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Abstract Plant cell cultures are a suitable model

system for investigation of the physiological mech-

anisms of tolerance to environmental stress. We have

determined the effects of Cd (0.1 and 0.2 mM CdCl2)

and Ni (0.075 and 0.75 mM NiCl2) on Nicotiana

tabacum L. cv. Bright Yellow (TBY-2) cell suspen-

sion cultures over a 72-h period. Inhibition of growth,

loss of cell viability and lipid peroxidation occurred,

in general, only when the TBY-2 cells were grown at

0.2 mM CdCl2 and at 0.75 mM NiCl2. At 0.1 mM

CdCl2, a significant increase in growth was deter-

mined at the end of the experiment. Increases in the

activities of all of the four enzymatic antioxidant

defence systems tested, were induced by the two

concentrations of Cd and Ni, but at different times

during the period of metal exposure. Overall, the

cellular antioxidant responses to Cd and Ni were

similar and were apparently sufficient to avoid

oxidative stress at the lower concentrations of Cd

and Ni. The activities of glutathione reductase and

glutathione S-transferase increased early but tran-

siently, whereas the activities of catalase and guaiacol

peroxidase increased in the latter half of the exper-

imental period. Therefore it is likely that the

metabolism of reduced glutathione was enhanced

during the initial onset of the stress, while catalase

and guaiacol-type peroxidase appeared to play a more

important role in the antioxidant response once the

stress became severe.
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Abbreviations

Cd Cadmium

Ni Nickel

ROS Reactive oxygen species

SOD Superoxide dismutase

APX Ascorbate peroxidase

CAT Catalase

GPOX Guaiacol-type peroxidase

GSH Reduced glutathione

GSSG Oxidized glutathione

GR Glutathione reductase

EDTA Ethylenediaminetetracetic acid
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TBARS Thiobarbituric acid reactive substances

MDA Malondialdehyde

GST Glutathione S-transferases

DHAR Dehydroascorbate reductase

MDHAR Monodehydroascorbate reductase

Introduction

Cadmium (Cd), a non-essential element, is among the

most hazardous environmental pollutants for humans,

animals and plants even at low concentrations

(Benavides et al. 2005; Fojta et al. 2006; Mobin and

Khan 2007; Wahid and Ghani 2008). Cd can seriously

affect plant metabolism in several ways and induce

oxidative stress (Vitória et al. 2001; Noriega et al.

2007), although the intensity depends on the species,

metal concentration and duration of exposure

(Benavides et al. 2005). On the other hand, nickel (Ni)

is not toxic at low concentrations and is required for

normal plant growth due to the presence of two Ni atoms

in the active site of the enzyme urease (EC 3.5.1.5.) (Bai

et al. 2006). The solubility of Ni can influence its

toxicity to plants (Rooney et al. 2007), although at

higher concentrations Ni is a toxic pollutant for humans,

animals and plants (Gomes-Junior et al. 2006a;

Gajewska and Sklodowska 2007a).

When plants are grown in the presence of toxic

metals, oxidative stress can be imposed on cells as a

result of an imbalance between the production of

reactive oxygen species (ROS) and antioxidant

defences, leading to oxidative damage of proteins

and DNA and lipid peroxidation, which in turn causes

severe damage of cell membranes (Gratão et al.

2005; Pitzschke et al. 2006). Recently, information

about the role of ROS has suggested that they are also

regulatory signals for plant growth and development

(Foyer and Noctor 2005; Hancock et al. 2006; Jones

et al. 2007). Cd and Ni can stimulate oxidative stress,

but in contrast to other toxic metals, they do not seem

to stimulate the production of ROS directly (Boomi-

nathan and Doran 2002), probably because they do

not undergo changes in oxidation.

The toxicity of ROS explains the evolution of a

complex array of non-enzymatic and enzymatic

detoxification mechanisms in plants capable of

quenching ROS without themselves undergoing

conversion to a destructive radical, thus preventing

the formation of cascades of uncontrolled oxidation

(Hassan 2006; Pitzschke et al. 2006). ROS-scaveng-

ing mechanisms of plants include enzymes such as

superoxide dismutase (SOD, EC 1.15.1.1) which

dismutates O��
2 to H2O2. Subsequently, H2O2 may

be detoxified to H2O by ascorbate peroxidase (APX,

EC 1.11.1.11), catalase (CAT, 1.11.1.6) and gluta-

thione peroxidase (GPX, EC 1.11.1.9) (Gratão et al.

