indicating that LBD genes play an 
important role in plant secondary metabolism.

In this study, MdLBD13, a nitrate-induced LBD gene 
was identified. MdLBD13 mediated a repressive effect on 
the nitrate response in transgenic apple calli and Arabi-
dopsis. It was also observed that MdLBD13 repressed 
anthocyanin biosynthesis by down-regulating the expres-
sion of anthocyanin biosynthesis-related genes, resulting 
in reduced anthocyanin accumulation.

Materials and methods

Plant materials and growth conditions

The ‘Royal Gala’ (Malus × domestica ‘Gala’) cultivars 
were grown on Murashige and Skoog (MS) medium with 
0.1 mg L−1 of gibberellins, 0.5 mg L−1 of 6-benzylami-
nopurine (6-BA) and 0.2  mg  L−1of 1-naphthaleneacetic 
acid (NAA) at 25 °C.The tissue cultures were subcul-
tured at monthly intervals under a long-day photoperiod 
(16-h-light/8-h-dark). The ‘Orin’ calli were grown on MS 
solid medium containing 1.5 mg L−1of 2, 4-dichlorophe-
noxy (2, 4-D) and 0.5  mg  L−1 of 6-BA in the dark and 
were subcultured at 15–20 days intervals at 25 °C. The 
Arabidopsis was germinated and grown on MS medium 
at 22 °C with a 16-h-light/8-h-dark photoperiod.

The root, stem, flower, leaf and fruit of self-rooting 
‘Gala’ apple seedlings were used to analyze tissue expres-
sion. One-month-old ‘Gala’ apple seedlings were treated 
with 5 mM KNO3 and 5 mM KCl for expression analysis. 
The ‘Orin’ apple calli and Arabidopsis were cultured in 
media with 5  mM KNO3 to examine anthocyanin accu-
mulation and nitrate content.
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Sequence alignment and phylogenetic tree analysis

The LBD protein sequences were input into the software 
DNAMAN, and a graphics file was obtained as output. 
The phylogenetic tree of LBD proteins was obtained by 
the neighbor-joining method using the MEGA5 program 
(http://www.megasoftware.net/). A graphical representa-
tion of the phylogenetic tree for LBD proteins was obtained 
using MEGA5 (Tamura et al. 2011).

RNA extraction, reverse transcription and RT‑qPCR 
assays

The total RNAs of ‘Gala’ cultivars were extracted using 
the RNA plant reagent (Tiangen, China). The total RNAs 
of apple calli and Arabidopsis were extracted using Trizol 
reagent (Invitrogen, USA). The RNA (1–7 μg) was reverse 
transcribed using the PrimeScript first-strand cDNA syn-
thesis kit (Takara, China).

The real-time quantitative polymerase chain reaction 
(RT-qPCR) assays were performed with 2 × UltraSYBR 
mixture (10  μL), forward primers (1.0  μL), reverse prim-
ers (1.0 μL), cDNA (1.0 μL) and ddH2O (7.0 μL). The RT-
qPCR was performed under the following conditions: 95 °C 
for 15 s, 56 °C for 15 s, and 65 °C for 10 s consisted of 40 
cycles. Each reaction was performed thrice. The MdAC-
TIN and AtACTIN genes were used as controls. The 2−∆∆CT 
method was used for data analysis. The primers used in this 
study are listed in supplementary Table 1.

Construction of overexpression vector of MdLBD13 
and genetic transformation

The open reading frame (ORF) of MdLBD13 is 753  bp 
long. The PCR products were digested with BamHI/SalI 
and then introduced into the pCAMBIA 1300 plant expres-
sion vector downstream of the 35S cauliflower mosaic 
virus (CaMV) promoter. Next, the plasmid construct was 
transformed into Agrobacterium tumefaciens LBA4404 
using electroporation.

The transgenic apple calli were obtained using the Agro-
bacterium-mediated method described by An et al. (2015). 
The wild-type (WT) Arabidopsis (Columbia) was trans-
formed by Agrobacterium using the floral-dipping method 
(Clough and Bent 1998). Transgenic seedlings were 
selected on MS medium containing 500  mg  L−1 hygro-
mycin. The T3 homozygous seeds were used for all subse-
quent experiments.

