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Abstract A C4(V3)6 multiepitopic protein was designed in

an effort to pursue broad immunization against the human

immunodeficiency virus (HIV). This C4(V3)6 chimeric

protein is based on sequences of gp120, including epitopes

from the fourth conserved domain (C4) and six tandem

repeats of the third variable domain (V3), which represent

different HIV isolates. The histidine-tagged C4(V3)6 was

subsequently over-expressed in a recombinant Escherichia

coli strain, and purified by immobilized metal ion affinity

chromatography. Expression of the C4(V3)6 in both

tobacco and lettuce plants was also achieved with no toxic

effects on plant growth as transgenic plants were pheno-

typically normal. Moreover, the functional C4(V3)6 pro-

tein showed HIV antigenic determinants. The implications

of these findings on the development of a new low-cost

HIV vaccine are discussed.
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Introduction

The development of an effective vaccine against the human

immunodeficiency virus (HIV) that causes acquired

immune deficiency syndrome (AIDS) remains a priority in

global health initiatives. However, this has been a chal-

lenge as current vaccination strategies that prevent viral

infections such as those for smallpox, hepatitis B, and polio

have been ineffective in preventing HIV infection. This is

primarily attributed to the rapid mutation ability of the

virus which facilitates viral elusiveness from the host’s

cellular and humoral immune responses (Nabel et al. 2002;

Smith et al. 2012).

Among several approaches explored to date against

HIV, synthetic peptides have demonstrated to be promising

components of HIV vaccine formulations as these are

designed to include specific epitopes (Rerks-Ngarm et al.

2009; Vasan and Michael 2012). This allows for immuni-

zation against non-immunodominant epitopes, as well as

those epitopes surrounded by several non-protecting anti-

gens (Fernández et al. 1998). Previous studies have dem-

onstrated that humoral and cellular immune responses can

be elicited by both liposomes and immunostimulatory

complexes (ISCOMs) formulated with HIV-1 peptides

when an appropriate adjuvant is used (Agrawal et al. 2003;

Staats et al. 1996; Bradney et al. 2002). Other effective

approaches are based on chemical coupling of these pep-

tides to a wide variety of carriers (Hamajima et al. 1995;

Golding et al. 2002). Interestingly, polyvalent synthetic

peptides have proven to be immunogenic, leading to both

humoral and cellular responses in both mice and non-

human primates (Hart et al. 1990, 1991). Moreover, these

HIV peptide-based candidates have shown to induce neu-

tralizing antibodies, of broad spectrum, against primary

isolates (Haynes et al. 1993).
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In this context, it is important to point out that, oftenly,

synthetic peptides tend to be weak immunogens, and are

chemically unstable. Thus, coupling a carrier to a synthetic

peptide is essential for enhancing stability and increasing

immunogenicity of such a peptide (Haynes et al. 2005). In

addition, large-scale synthesis of long peptides is not

economically feasible for large scale vaccination programs,

especially in the developing world. Hence, recombinant

proteins serve as viable alternatives. Through genetic

engineering efforts, not only it has been possible to produce

recombinant proteins, but also to design specific protein

configurations containing several neutralizing epitopes in a

single formulation (Lu et al. 2000; Malm et al. 2005). This

allows for production of larger amino acid sequences that

are likely to be immunogenic and less expensive than their

synthetic counterparts. The inclusion of a number of pro-

tective epitopes within a single molecule may elicit

appropriate cellular and humoral responses that can over-

come evasive problems of viral mutations.

Previously, we have reported on the production and

immunological characterization of a rC4V3 hybrid poly-

peptide carrying sequences from the fourth conserved (C4)

and the third variable (V3) domains of the glycoprotein

gp120MN, as this polypeptide is a strong elicitor of anti-HIV

antibodies at systemic and mucosal compartments without

the need for adjuvants (Varona-Santos et al. 2006). More

recently, this functional polypeptide has been produced into

tobacco chloroplasts, and transplastomic tobacco carrying

this peptide has proven to elicit oral immunogenicity in test

mice (Rubio-Infante et al. 2012). Thus, using this C4V3

polypeptide configuration to develop new molecules elic-

iting enhanced immune responses is worthy of consider-

ation in further studies. In this study, we have expanded the

configuration of this polypeptide to include five additional

V3 loop regions from different HIV isolates to yield a

protein molecule designated as C4(V3)6. This molecule

was initially produced in recombinant E. coli and subse-

quently in transgenic both tobacco and lettuce plants in an

effort to develop a low-cost production/delivery system

(Rosales-Mendoza et al. 2012). The antigenic properties of

the C4(V3)6 protein are also presented herein.

