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Abstract Despite the advances in transgenesis,

transformation technologies still rely on the introduc-

tion of a selectable marker gene to identify cells and

tissues that have integrated the gene of interest in their

genome. The continuous presence of the marker genes

in the transgenics is often controversial as it can

potentially have multiple undesirable impacts. The

present study employed the self-excising Cre-loxP

system to generate marker-free Arabidopsis thaliana

expressing the agronomically important glyoxalase I

(glyI) gene from Brassica juncea to confer salt stress

tolerance. A binary vector was constructed wherein

the salt-inducible rd29A promoter was used to drive

the expression of the glyI gene and the transformants

of A. thaliana were recovered using kanamycin

resistance as the selectable marker. The neomycin

phosphotransferase II (nptII) gene was flanked by the

loxP sites followed by the introduction of a heat-

inducible Cre-recombinase in between the loxP sites.

The kanamycin-resistant transgenic lines of A. thali-

ana using this vector showed an ability to withstand

stress imposed by 150 mM NaCl. The exposure of the

T2 transgenic lines to a mild heat shock (37�C)

resulted in the recovery of salt-tolerant, kanamycin-

sensitive T3 progeny. Molecular analyses of the T3

transgenic lines following the heat shock treatment

confirmed the excision of the nptII gene and the

completion of their life cycle in the presence of

150 mM NaCl-induced stress.
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Abbreviations

ABA Abscisic acid

ABRE ABA- responsive element

Cre Cre-recombinase

DRE Drought responsive element

gly I Glyoxalase I

hsp Heat shock promoter

MS Murashige and Skoog

SPB Sodium Phosphate Buffer

GSH Reduced glutathione

PMSF Phenylmethylsulfonylfluoride

PVPP Polyvinyl polypyrrolidone

Introduction

Glyoxalase I (EC 4.4.1.5, lactoylglutathione lyase)

and glyoxalase II (EC 3.1.2.6, hydroxacylglutathione

hydrolase) constitute the glyoxalase system. In a two
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step reaction, these enzymes act using glutathione as

a cofactor to coordinately convert cytotoxic methyl-

glyoxal and other 2-oxoaldehydes to their

2-hydroxyacids (Thornalley 1990) as follows

Glyoxalase I first catalyses the formation of S-D-

lactoylglutathione from hemithioacetal, which is

formed by a non-enzymatic reaction between reduced

glutathione (GSH) and methylglyoxal. Glyoxalase II

catalyzes the hydrolysis of this S-D-lactoylglutathi-

one to D-lactate with the regeneration of GSH in the

second step (Uotila 1989). The primary physiological

function of the glyoxalase system appears to be the

detoxification of methylglyoxal, which is mainly

synthesized as a byproduct of carbohydrate metabo-

lism. Besides this, the glyoxalase system also

increases the level of free reduced glutathione which

is essential for scavenging of toxic reactive oxygen

species (such as H2O2) and organic peroxides) that

are increased in plants under stress conditions and in

the maintenance of other antioxidants such as ascor-

bates and tocopherols (Alscher 1989). The

involvement of the glyoxalase system in plants under

stress conditions was first observed by Esparteo et al.

(1995) where the glyoxalase I activity was shown to

be upregulated under abiotic stresses. Overexpression

of the glyoxalase I (gly1) gene under the control of

the constitutive CaMV35S promoter in tobacco and

rice has been shown to impart tolerance to salt,

drought, and heavy metal stress (Veena et al. 1999;

Singla-Pareek et al. 2003, 2006). Similarly,

CaMV35S–mediated constitutive overexpression of

glyoxalase II, the other gene of this system, has been

shown to confer salt tolerance in tobacco (Singla-

Pareek et al. 2003) and rice (Singla-Pareek et al.

2008). Since both the enzymes act in the same

pathway, overexpression of either of these enzymes

automatically shifts the enzyme catalyzed reaction in

the forward direction that ultimately leads to

increased release of reduced glutathione that ulti-

mately detoxifies reactive oxygen species. This might

result in a similar stress tolerant phenotype in the

plants overexpressing either of the enzymes.