Yeast two‑hybrid assays

Yeast (Saccharomyces cerevisiae) two-hybrid assays were 
performed according to the manufacturer’s instructions 

(Clontech, USA). The full-length cDNAs of MdLBD13, 
MdMYB1, MdMYB9, MdMYB11, MdbHLH3 and Mdb-
HLH33 were inserted into pGAD424 and pGBT9 vec-
tors (Clontech). All of the plasmids were co-transformed 
into the yeast strain Y2H Gold using the lithium acetate 
method. The cells were cultured on medium lacking Trp 
and Leu (SD/-Trp-Leu) at 28 °C for 2days. Subsequently, 
putative transformants were transferred to a medium 
lacking Trp, Leu, His and Ade (SD/-Leu-Trp-His/-
Ade) with or without 5-bromo-4-chloro-3-indolyl β-d-
galactopyranoside to detect their interactions.

Measurement of the total anthocyanin content

The total anthocyaninin apple calli and Arabidopsis was 
extracted by the methanol-HCl method (Lee and Wicker 
1991). Approximately 0.5  g samples were soaked and 
incubated in 5 mL of 1%(v/v) methanol-HCl in the dark 
for 24 h at room temperature. Subsequently, the absorb-
ance of the extracts was measured at 530, 620 and 650 nm 
using a spectrophotometer (UV-1600, Shimadzu). The 
following formula was used to quantify the anthocyanin 
content: OD = (A530–A620) – 0.1 (OD650–OD620) (Lee 
and Wicker 1991). These experiments were performed at 
least thrice.

Measurement of the nitrate content

The nitrate content was measured using the salicylic 
acid method (Cataldo et  al. 2008; Vendrell and Zupan-
cic 1990). First, approximately 1  g of the samples were 
frozen in liquid nitrogen and milled into powder. After-
wards, 10 mL of deionized water was added to the tubes. 
The samples were boiled at 100 °C for 20  min, centri-
fuged at 15,000 g for 10 min, and 0.1 mL of the super-
natant was transferred into a new tube. Next, 0.4 mL of 
5% salicylic acid-sulfuric acid solution was added to the 
tubes. The reactions were allowed to proceed at room 
temperature for 20  min. Subsequently, 9.5  mL of 8% 
NaOH solution was added slowly to the tubes. After cool-
ing to room temperature, absorbance values were meas-
ured at 410 nm; deionized water was used as the control 
to measure the OD410 values. The nitrate content was 
calculated using the following equation: N = C·V/W (N, 
nitrate content; C, nitrate concentration calculated using 
OD410 in the regression equation; V, total volume of 
the extracted sample; W, weight of the sample). Known 
concentrations of KNO3 (10 to 120  mg  L−1) were used 
to make a standard curve. The regression equation was 
determined based on the standard curve.

http://www.megasoftware.net/
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Measurement of nitrate reductase activity

The nitrate reductase activity was measured as described 
in Freschi et  al. (2010). Samples (0.5  g) were put into 
test tubes after washing with distilled water and weighed; 
1  mL trichloroacetic acid was used as the control. Next, 
9 ml of 0.1 M phosphate buffer (pH7.5) with 3% propanol 
and 0.1 M KNO3 was added to the tubes, and the samples 
were vacuum infiltrated until the samples sank to the bot-
tom of the tubes. The reactions were allowed to proceed 
at 30 °C in the dark for 30 min, and 1 mL trichloroacetic 
acid was added to stop the reactions. After 2 min of incu-
bation, 4 mL sulphanilamide with 3 M HCl and 4 mL of 
0.2% N-(1-naphthyl) ethylenediamine was added to the 
supernatants (2  mL), which had been transferred to new 
tubes. Finally, the absorbance was determined at 540  nm 
after 30 min. NaNO2 (0–2 g per reaction) was used to make 
a standard curve. The regression equation was calculated 
based on the standard curve. The nitrate reductase activity 
was expressed as the amount of nitrite produced per hour 
per gram of fresh weight (nmol nitriteh−1 g−1FW).

Results

Phylogenetic tree analysis and protein structure 
alignment of the MdLBD13 protein from different 
species

In a previous study, members of the AtLBD gene family 
were identified as playing an important role in nitrate utili-
zation and anthocyanin biosynthesis (Rubin et al. 2009). To 
identify the apple homolog of AtLBD37/38 that is involved 
in the nitrate signaling, genome-wide analysis was per-
formed, and MdLBD13 (MDP0000317227), which exhib-
ited high similarity to AtLBD37/38, was identified. Next, 
phylogenetic analysis was carried out to determine the 
relationship between MdLBD13 and LBD proteins from 
other plant species. The results showed that MdLBD13 and 
AtLBD37/38 were highly homologous (Fig. 1a). The pro-
tein structure analysis of LBDs showed that MdLBD13 and 
LBD proteins from other species contained a highly con-
served CX2CX6CX3C zinc-finger domain at their N-termini 
(Fig. 1b). These results indicated that MdLBD13 belonged 
to the class II LBD family of TFs and was homologous to 
Arabidopsis LBD37/38.

