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Abstract Actively-growing cultured cells of Pogonatum

and Polytrichum were desiccated and cryopreserved.

Although Pogonatum was slightly more tolerant to desic-

cation, both species were cryopreserved with[90% survival

rate. An examination of isolated protoplasts revealed that

differences in desiccation tolerance were likely dependent

on levels of injury of plasma membranes. Trehalose and

sucrose provided some protective effects during protoplast

desiccation, but mannitol and glucose were less effective

when Pogonatum protoplasts were directly desiccated and

preserved at various temperatures. The effectiveness of

glucose was enhanced when combined with culture medium

components.
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Abbreviations

2,4-D 2,4-Dichlorophenoxyacetic acid

ABA Abscisic acid

BA 6-Benzyl aminopurine

MS Murashige and Skoog (1962) medium

CI Callus induction medium (Takio et al. 1986)

Introduction

Cryopreservation of cultured cells or tissues is a dependable

and long-established method for long-term conservation of

plant genetic resources. Cells and tissues of various plant

species have been preserved since Nag and Street (1973) first

successfully preserved cultured carrot cells in liquid nitro-

gen (Kartha 1985). Although the agronomic importance of

cryopreservation has long been recognized, recent studies

have emphasized the importance of preserving rare wild

plant species as well as transgenic cell lines and cultures that

are particularly useful in experimental systems (Towill

2002).

Cryopreservation methods generally fall into one of

three free-water removal categories: slow prefreezing by

extracellular freezing, vitrification by plasmolysis, and

desiccation by vaporization (Ishikawa 1994; Grout 1995).

Desiccation is an ideal conservation method as it takes

advantage of the innate ability of plant cells of some tax-

onomic groups to tolerate desiccation and does not require

imbibition of toxic cryoprotective solutions (Ishikawa

1994). Cultured cells or tissues are often encapsulated in

gel beads prior to desiccation to allow for slow and mild

drying, which often increases survival rate of preserved

specimens.

To expand desiccation technology to a wider range of

plant specimens, basic studies on physiological and struc-

tural aspects of dehydration and rehydration are required.

Those physiological and structural changes that occur in the

plasma membrane are of particular interest (Steponkus

1984; Crowe et al. 1992; Bryant et al. 2001). Protoplasts

have been used to study membrane behavior during freezing

and freeze-induced dehydration (Gordon-Kamm and Step-

onkus 1984a, b; Uemura and Steponkus 1989, 2003). They

should also serve as good tools for studying membrane

behavior and other cellular events during desiccation. Pro-

toplasts of pea embryos have been used to study the

relationship between membrane damage and desiccation

tolerance (Xiao and Koster 2001; Koster et al. 2003;
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Halperin and Koster 2006). Despite the usefulness of pro-

toplasts as tools for studying desiccation tolerance, there is

no report, to our knowledge, either of protoplast isolation

from desiccated cells or desiccation and cryopreservation of

isolated protoplasts. As cells encapsulated in gel beads are

not suitable for protoplast isolation and microscopic obser-

vation, the development of a protocol that does not require

encapsulation would be desirable for studying desiccation

tolerance at the cellular and protoplast levels.

In this study, actively-growing cells of the mosses

Pogonatum inflexum and Polytrichum commune (Polytrich-

aceae) were successfully desiccated without encapsulation.

Materials and methods

Plant materials

Spores of Pogonatum inflexum were obtained from Tokyo

Denki University, and spores of Polytrichum commune were

isolated from a forest in Nagano-ken (Japan). Capsules were

sterilized by immersion in 70% ethanol for 1 min, and then

in 1% solution of sodium hypochlorite for 10 min. Spores

were germinated on MS basal medium (Murashige and

Skoog 1962) supplemented with 3% sucrose. Calli of

Pogonatum were induced on CI medium (Takio et al. 1986)

supplemented with 10 lM BA, 5 lM 2,4-D and 4% sucrose.

A suspension culture of Pogonatum was established and

maintained in CI medium supplemented with 10 lM BA,

5 lM 2,4-D, and 3% sucrose. Callus of Polytrichum was

induced on MS medium supplemented with 10 lM BA and

4% sucrose. A suspension culture of Polytrichum was

established in MS medium supplemented with 10 lM BA

and 4% sucrose. All suspension cultures were grown at 26�C

with shaking at 100 rpm under continuous light at

30 lmol-2 s-1. All media were adjusted to pH 5.8 and

autoclaved at 121�C for 15 min.