2005). In addition, for the detoxification of H2O2,

phytophenolics can act as antioxidants by donating

electrons to guaiacol-type peroxidases (GPOX, EC

1.11.1.7) (Sakihama et al. 2002). The ascorbate–

glutathione cycle is closed by regeneration of

reduced glutathione (GSH) from oxidized glutathi-

one (GSSG) by glutathione reductase (GR, EC

1.6.4.2) using NAD(P)H as a reducing agent (Moller

et al. 2007).

Plant cell lines can be considered good systems for

the study of antioxidative responses due to their

capacity to grow under high oxidative stress condi-

tions (Kim et al. 2004). The TBY-2 cell line is

relatively well understood and is often used as a

model system for higher plants due to the exception-

ally high homogeneity of the cells and high growth

rate (Olmos et al. 2003; Saito et al. 2005) In the case

of heavy metals, a more uniform exposure can be

obtained than when working with other plant tissues.

Furthermore, the sensitivity to metals depends on the

physiological and developmental stages of the cells.

For instance, TBY-2 cells exhibit distinct alterations

in sensitivity to aluminium (Al) during growth of the

culture (Vitorello and Haug 1996).

The aim of this work was to study the effect of Cd

and Ni on TBY-2 cell metabolism, through physio-

logical parameters related to cell growth, lipid

peroxidation and enzymatic antioxidant system. The

information available in this work aims to improve

our understanding about some of the basic physio-

logical mechanisms related to phytotoxicity caused

by Cd and Ni through the measurements of antiox-

idants as stress markers.

Material and methods

Cell culture

Tobacco TBY-2 (Nicotiana tabacum L. cv. Bright

Yellow 2) cells were cultured as described by Nagata
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et al. (1992). The cell culture was maintained in a

medium consisting of MS basal salts supple-

mented with sucrose (30 g/l), KH2PO4 (370 mg/l),

myo-inositol (100 mg/l), thiamine (1 mg/l), 2,4-D

(0.22 mg/l) and MES (0.5 g/l). The pH was adjusted

to 5.7 before autoclaving. Subcultures were carried

out every week by transferring 2 ml inoculum of

stationary-phase culture (equivalent to about 1.5 ml

of packed cells) into 50 ml of fresh medium

contained in 250 ml Erlenmeyer flasks. Cultures

were grown in the dark on a rotary shaker at

160 rpm at 27�C and growth was evaluated by

packed cell volume following centrifugation at

500 rpm for 5 min.

Evaluation of cell viability

TBY-2 cells samples were incubated for 5 min in a

1:1 (v/v) mixture of cell suspension and 0.4% (w/v)

trypan blue. Approximately 500 cells per replicate

were examined from nine fields of view, from three

different slide preparations through optical micros-

copy. Cell viability was evaluated by plasma

membrane permeability to trypan blue.

Exposure to Cd and Ni

TBY-2 cells were maintained in liquid medium for

7 days and 3 ml of cells were subcultured into fresh

medium (50 ml). Two-day-old cell cultures were

submitted to preliminary assays on the effect of

several CdCl2 and NiCl2 concentrations (0–1 mM)

and CdCl2 (0.1 and 0.2 mM) and NiCl2 (0.075 and

0.75 mM) concentrations were chosen for the main

experiments. Two experiments were carried out for

each metal element separately. Cells harvested at

distinct periods during the growth cycle (6, 12, 24,

36, 48 and 72 h), were suction-dried and weighed for

packed cell volume and stored at -80�C for further

analyses.

Lipid peroxidation

Lipid peroxidation in TBY-2 cells was determined by

estimating the content of thiobarbituric acid reactive

substances (TBARS) as described by Gomes-Junior

et al. (2006a). The concentration of equivalent mal-

ondialdehyde (MDA) was calculated using an

extinction coefficient of 155 mM/cm.

Extraction and analysis of antioxidant enzymes

The following steps were carried out at 4�C unless

stated otherwise. The TBY-2 cells were homogenized

(2:1 buffer volume: fresh weight) in a mortar with a

pestle with 100 mM potassium phosphate buffer

(pH 7.5) containing 1 mM ethylenediaminetetraace-

tic acid (EDTA), 3 mM DL-dithiothreitol and 5%

(w/v) insoluble polyvinylpolypyrrolidone (Azevedo

et al. 1998). The homogenate was centrifuged at

10,000 rpm for 30 min and the supernatant was kept

stored in separate aliquots at -80�C, prior to CAT,

GR, GPOX and glutathione S-transferase (GST)

analyses. CAT, GR and GPOX activities were

determined as described by Gomes-Junior et al.