Expression pattern of MdLBD13

To elucidate the function of MdLBD13 in planta, the 
expression patterns of MdLBD13 were analyzed by RT-
qPCR. The results showed that the transcripts of MdLBD13 
were detected in all organs in the apple with the highest 

expression levels in the stems (Fig. 2a). RT-qPCR was also 
carried out to determine whether MdLBD13 was responsive 
to nitrate. The results showed that compared with the con-
trol, transcripts of MdLBD13 were remarkably increased 
(approximately 8.5-fold) after treatment with 5 mM KNO3 
for 4 h in the root (Fig. 2b). A similar expression pattern 
was also found in the shoot with highest levels of the tran-
script found at 32  h after nitrate treatment (Fig.  2c).Sta-
tistical analysis indicates that the transcripts of MdLBD13 
were significantly regulated by KNO3, while there was 
no significant difference in MdLBD13transcript levels 
with KCl treatment (Fig.  2b, c). These results demon-
strated that nitrate, and not potassium, induced the expres-
sion of MdLBD13. Meanwhile, the highest expression of 
MdLBD13 after nitrate treatment was found at 32 h in the 
shoots, which was longer than that in the roots. This may 
be due to the time lag in the transport of nitrates from the 
roots to the shoot.

MdLBD13 inhibits anthocyanin accumulation 
by regulating gene expression in apple calli

To examine the role of MdLBD13 in anthocyanin accu-
mulation, the expression construct 35S::MdLBD13 was 
obtained. Next, it was transformed into the ‘Orin’ apple 
calli by Agrobacterium-mediated genetic transforma-
tion. Phenotypically, the wild-type control appeared 
redder than the 35S::MdLBD13 transgenic calli, and 
the35S::MdLBD13transgenic calli accumulated lower lev-
els of anthocyanin than the WT control (Fig. 3a–c). These 
results indicated that MdLBD13 inhibited anthocyanin 
accumulation in apple calli.

As is well-known, MdMYB1, MdMYB9/11 and Mdb-
HLH3/33 are crucial transcription factors that regulate 
anthocyanin accumulation in apple (Takos et al. 2006; Xie 
et  al. 2012; An et  al. 2015). To test whether MdLBD13 
regulated anthocyanin biosynthesis by interacting with 
MdMYB or MdbHLH proteins, yeast two-hybrid assays 
were performed. The full-length cDNAs of MdMYB and 
MdbHLH genes were cloned into the pGAD vector (fused 
with the sequence of the GAL4-DNA activation domain), 
while theMdLBD13 gene was cloned into pGBD (fused 
with the sequence of the DNA binding domain). The two-
hybrid assay results showed that yeast cells cotransfected 
with pGBD-MdLBD13 and either pGAD-MdMYBs or 
pGAD-MdbHLHs were unable to grow on SD/-Trp-Leu-
His-Ade selection plates. However, positive β-gal activ-
ity was observed in yeast containing pGAD-MdMYB1 and 
pGBD-MdbHLH3, which served as the positive control 
(Figure. S1). These results showed that MdLBD13 did not 
interact with the anthocyanin-related TFs.

It is well-known that the anthocyanin biosynthesis path-
way is regulated by several enzymes (Fig. 3d). Furthermore, 
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the expression levels of MdMYBs, MdbHLHs and the flavo-
noid structural genes (MdCHS, MdCHI, MdF3H, MdDFR, 
MdANR1, and MdUFGT) were analyzed by RT-qPCR. 
The expression of MdMYBs, MdbHLHs and anthocyanin-
related genes was down-regulated in 35S::MdLBD13 
transgenic calli (Fig.  3e) indicating that MdLBD13 acted 
a negative regulator in the regulation of anthocyanin bio-
synthesis. Therefore, MdLBD13 inhibited the accumulation 
of anthocyanin by repressing the expression of MdMYBs, 
MdbHLHs and anthocyanin biosynthesis-related structural 
genes.