Desiccation, cryopreservation, and regrowth

Cells were subcultured onto fresh media for a period of

7 days, centrifuged to pack the cells, and dropped onto a

filter paper for rapid desiccation under air flow on a clean

bench (Fig. 1). Slow desiccation took place in Petri dishes

at 70% relative humidity. Final water content of desiccated

cells was determined gravimetrically by measuring the loss

of water after drying at 100�C for 1 h. Desiccated and non-

desiccated cells (controls) as well as those desiccated for

different time periods, including 10, 20, 30, 40, 60 min and

6, 12, 18, 24 h were transferred to cryotubes, and plunged

into liquid nitrogen.

Desiccated and cryopreserved cells were transferred to

solid medium to assay for recovery and regrowth. Cell

weights were measured after 7 days of culture, and survival

of each sample was calculated as percent of control weight.

Changes in morphology were observed by staining Pogon-

atum cells with 0.1% Calcofluor White ST, and microscopy

(Olympus, IX70, Tokyo, Japan) under UV light.

Protoplast isolation

Protoplasts were isolated from Pogonatum and Polytrichum

cells before desiccation, after desiccation, and during post-

desiccation culture. Pogonatum cells were suspended in an

enzyme solution containing 2% Driselase (Kyowa Hakko,

Tokyo, Japan), 0.6 M mannitol, and 5 mM CaCl2 (pH 5.8),

and incubated at 27�C for 5 h on a reciprocal shaker (Iwaki

Glass Co., SHK-U4, Tokyo, Japan) (100 rpm). Polytrichum

cells were suspended in an enzyme solution containing 2%

Driselase (Kyowa Hakko, Tokyo, Japan), 1% Macerozyme

R-10 (Yakult Pharmaceutical Ind, Tokyo, Japan), 0.6 M

mannitol, and 5 mM CaCl2 (pH 5.8), and incubated at 27�C

for 3 h on a reciprocal shaker (100 rpm). The incubated

mixture was filtered through a nylon net with a pore size of

40 lm and centrifuged at 80g for 3 min. The pellet was

washed three times with 0.6 M mannitol supplemented with

5 mM CaCl2 and re-centrifuged. Protoplast yields were

determined using a hemocytometer.

Desiccation and cryopreservation of protoplasts

Protoplasts isolated from 7-day-old subcultured Pogonatum

cells were suspended in a solution containing 0.35 M

sugar, including mannitol (0.36 osmolarity), glucose (0.36

osmolarity), sucrose (0.38 osmolarity), or trehalose (0.38

osmolarity), and with or without CI medium. A drop of

protoplast suspension (ca. 40 mm3) was placed on a square

section of aluminum foil in a 60 mm diameter petri dish,

Suspension 
cultured cells

0.5ml
packed cell 
volume

Drop on the 
filter paper

Desiccation

Desiccated 
sample into 
the cryotube

Conserve at 
-196

Rapid 
warming

(30-60 sec)

Culture in 
proliferation 

medium (1week)

Fig. 1 Procedure for desiccation and cryopreservation of suspension

cultured cells
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and desiccated at 50% relative humidity for 24 h at 27�C.

Desiccated protoplasts were preserved at -20, 4, 26�C or

in liquid nitrogen. Protoplasts were resuspended in liquid

medium and their viability was determined by staining

them with Evans blue (Gaff and Okang’o-Ogola 1971).

Protoplast culture

Pogonatum protoplasts were suspended in liquid CI med-

ium supplemented with 0.35 M glucose, 10 lM BA, and

5 lM 2,4-D. The protoplast suspension was plated on solid

medium and cultured under the same conditions as those of

suspension cells, but without shaking. The solidified

medium contained the same composition as that of the

liquid medium used for protoplast suspension plus 1% of

each of agar and activated charcoal (Sugawara et al. 1983;

Kuriyama et al. 1990). Cell division rates were determined

after 14 days of culture.

Results

Desiccation and cryopreservation of cultured plant cells

Water accounts for a high fraction of the volume and

weight of actively-growing cultured plant cells. Thus, both

cell weight and volume should markedly decrease with

desiccation. Dramatic changes in Pogonatum cell mor-

phology during desiccation were observed using

fluorescent microscopy, often with significant flattening of

normally spherical cells (Fig. 2).

More than 90% of Pogonatum cells survived desiccation

when moisture levels of tissues were below 1 g water per g

tissue dry weight with either rapid or slow dehydration

(Fig. 3). In contrast, Polytrichum cells did not survive rapid

dehydration, but [75% of cells survived cryopreservation

with slow desiccation over at least 18 h (Fig. 4).