(2007) and GST as described by Habig and Jakoby

(1981).

Determination of protein concentration

Protein concentration for all samples was determined

by the method of Bradford (1976) using bovine serum

albumin as a standard.

Statistical analysis

The experimental design was randomized with three

replicates for each flask/treatment/time interval and

the results were expressed as mean and standard error

of mean (±SEM) of three independent replicates of

cell growth, cell viability, MDA, CAT, GR, GPOX

and GST activities.

Results

Cell culture growth and cell viability

Preliminary experiments with several different con-

centrations of Cd and Ni were carried out to

determine the concentrations of Cd and Ni which

cause inhibition of growth (data not shown). Based

on these early tests, further experiments were carried

out for periods of up to 72 h using two concentrations

of Cd (0.1 and 0.2 mM) and Ni (0.075 and 0.75 mM).

The two highest concentrations of Cd and Ni used

resulted in cell culture growth inhibition, particularly

at 0.75 mM Ni (Fig. 1d), and also in a significant

reduction of cell viability (Fig. 1b and d). On the
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other hand, 0.1 mM CdCl2 stimulated cell culture

growth at the end of the experimental period (Figs. 1a

and 2).

Lipid peroxidation

ROS can react with unsaturated fatty acids to cause

peroxidation of lipids in the membranes. Evidence

that Cd and Ni can induce lipid peroxidation was

determined by the concentration of TBARS in the

cells. An increase in TBARS was observed in Cd and

Ni treatments and was more significant at the highest

concentrations used (Fig. 1c and f).

Antioxidant enzyme responses

Following a lag period of approximately 24 h, the

specific CAT activity was shown to be strongly

increased by both metals (Fig. 3a and b). After 36 h,

Cd induced a sustained increase in CAT activity

Pa
ck

ed
 c

el
l v

ol
um

e 
(%

)
Pa

ck
ed

 c
el

l v
ol

um
e 

(%
)

Pa
ck

ed
 c

el
l v

ol
um

e 
(%

)
Pa

ck
ed

 c
el

l v
ol

um
e 

(%
)

Time (h)

Time (h)

Time (h)

Time (h)

Time (h)

Time (h)

A

B

C F

E

D

T
B

A
R

S
 c

on
te

nt

T
B

A
R

S
 c

on
te

nt

Fig. 1 Cell growth

(percentage of packed cell

volume): Cd (a) and Ni (d).

Cell viability (%): Cd (b)

and Ni (e). TBARS content

(nmol g-1 fr. wt): Cd (c)

and Ni (f) in tobacco cells

grown for a 72 h period in

two concentrations of CdCl2
and NiCl2. Control (zero

CdCl2 and NiCl2) (j),

0.1 mM CdCl2 and

0.075 mM NiCl2 (s),

0.2 mM CdCl2 and

0.75 mM NiCl2 (•).

Values are the means

of 3 replicates ±SEM
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which was more significant at the concentration of

0.2 mM. Stimulation of CAT activity by Ni occurred

earlier than that observed for Cd but, in contrast to

the latter, was not sustained up to 72 h. At 0.75 mM

Ni, CAT activity peaked at 36 h whereas at

0.075 mM Ni, CAT activity exhibited essentially

the same behaviour, but with a slight delay in

maximum activity (48 h) (Fig. 3b).

GR activity was immediately stimulated by Cd and

Ni when compared to the control (Fig. 3c and d), but

particularly by Cd and at the higher concentration of

metal. Maximum GR activity was reached at 24 and

6 h for Cd and Ni treatments, respectively, which was

followed by a drastic reduction in activity to near

control levels at 48 h (Fig. 3c and d).

The trend in the response of GST activity to Cd

and Ni-induced stress was similar to that observed for

GR activity, with a rapid increase in activity early on

followed by a rapid decrease in activity to near

control levels at 36 h (Cd) and 48 h (Ni) (Fig. 4a and

b). Two differences, however, were observed. In the

Cd treatments, a 6 h lag period was observed before

stimulation of activity and in the Ni treatments, the

peak in induction was broader, similar to the response

in CAT activity.

GPOX was also shown to be increased by the Cd

and Ni treatments, however as observed for CAT

activity in Cd-treated cells, the observed increases

were continuous and a clear distinction between Cd

and Ni treatments to the control GPOX activity was

only observed at 36 h of treatment. Control values of

GPOX increased until the end of the experiment.