MdLBD13 represses the absorption and assimilation 
of nitrate in apple calli

The nitrate content and nitrate reductase activity (NRA) 
were then examined in 35::MdLBD13 and WT apple calli. 
Both nitrate content and NRA were significantly reduced 
in the 35::MdLBD13transgenic calli compared to the WT 
control (Fig.  4a, b). The expression of genes involved in 
nitrate uptake, transport and assimilation were then ana-
lyzed. The results showed that transcript levels of all 
nitrate-related genes were repressed compared with the 

Fig. 1   a Phylogenetic tree of MdLBD13 and other LBDs 
from different species. The tree was drawn with MEGA5.0 
using the neighbor-joining method. b Comparison of the puta-
tive MdLBD13 protein sequence with other LBDs. There is a 
highly conserved CX2CX6CX3C zinc finger-like motif in the LOB 
domain at the N-terminus of the MdLBD13 protein. MdLBD13: 
Malus × domestica MDP0000317227; AtLBD37/38/39: Arabi-
dopsis thaliana AT5G67420, AT3G49940, AT4G37540; 
RcLBD37: Ricinus communis XP_002525255.1; TcLBD38: 
Theobroma cacao XP_007047485.1; PtLBD39-1/2: Populus 

trichocarpa XP_006380633.1, XP_002306497.1; VaLBD37: 
Vigna angularis XP_017421901.1; CcLBD38: Cajanus cajan 
KYP52401.1; GmLBD37/38: Glycine max XP_003517339.1, 
XP_003539286.1; CsLBD38: Citrus sinensis XP_006466482.1; 
ZjLBD38: Ziziphus jujuba XP_015890312.1; CsLBD37: Cucumis 
sativus XP_004141875.1; PbLBD37: Pyrus × bretschneideri 
XP_009379314.1; VvLBD38: Vitis vinifera XP_002284296.1; 
NtLBD37-1/2: Nicotiana tabacum XP_016476789.1, 
XP_016476601.1
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WT control (Fig.  4c). For instance, the expression lev-
els of MdNRT1.1, MdNRT1.7, and MdNIA2 were down-
regulated approximately 0.6-fold, the expression levels of 
MdNRT2.1, MdNRT2.5, MdNRT2.7 and MdNIA1 were 
down-regulated approximately 0.4-fold and the expres-
sion level of MdNRT2.4 was down-regulated approxi-
mately 0.8-fold. These results supported the hypothesis 
that MdLBD13 reduced nitrate utilization by repressing the 
expression of genes that are responsible for nitrate uptake 
and assimilation.

Ectopic expression of MdLBD13 represses anthocyanin 
accumulation as well as nitrate uptake and utilization 
in transgenic Arabidopsis

To characterize the function of MdLBD13 in planta, 
three independent MdLBD13 transgenic Arabidopsis lines 
(35::MdLBD13-1/3/8) were obtained. RT-qPCR analy-
sis showed that the expression of MdLBD13 was much 
higher in the transgenic lines than that in the WT control 
(Col) (Fig. 5a). To determine whether the ectopic expres-
sion of MdLBD13 affects anthocyanin accumulation, the 
three transgenic lines and the WT control were treated 

with 5 mM KNO3. Analysis of the pigmentation and spec-
trophotometric analysis showed that the transgenic seed-
lings accumulated less anthocyanin than the WT seed-
lings (Fig.  5b–d). The expression levels of AtPAP1 and 
other anthocyanin-related genes including AtCHS, AtCHI, 
AtDFR, and AtUFGT were then examined with RT-qPCR. 
As shown in Fig. 5e, AtPAP1 was down-regulated approxi-
mately 0.2-fold, and the other genes were all significantly 
repressed in the transgenic lines. These results indicated 
that overexpression of MdLBD13 either directly down-
regulated the expression of anthocyanin-related structural 
genes or down-regulated their expression by regulating 
the expression of AtPAP1, which directly binds to the pro-
moters of the structural genes in anthocyanin biosynthe-
sis. These findings demonstrated that MdLBD13 acted as 
a negative regulator of anthocyanin biosynthesis in apple 
calli and Arabidopsis.

