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Abstract

Related or distant species of cultivated crops are a large pool of many desirable genes. Gene transfer from
these species through conventional breeding is difficult owing to post- and pre-zygotic sexual incompati-
bilities. Somatic hybridization via protoplast fusion is a possible alternative for gene transfer from these
species to cultivated crops. Since the early days of somatic hybridization many intergeneric somatic hybrids
have been developed through symmetric fusion, asymmetric fusion and microfusion. Somatic hybrids are
mainly selected by using markers such as specific media or fusion parents with special features, biochemical
mutants, antibiotic resistance and complementation strategy. The hybridity of the regenerants is deter-
mined based on morphological, cytological and molecular analysis. The inheritance patterns of nuclear and
cytoplasmic genomes in the somatic hybrids are diverse. Nuclear DNA from both fusion parents co-exists
congruously in some hybrids with translocation and rearrangement of chromosomes, but spontaneous
elimination of chromosomes from either or both fusion parents has been observed very often. In asym-
metric fusion, chromosome elimination is an important issue that is a complicated process influenced by
many factors, such as irradiation dose, phylogenetic relatedness, ploidy level of fusion parent and regen-
erants. As for chloroplast genome, uniparental segregation is mainly detected, though co-existence is also
reported in some cases. The mitochondrial genome, in contrast to chloroplast, undergoes recombination
and very frequent rearrangements. Somatic cell fusion has potential applications for crop genetic
improvement by overcoming sexual incompatibility or reproductive barriers, and by realizing novel com-
binations of nuclear and/or cytoplasmic genomes.

Introduction

Crop production is affected by biotic and abiotic
stresses, such as bacterial, fungal and viral diseases
and adverse environment. Genetic improvement of
cultivated species to withstand these stresses is key
to successful crop production. Related or distant
genera of cultivated crops contain a large reservoir
of genes covering a variety of desirable traits.
Tapping and utilization of this germplasm has great
potential for crop improvement. Nevertheless, it is

hard to transfer the desirable traits present in this
germplasm to the cultivated species via conven-
tional breeding ways owing to some unexpected
impediments, such as sexual incompatibility. Other
barriers like polyembryony, female and/or male
sterility in some crops further restrain the chances
for recombination and segregation of desirable
traits. As a result, gene flow from the related or
distant genera to the cultivated species is mini-
mized. It is of great significance to explore other
breeding alternatives to complement the traditional
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way, so as to fully use the related or distant genera
for crop genetic improvement. Somatic hybridiza-
tion, involving mainly somatic cells, could circum-
vent the aforementioned barriers and is a possible
choice for gene(s) transfer between intergeneric,
sexually compatible or incompatible, combinations
for effective use of valuable germplasms. Since the
first tobacco somatic hybrid was generated much
progress has been made in this area (reviewed by
Grosser et al., 2000; Johnson and Veilleux, 2001;
Orczyk et al., 2003). Intergeneric somatic hybrid-
ization has been done via symmetric fusion, asym-
metric fusion, and microfusion, which could give
rise to symmetric hybrids, asymmetric hybrids and
cybrids in terms of nuclear constitution (Figure 1).
Many plant species have been used in intergeneric
somatic hybridization, which are listed in Table 1.
The present review specifically looks at intergeneric
somatic hybridization with emphasis on reviewing
treatments of donor and recipients in asymmetric
fusion, methods of selection and identification of
somatic hybrids, nuclear and cytoplasmic inheri-
tance patterns in hybrids and realized and future
applications of somatic hybridization in crop
improvement.

Symmetric versus asymmetric fusion and treatments

in asymmetric fusion

Since the first tobacco interspecific somatic hy-
brids were produced through symmetric fusion
(Carlson et al., 1972), a large number of somatic
hybrids have been produced. In most cases, fu-
sion of two divergent parents leads to hybrids
that combine nuclear genomes from both fusion
parents, resulting in regeneration of symmetric
hybrids. Incorporation of total genomes of the
two parents, especially nuclear ones, in a hybrid
has two obvious disadvantages, introduction of
too much exotic genetic material accompanying
the expected gene(s) and genetic imbalance lead-
ing to somatic incompatibility. These limitations
could cause either abnormal growth and devel-
opment of the somatic hybrids or regeneration of
hybrids with low fertility (Wang et al., 1989;
Sherraf et al., 1994; Spangenberg et al., 1994;
Begum et al., 1995; Kisaka et al., 1998;
Hu et al., 2002b; Wang et al., 2003). For exam-
ple, the somatic hybrids between Arabidopsis
thaliana and Brassica napus, Lycium barbarum

and tobacco (Nicotiana tabacum) did not develop
roots (Bauer-Weston et al., 1993; Liu et al.,
1995b). In addition, for some combinations no
plants can be produced by symmetric fusion
(Gupta et al., 1984). Therefore, efforts should be
made to reduce the input of nuclear genome of
the wild relatives into the hybrids. Asymmetric
fusion allows transfer of partial genomes from
one species to another. In some asymmetric fu-
sions both the donors and recipients are subjected
to treatment to limit the input of nuclear genome
into the hybrid. But in most of the cases treat-
ment is only given to the donor.

Figure 1. Schematic diagram of symmetric, asymmetric hybrids
and cybrids derived from protoplast fusion in terms of nuclear
compositions. Triangles indicate the nuclear genomes, rectan-
gles indicate the mitochondrial genomes and the cruciform
frames indicate the chloroplast genomes. a and b are the fusion
parents. c is the symmetric hybrids derived from fusion between
a and b. d and e are cybrid (alloplasmic hybrid) between a and
b. f is the asymmetric hybrid between a and b. (1) and (2) are
symmetric and asymmetric fusions, respectively. Zigzag arrow
denotes the irradiation treatment of parent a. Note: this figure
is only simple illustration of the three kinds of hybrids and the
nuclear and cytoplasmic genomes are not representatives of any
crop species.
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Table 1. Tabulation of intergeneric symmetric and asymmetric fusions

Parents Fusions

1 2 Symmetric fusions Asymmetric fusions or microfusions

Apium Daucus Wang et al. (1989)

Atropa Datura Krumbiegel and Schieder (1979)

Hyoscya-

mus

Ahuja et al. (1993)

Nicotiana Gleba et al. (1982), Babiychuk et al. (1992), Kushnir

et al. (1987, 1991) and Yemets et al. (2000)

Gleba et al. (1988) and Yemets et al.

(2000)

Brassica Arabidopsis Gleba and Hoffmann (1978, 1980) and Hoffmann and

Adachi (1981)

Bauer-Weston et al. (1993), Forsberg

et al. (1998a, b), Siemens and Sacristan

(1995) and Yamagishi et al. (2002)

Camelina Narasimhulu et al. (1994)

Crambe Wang et al. (2003, 2004)

Moricandia Kirti et al. (1992a, 1998) O’Neill et al. (1996)

Sinapis Hansen and Earle (1997), Primard et al. (1988),

Gaikwad et al. (1996), Hu et al. (2002a), Lelivelt et al.

(1993) and Toriyama et al. (1987a)

Raphanus Pelletier et al. (1983), Arumugam et al. (2002), Sakai

and Imamura (1990), Lelivelt and Krens (1992),

Kameya et al. (1989), Hagimori et al. (1992) and

Yamanaka et al. (1992)

Sakai and Imamura (1992) and Sakai

et al. (1996)

Trachysto-

ma

Kirti et al. (1992b)

Barbarea Fahleson et al. (1994a)

Diplotaxis Begum et al. (1995), Kirti et al. (1995) and Klimaszews-

ka and Keller (1988)

Chatterjee et al. (1988)

Orycho-

phragmus

Hu et al. (2002b) and Vasilenko et al. (2003) Hu et al. (2002b)

Thlaspi Fahleson et al. (1994b) and Brewer et al. (1999)

Armoracia Navrátilová et al. (1997)

Camelina Hansen (1998) and Sigareva and Earle (1999a)

Capsella Sigareva and Earle (1999b)

Eruca Fahleson et al. (1988) Sikdar et al. (1990)

Lesquerella Skarzhinskaya et al. (1996)

Bupleurum Vitis Song et al. (1999)

Cichorium Helianthus Rambaud et al. (1993)

Citrus Feroniella Takayanagi et al. (1992)

Fortunella Deng et al. (1992), Grosser et al. (1996), Ollitrault

et al. (1996), Liu and Deng (2000b), Costa et al. (2003)

and Takami et al. (2004)

Poncirus Ohgawara et al. (1985), Grosser et al. (1988b), Ohga-

wara et al. (1991), Grosser et al. (1996), Ollitrault et al.