Again, the highest Cd and Ni concentrations used

produced the highest increases in enzyme activity

(Fig. 4c and d) and particularly at 72 h for Ni.

Discussion

Plants require an adequate supply of water (Kirda

et al. 2007; Lea and Azevedo 2007) and other

minerals, and a soil environment that is free or at

least contains very reduced concentrations of toxic

compounds. The majority of the studies involving

oxidative stress induction by toxic metals have been

carried out with whole plants. In this study, we have

shown that the growth of TBY-2 cell cultures were

inhibited when exposed to the highest Cd and Ni

concentrations (Fig. 1a and d), as also demonstrated

the significant inhibitory effect on viability (Fig. 1b

and e) and induction of lipid peroxidation (Fig. 1c

and f) indicating the establishment of stressful

conditions by both metals particularly at the highest

concentrations tested. Cd can inhibit growth (Forna-

zier et al. 2002; Liu et al. 2007) and stimulate ROS

production, resulting in several metabolic perturba-

tions (Durcekova et al. 2007). Cd can interfere with

morphogenesis, by inhibiting cell division and cell

enlargement (Dalla Vecchia et al. 2005). Cd has been

shown to induce cell death accompanied by an

increased production of H2O2 within several days of

exposure, such as that observed in tobacco TBY-2

cells (Fojta et al. 2006) and suspension cultures of

L. esculentum (Yakimova et al. 2006). The exposure

of TBY-2 tobacco cells to millimolar concentrations

of Cd resulted in cell death preceded by the

accumulation of O��
2 of mitochondrial origin and

membrane lipid peroxidation (Garnier et al. 2006).

Olmos et al. (2003) have also investigated the action

of Cd on BY-2 cells and suggested that H2O2

production in Cd-treated cells is a regulated event

involving calmodulin and protein phosphorylation. In

the presence of 5 mM Cd, BY-2 cells responded with

a rapid (4–10 min) generation of H2O2, but such a

Cd-induced oxidative burst could be detected at

concentrations as low as 200 lM. Although we have

not determined ROS production, it is probable that

the BY-2 cells have undergone a similar rapid

oxidative burst in response to Cd, since we have

used Cd concentrations within the same range used

by Olmos et al. (2003) and for up to 72 h of exposure

to the metal.

Fig. 2 Tobacco cells suspension cultures grown for 72 h in

control zero CdCl2 (1) and 0.1 mM CdCl2 (2), following

centrifugation at 500 rpm for 5 min
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In a manner similar to Cd, the high Ni concentra-

tion used also caused a significant inhibition of TBY-

2 cell growth (Fig. 1d). Exposure of plants and plant

cells to high concentrations of Ni resulted in a variety

of effects such as reduction of growth (Nakazawa

et al. 2004; Gajewska et al. 2006b), inhibition of

ribonuclease and protease activities (Maheshwari and

Dubey 2007), decrease of dry matter of roots and

shoots (Rao and Sresty 2000) and decrease of soil

microbial biomass (Berton et al. 2006), among oth-

ers. Although lower concentrations of Ni in the

nutrient medium have previously been shown to have

a favourable effect on the growth of a number of

plants species (Kevresan et al. 2001), we have not

clearly observed such an effect (Fig. 1d).

It is suggested that at concentrations above 1 lM,

Cd inhibits cell growth and DNA synthesis in a wide

variety of cell types. Interestingly, growth stimulation

was observed in the lower Cd concentration

(0.1 mM) used (Fig. 2), however, such an effect has

also been observed in in vitro cell culture of sugar-

cane (Fornazier et al. 2002) and coffee (Gomes-

Junior et al. 2006b), where low Cd concentrations

stimulated the growth, whilst higher Cd concentra-

tions caused a drastic reduction of growth. It appears

that our results could be linked to a hormetic dose-

response relationship induced by inorganic agents,

when small concentrations of toxic elements appear

to stimulate growth (Calabrese and Baldwin 2003). It

is also possible that other key metabolites required

for plant growth such as nitric oxide, brassinosteroids

and polyamines, may be involved in the stimulatory

effect of the lower Cd concentration used in similar

manner to a hormetic model. Brassinosteroids are a

group of plant steroidal hormones, which regulate

processes as diverse as cell elongation, xylem differ-

entiation, and fruit ripening (Li and Jin 2007; Symons

et al. 2008). These hormones act synergistically, or at

least additively, with several other hormones such as

auxin and the gibberellins, but at far lower concen-

trations. Polyamines, which are involved in the

control of numerous cellular functions, including free

radical scavenging and antioxidant activity, have

been found to confer protection from abiotic stresses
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Fig. 3 Specific activity of

