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Abstract
Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is 
known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the 
elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, 
which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression 
and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, 
such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between 
platelets and malignant tumors is also significant. In this review article, we will explore these connections.
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Introduction

Cancer and cardiovascular disease are diseases with intri-
cate pathophysiology and the most common causes of 
death; prevalence is steadily increasing worldwide [1, 2]. 
Although venous thromboembolism (VTE), including deep 
venous thrombosis (DVT) and pulmonary embolism (PE), 
is common in the general population, it is especially com-
mon in cancer patients, and is accompanied by or can occur 
prior to malignant tumors [3]. Research indicates that the 
annual incidence rate of venous thromboembolism (VTE) 

in cancer patients is 0.5%, compared to 0.1% in the gen-
eral population[4]. Active cancer accounts for 20% of the 
total VTE incidence [5, 6]. Furthermore, cancer-associated 
thrombosis (CAT) is a significant contributor to mortality 
in cancer patients [7, 8]. Compared with non-malignant 
tumor patients, cancer patients have a nine-fold increased 
risk of developing VTE [9]. The high incidence of VTE 
in cancer patients arises from a complex interplay between 
acquired and genetic factors that perturb the delicate balance 
of hemostasis, ultimately culminating in thrombosis [10]. 
In the general population, numerous genetic factors associ-
ated with VTE have been identified, including mutations in 
genes related to anticoagulation (SERPINC1, PROC, and 
PROS1), as well as various genetic polymorphisms [11]. 
Common factors contributing to the high incidence of VTE 
in cancer patients include advanced age, reduced mobility, 
and various cancer treatments such as surgery, radiotherapy, 
and chemotherapy. During the development of cancer, tumor 
cells release inflammatory cytokines and pro-angiogenic/
procoagulant factors that stimulate stromal cells to express 
prothrombotic components, thereby promoting blood clot-
ting [12, 13]. Table 1 provides a comprehensive overview of 
the factors that predisposed patients to thrombosis. Further-
more, cancer patients undergoing immune checkpoint ther-
apy are highly susceptible to developing CAT and exhibit 
elevated mortality rates [14–16]. The inherent heterogeneity 
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and biological characteristics of tumors may also contribute 
to an increased susceptibility to VTE [17], such as glioblas-
toma multiforme (GBM), pancreatic cancer, gastric cancer, 
and lung cancer carry a significantly higher risk of VTE 
due to the unique tumor mechanism that induces a hyper-
coagulable state in the body [18]. VTE is an independent 
predictor of reduced survival in cancer patients, meaning 
that the presence of VTE may indicate tumor progression, 
tumor treatment failure, and some underlying cancers [14, 
19–21]. Gene mutations in tumor cells, particularly those 
affecting TP53, KRAS, EGFR, PTEN and IDH1 genes, can 
have an impact on hemostasis by inducing the expression 
of tumor tissue factor (TF) and vascular endothelial growth 
factor (VEGF), as well as promoting thrombosis through 
the release of pro-inflammatory cytokines and extracellular 
vesicles [13].

Platelets are enucleated cells released from the membrane 
processes of mature megakaryocytes (pro-platelets), which 
contribute to the formation of clots and, if maladjusted, may 
lead to thrombosis [33]. With the development of platelet 
biology, we have a new understanding of platelet formation, 
function, and signaling (Fig. 1). Despite numerous hypoth-
eses, the etiology underlying the high prevalence of venous 
thrombosis in cancer patients remains uncertain. Tumor cells 
can interact with the hemostatic system in a myriad of ways, 
including the production of hemostatic proteins such as TF 
and thrombin, activation of platelets, and direct adhesion to 
normal cells like endothelial cells, monocytes, and platelets 

[34, 35]. In this review, our objective is to provide a concise 
overview of the pivotal role that platelets play in hemostasis 
and thrombosis, as well as to examine the intricate interplay 
between tumors and platelets, the current state of research, 
and the possibility of future treatment of tumors.