Protoplast isolation from cultured plant cells

after desiccation

Both Pogonatum and Polytrichum cells appear to have some

native desiccation tolerance, allowing them to be cryopre-

served in liquid nitrogen without additional pretreatments

such as growth in ABA supplemented or sugar-enriched

media (Robertson et al. 1987; Sugawara and Hashimoto

2003; Hatanaka and Sugawara 2006, 2007). Protoplast yields

from Polytrichum cells were very low compared to those of

Pogonatum immediately after desiccation, with recovery

to about 70% of controls by 3 days in culture (Fig. 5).

Desiccation of protoplasts isolated

from Pogonatum cells

Protoplasts were isolated from actively-growing cultured

cells, then directly desiccated and cryopreserved. Desic-

cated protoplasts were cultured to determine whether they

retained their abilities to actively divide. Protoplasts iso-

lated from Pogonatum cells were resuspended in solutions

containing 0.35 M of various sugars (mannitol, glucose,

sucrose or trehalose) with or without components of CI

Fig. 2 Fluorescence-stained Pogonatum inflexum cells before desic-

cation (left) and after rapid desiccation for 30 min (right). Cells were

stained with a drop of 0.1% Calcofluor White M2R and observed

before or after desiccation. Bars = 100 lm
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Fig. 3 Water content (s) and survival rates (open and black bars) of

Pogonatum inflexum cultured cells after desiccation at 26�C for

different times. a Rapid desiccation. b Slow desiccation. Open bars
represent survival rates of desiccated cells. Black bars represent

survival rates of cells preserved in liquid nitrogen after desiccation.

Each data shows mean and SD of nine measurements
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basal medium, and then dried at room temperature. Sur-

vival rate of protoplasts suspended in 0.35 M mannitol

solution was very low following desiccation, but it was

higher than 70% in sucrose or trehalose, and 20% in glu-

cose (Fig. 6). The addition of CI basal medium to 0.35 M

glucose solution increased survival to nearly 90%. The

highest survival rates were obtained with either sucrose or

trehalose in combination with CI basal medium.

Preservation of desiccated protoplasts

at different temperatures

Protoplasts isolated from Pogonatum cells were also des-

iccated and stored at different temperatures in either CI plus

glucose or CI plus trehalose (Fig. 7). Although differences

in survival rates immediately after desiccation were low,

these were significantly high after one month following

desiccation. There was a general inverse correlation

between temperature and survival rate in glucose-preserved

protoplasts; whereas, preservation in trehalose was not

dependent on temperature. Storage in trehalose is effective

even at room temperature for at least a month (Fig. 7).

Culture of protoplasts following desiccation

and cryopreservation

Protoplasts from Pogonatum cells were suspended in a

solution containing 0.35 M glucose and CI, desiccated

for 24 h, and cryopreserved in liquid nitrogen for another

24 h. Cryopreserved protoplasts were then cultured in CI
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Fig. 4 Water content (s) and survival rates (open and black bars) of

Polytrichum commune cultured cells after desiccation at 26�C for

different times. a Rapid desiccation. b Slow desiccation. Open bars
represent survival rates of desiccated cells. Black bars represent

survival rates of cells preserved in liquid nitrogen after desiccation.

Data correspond to means ± SD, of six measurements in (a) and nine

measurements in (b)
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Fig. 5 Yield of protoplasts isolated from Pogonatum inflexum cells

(d) and Polytrichum commune cells (h). Pogonatum cells were

desiccated rapidly for 30 min and cultured for different lengths of

time (days). Polytrichum cells were desiccated slowly for 24 h and

cultured for different lengths of time (days). Con: Non-desiccated

control cells. Dry: Desiccated cells. Data correspond to means ± SD

of three measurements
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Fig. 6 Survival rate of Pogonatum inflexum protoplasts after desic-

cation for 24 h. Protoplasts were suspended in a solution containing

only 0.35 M sugar (open bars) or 0.35 M sugar with CI medium

(black bars) and desiccated for 24 h. Data correspond to means ± SD

of four measurements
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containing 0.35 M glucose and 1% activated charcoal, and

observed microscopically. Cell wall regeneration was

observed after 24 h of culture (Fig. 8a), and cell division

was subsequently observed on the third to fourth day

(Fig. 8b). After 14 days of culture, divided cells were

frequently observed. About 25% of non-desiccated pro-

toplasts were actively dividing, as compared to [10% in

each of desiccated and cryopreserved protoplasts (Table 1).

Cell aggregates initially formed after a month, and by

2 months, these were frequently observed (Fig. 8c).

Discussion

Desiccation methods have been developed for shoot-tips,

somatic embryos, and callus or suspension cells for long-

term preservation of these various tissues (Niino et al. 2006).