CAT (lmol min-1 mg-1

protein): Cd (a) and Ni (b);
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in tobacco cells grown for a

72 h period in two

concentrations of CdCl2 and

NiCl2. Control (zero CdCl2
and NiCl2) (j), 0.1 mM

CdCl2 and 0.075 mM NiCl2
(s), 0.2 mM CdCl2 and

0.75 mM NiCl2 (•).

Values are the means of

3 replicates ±SEM
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but their mode of action is not fully understood

(Groppa and Benavides 2008). Polyamines have also

been shown to play a role in cell culture induction,

growth and development (Chiancone et al. 2006;

Santa-Catarina et al. 2007; Steiner et al. 2007). In

sunflower, polyamines have been shown to increase

dramatically in response to high Cd concentrations

(1 mM) (Groppa et al. 2007), which may be a

mechanism of cell defense to the oxidative stress

induced by Cd. However, in rice leaves, spermidine

and spermine, but not putrescine, were shown to

increase in response to Cd, indicating that the former

may be able to protect against Cd-induced oxidative

damage and that this protection is most likely related

to the avoidance of H2O2 generation and the reduc-

tion of Cd uptake (Hsu and Kao 2007). When in vitro

cell cultures are concerned, red spruce cell culture in

the presence of Cd exhibited a trend for decrease in

spermidine level (Thangavel et al. 2007).

Under regular growth conditions, the production of

ROS in cells is a normal occurrence, however,

adverse environmental factors can disrupt cellular

homeostasis and enhance the levels of ROS (Gratão

et al. 2005; Moldes et al. 2008). In tobacco cells, Cd

and Ni concentrations induced oxidative stress, but

almost exclusively at the highest concentrations

tested, which is consistent with the effects on growth

and cell viability. The fast increase in TBARS

(Fig. 1c and f) was likely correlated with an increase

in electrolyte leakage, contributing to a process of

oxidative damage leading to cell growth inhibition

and reduction of cell viability as observed in this

study. Malondialdehyde (MDA) is one of several low

molecular weight products formed via the decompo-

sition of primary and secondary lipid peroxidation

products, being the most frequently used indicator of

lipid peroxidation, a consequence of oxidative dam-

age (Dewir et al. 2006). Cd and Ni can induce

increased levels of H2O2, which appear to increase

MDA levels (Gomes-Junior et al. 2006a, b; Mishra

et al. 2006; Skorzynska-Polit and Krupa 2006; Ben

Ammar et al. 2007; Hsu and Kao 2007).

Cellular enzymatic and non-enzymatic mecha-

nisms are important for scavenging and quenching
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of reactive oxygen. We have tested several antioxi-

dant enzymes in response to Cd and Ni treatments

and, different from growth, cell viability and lipid

peroxidation, all of them responded positively to both

concentrations of metals. This probably indicates that

at the lower concentrations of metal, the antioxidant

system was capable of avoiding oxidative stress. In

general, the antioxidant response was similar in both

Cd- and Ni-treated cells. Furthermore, the tobacco

cells were grown in the dark and the response to ROS

may have been more prominent in the mitochondria.

Although these cells contain numerous plastids,

antioxidant activity would be expected to be low,

since no photochemical reactions would occur.

CAT represents the major constituent of the perox-

isomal matrix in photosynthetic tissues (Reumann and

Weber 2006), but its presence in plant mitochondria

is still an open question (Noctor et al. 2007). In this

study, CAT activity in TBY-2 cells submitted to Cd

and Ni stresses varied during the time course of the

experiment (Fig. 3a and b). Furthermore, the

response of CAT to Cd was similar to that observed

for Ni treatment, but differed at the end of the

experiment (increase in Cd treatment, drop in Ni

treatment). CAT may be regulated by H2O2 levels

and the activity increases observed under stress

suggest that during the period analyzed significant

alterations in the generation of H2O2 may have

occurred, as discussed previously, and that other

antioxidant systems were involved with the stress

response, particularly other peroxidases. Once again,

although we have not measured H2O2 or other ROS

in this study, increases are very likely to have

happened based on the responses of the antioxidant

enzymes we measured and on the previous work by

Olmos et al. (2003). Further confirmation on the

production of ROS, particularly superoxide, and the

response to the oxidative burst induced by Cd may be

obtained by the analysis of other key enzymes such as

SOD. Therefore, the increase in CAT during the final

period of exposure to Cd could be related to

intensification of H2O2 levels. During this later

period, GR and GST, both related to the glutathi-

one-ascorbate cycle, do not appear to be the main

players in the defense response to the oxidative stress

condition, exhibiting a drastic reduction in activity.