Tumor progression with platelet 
aggregation and activation

While platelets can have a positive impact on the behavior 
of cancer cells, the physiology and phenotype of platelets 
are also subject to influence by tumor cells [36]. In fact, 
several studies have revealed that tumor cells can regulate 
the RNA profile, number, and functionality of platelets. 
Cancer patients often exhibit activated clotting pathways 
that lead to a four-fold increased risk of thrombosis [37]. 
Professors Levin and Conley found that at least 40% of 
their hospitalized cancer patients had thrombocytosis [38]. 
Since then, a growing number of studies have reported a 
significant link between thrombocytosis and solid tumors, 
with a prevalence of 4–55% at the time of initial diagnosis 
[39–42]. As described in a review study of 3,654 patients 
with stage I-III breast cancer, 6.5% of these patients 
were diagnosed with inflammatory breast cancer (IBC), 
this study concluded that thrombocytosis, which is more 
prevalent in IBC patients, was associated with lower over-
all survival in these subjects, but not in non-IBC patients 

Table 1  Cancer and thrombosis risk factor overview [22–32]

Tumor related factors
  Cancer Type and Location Certain cancers like pancreatic, stomach, and brain are more thrombogenic

Histological stage Advanced stages often carry a higher risk
  Stage of cancer Patients of distant metastases usually carries a higher risk
  Tumor Secretions Some tumors release substances that increase coagulability

Patient-related factors
  Comorbidity Conditions like obesity, cardiovascular disease, or previous thrombosis
  Genetic Predispositions Certain genetic mutations increase thrombosis risk
  Age Older patients generally have a higher risk
  Varicose Veins Can predispose to superficial venous thrombosis which may lead to deep 

vein thrombosis
Treatment related factors

  Surgical treatment Surgical treatments increase the risk of thrombosis
  Central Venous Catheters Used for treatment can increase risk
  Adjunct Therapies Erythropoietin and Transfusions
  Immobility Due to hospitalization or illness can lead to stasis and clot formation
  Pharmacological Interventions Chemotherapy (e.g., thalidomide, platinum-based drugs)
  Hormone Therapy Altering blood clotting and hormone levels(e.g., tamoxifen)

Lifestyle and External Factors
  Smoking Increases the risk of thrombosis
  Nutrition Poor diet may contribute to higher risk
  Physical Activity Sedentary lifestyle can increase risk
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[43]. Tumor cells have the ability to increase thrombin 
production through direct and indirect mechanisms. To 
proliferate and foster metastasis, these cells concurrently 
manipulate platelet behavior by enhancing the synthesis 
and/or secretion of various compounds that incite platelet 
activation and aggregation [44–46]. The initial observa-
tion that tumor cells can induce platelet activation is based 
on a co-culture system, wherein tumor-induced platelet 
aggregation (TCIPA) is mitigated following the introduc-
tion of direct thrombin inhibitors[47]. Despite TCIPA 
being characterized by a heightened platelet count and 
conventional platelet activation, contemporary studies 
have demonstrated alterations in platelet derivatives within 
cancer patients. It's been discovered that EGFRvIII-mRNA 
can be isolated from the platelets of glioma patients, and 

PCA3-mRNA resides in the platelets of those with pros-
tate cancer [48]. Furthermore, aberrant fusions of spe-
cific EML4-ALK genes have been detected in the plate-
lets of patients suffering from non-small cell lung cancer 
[49]. Dysexpression of platelet protein can also be used 
as a diagnostic marker and prognostic factor. It has been 
reported that platelet concentrations of vascular endothe-
lial growth factor (VEGF) are higher in cancer patients 
than in healthy individuals, including lung cancer patients 
[50, 51], Liver Cancer [52, 53] and colorectal cancer [54]. 
Furthermore, malignant tumor cells exhibit heightened 
thrombin production compared to benign tumors, under-
scoring thrombin's role as a potent platelet activator with 
significant pro-coagulant attributes [55]. Previous research 
has also indicated that the rise in thrombin levels is related 

Fig. 1  Main signal events and responses in the process of platelet 
activation (a) The release of ADP and thromboxane A2(TXA2) acti-
vates purine receptors P2Y12, P2Y1, TXA2 receptors (TP) and plate-
let activation. P2Y12 inhibits AC but stimulates phosphoinositide 3 
kinase (PI3Ks) via GαI protein. The P2Y1 and TP signals activate the 
GαQ protein, which stimulates phospholipase C β (PLC β) to release 
Ca2 + into the cytoplasm, leading to protein kinase C (PKC) activa-
tion and downstream signaling events. The TP receptor also activates 
Gα12 and 13 proteins, leading to the activation of rho-associated pro-
tein kinase (ROCK) and contributing to platelet shape change and dif-
fusion.thrombin activates platelets by binding to GαQ-coupled recep-
tors PAR1 and PAR4. b Platelet inhibition is achieved through nitric 
oxide (NO) and prostaglandin I2 (PGI2) IP receptor-mediated activa-
tion of guanylate cyclase (GC) and adenylate cyclase (AC), leading 
to protein kinase G (PKG) and protein kinase A (PKA) activation. 
c Enhance platelet activation. GPVI and type c lectin-like recep-
tor 2 (CLEC2) induce strong signals through the protein tyrosine 
kinase pathway, resulting in the release of Ca2 + into the cytoplasm. 