(1996) and Guo et al. (2002)

Vardi et al. (1987) and Liu and Deng

(2000a)

Citropsis Grosser et al. (1990), Ling and Iwamasa (1994) and

Grosser et al. (1996)

Swinglea Takayanagi et al. (1992) and Motomura et al. (1995,

1997)

Aegle/

Glycosmis/

Merrillia

Motomura et al. (1995, 1997)

21



Table 1. (Continued)

Parents Fusions

1 2 Symmetric fusions Asymmetric fusions or microfusions

Murraya Shinozaki et al. (1992) and Guo and Deng (1998)

Atlantia Louzada et al. (1993) and Grosser et al. (1996)

Clausena Guo and Deng (1999) and Fu et al. (2003)

Feronia Grosser et al. (1996)

Microcitrus Grosser et al. (1996), Motomura et al. (1995, 1997),

Liu et al. (1999, 2000, 2002 a, b) and Xu et al. (2004)

Vardi et al. (1989) and Liu and Deng

(1999)

Severinia Grosser et al. (1988a, 1996, 2000) and Motomura et al.

(1995, 1997)

Cucumis Cucurbita Yamaguchi and Shiga (1993) and Zhang and Liu

(1998)

Daucus Hordeum Kisaka et al. (1997)

Dendranthema Artemisia Furuta et al. (2004)

Dianthus Gypsophila Nakano and Mii, (1993) and Nakano et al. (1996)

Duboisia Nicotiana Endo et al. (1988)

Festuca Lolium Takamizo et al. (1991)

Fortunella Poncirus Miranda et al. (1997)

Glycine Nicotiana Kao (1977) and Chien et al. (1982)

Lotus Kihara et al. (1992)

Oryza Niizeki et al. (1985)

Helianthus Cichorium

intybus

Varotto et al. (2001)

Hibiscus Lavatera Vazquez-Thello et al. (1996)

Hyoscyanmus Nicotiana Potrykus et al. (1984), Kishinami and Widhlom (1987)

and Zubko et al. (1996)

Imamura et al. (1987) and Zubko et al.

(2002)

Scopolia Zubko et al. (1996)

Lathyrus Pisum Durieu and Ochatt, (2000)

Lolium Triticum Chen et al. (1992) Ge et al. (1997) and Cheng and Xia

(2004)

Festuca Spangenberg et al. (1994, 1995)

Lotus Oryza Nakajo et al. (1994)

Lycium Nicotiana Liu et al. (1995a, b) and Xie et al. (1996)

Lycopersicon Nicotiana Wolters et al. (1993a, b), Ramulu et al.

(1995) and Vlahova et al. (1997)

Solanum Handley et al. (1986), O’Connell and Hanson (1986),

Sakomoto and Taguchi (1991), Gavrilenko et al.

(1992), Guri et al. (1988, 1991), Hossain et al. (1994),

Sherraf et al. (1994), Schoenmakers et al. (1993, 1994a,

b) and Kobayashi et al. (1996),

Melchers et al. (1992), McCabe et al.

(1993), Liu et al. (1995) and Samoylov

and Sink (1996)

Medicago Lotus Kaimori et al. (1998)

Onobrychis Li et al. (1993)

Nicotiana Solanum Vries et al. (1987), Wan et al. (1988), Toki et al. (1990)

and Gilissen et al. (1992)

Perl et al. (1991), Thanh and Medgyesy

(1989), Ramulu et al. (1995, 1996a, b),

Tempelaar et al. (1991), Wolters et al.

(1991) and Schoenmakers et al. (1994a,b)

Hordeum Somers et al. (1986)

Datura Ye et al. (1987)

Salpiglosis Thanh et al. (1988)
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Treatment of the donor protoplasts

The above discussion indicates that it is necessary
to minimize the introduction of genomes from the
fusion parents into the hybrids, which is mainly
done by breaking or fragmentating chromosomes
using irradiation with X or gamma rays (Dudits
et al., 1980; Liu and Deng, 1999; Zubko et al.,
2002). Dudits et al. (1980) produced the first in-
tergeneric asymmetric hybrid between X-ray irra-
diated parsley (Petroselium hortense) protoplasts
and tobacco protoplasts. UV is being used more

and more due to its easy access and convenience in
use for causing chromosomal breakages (Jain
et al., 1988; Xia and Chen, 1996; Xia et al., 1996,
1998, 1999, 2003; Zhou et al., 1996, 2001a, b,
2002a, b; Vlahova et al., 1997; Yue et al., 2001; Xu
et al., 2003; Xiang et al., 2003a, b, 2004; Cheng
and Xia, 2004). Hall et al. (1992a, b) found that
more chromosome breakage was detected in the
UV-treated cells than gamma-treated cells at the
same biological dosage. In addition to the irradi-
ation, restriction endonuclease, spindle toxin or
chromosome condensation agents have also been

Table 1. (Continued)

Parents Fusions

1 2 Symmetric fusions Asymmetric fusions or microfusions

Daucus Kisaka and Kameya (1994) Kisaka and Kameya (1994) and Dudits

et al. (1987)

Petroselium Dudits et al. (1980)

Petunia Li et al. (1982), Pental et al. (1986) and Dragoeva et al.

(1999)

Glimelius and Bonnett (1986) and

Hinnisdaels et al. (1991)

Oryza Echinochloa Terada et al. (1987)

Hordeum Kisaka et al. (1998)

Panicum Xin et al. (1997)

Porteresia Jelodar et al. (1999) Finch et al. (1990)

Zizinia Liu et al. (1999)

Physalis Datura Gupta et al. (1984)

Pyrus Prunus Ochatt et al. (1989)

Rauwolfa Vinca/Rha-

zya/Cathar-

anthus

Kostenyuk et al. (1991)

Saccharum Pennisetum Tabaeizadeh et al. (1986)

Triticum Avena Liu and Liu, (1995) and Xiang et al.

(2003a, b)

Aeleuropus Yue et al. (2001)

Agropyron Xia et al. (1996, 2003) and Cheng et al.

(2004)

Bromus Xing et al. (2001) Xiang et al. (1999)

Leymus Huang et al. (1999) Xia and Chen (1996) and Huang et al.

(1999)

Psathyros-

tachys

Xing et al. (2001) Xia et al. (1996)

Pennisetum Vasil et al. (1988)

Setaria Li et al. (2001) and Xiang et al. (2004)

Haynaldia Zhou et al. (2001b) Xia et al. (1998) and Zhou et al. (2001a,

b, 2002a, b)

Zea Wang et al. (1993) and Szarka et al. (2002) Xu et al. (2003)

Vicia Helianthus Schnabl et al. (1999)

Vinca Catharan-

thus

Kostenyuk et al. (1991)
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used for chromosomal fragmentation (Ramulu
et al., 1994; Forsberg et al., 1998b). Treatment of
the donor protoplasts with bromodeoxyuridine
prior to UV and gamma irradiation could promote
formation of highly asymmetric hybrids (Trick
and Bates, 1996). In most of the asymmetric
fusions, protoplasts that have been purified or are
being isolated were irradiated before fusion
(Somers et al., 1986; Vlahova et al., 1997; Kaimori
et al., 1998; Liu and Deng, 1999; Zubko et al.,
2002). But callus, leaf, cell suspension cultures
or in vitro plantlets have also been used for
irradiation prior to protoplast isolation (Temp-
elaar et al., 1991; Wolters et al., 1991; Hansen and
Earle, 1997). Response to the irradiation varied in
different tissues. Protoplasts were more sensitive to
the irradiation than the cell suspension cultures
(Liu and Liu, 1995). It is reasonable since the
protoplasts, without the protection by the cell
wall, are more fragile than intact cells. Thus, use of
protoplasts is, in principle, favorable for causing
chromosome fragmentation.

Treatment of the recipient protoplasts

In order to facilitate hybrid selection the recipient
protoplasts are always treated with some meta-
bolic inhibitors, such as IA (Iodoacetic acid) and
IOA (Iodoacetamide), which affect the metabolic
process of the cells and make them physiologically
impaired for cell division when they are cultured
independently. The protoplasts treated with the
metabolic inhibitors become malformed and fi-
nally burst (Glimelius and Bonnett, 1986; Kushnir
et al., 1987; Liu and Deng, 1999). But when the
protoplasts were fused with the donor protoplasts
the heterokaryons can grow due to metabolic
complementation.