Materials and methods

Gene design and vector construction

To construct the C4(V3)6 gene for E. coli-based expression,

the C4V3 encoding gene reported by Varona-Santos et al.

(2006) was used as backbone. An additional region encodes

for five V3 loops from HIV isolates CC, RF, MN, RU, and

IIIB, were designed along with linkers between each V3

epitope. This coding sequence was defined based on codon

optimization performed by Genscript (USA) to aid in effi-

cient gene translation in E. coli and cloned in frame into the

C4V3 open reading frame following standard restriction and

ligation reactions. Subsequently, the 900 bp full length

synthetic gene was amplified by PCR. The primers used

during this amplification introduced the Nco I and Hind III

flanking restriction sites to facilitate further cloning steps.

The PCR product was cloned into pGEM� T-Easy vector

System (Promega, http://www.promega.com) and its

sequence determined. Finally, the synthetic C4(V3)6 gene

was cloned into the pTrcHis2C vector (Invitrogen, http://

www.invitrogen.com) through the Nco I and Hind III sites

to obtain the pC4(V3)6 expression vector. A positive clone

was selected by restriction analysis and used for protein

expression assays.

To produce an E. coli-derived protein useful for anti-

body analyses, a chimeric protein comprising the mouse

dihydrofolate reductase (DHFR) and the V3 loop from IIIB

HIV (DHFR::IIIB) was produced. PCR analysis was con-

ducted to isolate the corresponding IIIB-V3 coding region

from a full length gp120 cDNA. The amplicon was cloned

in-frame at the 3’ end of the DHFR from the pQE-40 vector

(Qiagen, http://www.qiagen.com) to yield the pQ40-IIIB

construct.

To develop a C4(V3)6-plant expression vector, a

C4(V3)6 encoding gene was synthesized (GenScript,

http://www.genscript.com) following codon optimization

for plant expression, and including Xba I and Sac I flanking

restriction sites. The C4(V3)6 gene was cloned downstream

of the CaMV 35S promoter of the pBI121 plant expression

vector. Both pBI121 and the plasmid carrying the C4(V3)6

gene were digested with Xba I and Sac I endonucleases.

The vector and insert of interest were ligated to construct

the expression vector named pBin-C4(V3)6. Then, the

ligation mix was used to transform chemically competent

E. coli cells. A positive clone was selected by restriction

analysis, and used for plasmid isolation. After confirming

sequence integrity by standard sequencing, the construct

was then mobilized into Agrobacterium tumefaciens

GV3101 strain by electroporation, and this recombinant

strain was used for plant transformation.

Production and purification of E. coli-derived chimeric

proteins

Cells of E. coli TOP10 (Invitrogen, http://www.invitrogen.

com) strain transformed with either pBin-C4(V3)6 or pQ40-

IIIB expression vectors, were grown in LB medium supple-

mented with 100 lg/ml ampicillin. Expression was induced

by adding isopropyl-thiogalactoside (IPTG) to a 1 mM final

concentration. Purification of the corresponding chimeric

proteins was performed by Ni-IMAC following the manuf-

acter’s instructions (QIAGEN, http://www.qiagen.com).

74 Plant Cell Tiss Organ Cult (2013) 113:73–79

123

http://www.promega.com
http://www.invitrogen.com
http://www.invitrogen.com
http://www.qiagen.com
http://www.genscript.com
http://www.invitrogen.com
http://www.invitrogen.com
http://www.qiagen.com


Briefly, bacterial cells were pelleted, resuspended in cold TE

buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8), and then

lysed by sonication (Fisher Sonic Dismembrator Model 300).