These methods often involve encapsulating specimens in gel

beads containing buffering compounds, such as calcium

arginate. Unfortunately, encapsulation prevents analysis of

cell structure. An important goal of this study was to

preserve suspension cultured plant cells without encapsu-

lation. Based on the experiments conducted in this study,

Pogonatum cells survived both rapid and slow desiccation;

whereas, Polytrichum cells only tolerated slow desiccation.

The qualitative differences in desiccation tolerance between

Pogonatum and Polytrichum cells associated with the speed

of dehydration suggested that there were likely differences

in survival of isolated protoplasts before or immediately

after desiccation, and during post-desiccation culture.

The plasma membrane is a primary site of damage in

dehydration-sensitive cells (Steponkus 1984; Crowe et al.

1992; Bryant et al. 2001). Freeze-damaged cells preserved

in liquid nitrogen by the pre-freezing method resulted in

injury to plasma membranes due to dehydration stress,

thereby few protoplasts were isolated from freeze-thawed

cells (Sala et al. 1979; Cella et al. 1982; Kuriyama et al.

1997). In this study, few protoplasts were isolated from

slowly desiccated Polytrichum cells, although many pro-

toplasts were harvested from Pogonatum cells (Fig. 5).

Based on these results, it is likely that plasma membranes

of Polytrichum cells were irreparably damaged. However,

slowly desiccated and cryopreserved Polytrichum cells

demonstrated similar levels of regrowth as to non-desic-

cated control cells (Fig. 4b), thus indicating a sub-lethal

level of damage must have occurred with slow desiccation.

Protoplast yield from desiccated Polytrichum cells rapidly

increased during the initial 3 days of regrowth culture. A

similar finding was observed in rice cells cryopreserved

using a pre-freezing method (Sala et al. 1979; Cella et al.

1982; Kuriyama et al. 1997). These results suggested that

plasma membrane damage could be repaired during
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Fig. 7 Survival rates of Pogonatum inflexum protoplasts desiccated

for 24 h and stored at different temperatures for 1 month or 1 year.

Protoplasts were suspended in CI medium containing 0.35 M glucose

(open bars) or trehalose (black bars). Control, Survival rate

immediately after desiccation. Data correspond to means ± SD of

four measurements

Fig. 8 Micrograph of cultured

cells of Pogonatum inflexum
protoplasts and dividing cells

during different stages of

culture. a Rehydrated

protoplasts after desiccation and

cryopreservation in liquid

nitrogen. Bar = 50 lm. b
Divided protoplast after 14 days

of culture. Bar = 50 lm. c Cell

cluster formed after 2 months of

protoplast culture.

Bar = 50 lm

Table 1 Cell division in protoplast culture of Pogonatum

Treatment Cell division rate

Non-desiccated 23.7 ± 5.5

Desiccated but non-cryopreserved 15.4 ± 3.1

Desiccated and cryopreserved 11.4 ± 3.0

Rate of cell division was determined after 14 days of culture

Each data shows mean and SD of three experiments
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recovery culture provided primary lesions were not lethal.

In contrast, Pogonatum plasma membranes were stable

during desiccation.

Pogonatum protoplasts suspended in 0.35 M mannitol

with or without CI basal medium did not survive well,

presumably because mannitol, a sugar alcohol, crystallized

during drying, and destroying almost all protoplasts as

previously reported (Xiao and Koster. 2001; Caffrey et al.

1988; Koster et al. 1996). Glucose, a reducing monosac-

charide, was also less effective as a protectant when used

alone. Monosaccharides generally failed to protect mem-

brane vesicles and liposomes from desiccation damage in

vitro (Crowe et al. 1986). On the other hand, the disac-

charides sucrose and trehalose were effective even when

used alone. The accumulation of di- and oligosaccharides,

and particularly the natural desicco-protectant trehalose,

has been associated with desiccation tolerance in many

species (Crowe et al. 1984a, b; Hoekstra and Van Roekel

1988; Koster and Leopold 1988). The presence of CI basal

medium constituents provided an additional margin of

survival in combination with each of the sugars, but par-

ticularly with glucose. It is not known whether a specific CI

component or several components acting together are

responsible for the added protection. More experiments

will be necessary to clarify this point.

Many species of seed, pollen, and spores survive for

relatively long periods at relatively high temperatures in a

gel matrix state (Burke 1986; Williams and Leopold 1989;

Leopold et al. 1992; Sun and Leopold 1997). It is likely

that Pogonatum protoplasts desiccated with sugar and CI

constituents are in a similar gelling state at relatively high

temperatures. However, protoplast preservation at different

temperatures is not that simple, as indicated in Fig. 7.