Subsequently, nitrate content and NRA were examined 
in the WT and transgenic Arabidopsis. The results showed 
that nitrate content and NRA were noticeably reduced in 
the transgenic lines compared to the WT control (Fig. 6a, 
b). RT-qPCR assays were performed to check the expres-
sion levels of the genes involved in nitrate uptake and 

Fig. 2   Expression patterns of MdLBD13. a The expression levels 
of MdLBD13 in different organs (roots, stems, flowers, leaves and 
fruits). The value in fruits was set to 1. b and c Expression levels of 
MdLBD13 at different periods in the root and shoot after the addition 

of 5 mM KNO3 and 5 mM KCl to N-limited apple seedlings. Expres-
sion levels of MdLBD13 were determined by RT-qPCR, and the data 
were analyzed by the 2−∆∆CT method



53Plant Cell Tiss Organ Cult (2017) 130:47–59	

1 3

assimilation. The results showed that the transcript lev-
els ofAtNRT1.1, AtNRT1.7, AtNRT2.1 and AtNIA1/2 were 
remarkably repressed in the transgenic lines and especially 
in the line 35S::MdLBD13-3 (Fig. 6c), indicating that these 
genes were directly or indirectly regulated by MdLBD13.
Therefore, it was concluded that MdLBD13 repressed 
nitrate uptake and assimilation when it was ectopically 
expressed in Arabidopsis. This result is again consist-
ent with the notion that the nitrate responsive genes are 
repressed by MdLBD13 in the nitrate signaling pathway.

Ectopic expression of MdLBD13 promotes lateral root 
development

As is well-known, nitrate plays an important role in root 
development (Zhang and Forde 2000). To examine whether 
MdLBD13 influenced the development of roots, the seeds 
of transgenic and WT Arabidopsis were sown in MS 

medium and left to germinate for 2 days. The young seed-
lings were then transferred to new MS medium and left 
to grow for another 10 days; subsequently, primary root 
length and lateral root number were determined (Fig. 7a). 
The results showed that the 35S::MdLBD13 transgenic 
seedlings generated more lateral roots than the WT con-
trol, although they had similar primary root length as 
the WT control (Fig.  7b, c). Therefore, MdLBD13 pro-
motes the development of lateral, but not primary roots in 
Arabidopsis.

Discussion

As the major nitrogen source and a key signaling mole-
cule, nitrate plays an essential role in plant growth, devel-
opment and metabolism (Crawford and Forde 2002). In 
recent years, several studies have shown that LBD TFs are 

Fig. 3   Overexpression of MdLBD13 inhibits anthocyanin accumula-
tion in apple calli. a Anthocyanin accumulation in 35S::MdLBD13 
and WT apple calli. b and c The color-based and spectrophotomet-
ric analysis of anthocyanin content. d The anthocyanin biosynthesis 
pathway. e RT-qPCR experiments analyzed the expression of genes 

related to anthocyanin biosynthesis in apple (MdMYB1, MdMYB9, 
MdMYB11, MdbHLH3, MdbHLH33, MdCHS, MdCHI, MdF3H, 
MdDFR1, MdANR1 and MdUFGT). The results are expressed as the 
means ± SD (standard deviation) from three independent experiments. 
The data were analyzed using the 2−∆∆CT method
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involved in plant growth and development in many species 
(Husbands et  al. 2007; Majer and Hochholdinger 2011). 
Members of the LBD gene family from different plants 
have been characterized as key regulators of reproductive 
growth (Bortiri et al. 2006), leaf development (Shuai et al. 
2002; Sun et al. 2010), husk development (Li et al. 2008) 
and lateral root formation (Zhu et  al. 2016; Porco et  al. 
2016). However, more work needs to be done on the func-
tional characterization of LBD genes, especially in apple 
and other woody plants.

In this study, MdLBD13, a nitrate responsive LBD 
gene was isolated. The pigmentation phenotypes 
observed in transgenic apple calli and Arabidopsis 
prompted us to perform further analysis of anthocya-
nin accumulation at the metabolite and transcript levels. 
MYB TFs have been reported to act as key regulators in 

anthocyanin biosynthesis in different species (Borevitz 
et  al. 2000; Cone et  al. 1993; Schwinn et  al. 2006). In 
apple, MdMYB and MdbHLH proteins have been char-
acterized as essential regulators of anthocyanin accu-
mulation (Takos et al. 2006; Ban et al. 2007). The MYB 
proteins can interact with bHLH proteins to activate the 
expression of structural genes in anthocyanin biosynthe-
sis (Liu et al. 2013). In a previous study, the expression 
of AtPAP1 and AtPAP2 is strongly repressed in response 
to nitrate (Scheible et al. 2004). MdLBD13 did not inter-
act with anthocyanin-related TFs in yeast two hybrid 
assays. However, the expression of MYBs and bHLHs 
was repressed in MdLBD13 transgenic apple calli and 
Arabidopsis suggesting that MdLBD13 is a transcription 
repressor that acts upstream of MdMYBs and MdbHLHs. 
Whether MdLBD13 can directly bind to the promoter 