The ascorbate–glutathione cycle, also referred as

the ‘Asada-Foyer-Halliwell’ pathway, plays a major

role in the detoxification of reactive oxygen species

(ROS) involving successive oxidation and reductions

of ascorbate, glutathione and NADPH by the

enzymes APX, GR, dehydroascorbate reductase

(DHAR, EC 1.8.5.1), and monodehydroascorbate

reductase (MDHAR, EC 1.6.5.4) (Gratão et al.

2005; Moller et al. 2007). Increases in GR activity

may help maintain glutathione in the reduced form

prior to incorporation into phytochelatins (PCs), and/

or operation of the ascorbate–glutathione cycle in

order to detoxify the ROS induced by the metals. In

these experiments with TBY-2 cells, GR activity was

very rapidly and significantly increased by metal

stress (Fig. 3c and d). Some reports have suggested

that the response of GR to Ni stress is related to the

maintenance of glutathione in the reduced form,

prior to the formation of a stable Ni-glutathione

complex (Rao and Sresty 2000). Ni phytotoxicity in

P. sylvestris was related to glutathione reduction and

increase in the proportion of GSSG in needles

(Kukkola et al. 2000), confirming the importance of

glutathione and GR for Ni tolerance in plants

(Gomes-Junior et al. 2006a).

The detoxification activity of GST has been shown to

be related to pathogen attack, oxidative stress, xenobi-

otics and heavy metals (Basantani and Srivastava 2007).

The results for GST may be indicating that there was a

balance in glutathione utilization by antioxidants

enzymes of ascorbate–glutathione cycle. It appears that

both metals caused a rapid induction of both GR and

GST (as compared to CAT and GPOX) indicating that

GST was probably operating in the detoxification

process using GSH as a substrate.

Peroxidases are a large family of important plant

enzymes involved in several reactions such as

ascorbate oxidation, indoleacetic acid oxidation,

lignification, phenol oxidation, pathogen defence,

cell wall elongation, among others (Urs et al. 2006;

Passardi et al. 2007). One of these peroxidases,

GPOX, utilises aromatic electron donors such as

guaiacol and pyrogallol as substrates but only

oxidizes ascorbate at a rate of approximately 1%

that of guaiacol (Asada 1999). Increases in GPOX

activity in the TBY-2 cells were detected in response

to Cd and Ni, particularly at the end of the exposure

period and the high Ni concentration (Fig. 4c and d),

indicating a possible role in the dismutation of excess

H2O2 produced by Cd and Ni-induced stress.

The enzymes analyzed in this work and others

including peroxidases and SOD, have been examined
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previously in a wide range of plant species subjected

to growth in the presence of Cd and Ni. However,

these investigations have concentrated mainly on the

leaves and roots of plants (seedlings, young plants

and adult plants) and considerable disparities in the

responses have been recorded. These variations have

ranged from increase, through no change, to decrease,

which are probably due to variations in the plant

species, tissue or organ, metal, metal concentration

and length of exposure (Gajewska et al. 2006a; Garcia

et al. 2006; Ghanati and Ishka 2006; Mishra et al.

2006; Rodriguez-Serrano et al. 2006; Scebba et al.

2006; Gajewska and Sklodowska 2007b; Yannarelli

et al. 2007). According to results presented, the toxic

action of Cd and Ni inhibited the growth and viability

of TBY-2 cells and increased lipid peroxidation,

leading to major increases in the four antioxidant

enzymes tested. The antioxidant enzyme responses

varied depending on the metal concentration and

length of exposure. GR and GST activities have an

early important role in the response to the oxidative

stress induced by these metals in tobacco cell

cultures, whereas peroxidases such as CAT and

GPOX take over later in the defence process.

However, there is a large number of antioxidant

enzymes and non-enzymatic antioxidants that may

also be involved in the response to Cd and Ni-induced

oxidative stress and should be further investigated to

have a more comprehensive understanding of the

mechanisms involved.
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