Effects of the treatments on the production of
asymmetric hybrids

The key issue in irradiation treatment is whether
it can really cause chromosome elimination in the
resulting hybrids and transfer of only limited
amount of genome of the donor parent. A num-
ber of studies have shown that irradiation could
induce chromosome elimination, which leads to a
limited introduction of donor chromosomes in
the hybrids. The somatic hybrids between Atropa
bellodonna, used as a donor, and Nicotiana ta-

bacum contained 11–90% of chromosomes from
the former parent (Gleba et al., 1988). The so-
matic hybrids between Italian ryegrass (Lolium
multiflorum, donor) and tall fescue (Festuca
arundinaceae) contained only 20% of the donor
chromosomes (Spangenberg et al., 1994). Limited
transfer of partial genomes from donor to the
recipient has also been reported in other fusions
(Xia et al., 1998; Liu and Deng, 1999; Wang
et al., 2004). In some cases highly asymmetric
hybrids containing only chromosome fragments,
or a few chromosomes of the donor parent were
obtained (Hinnisdaels et al., 1991; Liu et al.,
1999). Somatic hybrids between gamma-ray-irra-
diated Zizania latifolia and rice (Oryza sativa)
had chromosome number equal to rice, but
Southern analysis using both total genomic DNA
and moderate-copy Z. latifolia-abundant DNA
sequences as probes detected signal from the
donor, indicating that possibly only chromosome
segments from the donor have been integrated
into the hybrids (Liu et al., 1999). In addition,
creation of cybrids in many asymmetric fusions
provides convincing evidence that exposure of the
donors to irradiation prior to fusion could cause
complete loss of donor chromosomes, in which
only cytoplasm from the donor is transferred to
the somatic hybrids (Glimelius and Bonnett,
1986; Kushir et al., 1987; Vardi et al., 1987, 1989;
Hinnisdaels et al., 1991; Perl et al., 1991; Varotto
et al., 2001; Zubko et al., 2002). Compared to
symmetric fusion, asymmetric fusion strategies
with irradiation of donor protoplasts lead to
regeneration of normal plants, as demonstrated in
fusions between Arabidopsis and Brassica (Hoff-
mann and Adachi, 1981), Lycopersicon hybrid
and Solanum melongena (Guri et al., 1991; Liu
et al., 1995a, b). Moreover, irradiation causing
reduced input of one of the two parents increased
the possibility of producing fertile hybrids (Fa-
hleson et al., 1994b; Forsberg et al., 1998a). For
example, all of the symmetric hybrids between
B. napus and Lesquerella fendleri were self-sterile,
whereas 38% of the asymmetric hybrids of the
same combination were self-fertile (Skarzhinskaya
et al., 1996). Likewise, somatic hybrids derived
from symmetric fusion between Orychophragmus
violaceus and B. napus were sterile, but fertile
hybrids were recovered from asymmetric fusion
of the same combination, which could set seeds
after selfing or backcrossing (Hu et al., 2002b).
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However, pretreatment of the donor protoplasts
by irradiation and/or at times the recipient pro-
toplasts by metabolic inhibitors had negative ef-
fects on protoplast division and plant
regeneration, indicated by retarded cell division,
reduced plating efficiency, delayed or reduced
plant regeneration, low shoot regeneration fre-
quency and difficulty in rooting, which is possibly
due to severe physiological lesions (McCabe
et al., 1993; Schoenmakers et al., 1994a; Hansen
and Earle, 1997; Forsberg et al., 1998a; Liu and
Deng, 1999, 2000b; Wang et al., 2003).

Selection and characterization of somatic hybrids

Selection of somatic hybrids

Several sorts of cell types can be found in the fusion
products, heterokaryonic hybrid, homofusants and
unfused parental protoplasts. The frequency of
properly fused hybrid cells is always much lower
than the parental protoplasts. Without a strategy
for identification and selection of hybrids cells, one
will have to go through a very time-consuming and
tedious process of regenerating plants from a large
number of protoplast-derived cell colonies and
subsequently identifying hybrids from the popula-
tion. As a consequence, some strategies that select
hybrid cells or enrich these have been very impor-
tant. A number of selection strategies have been
used for the selection of hybrids, of which utiliza-
tion of biochemical mutants and antibiotics or
herbicide resistance are used frequently. As far as
biochemical mutants are concerned, mainly three
kinds have been used, cytoplasmic chlorophyll
deficiency mutant (Toki et al., 1990; Kisaka and
Kameya, 1994; Dragoeva et al., 1999), nitrate-
reductase deficiency mutant (Kushnir et al., 1991)
and albino mutant (Schoenmakers et al., 1993;
Zubko et al., 2002). Difference in resistance to
specific antibiotic(s), amino acid analogues or her-
bicides between fusion parents could also expedite
hybrid selection when the fusion products are cul-
tured in a medium supplemented with the above-
mentioned chemicals (Kisaka et al., 1994; Vlahova
et al., 1997; Kulawiec et al., 2003). If each of fusion
parents is resistant to a different antibiotic it is more
efficient to select their hybrids using a medium
containing the two antibiotics (Kushnir et al., 1991;
Schoenmakers et al., 1994a, b; Vazquez-Thello

et al., 1996). Selection of double or triple mutants,
which are regarded as universal hybridizers, has
been proven to be very effective for selecting so-
matic hybrids (Pental et al., 1984, 1986; Kushnir
et al., 1987; Toriyama et al., 1987a; Ye et al., 1987).
In addition, genetic and/or metabolic complemen-
tation is frequently employed in asymmetric fu-
sions. Protoplasts of the fusion parents have been
treated with ionizing radiation or metabolic inhib-
itors that prevent the division of the unfused or
homofused protoplasts (Liu and Deng, 1999;
Yamagishi et al., 2002). The heterokaryons could
grow smoothly and finally develop into hybrid
callus or plants, due to genetic or physiological
complementation (Kostenyuk et al., 1991; Wang
et al., 1993). In some cases low or no regeneration
capacity of parental protoplasts could be used for
hybrid selection because the morphogenic potential
of the fusants could be restored due to comple-
mentation (O’Neill et al., 1996; Xia and Chen,
1996; Xia et al., 1996, 2003; Hansen, 1998; Zhou
et al., 2001a, b; Hu et al., 2002a; Xu et al., 2003).

Characterization of the somatic hybrids

Since the parental protoplasts and hybrid cells can
all undergo morphogenesis and in metabolic
complementation escapes can also regenerate, it is
imperative to identify the hybrid nature of the
regenerants, which is mainly done by morpholog-
ical, cytological, biochemical and genetic markers.

Morphological markers

Distinct morphology in leaf, flower and other or-
gans or difference in callus color can serve as
markers for hybrid identification (Xiang et al.,
1999; Zhou et al., 2001b). The somatic hybrids
have mainly two kinds of morphology, interme-
diate between the fusion parents, identical or
similar to one fusion parent. The former is pri-
marily seen in symmetric fusions and the latter in
asymmetric fusions (Yan et al., 1999; Sigareva and
Earle, 1999b; Varotto et al., 2001; Zubko et al.,
2002; Hu et al., 2002a; Xia et al., 2003). However,
plants with intermediate morphology have also
been derived from asymmetric fusion, and regen-
eration of somatic plants with morphology iden-
tical to one of the fusion parents has been reported
in many symmetric fusions (Kushnir et al., 1987;
Hansen and Earle, 1997; Kisaka et al., 1997; Liu
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et al., 1999, 2000; Szarka et al., 2002). It is note-
worthy that morphology of plants regenerated
from the same fusion event may be different from
each other and variation in plant morphology has
also been reported (Brewer et al., 1999).

Cytological markers

Chromosome counting and flow cytometry (FCM)
are widely used for determining total chromosome
number or ploidy level of the regenerants
(Hu et al., 2002a). Some of the reports on somatic
hybrids have shown that the chromosome num-
bers of the hybrids were less than the sum of the
chromosome numbers of the fusion parents (Song
et al., 1999; Yue et al., 2001; Xiang et al., 2003a,
b). Therefore, chromosome number or ploidy level
is unsuitable to identify somatic hybrids alone in a
reliable manner. But major differences in chro-
mosome morphology and size between the fusion
parents could facilitate hybrid verification based
on karyotype analysis, which can also reveal
parental chromosome contribution to the hybrids.
Verification of hybrids via chromosome morphol-
ogy difference has been used in characterizing a
number of somatic hybrids (Kao, 1977; Binding
and Nehls, 1978; Chien et al., 1982; Gleba et al.,
1982, 1988; Gupta et al., 1984; Kushnir et al.,
1987; Endo et al., 1988; Hinnisdaels et al., 1991;
Kostenyuk et al., 1991; Babiychuk et al., 1992;
Ahuja et al., 1993; Wang et al., 1993; Skarzhins-
kaya et al., 1996; Kisaka et al., 1998; Xing et al.,
2001; Szarka et al., 2002).