However, constitutive overexpression of the trans-

gene may compete for the building blocks and

machinery needed for RNA and protein synthesis

under stress-free conditions. Hence we constructed

and analyzed plants with transgene expression driven

by a stress-inducible promoter, rd29A, so that the

specific mRNA and proteins required for stress

alleviation are only produced under stress conditions.

It has been reported that the rd29A and rd29B genes

are induced under conditions of high temperature,

high salt or upon treatment with exogenous abscisic

acid (Yamaguchi-Shinozaki and Shinozaki 1993a,

1994). The sequence analysis of rd29A promoter

showed the presence of drought-responsive element

(DRE) and ABA-responsive element (ABRE). The

9 bp DRE element is involved in the first rapid

response of rd29A to conditions of dehydration or

high salt. ABA has also been found to be produced in

plants under stress.

Selectable marker genes (SMGs) are used in

nearly all plant transformation experiments and do

not serve any purpose after the gene of interest is

established. Besides precluding its reuse for future

transformation experiments, the continuous presence

of the SMG also raises issues of ecological concerns

(Hill and Sendashonga 2006). It is, therefore, desir-

able to remove the selectable marker gene after it has

served its crucial role in selection. There are several

approaches for the removal of the marker gene like

the simultaneous delivery of two T-DNA elements,

one having the marker gene and the other having the

gene of interest, as used by (Park et al. 2004;

Matthews et al. 2001; Chen et al. 2005), transposi-

tion mediated repositioning and subsequent

elimination of marker genes (Goldsbrough et al.

1993), use of homologous recombination (Iamtham

and Day 2000) and the Cre-loxP recombination

system (Dale and Ow 1991; Russell et al. 1992; Hoa

et al. 2002). The Cre-loxP recombination system is

often used due to its simplicity because apart from

the 38 kDa Cre recombinase and the 34 bp loxP sites,

no other factor is required for recombination to occur

Methylglyoxalþ Glutathione$ Hemithioacetal $glyoxalase I
S-D lactoylglutathione

S-D lactoylglutathione $glyoxalase II
Lactateþ Glutathione
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(Sternberg and Hamilton 1981; Stemberg et al.

1986). The cre gene for producing the Cre recom-

binase can be introduced into the loxP background by

crossing plants harboring the loxP sequences with the

plants expressing the recombinase gene or by

sequential transformation of a plant with loxP and

cre bearing constructs, respectively. Recently, vari-

ous approaches were investigated to reproducibly

obtain optimum CRE activity (Marjanac et al. 2008).

An exciting area that deserves attention is the use of

site-specific recombinases under the control of

inducible promoters to excise SMGs after transgenic

plants have been recovered (Hoff et al. 2001; Cuellar

et al. 2006). Based on this premise, the cre gene

under a heat shock inducible promoter (hsp) was

cloned in a binary vector containing the glyI gene so

that the cre gene, the loxP sequences and the glyI

gene can be transferred to the target species.

Arabidopsis thaliana was transformed with this novel

construct to obtain salt tolerant kanamycin resistant

transformants which upon exposure to a mild heat

shock resulted in the recovery of marker-free salt

tolerant transgenics. This could be used subsequently

for obtaining abiotic stress tolerant marker-free

transgenics of agronomically important crops.

Materials and methods

Construction of self-excising plant transformation

vector

Escherichia coli strain DH5a was used as the host for

recombinant vector constructions. The binary vector

pCAMBIA 2301 (pC2301) which had the nptII

(neomycin phosphotransferase) gene coding for

kanamycin resistance as the plant selectable marker

and gus (b-glucuronidase) as the reporter gene, both

driven by the CaMV35S promoter, was chosen as the

basic vector for this study. Two pairs of complemen-

tary single-stranded oligonucleotides (containing the

loxP sites) were chemically synthesized (Qiagen Inc.)

in such a manner that each pair, when annealed,

would result in double stranded loxP oligonucleotides

having EcoRI and XhoI overhangs and the restriction

sites used for cloning would be preserved after their

ligation into the parent vector. These loxP oligos

were independently cloned into pC2301 after

digestion with EcoRI and XhoI. Thus, the 34 bp loxP

sequence was introduced both upstream of the 35S

promoter (at EcoRI restriction site) and also between

the nptII coding region and the 35S terminator (at

XhoI restriction site). The positive clones were

confirmed by restriction digestion and sequencing.