Inclusion bodies were pelleted by centrifugation at

8,0009g for 10 min, washed once with 0.5 M NaCl-1 %,

Tween-20, and then twice with TE buffer. Inclusion bodies

were solubilized in Urea buffer (100 mM NaH2PO4, 8 M

Urea, 0.5 M NaCl, 20 mM Imidazol, pH 8) and incubated

with NiNTA resin by 1 h (QIAGEN, http://www.qiagen.com

). After washing the resin, recombinant proteins were eluted

with binding buffer supplemented with 250 mM imidazol. In

order to desalt and re-fold the recombinant proteins, elution

fractions were extensively dialyzed in refolding buffer over-

night (30 mM Na2CO3, 70 mM NaHCO3, 7 % sucrose, pH

9.6). The recombinant protein was clarified by centrifugation

and stored at -70 �C until used. After determining the protein

concentration (Bradford 1976), purity was visualized by SDS-

PAGE. For C4(V3)6, endotoxin levels were assessed using an

E-Toxate kit (Sigma, http://www.sigmaaldrich.com), with a

limit of sensitivity of 0.05–0.1 endotoxin units (EU)/ml, fol-

lowing manufacturer’s instructions.

Transformation of tobacco and lettuce

The culture medium consisted of the standard Murashige and

Skoog (MS) (Phytotechnology Lab, http://www.phytotechlab.

com) and solidified with 0.8 % agar. Cultures were maintained

at 25 �C under 16 h photoperiod (100 lmol m-2 s-1) thro-

ughout culture.

Tobacco plants carrying the C4(V3)6 gene were

obtained by A. tumefaciens-mediated transformation fol-

lowing the standard transformation protocol of Horsch

et al. (1985). Briefly, leaves from in vitro-germinated

tobacco seedlings (Nicotiana tabacum cv. Petite Havana

SR1) were cut into small segments, and co-cultivated with

recombinant A. tumefaciens strain GV3101 carrying the

pBin-C4(V3)6 vector. Following transfer of co-cultivated

leaf sections to MS medium containing 200 mg/L kana-

mycin for selection, regenerated shoots were excised, and

rooted onto a plant growth regulator (PGR)-free medium,

but containing 100 mg/L of kanamycin. Successfully roo-

ted plantlets were then transplanted into small plastic pots

(15 cm in diameter) containing soil mix, placed in a large

plastic tray covered with a plastic dome to maintain high

humidity, and kept at a temperature of 25 ± 1 �C. One

week post-transplantation, the plastic cover was gradually

removed over a period of 5 days. After 2 weeks, plants

were transferred to larger plastic pots (25 cm in diameter),

and grown under the same environmental conditions until

maturity. Seeds were collected from these plants.

Transgenic lettuce plants were obtained following using

an Agrobacterium-mediated lettuce transformation repor-

ted by Curtis (2006), but with some modifications. Seeds of

lettuce cv. Green Wave (Takii Seed Co. Ltd.,

http://www.takii.com) were germinated on MS medium.

Cotyledons of 7-day-old seedlings were excised, wounded

several times with a scalpel, and dipped into bacterial

suspension of A. tumefaciens, derived from overnight-

grown culture diluted 1:10 with LB media to a final OD600

nm of =0.2. Cotyledons were blotted dry onto a sterilized

paper, and co-cultured for 2 days on a co-cultivation

medium. The medium consisted of MS salts and vitamins,

supplemented with 0.05 mg/L naphthaleneacetic acid

(NAA), 0.25 mg/L kinetin, 2.0 mg/L 2,4-dichlorophe-

noxyacetic acid (2,4-D), and 2.0 g/L casein. Following

co-cultivation, explants were rinsed with sterilized

water, blotted dry, and placed on selection medium 1 [MS

salts and vitamins, supplemented with 1.0 mg/L NAA,

0.5 mg/L 6-benzyladenine (BA), 100 mg/L kanamycin,

and 500 mg/L cefotaxime]. Cotyledons were subcultured

biweekly onto selection medium 1 for a period of 1 month,

and then transferred to selection medium 2 [MS salts and

vitamins, supplemented with 0.05 mg/L NAA, 0.2 mg/L

6-benzyladenine (BA), 100 mg/L kanamycin, and 250 mg/L

cefotaxime]. Explants were subcultured biweekly. When

developing kanamycin-resistant shoots reached 1 cm in

length, they were transferred to rooting medium [MS salts

and vitamins supplemented with 50 mg/L kanamycin and

250 mg/L cefotaxime]. Transplantation of the regenerated

lettuce plants was performed as described above for

tobacco.