In situ hybridization

In situ hybridization (ISH), including genomic in
situ hybridization (GISH) and fluorescence in situ
hybridization (FISH), a powerful tool for somatic
cytogenetics, has been employed frequently to
investigate the chromosomal composition of the
somatic hybrids (Chevre et al., 1994; Ramulu et al.,
1996a, b; Escalante et al., 1998; Skarzhinskaya
et al., 1998; Jelodar et al., 1999; Szarka et al., 2002;
Xiang et al., 2003b, 2004). ISH can clearly confirm
parental origin of the chromosomes present in the
hybrids, demonstrating nuclear genomic contribu-
tion of each parent (Rutgers et al., 1997; Jelodar
et al., 1999; Horsman et al., 2001). Escalante et al.
(1998) analyzed tetraploid and hexaploid hybrids
between L. esculentum and wild nightshade

(S. lycopersicoides) and detected an equal number
of chromosomes from both fusion parents in the
tetraploid hybrids, whereas the hexaploid hybrids
contained four sets of tomato chromosomes and
two sets of chromosomes of wild nightshade. By
ISH it is very effective to know if limited gene
transfer occurs in asymmetric fusion and identify
the alien chromosomes that are present in the so-
matic hybrids (Jacobsen et al., 1995; Cheng and
Xia, 2004; Wang et al., 2004; Xiang et al., 2004).
For example, GISH analysis of the asymmetric
hybrids between Triticum aestivum and Setaria it-
alica (donor) revealed that only chromosome frag-
ments or few chromosomes from the donor were
present in the hybrids (Xiang et al., 2004). In
addition, ISH can give an insight into intra or in-
tergenomic translocation and chromosome rear-
rangements which has been detected in somatic
hybrids of Z. latifolia and O. sativa (Liu et al.,
1999), L. esculentum and S. tuberosum (Wolters
et al., 1994), T. aestivum and Haynaldia villosa or
Agropyron elongatum (Xia et al., 1998; Zhou et al.,
2001a), T. aestivum and Zea mays or Avena sativa
(Szarka et al., 2002; Xiang et al., 2003b), B. napus
and Lesquerella fendleri (Skarzhinskaya et al.,
1998), etc. Besides, ISH can detect preferential
chromosome elimination, screen monosomic addi-
tion line and investigate cytogenetic behavior of the
somatic hybrids that are used in the sexual crosses
(Wolters et al., 1994; Jacobsen et al., 1995;
Garriga-Caldere et al., 1997; Ali et al., 2000, 2001;
Gavrilenko et al., 2001; Wang et al., 2004).

Isoenzyme and Fraction-I protein

Isoenzymes are the most widely used biochemical
way for identifying somatic hybrids (Wetter and
Kao, 1980; Dragoeva et al., 1999). Isoenzymes of
esterase (Bauer-Weston et al., 1993), peroxidase
(Begum et al., 1995; Xia et al., 1998; Xu et al.,
2003), phosphoglucose isomerase (Fahleson et al.,
1994b), phosphoglucomutase (Ochatt et al., 1989),
glutamate aspartic aminotransferase (Jain et al.,
1988), phosphatase (Yamaguchi and Shiga, 1993),
menadione reductase (Klimaszewska and Keller,
1988) and leucine aminopeptidase (Hansen and
Earle, 1997) have been used for confirming hybrid
nature of regenerants from intergeneric fusions.
Subunits of Fraction-I protein, RUBPCase, have
been used to characterize somatic hybrids based on
isoelectric focusing (Shepard et al., 1983). Small

26



subunits of RUBPCase identify the nuclear com-
position of the somatic hybrids, whereas large su-
bunits of RUBPCase can detect parental
chloroplasts (Chen et al., 1977; Melchers et al.,
1978).

Molecular markers

Use of molecular markers is ideal for hybridity
confirmation. To date, several molecular markers
have been used, such as randomly amplified
polymorphism DNA (RAPD), restriction frag-
ment length polymorphism (RFLP), simple se-
quence repeat (SSR), amplified fragment length
polymorphism (AFLP), cleaved amplification
polymorphic sequences (CAPS), intersimple
sequence repeat (ISSR) and 5S rDNA spacer
sequence (Sakomoto and Taguchi, 1991; Bauer-
Weston et al., 1993; Hansen and Earle, 1997; Zu-
bko et al., 2002; Xia et al., 2003). Species- specific
satellite DNA sequence was also used for hybrid
identification (Schweizer et al., 1988). Dot blot
hybridization with species specific repetitive DNA
probes and use of DNA clone as probe can iden-
tify quantitative contribution of parental DNA in
the somatic hybrids (Moore and Sink, 1988;
Wolters et al., 1993a; Samoylov and Sink, 1996).

Inheritance of nuclear and cytoplasmic genomes in

somatic hybrids

Nuclear and cytoplasmic genomes of phylogeneti-
cally distant species are brought together in a
common cytoplasmic milieu in somatic hybrids,
leading to nuclear–nuclear, nuclear–cytoplasmic
and/or cytoplasmic–cytoplasmic interactions, from
which diverse nuclear and cytoplasmic genomes
could arise.

Inheritance of nuclear genomes

Inheritance of nuclear genomes in symmetric fusion

In some hybrids the nuclear genomes from both
fusion parents are compatible and could remain
together in somatic hybrids (Sakomoto and
Taguchi, 1991; Kirti et al., 1992a, b; Lelivelt and
Krens, 1992; Gaikward et al., 1996; Nakano et al.,
1996; Kisaka et al., 1997; Kisaka et al., 1998;

Jelodar et al., 1999). However, in a number of
somatic hybrids derived from symmetric fusions,
full nuclear complements are not present. Firstly,
rearrangements and recombinations have been
detected in many hybrids (Hoffmann and Adachi,
1981; Kostenyuk et al., 1991; De Jong et al., 1993;
Begum et al., 1995; Vlahova et al., 1997; Escalante
et al., 1998; Liu et al., 1999; Szarka et al., 2002).
Secondly, spontaneous chromosome elimination
of either or both parents has been extensively re-
ported, leading to regeneration of asymmetric
hybrids or cybrids (Gleba et al., 1988; Babiychuk
et al., 1992; Gilissen et al., 1992; Ahuja et al.,
1993; Nakano et al., 1996; Kisaka et al., 1997;
Navrátilová et al., 1997; Liu et al., 1999; Hu et al.,
2002a). For instance, somatic hybrids between
A. bellodonna and Datura innoxia contained
few chromosomes of A. bellodonna and full com-
plement of D. innoxia (Krumbiegel and Schieder,
1979). Protoplast symmetric fusion between
nightshade (A. belladonna) and tobacco
(N. tabacum) gave rise to highly asymmetric and
fertile somatic hybrids containing only one small
chromosome of nightshade in addition to the
whole tobacco genome (Babiychuk et al., 1992). It
is proposed that spontaneous asymmetry was
possibly necessary for normal division and mor-
phogenesis of the hybrid cells derived from remote
combinations (Chen et al., 1992; Liu et al., 1995b;
Song et al., 1999).

Inheritance of nuclear genomes in asymmetric fusion

Translocations and recombinations have also
been detected in the hybrids derived from
asymmetric fusions, as an example between N.
tabacum and Petunia hybrida (Hinnisdaels et al.,
1991), T. aestivum and H. villosa (Xia et al.,
1998). Compared with symmetric fusion chro-
mosome loss of the donors is possibly the most
prominent event for the nuclear genomes in
asymmetric fusion. No fixed rules on chromo-
some elimination are conclusive since contradic-
tory results are reported on different species or
by different scientists. Some reported that many
donor chromosomes were present in the asym-
metric hybrids (Imamura et al., 1987; Wolters
et al., 1991), whereas in others extensive chro-
mosome elimination took place (Dudits et al.,
1980, 1987; Gupta et al., 1984; Gleba et al.,
1988; Hinnisdaels et al., 1991). In addition,
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elimination of recipient chromosomes was de-
tected in some fusion combinations, as shown in
the somatic hybrid between carrot (donor) and
rice (Kisaka et al., 1994). Even the regenerants
from the same fusion event may vary from each
other in terms of extent of chromosome elimi-
nation (Hoffmann and Adachi, 1981; O’Connell
and Hanson, 1986, Endo et al., 1988; Spangen-
berg et al., 1994; Chen et al., 2000; Xia et al.,
2003). Therefore, chromosome elimination is
quite complex and the underlying mechanism for
chromosome elimination is not clear and in all
probability is affected by several factors, such as
irradiation dosage, phylogenetic relationship,
ploidy level of the parents and the fusion prod-
ucts, etc.