The resultant vector had the nptII gene flanked on

both the sides by the loxP sites in direct orientation

and was denoted as pnpt-lox.

A 950 bp fragment of rd29A promoter (Yamagu-

chi-Shinozaki and Shinozaki 1993b) was amplified

from A. thaliana cv. Columbia genomic DNA with

primers having XbaI and NcoI overhangs (50-GAGC

TCTAGATGCAATTCAATCAAACTG-30 and 50-
TGATCCATGGTCCAAAGATTTTTTTCTTTCCA

ATAG-30). The Brassica juncea glyI cDNA, cloned in

pBI-SI (Veena et al. 1999), was amplified with

primers having NcoI and BstEII overhangs

(TTCTCCATGGCGTCGGAAGCGAAGGAATC-30

and 50-TTTTGGTCACCGATAACAACTTATTTAA

CTCAACTC-30). The binary vector pnpt-lox was

digested with XbaI and BstEII, which led to the

removal of the gus reporter gene. A three-fragment

ligation was done with the XbaI-BstEII fragment of the

vector, XbaI-NcoI fragment of rd29A promoter and

NcoI-BstEII fragment of the glyI gene. This resulted in

the construct pnpt-lox + rd29A-glyI, wherein the

gene of interest, glyI was placed under the control of

the rd29A promoter. Finally, a DNA fragment com-

prising the cre-recombinase (hsp-cre) driven by the

heat-shock inducible promoter was obtained as a PCR

product using primers with EcoRI and BamHI over-

hangs (50-GCCAGAATTCATCGGTTTGAAGATG

GCAAGTGTT-30 and 50-AATTGGATCCTAATCG

CCATCTTCCAGCA-30) and the pCrox 18 vector

(Hoff et al. 2001) as the template. The CaMV35S

terminator was obtained as a BamHI-EcoRI digest from

dsProA (Pooggin et al. 2003). The hsp-cre fragment

and CaMV35S terminator were introduced as a three-

fragment ligation into pnpt-lox + rd29A-glyI, which

was linearized using EcoRI. The integrity and orien-

tation of the double insert was confirmed by restriction

analysis and later by sequencing. This resulted in the

vector phsp-cre + npt-lox + rd29A-glyI wherein both

the nptII and hsp-cre were flanked by the loxP sites.

The resulting vector, phsp-cre + npt-lox + rd29A-

glyI, contained the glyI gene driven by the rd29A

promoter and both the nptII and hsp-cre were flanked

by the loxP sites (Fig. 1).
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The vector phsp-cre + npt-lox + rd29A-glyI was

introduced into Agrobacterium tumefaciens strain

GV3101 by electroporation. A. tumefaciens was

grown on YEB (1.0 g/l yeast extract, beef extract

5 g/l, peptone 5 g/l, sucrose 5 g/l, 0.2 g/l MgSO4,

15 g/l agar) semi-solid medium containing 50 mg/l

rifampicin, 25 mg/l gentamycin and 50 mg/l kana-

mycin. A single bacterial colony was inoculated into

Fig. 1 Schematic

representation of

construction of phsp-

cre + rd29A-glyI binary

vector used for A. thaliana
transformation. In the first

step two lox sites were

introduced in pC2301 to get

pnpt-lox vector (a) and then

the glyI gene was

introduced under the control

of rd29A promoter at XbaI

and BstEII sites of this

vector to develop pnpt-
lox + rd29A-glyI vector (b)

and finally cre gene under

the control of hsp was

introduced in this vector

to generate the final

phsp-cre + rd29A-glyI
vector (c)
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5 ml of liquid YEB containing the same antibiotics

and grown overnight at 28�C on a shaker at 200 rpm.

A 200 ll aliquot of bacterial suspension was added to

20 ml of YEB liquid medium supplemented with the

same antibiotics and grown overnight before using

the culture for transformation of A. thaliana.

Plant material and growth conditions

The seeds of A. thaliana ecotype Columbia were

surface-sterilized by incubation for 1 min in 70%

ethanol, 10 min in 2% hypochlorite/0.01% Tween-20

and rinsed four times with sterile water. Seeds were

imbibed for 2 days at 4�C before germination in a

growth chamber (22�C, 16 h light/8 h dark,

100 lmol m-2 s-1, 60% relative humidity) on aga-

rified half-strength Murashige–Skoog (MS) medium.

