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Abstract During the process of subculture of embryo-

genic cultures, sometimes they may become non-embryo-

genic, which is not desirable. However, this offers an

opportunity to explore the mechanisms underlying cell fate

determination and the maintenance of embryogenic

potential of explants during the process of somatic

embryogenesis. In a previous study, differential expression

of microRNAs (miRNAs) has been detected between

embryogenic and non-embryogenic cultures as well as

during somatic embryo maturation of Larix kaempferi

(Lamb.) Carr. However, little is known about the target

genes of these miRNAs during these cellular differentiation

processes. In this study, full-length cDNA of the MYB

homologue from L. kaempferi, LaMYB33, was cloned.

Sequence analysis showed that the miR159 target sequence

is present in LaMYB33. The isolation of the miRNA-guided

cleavage products of LaMYB33 further suggested that this

gene is regulated by miRNA. LaMYB33 transcript levels

between embryogenic and non-embryogenic cultures and

during the late stage of somatic embryo maturation were

measured and the results showed opposite patterns in the

expression of LaMYB33 and mature miR159. Based on the

relationships between the expression patterns of LaMYB33

and mature miR159, we concluded that the post-tran-

scriptional regulation of LaMYB33 by miR159 participates

in the maintenance of embryogenic or non-embryogenic

potential and somatic embryo maturation, providing new

insights into the regulatory mechanisms of somatic

embryogenesis.
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Introduction

Somatic embryogenesis provides a useful experimental

system to investigate the regulatory mechanisms of plant

development (Cairney and Pullman 2007; Quiroz-Figueroa

et al. 2006; Zimmerman 1993). Global changes in gene

expression occur during the formation of a somatic embryo

(Vestman et al. 2011; Zhang et al. 2009). In previous work,

we found that members of the miR159 family show higher

levels in non-embryogenic than in embryogenic cultures of

Larix kaempferi (Lamb.) Carr. (Zhang et al. 2010a), and the

same result was found in Citrus sinensis L. Osb (Wu et al.

2011). In addition, our recent work showed that the expres-

sion levels of members of the miR159 family are differen-

tially regulated during the late stage of somatic embryo

maturation in L. kaempferi (Zhang et al. 2012). Generally,

miRNAs control gene expression at the post-transcriptional

level through both mRNA degradation and translational

inhibition (Chen 2010; Zhang et al. 2006). Taken together,

these results suggest that regulation of gene expression at

both the transcriptional and post-transcriptional levels is

involved in somatic embryogenesis, especially in cell fate

determination, the maintenance of embryogenic or non-

embryogenic potential, and somatic embryo maturation.
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Regulation of MYB transcription factor by miR159

participates in many developmental processes, and At-

MYB33 and its homologues from other species have been

verified as the target genes of miR159 (Achard et al. 2004;

Allen et al. 2007, 2010; Alonso-Peral et al. 2010, 2012; Lu

et al. 2005, 2006, 2007; Millar and Gubler 2005; Palatnik

et al. 2003; Reyes and Chua 2007; Schwab et al. 2005;

Tsuji et al. 2006). Analyzing the expression patterns of

miRNA and its target genes contributes to understanding

the functions of miRNA. In view of this, investigating the

relationships between the expression patterns of miR159

and its target genes is essential to elucidate the regulatory

mechanism of miR159 in L. kaempferi somatic embryo-

genesis.

Materials and methods

Database search, cloning full-length cDNA,

and sequence analysis

First, we cloned the full-length cDNA sequence of the

MYB33 homologue, LaMYB33, from L. kaempferi.

According to the cDNA sequence of AtMYB33 (GenBank

accession no. NM_180448.1) and its homologues from

Pinus taeda L. (TC60689, DFCI-Pine Gene Index,

http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb

=pine), Oryza sativa (GenBank accession no. X98355.1)

and Hordeum vulgare (GenBank accession no. X87690.1)

(Gubler et al. 1995), the degenerate primers 50-AA(C/

T)A(A/G)(A/G)TGGGC(T/A)CG(G/T)ATGGC-30 and 50-
GAAGGGAGCTCCA(T/G)CTTC-30 were used to clone

the cDNA sequence fragment of the MYB33 homologue

from L. kaempferi, then rapid amplification of cDNA ends

(RACE) experiments were performed to get the 30 and 50

end cDNA sequences using a SMARTerTM RACE cDNA

amplification kit (Clontech). Total RNA isolated from

embryogenic cultures was used for cloning. The gene-

specific outer primer 50-ATGCTTCAAGGCTGCTCG-30

and inner primer 50-CTATCAACGCCCTTTGGG-30 were

used for 30 RACE, and outer primer 50-ATGGGTTGCT-

GATTCTGTTGATTCTC-30 and inner primer 50-GGGC

GGGTAAAGAGGTAAT-30 for 50 RACE. The primers 50-
TGGTGGTGTAATGGTGATG-30 and 50-TGCAATGAA

ATAGGGTTCTA-30 were used to amplify the full-length

cDNA sequence to confirm the RACE results. The PCR

products were purified using Bioteke PCR purification

columns and subsequently cloned into the pGEM-T easy

vector (Promega) and sequenced. The full-length cDNA

sequence was submitted to GenBank with the accession no.