Fig. 4   Overexpression of MdLBD13 reduces the nitrate content 
and NRA in apple calli. a and b The nitrate content and NRA of 
the 35S::MdLBD13 and WT apple calli cultured with 5 mM KNO3. 
c MdLBD13 affected expression of the key genes (MdNRT1.1, 
MdNRT1.7, MdNRT2.1, MdNRT2.4, MdNRT2.5, MdNRT2.7, 

MdNIA1 and MdNIA2) that are responsible for nitrate uptake and 
assimilation. The results are expressed as the means ± SD from three 
independent experiments. The data were analyzed using the 2−∆∆CT 
method
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Fig. 5   Ectopic expression of 
MdLBD13 represses anthocya-
nin accumulation in Arabi-
dopsis. a Three independent 
transgenic Arabidopsis lines 
were examined by RT-qPCR. 
b Phenotypes of transgenic 
Arabidopsis and WT (Col) 
grown in 5mM KNO3 with 
UV irradiation. c and d The 
colors and anthocyanin content 
of the transgenic Arabidopsis 
lines and WT shown in b were 
analyzed. e Ectopic expres-
sion of MdLBD13 affected the 
expression of the anthocyanin 
biosynthesis-related genes 
(AtPAP1, AtCHS, AtCHI, 
AtDFR1 and AtUFGT). The 
results are expressed as the 
means ± SD from three inde-
pendent experiments. The data 
were analyzed using the 2−∆∆CT 
method



56	 Plant Cell Tiss Organ Cult (2017) 130:47–59

1 3

Fig. 6   Ectopic expression of MdLBD13 decreased nitrate content 
and NRA in transgenic Arabidopsis. a and b Nitrate and NRA were 
significantly reduced under normal conditions. c MdLBD13 regu-

lated the expression levels of nitrate-responsive genes. The results are 
expressed as the means ± SD from three independent experiments. 
The data were analyzed using the 2−∆∆CT method

Fig. 7   Ectopic expression of MdLBD13 promotes lateral root devel-
opment in transgenic Arabidopsis. a Root growth of three transgenic 
Arabidopsis lines and WT under normal conditions. b and c Primary 

root length and lateral root numbers in transgenic Arabidopsis and 
WT seedlings. The results are expressed as the means ± SD from 
three different seedlings
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regions of MdMYBs and MdbHLHs needs to be explored 
in future work.

Alteration of many secondary metabolism pathways is 
part of the main response to the presence of nitrate. That 
MdLBD13 was rapidly induced by nitrate, inhibited antho-
cyanin biosynthesis and strongly repressed the expres-
sion of MYB and bHLH genes lead to the conclusion that 
MdLBD13 acts as an important regulator component in 
anthocyanin biosynthesis and the nitrate signaling path-
way. In Arabidopsis, transcriptome profiling indicates 
that AtLBD37/38/39 play a profound role in anthocyanin 
accumulation, as well as nitrate uptake and assimilation 
(Rubin et  al. 2009). In this study, it was also found that 
besides anthocyanin biosynthesis and nitrate utilization, 
MdLBD13 also regulated lateral root development in trans-
genic Arabidopsis suggesting an important signaling role 
for MdLBD13 in nitrate-mediated root growth and devel-
opment. It is well-known that lateral root development is 
regulated by multiple hormones, such as the auxins, cyto-
kinins (Peret et al. 2009) and strigolactones (Kapulnik et al. 
2011). A previous study has shown that cytokinins accu-
mulate in Arabidopsis roots after nitrate replenishment 
(Takei et  al. 2002). It is interesting to speculate whether 
MdLBD13 affects root development by regulating the bio-
synthesis or the signaling pathway of these hormones.

In summary, MdLBD13 from apple was identified as a 
member of the LBD family. This gene functions as a regu-
lator in anthocyanin synthesis and nitrate uptake/assimi-
lation and thereby acts as a key molecular component in 
plant nitrate signaling.
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