PCR analysis

Total DNA was isolated from leaves of both putative trans-

formants and wild-type plants according to Dellaporta et al.

(1983). A 25 lL reaction mixture contained 100 ng DNA,

1.5 mM magnesium chloride, 2.5 U Taq DNA polymerase,

1 mM dNTPs, and 1 lM of primers (sense 50TATTC

GGCTATGACTGGGCA; antisense 50GCCAACGCTATG

TCCTGAT). Cycling conditions were 94 �C for 5 min

(initial denaturation); 35 cycles of 95 �C for 30 s, 56 �C for

30 s, 72 �C for 60 s, and a final extension at 72 �C for 5 min.

PCR products were analyzed by electrophoresis on 1 %

agarose gel.

Western blot analysis

Protein extracts were obtained by resuspending 10 mg of

freeze-dried leaf tissue into 50 lL of 1X reducing loading

buffer. Samples were denatured by boiling for 5 min at

95 �C, debris was eliminated by centrifugation at

12,0009g for 10 min, and SDS-PAGE was performed in

4–12 % acrylamide gels under denaturing conditions. The

gel was blotted on to BioTrace PVDF membrane (Pall Cor-

poration, http://www.pall.com). After blocking in PBST plus
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1 % fat-free milk, blots were incubated with either a mouse

antibody directed against the Hystidine tag included at the

C-terminus (1:10,000 dilution, Genscript, http://www.gen

script.com), or a pool of sera from HIV positive patients.

Horseradish peroxidase-conjugated secondary antibodies

(1:10,000 dilution, Sigma, http://www.sigmaaldrich.com)

were applied for 2 h at room temperature. Antibody binding

was detected by incubation with SuperSignal West Dura

solution following the manufacturer’s instructions (Thermo

Scientific, http://www.thermoscientific.com). Signal detec-

tion was performed by means of an X-ray film following

standard procedures. In order to estimate the amount of

protein produced in lettuce, optical densitometry analysis

was performed with a Biosens SC805 documentation sys-

tem, using the E. coli-derived C4(V3)6 as standard.

Results

C4(V3)6 is successfully produced in E. coli

A C4(V3)6 protein was designed to obtain a multiepitopic

antigen capable of eliciting antibodies against five dif-

ferent V3 sequences from different isolates (Table 1). The

HIV C4(V3)6 encoding gene was successfully assembled

and cloned into a conventional bacterial expression vec-

tor. Following transfer of this construct into an E. coli

expression strain, the expected C4(V3)6 protein was

successfully over-expressed by means of isopropyl b-D-1-

thiogalactopyranoside (IPTG) induction. After immobi-

lized metal affinity chromatography (IMAC) purification

and refolding processes, SDS-PAGE analysis revealed an

acceptable level of purity (Fig. 1). However, an additional

band of *18 kDa was also observed.

Antigenicity of the purified E. coli-derived C4(V3)6

was assessed by Western blot using a pool of sera from

HIV positive patients. A protein of 23 kDa in size was

detected in this assay (Fig. 2). An additional 46 kDa band

was also observed, which was likely to correspond to

either dimeric form of the protein or endogenous proteins

associated with C4(V3)6. Interestingly, this observation

was also registered when the C4V3 was produced in

E. coli as expression host (Varona-Santos et al. 2006).

Table 1 Sequences of V3 loop epitopes included in the C4(V3)6

protein

HIV isolate V3 loop sequence

CC RGIHFGPGQALYTTG

RF RKSITKGPGRVIYAT

MN RKRIHIGPGRAFYTTT

RU RKRITMGPGRVYYTT

IIIB SIRIGRGPGRAFVTIG

Fig. 1 Coomassie-stained gel for IMAC purification of the His-

tagged C4(V3)6 protein. Lanes: 1, total loaded protein; 2 and 3, flow-

through fractions; and 4, eluted target C4(V3)6 protein (of a

theoretical molecular weight of 23 kDa)