Flowering Arabidopsis plants were transformed with

GV 3101 (phsp-cre + npt-lox + rd29A-glyI) using

the floral-dip method (Bechtold et al. 1993).

The T1 seeds from primary transformants were

treated as before and selected on half-strength MS

medium supplemented with 50 mg l-1 kanamycin in

magenta boxes. The seedlings were transferred to soil

in pots, checked for the presence of the glyI and the

nptII gene by PCR analysis, allowed to self-fertilize

and form T2 seeds. The T2 seeds were collected and

germinated on selection medium as described above

to obtain the T3 progeny.

PCR and Northern analysis

Total genomic DNA was isolated from the transgenic

as well as untransformed control plants by a refined

protocol of Murray and Thompson (1980). The

780 bp region of glyI gene was amplified using the

primers (50-CGGGGTACCATGGCGTCGGAAGC

GAAGG-30 and 50-TGCTCTAGCGCTCTCAAGC

TGCGTTTCCGGCTG-30) and the 700 bp nptII gene

coding region was amplified using the primers

(50-GGAGCGGCGATACCGTAAAGC-30 and 50-GAG

GCTATTCGGCTATGACTG-30). The amplification

reaction was carried out using a thermal cycler (Techne

Inc.) under the following conditions: for glyI gene: one

cycle of 94�C for 5 min; 29 cycles of 94�C for 30 s

(denaturation), 55�C for 30 s (annealing), 72�C for 90 s

(extension); a final extension at 72�C for 5 min (one

cycle); for nptII gene: one cycle of 94�C for 5 min; 29

cycles of 94�C for 60 s (denaturation), 58�C for 30 s

(annealing), and 72�C for 45 s (extension); a final

extension at 72�C for 5 min (one cycle). The PCR was

performed using ca. 100 ng of purified genomic DNA

and Taq polymerase (NEB). The amplified products

were separated by electrophoresis on a 1% agarose gel

(Sambrook et al. 1989) and visualized by ethidium

bromide staining.

For Northern blot analysis, the standard protocol

of Sambrook et al. (1989) was followed. Total RNA

was isolated (Chomczynski and Sachi 1987) sepa-

rated by formaldehyde gel electrophoresis and probed

with 32P-dCTP-labelled glyI cDNA.

Glyoxalase I assay

Leaves of A. thaliana were crushed using liquid

nitrogen and mixed thoroughly with the extraction

buffer (SPB pH 7.0 also containing 50% glycerol,

16 mM MgSO4, 0.2 mM PMSF, and 0.2% PVPP). The

crushed tissue extract was centrifuged twice at

13,000 rpm at 4�C for 30 min so as to obtain the crude

protein extract as a clear supernatant. The gly I activity

was assayed according to the protocol described by

Ramaswamy et al. (1983). The standard enzyme assay

mixture comprised 0.1 M SPB pH7.5, 3.5 mM meth-

ylglyoxal, 1.7 mM GSH and 16 mM MgSO4 in a final

volume of 1 ml. This assay mixture was incubated for

7 min at room temperature prior to addition of crude

protein extract (to allow non-enzymatic formation of

hemithioacetal from methylglyoxal and GSH). After

addition of the protein extract, the gly I activity was

measured spectrophotometrically as a function of

thioester formation (S-D lactoylglutathione) by mea-

suring the rate of change in absorbance at 240 nm. The

molar absorption coefficient of the thioester (SLG) at

240 nm is 3,370 m-1 cm-1. Three different enzyme

extractions were performed per sample for three

independent plants of the five T2 generation transfor-

mants. The specific activity of enzyme was expressed

in units per mg-1 of protein.

Heat induction experiments

The T2 seedlings grown on kanamycin-supplemented

MS medium were used for heat induction experi-

ments. In the first phase, the 2-week-old seedlings

were incubated at 37�C for 16 h, after which they

were allowed to recover at 20�C for 30 h. This was

followed by the second phase of heat treatment where
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the seedlings were re-incubated at 37�C for 16 h and

immediately transferred to half-strength MS medium

without kanamycin and maintained at 20�C. After

one week they were transferred to soil in the pots,

allowed to grow and set seed. The T3 progenies

obtained from the heat shocked T2 lines were

checked for the marker excision by PCR and

Southern blot analyses.