Irradiation dosage

In some reports chromosome elimination was
exacerbated with increase in irradiation dose
(Spangenberg et al., 1994; Trick et al., 1994;
Schoenmakers et al., 1994a, b; Forsberg et al.,
1998a; Wang et al., 2003). In a case study, when
10 Gy irradiance was employed no chromosome
elimination happened in the somatic hybrids of
X-ray irradiated L. multiflorum and F. arundin-
aceae protoplasts, while 85–100% of the donor
chromosomes were lost when the irradiation
dose was increased to 500 Gy (Spangenberg
et al., 1994). Similar results have been obtained
in asymmetric hybrids between UV-irradiated
Avena sativa and wheat protoplasts (Xiang et al.,
2003a, b). However, positive correlation between
irradiation dosage and chromosome elimination
was not observed in many reports, in which
limited elimination of chromosomes in the hy-
brids occurred when high irradiation dose was
exerted to the donor protoplasts (Imamura et al.,
1987; Gleba et al., 1988; Wolters et al., 1991;
Bauer-Weston et al., 1993; McCabe et al., 1993).
The conflicting results may be attributed to the
fact that irradiation-caused chromosome elimi-
nation is not exclusive but possibly affected by
other elements like genotype, irradiation type,
phylogenetic relationship between the fusion
parents and physiological status of the irradiated
materials (Samoylov and Sink, 1996; Xia and
Chen, 1996). Additionally, dose-effect can be
modified by the repairing facility present in the
irradiated cells (Tempelaar et al., 1991).

DNA content of the fusion parents and the
regenerants

It is reported that the ratio between the donor and
the recipient DNA contents can affect chromosome
elimination. The larger the ratio, the less serious
was chromosome elimination, as revealed in the
asymmetric fusions of L. pennellii with eggplant
(S. melongena), L. esculentum with S. tuberosum
and carrot (Dacus carota) with N. tabacum. As for
the combination L. esculentum with S. tuberosum
(donor) with a ratio of 1.8:1 most of the potato
chromosomes were present in the hybrids (Wolters
et al., 1991). Extensive chromosome elimination
was detected in the hybrid callus derived from fu-
sion between L. pennellii (donor) and eggplant, the
ratio of whichwas 1:1.22 (Samoylov et al., 1996). In
the combination between carrot (donor) and
N. tabacum, the ratio being 1:9.4, highly asymmet-
ric hybrids containing only one chromosome from
carrot were produced (Dudits et al., 1987). Ploidy
level of the regenerants also affects the presence of
species-specific chromosomes. The somatic hybrid
plants derived from fusion betweenPhysalis minima
and Datura innoxia contained three and one donor
chromosomes in presence of tetraploid and octo-
ploid recipient background (Gupta et al., 1984).

Phylogenetic relatedness

Since irradiation primarily causes loss of chro-
mosome fragments instead of whole chromosome,
highly asymmetric somatic hybrids can be pro-
duced only in few cases (Gleba et al., 1988;
Forsberg et al., 1998a). Melzer and O’Connell
(1992) proposed that the degree of asymmetry in
the somatic hybrids is decided by phylogenetic
relatedness rather than the irradiation dose or
other factors. Phylogenetically distant species
possibly differ from each other in chromosome
behavior and severe incompatibility exists between
their whole chromosome sets. Sorting out of
chromosome of either or both fusion parents could
alleviate the incompatibility so that their hybrids
can be established after fusion (Takamizo et al.,
1991; Shinozaki et al., 1992). So highly asymmet-
ric somatic hybrids could be obtained in remote
fusion combinations (Dudits et al., 1987; Trick
et al., 1994). When wheat protoplasts were fused
with three intergeneric grasses Psathyrostachys
juncea, Bromus inermis and B. willdenowii, the

28



highest chromosome elimination rate was ob-
served in B. inermis, which is phylogenetically
more distant to wheat than the other two (Xing
et al., 2001). Genetic incompatibility derived from
phylogenetic relatedness also affects chromosome
elimination of somatic hybrids during asexual or
sexual propagation, as revealed by the somatic
hybrid between N. plumbaginifolia and Atropa
belladonna (Gleba et al., 1988).

Inheritance of cytoplasmic genome

Mitochondrial and chloroplastic genomes undergo
maternal inheritance in sexual hybridization.
There are of course some exceptions where bipa-
rental inheritance mode has also been observed.
Much more complicated inheritance modes are
encountered in somatic hybrids leading to diversity
in organelle combinations, which cannot be
achieved in sexual hybridization.

Inheritance of chloroplast genome

A large number of reports have shown that in the
somatic hybrids or cybrids the chloroplast ge-
nomes could be from either of the two parents
used for somatic hybridization (Schiller et al.,
1982; Li and Sink, 1992; Bauer-Weston et al.,
1993; Kaimori et al., 1998; Zhou et al., 2001a, b;
Zubko et al., 2002; Ishikawa et al., 2003). The
transmission mode could be random or in some
case biased towards one of the parents (Wolters
et al., 1993a; Escalante et al., 1998; Mohapatra
et al., 1998). Non-random or biased segregation of
cpDNA detected in some of the somatic hybrids
was possibly caused by difference in rate of chlo-
roplast division between the fusion parents or
plastome–genome incompatibility (Fahleson et al.,
1988; Bonnett and Glimelius, 1990; Earle et al.,
1992; Kirti et al., 1998). In comparison to sym-
metric fusions, in asymmetric fusions, cpDNA of
the recipient is predominant in the hybrids, as has
been shown in hybrids of Brassica and Arabidopsis
(Bauer-Weston et al., 1993), N. tabacum and
D. carota (Smith et al., 1989), T. aestivum and
Z. mays or L. multiflorum (Xu et al., 2003; Cheng
and Xia, 2004).

Co-existence of chloroplasts from both fusion
parents has been found in a few somatic hybrids
(Primard et al., 1988; Motomura et al., 1996; Mo-
hapatra et al., 1998; Moreira et al., 2000; Cheng

andXia, 2004).Kumar andCocking (1987) ascribed
such phenomenon to parental chloroplast genomic
similarity or absence of any selection advantage to
either of the two plastid genomes in the heterok-
aryonic cells and their regeneration into plants.
However, chloroplast co-existence is in all proba-
bility a temporary status derived either from
incomplete or ongoing sorting out of cpDNA in the
hybrids. Some work tracing the change in the
chloroplast segregation during regeneration process
provides evidence for this. Vardi et al. (1989) ana-
lyzed cpDNA in the differentially aged regenerants
from asymmetric fusion and showed that cpDNA in
the hybrid callus was similar to both fusion parents,
whereas only cpDNA from one parent could be
detected in the hybrid plants. It is more or less clear
now that only plastid of one of the parents will fi-
nally be present in each somatic hybrid in a random
or biased manner.