JX157847 for LaMYB33. Multiple protein sequence align-

ments were made using ClustalX software (Thompson

et al. 1997).

RNA ligase-mediated amplification of cDNA ends

(RLM-50 RACE)

Second, we identified the cleavage products of LaMYB33

mRNAs to confirm the regulation of LaMYB33 by miR159 in

vivo using RNA ligase-mediated amplification of cDNA ends

(RLM-50 RACE) (Liu and Gorovsky 1993), using a 50 RACE

kit (Invitrogen). Total RNA was isolated from embryogenic

cultures and RNA oligo adapters were directly ligated to the

purified total RNA without calf intestinal phosphatase and

tobacco acid pyrophosphatase treatment. The gene-specific

outer primer 50-CATGGACTGGTGCTCAAA-30 and inner

primer 50-CTGAAGCAGCAGGACCAC-30 were used for

RLM-50 RACE. The PCR products with the expected sizes

were purified as above, then cloned and sequenced.

Quantitative RT-PCR (qRT-PCR)

Finally, we assayed the expression patterns of LaMYB33 in

embryogenic and non-embryogenic cultures and during the

late stage of somatic embryo maturation in L. kaempferi to

investigate the relationships between the expression pat-

terns of mature miR159 and LaMYB33. To further confirm

miR159 regulation in somatic embryogenesis, the expres-

sion patterns of one of its target genes, LaMYB33, in

embryogenic and non-embryogenic cultures and during the

late stage of somatic embryo maturation in L. kaempferi,

were compared using quantitative reverse transcription-

PCR (qRT-PCR). The same RNA from embryogenic or

non-embryogenic cultures as for miRNA hybridization was

used for qRT-PCR analysis (Zhang et al. 2010a). In

our previous study, three pairs of embryogenic and non-

embryogenic cultures were used for miRNA hybridization:

E430 and H430, E017 and H017, and E375 and H375 (E

stands for embryogenic callus; H stands for non-embryo-

genic callus) (Zhang et al. 2010a). These calli were initially

all embryogenic, but during subculture, some became non-

embryogenic. Embryogenic and non-embryogenic cultures

from the same calli were isolated and subcultured sepa-

rately in fresh proliferation medium. The materials were

harvested after subculture for 3 or 14 days. The maturing

somatic embryos after maturation culture for 3, 4, 5 or

7 weeks, which were at developmental stages 5, 6, 7 and 8,

respectively, based on morphological observation (Zhang

et al. 2012), were used to assay the expression patterns of

LaMYB33 during the late stage of somatic embryo matu-

ration. Total RNA was extracted with a plant RNA

extraction kit (R1050, Applygen) according to the manu-

facturer’s protocol. A 5-lg aliquot of total RNA was

reverse-transcribed into cDNA with the RevertAidTM H

Minus First Strand cDNA Synthesis kit (K1631, Fermen-

tas, Life Sciences), and then diluted for gene isolation and

qRT-PCR analysis.
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The qPCR analysis was performed on an Applied Bio-

systems 7500 Real-Time PCR System using the SYBR

Premix EX Taq kit (TaKaRa Biotechnology) with LaEF1A1

(GenBank accession no. JX157845) as internal control.

Each reaction was carried out on 5 ll of diluted cDNA

sample, in a total reaction system of 20 ll. The reaction

procedure was set up according to the manufacturer’s pro-

tocol. The primers 50-TGGGAGTTTGATGATTGG-30 and

50-AAGTTGGCTTGAAGGGAG-30 were used for non-

cleaved LaMYB33 transcripts, 50-AGACAGAATGTGG

CGAATA-30 and 50-CATGGACTGGTGCTCAAA-30 for

both non-cleaved and cleaved LaMYB33 transcripts

(Fig. 3a), and 50-GACTGTACCTGTTGGTCGTG-30 and

50-CCTCCAGCAGAGCTTCAT-30 for LaEF1A1. To

check the specificity of amplification, the melting curves of

the PCR products were determined. The expression levels

were standardized to the constitutive expression level of

LaEF1A1. The ratio between the expression levels of

LaMYB33 and LaEF1A1 for each sample was calculated

using the relative quantitative analysis method. The qRT-

PCR was performed with three biological replicates. Data

are shown as mean ± SD.

Fig. 1 Sequence analysis of

LaMYB33. a Multiple protein

sequence alignment of

LaMYB33 and AtMYB33

(GenBank accession no.