Results

Construct designing, transformation and selection

of A. thaliana

The vector pC2301 was modified such that the nptII

gene was flanked by the loxP sites and the glyI gene

was cloned downstream of the stress inducible rd29A

promoter. The hsp-cre fragment from the pCrox18

vector (Hoff et al. 2001) was also introduced in the

same vector within the loxP sites (see Materials and

methods and Fig. 1). The binary vector used in the

present investigation was constructed in such a manner

that the Cre recombinase induced by heat shock would

act at the loxP sites excising the hsp-cre fragment

along with the expression cassette of the marker gene

from the transgenic plants which would then contain

only the desired gene (glyI) of interest. The glyI gene

driven by the rd29A promoter was presumed to

express only when the plants experienced salt stress.

Arabidopsis thaliana cv. Columbia was trans-

formed with this modified pC2301 vector and the

seeds (T1) were collected and germinated on � MS

medium containing kanamycin (50 mg l-1). The

putative transgenic seedlings growing on the selection

medium were screened for the presence of the glyI and

the nptII gene, respectively by PCR using the gene

specific primers. Forty percent of the putative trans-

genic plants from different lines gave the expected

bands corresponding to *780 bp for the glyI and

*700 bp for the nptII gene. No corresponding bands

were obtained in the case of untransformed control

line. The transgenic lines grew normally and did not

show any deleterious effect due to the presence of the

cre driven by a CaMV35S promoter gene as reported

earlier by Coppoolse et al. (2003). When transferred

to the soil, they flowered and set seed. The T2 seeds

from five of these lines were used for further

experiments on salinity stress tolerance and marker

excision. Figure 2a shows PCR analysis of the

untransformed control plants as well as plants from

the five representative lines. The expected bands

corresponding to *780 bp for the glyI and *700 bp

for the nptII gene are seen in the transgenic lines while

they are absent in the untransformed control plant.

Comparison of salt stress tolerance in transgenic

vs. the untransformed control lines

Different transgenic lines were tested for the glyox-

alase I enzyme activity (Fig. 2b) and the transgenic

line showing maximum enhancement of the activity

(Line 3) when compared to untransformed control

plant, was checked for salinity tolerance test. Seeds

of this transgenic line as well as the untransformed

control plants were inoculated in � MS medium with

150 mM and 200 mM NaCl, respectively. No germi-

nation was observed on 200 mM NaCl in either

control or transformed seeds. At 150 mM NaCl only

15% of the untransformed control seeds germinated

as against 75% of the T2 transgenic seeds (Fig. 2c).

The transgenic plants appeared healthy and normal in

morphology, whereas the control plants were stunted

and showed slow growth with yellowish leaves.

Effect of induction of the gly I transgene

in A. thaliana in response to salt stress

The T2 seeds from the transgenic as well as the

untransformed control plants were germinated on �
MS medium. After one week, 10–15 seedlings from

Line 3 were transferred to � MS medium containing

50 mM, 100 mM, 150 mM, and 200 mM NaCl,

respectively. It was observed that the untransformed

control plants grown on 100 and 150 mM NaCl were

shorter as compared to the transgenic plants. In � MS

medium (without the addition of NaCl) all plants

flowered at the same time. However, delayed flowering

(ca. 10 days) was observed in the untransformed

control plants in the presence of even low (50 mM)

NaCl concentration in � MS medium, in which the

flowering in transgenic plants remained unaffected. It

was only in the presence of a higher concentration

(150 mM) of NaCl in the medium that delayed flow-

ering (ca. 7 days) in the transgenic plants was observed

as compared to the untransformed control plants.

Total RNA was isolated from the transgenic as well

as the untransformed control plants grown at 0 mM,
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50 mM, 100 mM, 150 mM, and 200 mM NaCl, blot-

ted and probed with the glyI cDNA. No expression of

the transgene was seen in the untransformed controls at

any of the salt concentrations used (Fig. 2d). Though,

hardly any expression was observed in the transgenic

plants growing on salt free medium, very good

expression of the glyI gene was observed on exposure

of these plants to salinity stress (Fig. 2d).