d Platelet activation is initiated by the interaction between adhesion 
receptors (integrin α6β1, α2β1, αIIbβ3 and glycoprotein Ib-V-IX 
complex) and their ligands, such as collagen and von Willebrand fac-
tor. This involves signal transduction through small G protein regula-
tors (SGRs), src family kinases (SFKs) and serine/threonine protein 
kinases (STKs).The conformational changes of integrins, such as 
αIIbβ3, involve a pathway downstream of PLC, PKC and PI3K that 
leads from low to high affinity. This pathway includes CalDAG-GEFI 
(a guanosine nucleotide exchange factor regulated by Ca2 + and dia-
cylglycerol), SGRs (RAS3A and RAP1B), as well as signaling mol-
ecules connected to the cytoskeleton (kindlin and talin subtypes). e 
Platelet membrane swelling and exposure of phosphatidylserine (Ptd-
Ser) occur through high Ca2 + mobilization agonists mediated by the 
ion channel anooctamin6 (ANO6), while calpain-2 mediates intracel-
lular protein degradation. f The activation of Ca2 + -dependent and 
protein kinase-dependent cytoplasmic phospholipase A2 (cPLA2) 
and cyclooxygenase 1 (COX1) mediates the release of TXA2
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to the tumor's location, with lung cancer demonstrating 
a more significant increase compared to brain and pan-
creatic cancers [56]. Previous research has demonstrated 
that TF plays a crucial role in initiating platelet activa-
tion and aggregation, with TF being expressed on the cell 
membranes of various cancer cells [57]. Extracellular vesi-
cles (EVs), a diverse collection of cell-derived membrane 
structures including exosomes, microvesicles, and apop-
totic bodies, are released by cells and significantly con-
tribute to blood coagulation, thereby facilitating the direct 
generation of thrombin in cancer patients. Numerous stud-
ies have identified that EVs can express TF, linking it to 
thrombin production across different types of cancer [58]. 
Furthermore, activated host cells, such as monocytes and 
cancer cells, can release EVs that bear transferrin on their 
surface, further enhancing platelet activation [59–61]. 
Infact, it is reported that transferrin potentiates thrombin/
FXIIa and blocks AT's inactivation effect on coagulation 
proteases inducing activation coagulation and platelet[62]. 
EVs are also exposed to negatively charged phospholipids, 
such as phosphatidyl serine (PS), on adventitia lobules 
[63], is an effective substance to promote coagulation. Cir-
culating TF and EVs are good biomarkers of thrombosis 
and disseminated intravascular coagulation (DIC) in dif-
ferent diseases [64, 65].

Mechanisms of cancer‑induced coagulation

Platelets are closely related to the blood hypercoagulable 
state, which is an important cause of cancer-related venous 
thrombosis and and tumors may affect the blood hyperco-
agulable state in many ways [66]. Existing studies have 
found that, tumor-derived G-CSF induces neutrophilia, trig-
gering NET release and promoting thrombosis in murine 
model[67] and tumor-derived IL-6 induces thrombopoietin 
(TPO) expression in hepatocytes, and cancer cells have 
the ability to generate thrombin as well, promoting throm-
bosis and increasing the risk of thrombotic events in can-
cer patients[68–70]. Studies have found that about 5% of 
patients with idiopathic venous thromboembolism show 
latent malignant tumors, which are found within one year 
after the diagnosis of venous thromboembolism [71]. Pre-
vious studies have shown that 10%–57% of cancer patients 
have a high platelet count, which is associated with a poor 
prognosis [72]. Many cancer types, such as adenocarci-
noma, ovarian cancer, brain cancer, gastric cancer, colon 
cancer, and lung cancer, have a higher risk of developing 
VTE, while in cancer types such as breast and prostate can-
cer, the risk of VTE is lower, indicating that there may be 
specific VTE pathways in different cancer types (Table 2). 
Additionally, cancer patients often exhibit a hypercoagula-
ble state at the time of diagnosis, with a higher prevalence 

of certain prothrombotic gene mutations compared to the 
general population [73, 74]. This suggests a strong correla-
tion between blood status and tumor growth, with poten-
tial implications for the role of blood coagulation gene 
polymorphisms in cancer development. Upon activation of 
prothrombin, thrombin is generated, which subsequently 
triggers fibrinogenesis and platelet activation to maintain 
hemostasis. In addition to its hemostatic function, thrombin, 
especially through its interaction with the receptor PAR1, is 
also thought to affect key mechanisms of tumor initiation, 
including cell survival, proliferation, and adhesion [75, 76]. 
Previous studies have found that F7rs510317A alleles are 
associated with an increased risk of breast cancer [77]. This 
allele is also linked to an elevation in the levels of FVII, the 
activating enzyme in the exogenous coagulation pathway, 
within circulation [78, 79].