NP_850779.1) amino-acid

sequences. Subgroup-specific

motif signatures are shaded
grey. Identical residues are

indicated by asterisks.

b Alignment of miR159 target

sequences in AtMYB33 and

LaMYB33 transcripts. Identical

nucleotides between target

sequences or mature miR159

sequences are shaded grey.

Mature sequences of ath-

miR159a, ath-miR159b and ath-

miR159c were from the

miRBase database (http://

www.mirbase.org/cgi-bin/

mirna_summary.pl?org=ath)

and the mature sequence of lle-

miR159c, one member of the L.
kaempferi miR159 family, was

identified by Zhang et al. (2012)
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Results and discussion

Cloning and analyzing the sequence of LaMYB33

in L. kaempferi

The deduced amino-acid sequence for LaMYB33 dis-

played high homology with AtMYB33 from Arabidopsis

(Fig. 1a). The sequence was 603 amino-acids long and

contained a GLPLYP motif characteristic of subgroup 18

of the R2R3-MYB genes from Arabidopsis (Stracke et al.

2001) (Fig. 1a). Further analysis showed that the miR159

target sequence was present in the LaMYB33 transcript

(Fig. 1b).

Determination of the cleavage sites within LaMYB33

sequence

To verify the cleavage of LaMYB33 mRNA by miR159 in

vivo and identify the cleavage sites within LaMYB33

mRNAs, RLM-50 RACE was performed. The RLM-50

RACE analysis showed cleavage products for LaMYB33

transcripts in vivo (Fig. 2a) and determined the cleavage

sites within the predicted miR159 target sequence

(Fig. 2b), indicating that LaMYB33 mRNA is an in vivo

miR159 cleavage target and miR159 regulation of LaM-

YB33 occurs in L. kaempferi.

LaMYB33 expression patterns and their relationships

with mature miR159 expression during somatic

embryogenesis

The qPCR analysis showed that the LaMYB33 transcripts

were expressed strongly in the embryogenic cultures and

weakly in the non-embryogenic cultures (Fig. 3b, c),

reflecting a negative correlation between the expression

patterns of mature miR159 and its target gene between

embryogenic and non-embryogenic cultures (Zhang et al.

2010a). During the late stage of L. kaempferi somatic

embryo maturation, the LaMYB33 transcript levels

decreased (Fig. 3d, e), while the expression levels of

mature miR159 increase (Zhang et al. 2012), also reflecting

a negative correlation between the expression patterns of

mature miR159 and its target gene. These results suggest

that maintenance of the embryogenic or non-embryogenic

potential and somatic embryo maturation involve miR159

regulation of LaMYB33 post-transcriptionally.

During the process of subculture, transformation of

embryogenic cultures to non-embryogenic cultures always

means a change of cell fate and loss of embryogenic

potential of explants (Quiroz-Figueroa et al. 2002; Zhang

et al. 2010a). High expression of mature miR159 in non-

embryogenic cultures indicates that miR159 functions in

this transformation (Wu et al. 2011; Zhang et al. 2010a),

and this is further supported by low expression of LaM-

YB33 in non-embryogenic cultures.

Environmental and hormonal signals and some other

chemicals play regulatory roles in somatic embryogenesis

(Abrahamsson et al. 2012; Fehér et al. 2003; Hakman et al.

2009; Larsson et al. 2008; Lu et al. 2011; Milojević

et al. 2012; Ramakrishna et al. 2012; Rodrı́guez-Sahagún

et al. 2011; Uddenberg et al. 2011). For example, abscisic

acid (ABA) promotes somatic embryo maturation

(Gutmann et al. 1996; Rai et al. 2011). To understand the

molecular basis of ABA regulation in somatic embryo-

genesis, many genes associated with ABA signaling have

been identified (Fehér et al. 2003; Guan et al. 2009; Schlögl

et al. 2012; Shiota et al. 2008; Vestman et al. 2011; Zhang

et al. 2010b). Interestingly, miR159, which is induced by

ABA (Reyes and Chua, 2007), has also been detected

during somatic embryogenesis (Wu et al. 2011; Zhang

et al. 2010a, 2012), indicating that interaction of miR159

and its target gene is involved in this process. In this study,

we identified a target gene of miR159, LaMYB33, from L.

kaempferi and confirmed the miR159 regulation of LaM-

YB33 in L. kaempferi somatic embryogenesis, providing

new evidence of miRNA-mediated ABA regulation in

somatic embryogenesis.

Fig. 2 miR159 cleavage sites in LaMYB33 mRNAs determined by

RLM-50 RACE. a Agarose gel electrophoresis showed the nested

PCR products that were cloned and sequenced for LaMYB33. The

band with the expected size indicated by the arrow was cut out for

purification. b Base-pairing interaction between miR159 and the

LaMYB33 transcript. Vertical arrow indicates the 50 positions of

the cleaved mRNA fragments identified by RLM-50 RACE and the

numbers refer to the frequency of RLM-50 RACE clones correspond-

ing to cleavage sites
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