Protoplasts desiccated with trehalose and CI could be

preserved over a large range of temperatures, but desic-

cation with glucose and CI decreased viability after

preservation. The decreasing rate of viability is dependent

on the preservation temperature, thereby indicating that the

protective effect of glucose enhanced by CI is not as stable

as that of trehalose. Glucose can initiate non-enzymatic

glycosylation of free amines (Baynes et al. 1989; Kaanane

and Labuza 1989), a process which has been suggested as a

cause of seed deterioration during storage (Sun and Leolodd

1995; Wettlaufer and Leopold 1991) and for the loss of

viable stored pea embryos (Xiao and Koster 2001).

Cryopreservation of plant protoplasts from either cul-

tured cells or intact plants (Grout 1995), and survival

following preservation in liquid nitrogen have been

reported (Takeuchi et al. 1980; Langis and Steponkus

1991; Chen and Wang 2003). However, cell division and

regrowth post-preservation have not been reported except

in algal protoplasts preserved by vitrification (Liu et al.

2004). Thus far, there are no reports on regrowth culture of

protoplasts isolated from actively-growing cultured plant

cells and cryopreserved by desiccation.

In this study, activated charcoal was added to the culture

medium to promote cell division of Pogonatum protoplasts.

The beneficial effect of activated charcoal on protoplast

cell division was demonstrated in Marchantia, a liverwort

(Sugawara et al. 1983) and in Equisetum, a horsetail

(Kuriyama et al. 1990). Activated charcoal is known to

absorb some substance(s) inhibitory to protoplast division.

Our study also shows that the addition of activated charcoal

to the culture medium stimulates the initial stage of pro-

toplast division. Protoplasts cultured on media without

activated charcoal had a cell division rate less than 1% of

cells grown with activated charcoal after 14 days of culture

whether or not protoplasts were previously desiccated. Cell

division rates of desiccated and cryopreserved protoplasts

are lower than those of desiccated control protoplasts. This

is likely due to lower survival rate of desiccated and

cryopreserved protoplasts when compared to those that

were only dessicated.

The phenomenon of desiccation tolerance is well known

in many species of bryophytes (Hosokawa and Kubota

1957; Alpert 2006). Vascular plants also have potential

capacities for desiccation tolerance during one or more

stages of development (Ishikawa 1994; Ishikawa et al.

2005). The ability of embryos, pollen, or spores to survive

severe water stress suggests that large numbers of plant

species have conserved mechanisms for desiccation toler-

ance. Such tolerance genes, however, would not generally

be expressed in actively-growing cultured cells wherein

free water is abundant. In both bryophytes and vascular

plants, cultured cells require additional treatments such as

preculturing with high concentrations of sugar (Fabre and

Dereuddre 1990; Paulet et al. 1993; Niino and Sakai 1992;

Uragami et al. 1990; Blakesley et al. 1996; Gonzales-Arnao

et al. 2003; Walters et al. 2002; Sugawara and Hashimoto

2003) or abscisic acid (Shimanishi et al. 1991; Kim and

Janick 1989; Senaratna et al. 1989; Fang et al. 2004) to

induce desiccation tolerance pathway genes. Desiccation

and preservation of cultured plant cells at high survival

rates requires the same close control of the speed of

dehydration, final water content and relative humidity

during storage as in seed preservation (Vertucci and Roos

1990, 1993; Vertucci et al. 1994). In this study, we dem-

onstrated two culture and preservation systems for

Pogonatum and Polytrichum. Although significant differ-

ences rates of desiccation are observed between these two

species, both species have not required preculturing or

encapsulation in alginate beads, thus rendering this simple

and amenable protocol for further cell manipulation. Our

culture systems may be useful for developing additional

technical improvements in desiccation and preservation of

actively-growing cultured cells.
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We have also isolated protoplasts from desiccated cells

and cultured protoplasts after desiccation and cryopreser-

vation. Protoplasts isolated from actively-growing cultured

cells provide a new system for studying desiccation toler-

ance at the cellular level. Differences in responses to

dehydration between protoplasts and cultured cells with

intact cell walls can provide insights into the role of cell

walls in desiccation tolerance. Furthermore, microscopic

observations of protoplasts may reveal more knowledge on

the response of plasma membranes to desiccation than

those of cultured cells with their intact cell walls. Further

studies on protoplast behavior during dehydration and

rehydration may provide additional insights into approa-

ches for improving cryopreservation techniques for

cultured cells and protoplasts by desiccation.
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