Fig. 2 Production and detection of the immunoreactive C4(V3)6

protein in E. coli. Presence of the expected recombinant C4(V3)6 was

determined by Western blot analysis using different primary

antibodies. Purified E. coli-derived protein detected by labeling with

a pool sera from HIV? patients. Lanes: M molecular weight marker;

1 and 2, 1 lg of rC4(V3)6; and C, negative control (10 lg of a total

protein sample from WT E. coli)
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C4(V3)6 is successfully produced in plant cells

To explore the viability to express the C4(V3)6 protein in

plant cells, the pBin-C4(V3)6 vector carrying the construct

was introduced into tobacco using Agrobacterium-medi-

ated transformation. Two months post co-cultivation, sev-

eral KanR lines were rescued, transferred to soil mix,

acclimatized, and grown to maturity in the greenhouse. All

plants showed no visible phenotypic alterations. Most

regenerated plants were PCR-positive for the of nptII

transgene, thus confirming presence of the transgene. Seeds

were collected from T0 plants, and these germinated on

Murashige and Skoog (MS) selection medium containing

kanamycin, thus indicating these plants are transformed

with C4(V3)6 construct (data not shown).

Subsequently, the C4(V3)6 cassette was introduced into

lettuce. Multiple KanR calli were generated over a period

of 1 month post co-cultivation, and putative transformed

lettuce shoots were obtained after 3 months post co-culti-

vation. Plants with well-developed roots were established

in plant growth regulator PGR-free medium, and a total of

14 lines were transferred to soil mix, acclimatized, and

grown in the greenhouse. Presence of the nptII transgene

was confirmed using PCR, showing an amplicon of the

expected molecular weight of 600 bp (Fig. 3). No PCR

product was amplified in reactions containing DNA from

untransformed plants and wild-type (control) plants.

To investigate the ability of lettuce cells to synthesize the

recombinant C4(V3)6 protein, six lines were selected to

detect the recombinant protein by Western-blot assays.

Labelling with either anti-His monoclonal antibody (Fig. 4)

or sera from HIV? patients (data not shown) revealed

presence of an immunoreactive protein of 23 kDa. This

indicated appropriate production of the expected C4(V3)6

as detected earlier in E. coli (Fig. 2). Based on band inten-

sities of plant extracts and in comparison to those of the pure

rC4(V3)6 standard, it was estimated that 1 g of freeze-dried

T0 lettuce leaves contained 240 lg of the C4(V3)6 protein.

Following seed production, T1 lines were successfully res-

cued on MS selection medium containing kanamycin. These

T1 plants were confirmed to carry the C4(V3)6 transgene

following PCR analysis (data not shown).

Discussion

An ideal subunit HIV vaccine would consist of a single

multiepitopic recombinant protein with high immunopro-

tective properties, and it would be capable of inducing a

broad immune response against multiple strains (or

mutants) of the invading pathogen, therefore protecting

against disease development (Koff 2012). Moreover, it

would be highly desirable that this vaccine is produced at

low-cost, thus allowing for efficacious and economic vac-

cination programs to be implemented worldwide (Daniell

et al. 2001; Twyman et al. 2003).

In recent years, some reports have identified the

importance and viability of the use of an anti-V3 as a

humoral neutralizing response (Zolla-Pazner et al. 2009;

Watkins et al. 2011; Totrov et al. 2010). For example,

Zolla-Pazner et al. (2011) primed rabbits with a gp120

DNA vaccine and then boosted them with chimeric gp120

proteins. Their results indicated that the immune response

was dependent on a neutralizing epitope and that anti-V3

antibodies could neutralize a diverse set of V3 loops.

Similar findings have also been reported by Vaine et al.

(2010).

In this study, we have designed a C4(V3)6 multiepitopic

protein, carrying several V3 variants along with the C4

domain of HIV, and based on the previously reported

recombinant immunogenic C4V3 protein (Varona-Santos

et al. 2006). It is hypothesized that this new design is

capable of triggering a broader humoral response, leading

to neutralization activity against several HIV isolates.