Recovery of marker free salt tolerant transgenic

plants

The seeds of the five selected PCR positive T2

transgenic lines were germinated on � MS medium

with kanamycin (50 mg l-1). Fully mature transgenic

plants were given heat shock treatment (as described

in Material and methods). The heat shock treatment

was repeated and the plants were transferred to fresh

medium (� MS without kanamycin). These plants

were later transferred to soil where they flowered,

self fertilized and set seed. The T3 transgenic seeds,

thus obtained, were germinated to obtain the T3

transgenic lines. The T3 transgenic as well as the

untransformed control lines were subjected to PCR

analysis using the nptII and the glyI primers,

respectively, to check for the excision of the

antibiotic resistance marker, nptII, gene. Almost, all

the transgenic lines which were subjected to heat

nptII glyI

wt 1 2 3 4 5wt 1 2 3 4 5

0

0.5

1

1.5

2

2.5

wt T2

T2

NaCl (mM) NaCl (mM) 

18 S rRNA 

wt

 Wt         1           2          3         4            5 

Glyoxalase I 
activity 
(U/mg of the 
protein)

0 50 100 150 200 0 50 100 150 200

(a)

(b)

(c)

(d)

Fig. 2 Analyses of T2

transgenic lines of

A. thaliana before the heat

shock treatment (a) PCR

analyses of T2 transgenic

lines for the presence of

nptII gene and the glyI
gene. (b) Glyoxalase I

enzyme activities of five

independent transgenic

lines (1–5) and wild type

untransformed control (Wt)

plants. The error bars in the

graph indicate standard

deviation. (c) Enhanced

germination of T2

transgenic (line 3) vs.

untransformed control seeds

on � MS medium

supplemented with 150 mM

NaCl. Ten lg of RNA was

denatured and

electrophoresed through a

1.5% agarose gel containing

formaldehyde (7%).

Transfer on nylon

membrane and blotting was

performed according to

Sambrook et al. (1989). (d)

Induction of glyI gene

expression in transgenic

(T2) A. thaliana (line 3)

exposed to different

concentrations of salt

(NaCl). The numbers 1, 2,

3, 4, and 5 represent the

different transgenic lines,

wt represents untransformed

control
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shock treatment showed amplification with the glyI

primers but did not show any amplification with the

nptII primers (Fig. 3a). This showed that the antibi-

otic resistance marker gene (nptII) had been excised

after the heat shock treatment.

To check the expression of the gene of interest,

the glyI, after the excision of the marker gene, the

T3 seeds from the transgenic (Line 3) and untrans-

formed control lines were germinated on � MS

medium. After one week, the seedlings were trans-

ferred to � MS medium supplemented with

150 mM NaCl. While the transgenic lines grew

normally, flowered and formed seeds, the untrans-

formed control lines showed stunted growth

(Fig. 3b). The expression of the glyI transgene was

checked by northern analysis of the T3 transgenic

lines vs. the untransformed control line which

confirmed the expression of the gene of interest,

the glyI, which remained unaffected by the excision

of the fragment within the loxP sites in response to

heat shock (Fig. 3c). Thus, marker free salt tolerant

transgenic lines of A. thaliana were successfully

developed.

Discussion

Excision of the antibiotic resistance marker gene is

desirable for the genetically modified plants to be

acceptable to the consumers. Many recombination

approaches have been used for the successful deletion

of DNA from transgenic plants but the Cre-loxP

system is one of the best characterized and widely used

(Dale and Ow 1991; Russell et al. 1992). Recently,

Arumugam et al. (2006) reported the use of Cre-loxP

system where a passage through in vitro culture of F1

leaf explants resulted in efficient development of

marker-free transgenics in F2 generation in Brassica

juncea. However, no gene of interest was used. In this

study, the commonly used binary vector pC2301 was

modified such that the plant selection marker gene

(neomycin phosphotransferase II) and its promoter

were flanked by the loxP sites. The final vector had the

cre recombinase gene under the heat shock promoter

which was also inserted between the loxP sites, thus

circumventing the need to co-transform the cre gene or

wait for another round of transformation. The hsp81-1

promoter was chosen for this study as it has been

T3                                                     wt

wt        1        2 

18S rRNA 

(b)