As mentioned earlier, cancer patients with VTE have a 
more aggressive underlying cancer phenotype, disease pro-
gression, and treatment failure, and tumors may affect the 
blood hypercoagulable state in many ways (Fig. 2). Platelets 
play a crucial role in coagulation, indicating their close asso-
ciation with tumor progression. Markers of platelet activa-
tion and coagulation have been identified in primary tumor 
tissues [97].

FVII is structurally expressed in cancer cells under 
hypoxic conditions, and forms a complex with TF (TF/
FVIIa) to enhance blood clotting activity. FX plays a piv-
otal role in both endogenous and exogenous coagulation 
pathways. Tumor cells produce a thrombin called a cancer 
coagulant, which activates FX [98]. Tissue factor path-
way inhibitor (TFPI) is known to modulate the activity of 
transferrin, which triggers the exogenous coagulation path-
way and represents the most extensively studied coagula-
tion factor in the context of malignant tumors [99, 100]. 
TF is the center of current thrombosis models: exposed 
when injured. Following oncogene induction, expression 
of TF in tumor tissue is related to cell survival, prolifera-
tion, invasion, angiogenesis, and metastasis, and generally 
related to poor prognosis in different tumor types. As pre-
viously mentioned, TF interacts with plasma coagulation 
factors to facilitate the generation of thrombin, which exerts 
pleiotropic effects on various cellular processes. Thrombin 

Table 2  Primary Thrombogenic Mechanisms in various cancer types

Tumor type Primary Thrombogenic Mechanisms Reference

Lung Neutrophils and neutrophil extracellu-
lar traps (NETs), Leukocytosis

[80–82]

Ovary Thrombocytopenia [70, 83–85]
Brain PDPN1+ MVs [86, 87]
Colorectum Leukocytosis [88–93]
Pancreas TF1+ MVs [61, 94–96]
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contributes to thrombosis by cleaving fibrinogen and acti-
vating protease activated receptors (PARs), which mediate 
a variety of cellular effects. However, when considering the 
biological function of the thrombin-PAR axis, it remains 
challenging to determine how this pathway specifically con-
tributes to both blood coagulation and tumor progression. 
Studies have demonstrated that thrombin activates human 
platelets via PAR-1 and PAR-4, leading to the secretion of a 
diverse array of molecules, which facilitates the formation 
of thrombus [101, 102].

In cancer, transferrin is often structurally overexpressed 
and can act locally or remotely, and is carried by tumor-
derived extracellular vesicles and released into the circula-
tion [18]. In tumor tissue, blood coagulation can be activated 
by destruction of the blood vessel wall, leading to bleeding 
and intravascular coagulation, or extravascular coagulation 
due to increased vascular permeability and plasma extrava-
sation [103]. In addition, the entry of metastatic cancer cells 
into the circulation and the recruitment/activation of inflam-
matory cells (immune thrombosis) may further amplify 
these processes.

Some biomarkers have been shown to be associated with 
the occurrence of VTE in cancer (Table 3). Parameters 
such as increased white blood cell and platelet count and 
decreased hemoglobin have been shown to be good pre-
dictors of the risk of venous thromboembolism in cancer 
patients. In addition, the increased concentrations of pro-
thrombin fragments 1–2, soluble P-selectin, coagulation fac-
tor VIII, and D-dimer are closely bound up with an increased 
incidence of cancer VTE. In an extensive synthesis of eight-
een studies incorporating thirty-six biomarkers, D-dimer lev-
els and epidermal growth factor receptor (EGFR) mutations 
emerged as the paramount predictors for thromboembolic 
incidents.[104].

Role of platelets in cancer‑related 
thrombosis

The role of platelets in CAT is increasingly recognized. 
Platelet-cancer cell interactions are involved in the regula-
tion of cancer-associated thrombosis [110]. A noteworthy 

Fig. 2  Partial pathways of 
tumor affecting thrombosis (a) 
Tumor-derived G-CSF induces 
neutrophilia, triggering NET 
release and promoting throm-
bosis. b Tumor cells release 
 TF1+MVs, causing thrombo-
sis in tumor patients through 
circulation. c Tumor-derived 
IL-6 induces TPO expression in 
hepatocytes, promoting throm-
bosis and increasing the risk 
of thrombotic events in cancer 
patients