Fig. 3 Detection of the nptII (kanamycin resistance) gene in

transformed lettuce plants. Genomic DNA samples from either

transformed lines or wild-type plants were used to demonstrate the

presence of the nptII gene, which is located at the T-DNA of the

pBin-C4(V3)6 vector. Lanes: M 1 kb molecular weight marker;

- negative control; WT wild-type plant; ? positive control (pBin-

C4(V3)6); and LCV1-6, lettuce candidate lines

Fig. 4 Production and detection of the immunoreactive C4(V3)6

protein in lettuce cells. Presence of the expected recombinant

C4(V3)6 was determined by Western blot analysis. Lettuce-derived

C4(V3)6 protein was detected by labeling with an anti-His tag

antibody. Lines: WT wild-type lettuce, STD 500 ng of pure C4(V3)6

as standard, and LCV1 to 6, transgenic lettuce lines
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When the recombinant multiepitopic C4(V3)6 protein is

expressed in E. coli, it is correctly expressed. As these

results were encouraging, we explored the use of plants as

systems for production of this recombinant multiepitopic

protein. Early on, the C4(V3)6 was introduced into a plant

expression vector and transferred into tobacco, as a test

system. PCR analysis of KanR plants revealed presence of

T-DNA sequences in transformed tobacco plants, and all

plants were phenotypically normal. This finding suggested

that this complex structural protein can be introduced into

plant cells without eliciting any negative effects on plant

growth and development. This finding prompted us to

proceed in transferring the C4(V3)6 gene construct into an

edible and safe plant system, lettuce, that does not require

processing for oral delivery of this candidate subunit vac-

cine. To date, lettuce has been used as a plant expression

host for several antigens (Kanagaraj et al. 2011; Marcondes

and Hansen 2008; Matsui et al. 2011; Pniewski et al. 2011;

Rosales-Mendoza et al. 2012), as it is deemed as a desir-

able production and delivery platform for these antigens. In

this study, the C4(V3)6 gene construct was introduced into

lettuce using Agrobacterium-mediated transformation, and

several putative transgenic lines were produced. Among

those, six lines were selected and grown into the T1 gen-

eration. Levels of the expected and corrected size of the

C4(V3)6 protein reached up to 240 lg/g DW in some lines.

It is important to point out that expression of a number

of HIV proteins have been reported in plants including

Gag, early proteins, such as Tat and Nef, as well as func-

tional Env components (reviewed by Rosales-Mendoza

et al. 2012). For example, Matoba et al. (2004) have

described the design of the CTB-MPR(649-684) fusion

protein, comprised of CTB and the membrane proximal

(ectodomain) region of gp41 (MPR). This was transiently

expressed in Nicotiana benthamiana plants. The immuno-

genic properties of the plant-derived CTB-MPR(649-684)

were the reported by the same group, describing that it is

capable to elicit systemic and mucosal immune responses

against MPR(649-684) in mice when a mucosal prime-

systemic boost immunization scheme was performed

(Matoba et al. 2009). A number of other plant-produced

recombinant proteins carrying Env epitopes have proven to

be immunogenic in test animals, and capable of eliciting

humoral and cellular responses. However, most of these

systems rely on the use of chimeric plant virus or transient

expression systems, which result in high yields, but require

purification steps. In addition, oral immunogenicity of

these chimeric virus or proteins has not been studied in

detail (Rosales-Mendoza et al. 2012).

Therefore, findings obtained in this study serve as a

major step forward in efforts to produce a reliable, effica-

cious, and safe plant-based vaccine against HIV. This

polyvalent lettuce-derived C4(V3)6 antigen seems to be a

promising candidate vaccine. However, additional studies

should be conducted to assess if this antigen is capable to

induce mucosal immune response in mice and non-human

primates, as well as its neutralization activity against dif-

ferent isolates of the virus. It is expected that expression

levels of C4(V3)6 accumulating in these lettuce lines

would be appropriate to pursue these additional studies.

In conclusion, C4(V3)6 is correctly expressed in plants

as expression platforms and it remains antigenic. The anti-

genic lettuce-derived C4(V3)6 constitute a promising tool

for developing safe, efficient, and economic oral vaccine

formulations against HIV, which could induce broad anti-

HIV immune responses at mucosal levels.
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