Chloroplast DNA recombination has also
been reported in some intergeneric somatic hy-
brids. Thanh and Medgyesy (1989) first reported
chloroplast recombination in somatic hybrids
between tobacco and potato. Later, such kind of
phenomenon was detected in many other somatic
hybrids (Wolters et al., 1995; Kanno et al., 1997;
Kisaka et al., 1997, 1998; Baldev et al., 1998;
Escalante et al., 1998; Zhou et al., 2001a, b,
2002b). In some reports the recombinant plast-
omes were derived from stringent selection. For
instance, chloroplast recombination occurred in
somatic hybrid between light-sensitive N. taba-
cum mutant and S. tuberosum that was treated
with lethal irradiation dose (Thanh and Med-
gyesey, 1989). However, in most cases recombi-
nation also took place in the fusion events
without selection pressure, as shown by the cases
in the somatic hybrids Trachytoma ballii and B.
juncea (Baldev et al., 1998) and Hordeum vulg-
are + D. carota or O. sativa (Kisaka et al.,
1997, 1998). The somatic hybrids were proven to
have recombinant chloroplast genomes based on
occurrence of novel bands that were not present
in the fusion parents via RFLP analysis. The
underlying mechanism for chloroplast genome
recombination has not been determined, and its
potential roles in somatic hybridization can be
questioned. One possibility of the survival of
recombinants is that the recombinant chloroplast
genomes may overcome or abate nuclear-plas-
tome incompatibility (Thanh et al., 1988; Thanh
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and Medgyesy, 1989). In addition, the process of
chloroplast recombination though rare could be
used to generate novel germplams combining
two different traits controlled by chloroplast ge-
nomes, such as herbicide resistance. If somatic
hybridization is carried out between two fusion
parents each carrying a different genetic marker
coded by chloroplast genome (e.g. herbicide
tolerance) it is possible to get somatic hybrids
with recombined chloroplast that are resistant to
two different herbicides. However, this is only
hypothetical and work on this aspect has not
been carried out.

Inheritance of mitochondrial genome

Compared with chloroplast genome, mitochon-
drial genomes of most of the somatic hybrids
mainly maintain biparent co-existence, show
extensive recombination or rearrangements
(Gaikwad et al., 1996; Kanno et al., 1997; Ki-
saka et al., 1997, 1998; Shikanai et al., 1998;
Zhou et al., 2001a, b, 2002a, b; Yamagishi et al.,
2002; Zubko et al., 2002, 2003; Leino et al.,
2003; Xu et al., 2003). But presence of mito-
chondrion from one fusion parent has been re-
ported in some intergeneric somatic hybrids
(Kirti et al., 1992a; Nakajo et al., 1994; Wolters
et al., 1995; Liu et al., 2002b; Vasilenko et al.,
2003; Xu et al., 2004; Takami et al., 2004). It is
not clear why mitochondrial genomes undergo
frequent recombination or rearrangement in the
somatic hybrids. One explanation is that some
regions or sequences in the mitochondrial gen-
ome are prone to recombination and rearrange-
ments, which take place during the in vitro
culture process or in the heteroplasmic status
after protoplast fusion (Lelivelt and Krens, 1992;
Mohapatra et al., 1998). Difference in inheri-
tance patterns of mt and cp genomes in the so-
matic hybrids could be due to differences in their
membrane structure and due to differences in
their genomic organization (Kumar and Cock-
ing, 1987).

MtDNA patterns of the somatic hybrids had
effects on the growth habit and yield parameters
of the somatic hybrids (Bonnet and Glimelius,
1990; Rambaud et al., 1993; Cheng et al., 2003).
Cybrids between tobacco and Petunia hybrida
could grow and develop normally only when they
contained mtDNA from tobacco, whereas those

having mtDNA different from tobacco grew and
developed poorly as indicated by low fertility and
production of few pollen grains (Bonnet and
Glimelius, 1990). Cheng et al. (2003) reported
that the mtDNA pattern was correlated with the
phenotypic abnormality of the somatic hybrid
between Citrus sinensis and Fortunella crassifolia.
Leino et al. (2003) reported that different mito-
chondrial rearrangements led to hybrids with
aberrant growth and flower development in the
backcross progenies of the somatic hybrids be-
tween A. thaliana and B. napus.

Factors affecting cytoplasmic inheritance

Cytoplasmic inheritance in somatic hybrids is
affected by many factors like genotype, irradia-
tion dose, protoplast source, ploidy level of fu-
sion parents, nuclear background and
phylogenetic relatedness (Perl et al., 1991; Bauer-
Weston et al., 1993; Wolters et al., 1993b;
Spangenberg et al., 1994; Skarzhinskaya et al.,
1996; Kirti et al., 1998). As indicated elsewhere,
extensive elimination of donor chromosome of-
ten leads to preferential transmission of the re-
cipient’s cytoplasm to the hybrids, whilst donor
cytoplasm is possibly present if limited elimina-
tion of donor chromosome occurs (Takamizo
et al., 1991; Wolters et al., 1991; Spangenberg
et al., 1995; Kirti et al., 1998). For the combi-
nation between L. multiflorum (donor, treated by
X-ray) and F. arundinaceae, when radiation dose
was below 50 Gy, mtDNA from both fusion
parents was detected, whereas mtDNA of the
latter parent was predominant when irradiation
dose was above 500 Gy, the dosage for produc-
tion of highly asymmetric hybrid plants (Span-
genberg et al., 1995). As mentioned above,
cpDNA normally undergoes uniparental random
or biased transmission. But random segregation
of cpDNA tends to take place in fusions of
closely related species, whilst biased segregation
was detected in phylogenetically more distant
fusion combination (Sundberg and Glimelius,
1991). For example Brassica chloroplast DNA
was preferentially transmitted to the somatic
hybrids derived from fusion between Brassica
and Raphanus (Earle et al., 1992). Similarly, cp
DNA of Moricandia arvensis was primarily
maintained in the hybrids derived from fusion
between green mustard and a mustard cytoplas-
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mic male sterility (CMS) line containing M.
arvensis cytoplasm (Kirti et al., 1998). Nuclear
background can also influence chloroplast or
mitochondrion segregation (Sundberg and
Glimelius, 1991). In the fusions between N.
plumbaginifolia and L. esculentum or S. tubero-
sum, presence of cp DNA or mt DNA in the
somatic hybrids was correlated with the nuclear
compositions (Wolters et al., 1993a, b). But in a
later work on fusion between L. esculentum and
S. tuberosum Wolters et al. (1995) reported that
nuclear DNA composition of the somatic hy-
brids had no impact on chloroplast and mito-
chondria type. Therefore, effect of nuclear
background on cytoplasmic segregation depends
on species or combinations.

Interactions between nuclear and cytoplasmic
genomes

Protoplast fusion leads to completely de novo
combinations of nuclear and cytoplasmic ge-
nomes, which offers new materials for studying
nuclear and/or cytoplasmic interactions. Com-
patible interaction between nuclear and cyto-
plasmic genomes of different origins could lead
to production of fertile and functional hybrids
(Glimelius and Bonnett, 1986; Thanh et al.,
1988; Kameya et al., 1989; Thanh and Medgy-
esy, 1989). On the contrary, nucleo-cytoplasmic
incompatibility results in either failure in regen-
eration of hybrids or inferior development after
regeneration. For example, cybrid plants of
tobacco and Atropa belladonna were green
when they contained tobacco nuclear genome
and cp genome of A. belladonna, whereas they
became chlorophyll-deficient if they contained
A. belladonna nuclear genome and tobacco cp
genome, showing that A. belladonna nucleus is
not compatible with tobacco chloroplast (Kush-
nir et al., 1987, 1991). Similarly, the cybrids be-
tween tobacco and Hyoscyamus niger showed
late germination of seeds, dramatic decrease in
chlorophyll in vivo and pigment deficiency in
cotyledons in vitro owing to nucleo–cytoplasmic
incompatibilities (Zubko et al., 2001). In addi-
tion, alloplasmic incompatibility between nucleus
and mitochondria was reported to be responsible
for CMS in somatic hybrids between A. thaliana
and B. napus and their progenies (Leino et al.,
2004).

Application of somatic hybridization to crop genetic

improvement

Creation of novel germplasm by circumventing
reproductive barriers

As is outlined above, gene introgression between
cultivated varieties and their related or distant spe-
cies of agronomic interest via conventional way is
difficult due to sexual incompatibility. In contrast,
many intergeneric, intertribal or interfamilial so-
matic hybrids have been obtained via protoplast
fusion and some of them were fertile and therefore
can be used as bridging materials for breeding
(Gleba and Hoffmann, 1978, 1980; Hinnisdaels
et al., 1991; Ohgawara et al., 1991; Babiychuk
et al., 1992;Gavrilenko et al., 1992; Fahleson et al.,
1994b; Forsberg et al., 1994, 1998a, b; Skarzhins-
kaya et al., 1996; Nothnagel et al., 1997; Vlahova
et al., 1997; Grosser et al., 1998; Bohman et al.,
1999, 2002; Liu et al., 1999; Hu et al., 2002a; Xia
et al., 2003). In addition, many hybrids were suc-
cessfully established in some species with special
reproductive features. For example, sexual hybrids
between F. arundinaceae and L. multiflorum could
be produced only when the latter was used as pis-
tillate parent, which does not allow the use of
cytoplasm from the former parent. Takamizo et al.
(1991) obtained somatic hybrid plants containing
cytoplasm of F. arundinaceae, thus enriching the
gene pool of the combination. Citrus, an important
fruit tree, is special in its reproduction features. It
shows polyembryony and male and/or female ste-
rility. Production of sexual hybrids between citrus
and its relatives is restricted if citrus species are used
as pistillate parent. But a large number of somatic
hybrids have been recovered between citrus and its
relatives by protoplast fusion, which can be used
either as rootstocks or used as parents for interp-
loidy crosses to produce seedless triploids (Grosser
et al., 2000).