(c)

(a)

+ve wt   1    2    3   4     5 +ve  wt    1    2    3   4   5

glyInptII

Fig. 3 Analyses of T3 transgenic lines of A. thaliana after the

heat shock treatment (a) PCR analyses of T3 transgenic lines

for the presence of nptII gene and the glyI gene. (b) A

representative (T3) transgenic line and the untransformed

control line (wt) grown in � MS medium supplemented with

150 mM NaCl. (c) Northern blot of total RNA of untrans-

formed control and transgenic (T3) A. thaliana (line 3) grown

in � MS medium supplemented with 150 mM NaCl. Ten lg of

RNA was denatured and electrophoresed through a 1.5%

agarose gel containing formaldehyde (7%). Transfer onto

nylon membrane and blotting was performed according to

Sambrook et al. (1989). The blot was probed with the glyI
cDNA. The numbers 1, 2, 3, 4, and 5 represent the different

transgenic lines, wt represents untransformed control
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reported to be tightly regulated (Hoff et al. 2001) and

because of the ease of heat shock treatments to the

plants. The gene of interest, the glyI gene, driven by

the salt inducible promoter rd29A, was present outside

the loxP sites. This system of auto-excision of the

marker gene has several advantages over the crossing

strategy. Expression of the cre gene for a shorter

period of time might overcome the unexpected effects

which might arise due to expression for longer

duration. Since the selectable marker gene and the

cre gene can be removed simultaneously, in a single

step, while retaining the gene of interest, this meth-

odology offers another advantage in saving time and

additional efforts. In this investigation, no deleterious

effect of the cre gene expression, were observed in the

plants. Since the excision of the nptII gene occurred

after the heat shock treatments while the glyI gene was

retained, it proves that the approach used in this study

was successful for developing agronomically impor-

tant marker free transgenic plants.

Significant progress has been made towards

developing salt stress tolerant plants using various

genes (Blumwald et al. 2004). The reports suggest

that although abiotic stress is a multigenic trait,

salinity stress tolerant plants can be produced by the

transfer of a single gene utilizing the transgenic

approaches. Overexpression of the glyoxalase I gene

under the constitutive CaMV35S promoter was

shown to impart salt and heavy metal tolerance in

transgenic tobacco plants (Veena et al. 1999; Singla-

Pareek et al. 2003, 2006. However, in the present

investigation, the glyI gene driven by a salt inducible

promoter has been shown to impart tolerance in

transgenic A. thaliana plants exposed to salt stress.

The glyI transcript was observed only in those

transgenic lines which were exposed to salinity stress

and probed with the transgene.

The transgenic plants were able to cope up better

with salt stress, appeared healthier and grew faster as

compared to the untransformed control plants under

salinity stress. The fact that the salt tolerant trans-

genic plants developed during this study were also

free of the antibiotic resistance marker gene is

significant. This strategy if used for the transforma-

tion of crop plants will offer at least two major

advantages, viz., the expression of the gene of interest

under an inducible promoter under salt stress; and a

simplified usage of the Cre-loxP system where no

crossing of the plants having the cre gene and the

antibiotic resistance gene flanked by loxP sites,

respectively is required. This not only circumvents

the controversies related to marker genes conferring

antibiotic resistance, which have practically no use

after the transformed plants are established, but also

avoids the use of any viral constitutive promoter.

Moreover, the foreign DNA (the glyI gene) that

ultimately remained in the transgenic plants was of

plant origin (B. juncea). The strategy used in this

investigation is similar to that used by Cuellar et al.

(2006) for developing antibiotic marker free trans-

genic potato and by Wang et al. (2005) for tobacco.

However, no transgene of agronomic importance was

introduced in the transgenic plants. Recently an

embryo specific promoter driving the cre gene has

been used for generating marker excision in soybean

(Li et al. 2007). Other workers (Zuo et al. 2001;

Sreekala et al. 2005; Zhang et al. 2003) have used

chemically induced autoexcision of selectable mark-

ers. The efficiency of the use of heat shock, chemical

and tissue specific promoter for the autoexcision of

marker gene may vary in different plant systems and

needs to be tested.
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