As far as cytoplasmic genomes are concerned
somatic hybridization provides novelty. In sexual
crosses chloroplast and mitochondrial genomes
undergo uniparental maternal inheritance and it is
not possible to create novel plastid, mitochondrial
combinations through this process. Protoplast
fusion has proved to be an effective method for
generating novel organelle combinations as
demonstrated by the production of many cybrids
containing chloroplast and mitochondrial genomes
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from a different origin. An interesting example is
combining atrazine resistance coded by chloroplast
genome and CMS coded by mitochondrial genome
in Cruciferae. Pelletier et al. (1983) incorporated
mtDNA-related CMS and cpDNA-related atra-
zine resistance from two different parents into the
hybrid in addition to the nuclear background of
one parent. This methodology is useful for pro-
duction of hybrid seeds that are tolerant to a her-
bicide.

Asymmetric fusion or microfusion could also
allow transfer of some partial genomes from a
donor species to produce monosomic additional
line (MAL) without intensive or tedious back-
crosses. Ramulu et al. (1996b) obtained MAL
containing whole genome of tomato and one po-
tato chromosome. Garriga-Caldere et al. (1998)
produced 27 MALs containing seven independent
potato chromosomes by crossing the backcross
progeny of somatic hybrids between tomato and
potato with tetraploid potato. These MALs can be
used for introgression of genes from donor gen-
ome to the recipient genome and also facilitate
physical and genetic mapping of individual chro-
mosomes. In intergeneric combinations MAL may
alleviate somatic incompatibility in that addition
of a single chromosome to the whole genome of
another species could be much better tolerated
than convergence of two whole genomes from
divergent species.

Transfer of resistance to biotic and abiotic stresses

Many related or distant species of cultivated crops
possess elite attributes like resistance to biotic or
abiotic stresses. Owing to the presence of repro-
ductive incompatibilities these cannot be efficiently
employed in crop genetic improvement pro-
grammes. Somatic hybridization could play a role
in transfer of resistance from divergent relatives
into crop plants. For example, resistance to dis-
eases caused by bacterium, fungus or nematode
has been transferred from donor species to the
cultivated crops by protoplast fusion (Lelivelt and
Krens, 1992; Lelivelt et al., 1993; Forsberg et al.,
1994; Hansen and Earle, 1997; Sigareva and Earle,
1999b; Bohman et al., 2002; Hu et al., 2002a;
Furuta et al., 2004). Somatic hybrids between
Japanese radish and cauliflower showed resistance
to clubroot, a serious disease in cauliflower. The
selfing progenies of the somatic hybrid showed

stable and perfect resistance to clubroot over three
generations. In addition, the backcross progenies
also showed resistance to the disease (Hagimori
et al., 1992; Hagimori, 1995). Somatic hybrids
between Capsella bursa-pastoris and Camelina sa-
tiva or Sinapsis alba and B. oleracea showed higher
resistance to black spot disease, which is caused by
Alternaria brassicola, in comparison to B. oleracea
(Hansen and Earle, 1997; Sigareva and Earle,
1999b). Somatic hybrids between chrysanthemum
(Dendranthema · grandiflorum) and wormwood
(Artemisia sieversiana) were more resistant to rust
caused by Puccinia horiana than chrysanthemum
and showed much smaller disease spots compared
with those observed on chrysanthemum (Furuta
et al., 2004).

Resistance has been checked in the progenies of
somatic hybrid. For example, the backcross
progenies of the somatic hybrids between rapeseed
and Sinapsis arvensis or A. thaliana showed sig-
nificantly higher resistance to blackleg or stem
canker than rapeseed, indicating stable inheritance
of disease resistance from the somatic hybrid to
the progenies (Bohman et al., 2002; Hu et al.,
2002a). In addition, tolerance to herbicide, salt,
drought, heat and cold has also been transferred
from the desirable donors to the cultivated species
via somatic hybridization (Louzada et al., 1993;
Hossain et al., 1994; Sherraf et al., 1994; Begum
et al., 1995; Vazques-Thello et al., 1996; Yemets
et al., 2000; Arumugam et al., 2002; Xia et al.,
2003). Atrazine resistance was transferred from the
resistant R. sativus to B. campestris (Pelletier et al.,
1983). The somatic hybrids between N. plumba-
ginifolia (donor) and A. belladonna showed higher
resistance to the phosphorothioamidate herbicide,
amiprophosmethyl (APM), through asymmetric
fusion (Yemets et al., 2000). Somatic hybrids de-
rived from intertribal asymmetric combinations
between wheat and Aeleuropus littorulis had higher
salt tolerance than wheat as revealed by relative
growth, accumulation of free proline and Na+ and
K+ (Yue et al., 2001). Similar results were re-
ported for the somatic hybrids between wheat and
Agropyron elongatum (Chen et al., 2000; Xia et al.,
2001). Thlaspi caerulescens is zinc (Zn) and cad-
mium (Cd)-tolerant, which can be used for phy-
toextaction or phytoremediation. In order to
transfer Zn and Cd tolerance from to B. napus for
phytoremediation and metal- contamination tol-
erance Brewer et al. (1999) fused protoplasts of
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T. caerulescens and B. napus. The resulting somatic
hybrids showed increased accumulation of Zn and
Cd compared with the sensitive parent, B. napus.

Transfer of CMS or production of novel CMS type

CMS is a maternal inheritance trait present in
many plants. Because plants with CMS cannot
produce functional pollen, CMS trait is useful for
the production of hybrid seeds. Molecular char-
acterization of CMS-related genes showed that
they had chimeric open reading frames (orfs) de-
rived from recombination (Schnable and Wise,
1998; Budar et al., 2003), leading to formation of
chimeric mitochondrial genomes, which disturbed
the mitochondrial function during tapetum devel-
opment, leading to male sterility (Dragoeva et al.,
1999). Extensive work has been carried out
on identifying the mechanism of CMS in many
crops, such as petunia CMS and ogura-CMS. In
CMS Petunia male sterility was associated with a
fused gene ( pcf), which was composed of partial
fragments of atp9 gene, coxII gene and an
unidentified open reading frame urfS (Young and
Hanson, 1987; Nivison and Hanson, 1989). Work
on Brassica cybrids carrying ogura CMS trait
showed that the ogura-specific mitochondrial
fragments contained two orfs encoding 138
(orf138) and 158 (orf158) amino acids, respec-
tively. Transcription analysis showed that orf158
was present in fertile plants, whereas orf138 could
not be detected in the fertile plants, indicating
correlation between male sterility and orf138
(Bonhomme et al., 1992). Subsequent work
showed that dissociation of orf138 gene led to
fertility restoration in the rapeseed cybrids, further
supporting the role of orf138 in male sterility
(Bellaoui et al., 1998). Transfer of CMS via con-
ventional crosses requires several backcrosses in
order to restore the nuclear background. Besides,
CMS present in some species with reproductive
defects cannot be transferred by traditional way.
To date successful CMS transfer via protoplast
fusion has been accomplished in several combi-
nations, such as sunflower and chicory (Rambaud
et al., 1993; Varotto et al., 2001), A. thaliana and
B. napus (Forsberg et al., 1998a; Leino et al., 2003,
2004), R. sativus and B. oleracea (Kameya et al.,
1989; Kanno et al., 1997), tobacco and Petunia
hybrida (Dragoeva et al., 1999), B. juncea +
Moricandia arvensis (Kirti et al., 1998). In addition

intergeneric transfer of CMS has been accom-
plished between R. sativus and B. napus via cy-
toplast–protoplast fusion (Sakai and Imamura,
1990).

Though CMS was transferred from CMS
donor to the recipient the nuclear background
may be inappropriate. One way to solve this
problem is to use the somatic hybrids for sexual
hybridization to develop more desirable CMS
line containing optimum nuclear and cytoplamic
combinations (Baldev et al., 1998; Prakash et al.,
1998; Leino et al., 2003; Zubko et al., 2003). For
instance, a B. napus CMS line was developed by
backcrossing male sterile somatic hybrids be-
tween B. napus and A. thaliana with B. napus,
which contained nuclear and chloroplast ge-
nomes from B. napus and rearranged mitochon-
drial DNA, (Leino et al., 2003). In addition to
undesirable nuclear background, co-transmission
of chloroplast and mitochondria from CMS do-
nor could lead to unexpected performance (e.g.
developmental or floral abnormalities) in the
somatic hybrids or their progenies, as is shown
by chlorosis present in backcross progenies of
the CMS cybrids between B. juncea and
M. arvensis (Kirti et al., 1992a, 1998). In order
to substitute M. arvensis chloroplast Kirti et al.
(1998) carried out protoplast fusion between io-
doacetate-treated green fertile line of mustard
and the CMS cybrid. Some of the resulting so-
matic hybrids were green and male sterile, indi-
cating that the chloroplast of M. arvensis in the
original cybrid has been replaced by the one
from green fertile mustard, which facilitated
production of hybrid mustard (Kirti et al., 1998).
Similar work was done by Morgan and Maliga
(1987) and Earle et al. (1992) on somatic hybrids
between Brassica and Raphanus.

Aside from transfer of CMS that is already
present in a donor species, CMS could be synthe-
sized between two fertile species via protoplast
fusion. Asymmetric fusion between fertile red
cabbage and fertile radish resulted in regeneration
of CMS cabbage (Kameya et al., 1989). Molecular
characterization revealed that the CMS cabbage
was similar to ogura type CMS, which was dif-
ferent from the fusion parents (Motegi et al.,
2003). Similarly, Zubko et al. (1996) created novel
homeotic CMS plants between tobacco and Hy-
oscyamus niger or Scopolia carniolica via proto-
plast fusion.
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Transfer of traits pertinent to quality improvement

Some distant species possess desirable traits re-
lated to quality that are absent in common culti-
vars. Transfer of gene(s) related to these traits via
protoplast fusion has been tried in some species,
leading to production of germplasm of better
quality. Crambe abyssinica is an annual herb with
high content of erucic acid. In order to improve
B. napus, UV-irradiated C. abyssinica was fused
with B. napus and the erucic acid content in some
of the resulting asymmetric hybrids and their
progenies was significantly higher than in B. napus
(Wang et al., 2003, 2004). Similarly, nervonic acid
of the intertribal somatic hybrids between B. napus
and Thlaspi perfoliatum was higher than the for-
mer fusion parent (Fahleson et al., 1994b). Accu-
mulation of raucaffricine, raw material for
antihypertonic and antineoplastic, was 10 folds
higher in the hybrids between Rauwolfa serpentina
and Vinca minor in comparison to R. serpentina
(Kostenyuk et al., 1991).

Transfer of C3–C4 or C4 traits to cultivated
species could lead to higher survival rate and bet-
ter yield potential in crops. In this regard, somatic
hybridization has been carried out between C3–C4
or C4 and C3 species (Kirti et al., 1992a; O’Neill
et al., 1996; Yan et al., 1999; Schnabl et al., 1999;
Ishikawa et al., 2003). Somatic hybrids between
B. napus and M. arvensis expressed the M. arvensis
C3–C4 intermediate character at the physiological
level, indicating transfer of C3–C4 gene from
M. arvensis to B. napus (O’Neill et al., 1996). So-
matic hybrid plants between B. oleracea and
M. nitens or M. arvensis had CO2 complementa-
tion point intermediate between the fusion parents
(Yan et al., 1999; Ishikawa et al., 2003).

Creation of novel and desirable rootstocks

Most of the fruit trees are composed of two parts,
rootstock and scion. Rootstock affects the adapt-
ability, yield, canopy and resistance of the grafted
trees. In many cases the desirable traits are present
in the phylogenetically distant species, which are
sexual and/or graft-incompatible with the scion
cultivars. Protoplast fusion paves the way for
rootstock improvement by circumventing some
barriers encountered with traditional breeding,
such as high heterozygosity, long juvenile period
and large tree size. Few fruit crops have been

subjected to such work, but the most promising
work is done in citrus (Ochatt et al., 1989; Grosser
et al., 2000; Grosser and Chandler, 2003). For
citrus mainly two strategies have been tried for
rootstock improvement. The first one is comple-
mentary combination of diploid rootstock so that
novel tetraploid rootstock possessing elite traits
from both fusion parents could be produced.
Nearly 50 such somatic hybrids have been pro-
duced, among which trifoliate orange (Poncirus
trifoliata) is frequently used as one of the fusion
parents (Grosser et al., 1988b, 1998; Grosser and
Chandler, 2000, 2003; Guo et al., 2002). Trifoliate
orange has many superior traits like CTV-resis-
tance and cold tolerance, but it is sensitive to CEV
(citrus exocortis virus). Citrus reticulata cv. Red
tangerine, also one of the rootstocks, confers tol-
erance to CEV. But it is not tolerant to CTV, and
the fruits from trees grafted on red tangerine are
not comparable to those from trees grafted
on trifoliate orange. Protoplast fusion between
trifoliate orange and red tangerine is expected to
produce novel rootstocks that are tolerant to both
CTV and CEV (Guo et al., 2002). The second
strategy for citrus rootstock improvement is to
fuse citrus with its sexually incompatible genera,
such as Citropsis, Atlantia, Clausena and Murraya
(Guo and Deng, 1998, 1999; Grosser et al., 1988a,
1990, 1996, 2000; Grosser and Chandler, 2003). Of
the distant hybrids the ones between Nova and
Citropsis gilletiana, Sucarri and Atalantia ceylanica
showed potential (Grosser and Chandler, 2003).
Most of the citrus somatic hybrids are tetraploids,
which were effective in reducing tree size. Average
tree diameters of the trees grafted on tetraploid
somatic hybrid rootstocks are smaller than the
diploid rootstocks (Grosser and Chandler, 2003).

Concluding remarks

Somatic hybridization and genetic transformation
are the two most promising alternatives and sup-
plements of sexual hybridization for gene transfer
in higher plants. They have their own attributes
and we cannot overestimate the function of one
technique and underestimate the other. Genetic
transformation, gene manipulation at molecular
level, is precise and aim-oriented with current
sophisticated technology. However, lack of target
gene, difficulty in transferring polygenes impeded
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its wide use for crop genetic improvement despite
the fact that some transgenic crops have been
commercialized, such as soybean, corn and cotton.
In addition, presence of selection or reporter
markers in the transgenic products posed negative
impacts on public acceptance of the transgenic
products. Somatic hybridization can play a role in
transferring polygenic traits, such as resistance to
biotic or abiotic stresses. Moreover, it has unique
advantages for creating new combinations of nu-
clear and/or cytoplasmic organelles, leading to
more variations and enrichment of current gene
pool. In terms of bio-safety somatic hybridization
has advantages over genetic transformation be-
cause some of the genes for the latter method are
not cloned from plants directly.

It has been well documented that protoplast
fusion can be used to create useful bridging
materials for breeding programmes. However, we
should be aware that certain problems do exist
for this kind of technology. Somatic incompati-
bility at different levels is present in the somatic
hybrids derived from fusion combinations
involving phylogenetically distant species, which
leads to unexpected hybrid performance (Fahle-
son et al., 1994a). For example, somatic hybrids
between B. oleracea and M. arvensis had the
CO2 compensation point as high as B. oleracea
rather than intermediate one (Toriyama et al.,
1988). Some remote hybrids cannot grow nor-
mally during in vitro or field stage (Grosser
et al., 2000). Though asymmetric fusion could
mitigate somatic incompatibility to some degree,
unpredictable elimination of chromosome hap-
pens in most of the fusion events. Since one
cannot control the chromosome loss as it is ex-
pected some desirable chromosomes will be lost,
or undesirable chromosomes are transferred to
the recipient than expected in addition to the
required chromosomes. Furthermore, aneuploidy
in somatic hybrids derived from symmetric or
asymmetric fusion has inhibitory effects on the
application of the hybrids owing to their low
fertility, retarded growth and development, loss
of growth vigor, aberrant development and
abnormal morphology (Leino et al., 2003).
However, despite these negative points, some of
the intergeneric somatic hybrids have shown
favorable performance and will possibly have
potential for cultivar improvement (Xia et al.,
2001; Grosser and Chandler, 2003).
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