Table 3  Selected biomarkers 
of coagulation / fibrinolysis 
and their relationship with 
hemostasis[61, 105–109]

Marker Link to coagulation

Determination of thrombin production by specific 
substrate

Thrombin activity

Thrombin-antithrombin (TAT) complex
Prothrombin 1–2 fragment (F1 + 2)
TF + ve microparticles
D-dimar Fibrin degradation products
Soluble P-selectin Biomarkers of platelet activation
Citrulline histone H3 Biomarkers of NETosis
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clinical study has shown that patients with high-grade glio-
mas (HGGs) who exhibit a low platelet count — accounting 
for 25% of the participants — are at a heightened risk for 
VTE [86]. This discovery is particularly surprising when 
contrasted with the commonly observed phenomenon of 
elevated platelet counts in patients with solid tumors, sug-
gesting a unique aspect of HGG biology. Moreover, the 
expression of P-selectin on the surface of activated plate-
lets, and its release as soluble P-selectin into the circulation, 
has been identified as a contributory factor in thrombosis 
development [111–113]. Elevated levels of P-selectin might 
result in decreased platelet counts due to its role in aug-
menting platelet adhesion, potentially leading to enhanced 
platelet consumption [114, 115]. This theory is corroborated 
by the observation of increased soluble P-selectin levels in 
individuals with conditions that lead to platelet depletion 
before thrombotic events, such as disseminated intravascular 
coagulation, heparin-induced thrombocytopenia, and throm-
botic thrombocytopenic purpura (TTP) [116]. Furthermore, 
the formation of nodules targeted by prothrombin activity is 
noted in specific pathological conditions characterized by 
extensive coagulation activity, including VTE in ovarian 
cancer [117], highlighting the involvement of podoplanin 
(PDPN) [87, 118]. PDPN induces platelet aggregation in 
a CLEC-2-dependent manner within human glioblastoma 
cells (LN319) [119], and PDPN expression is negatively cor-
related with platelet count, but positively correlated with 
D-dimer level [87]. These findings suggest that tumors may 
release PDPN1-containing microvesicles, which can activate 
circulating platelets and lead to an increased risk of venous 
thromboembolism in cancer patients (Fig. 2).

Activated platelets interact with the coagulation system 
directly or indirectly through MPs or secretory factors. Once 
activated, expression of anionic phospholipids on the procoag-
ulant surface is involved in thrombin production, fibrin forma-
tion, and clotting [120]. In addition, the interaction between 
platelets and neutrophils leads to the formation of NETs. 
NETs can be formed without infection, such as in cancer and 
autoimmunity, and can promote thrombosis [121]. Activated 
platelets are involved in cancer-related thrombosis by provid-
ing procoagulant surfaces, releasing inflammatory molecules, 
and interacting with monocytes and neutrophils [120].

In cancer patients, platelets play a crucial role not only in 
the development of arterial thrombosis but also significantly 
contribute to venous thrombosis [122, 123]. Thrombocytosis 
is common in cancer patients, especially in gastrointestinal, 
lung, breast, and ovarian cancer [104]. Previous studies have 
found that individuals with elevated platelet counts prior to 
cancer diagnosis have a higher frequency of VTE compared 
to individuals with lower platelet counts [83], and similar 
results were observed when measuring platelet counts in 
cancer patients [84, 85]. The reduction of VTE in patients 
with multiple myeloma who are treated with thalidomide 

or lenalidomide and low-dose aspirin is comparable to that 
achieved by low molecular weight heparin, indicating the 
involvement of platelets in VTE development among these 
patients [124]. In addition, use of aspirin was associated 
with reduced edge of venous thromboembolism in patients 
with ovarian cancer, but not in patients with breast cancer 
[125, 126]. Many studies have measured the biomarkers of 
platelet activating factor [123]. In general, these biomarkers 
are increased in cancer patients, but only a limited number 
of studies have determined whether they can predict venous 
thromboembolism in this group of patients. A recent study 
failed to find a link between various platelet activation mark-
ers, including PF4 and VTE, in patients with various cancer 
types [127]. However, a pancreatic cancer study found that 
increased PF4 levels were associated with an approximately 
three-fold increase in VTE risk [128]. This disparity high-
lights the significance of examining distinct cancer categories.

The role of platelets in thrombosis has also been investi-
gated in murine cancer models. A study employing a synge-
neic orthotopic model of pancreatic cancer has demonstrated 
that clopidogrel can mitigate the binding of tumor-derived 
microvesicles to sites of thrombosis [129]. We have observed 
that TF1 microvesicles are capable of activating platelets via 
thrombin, while clopidogrel can effectively mitigate the aug-
mented effect of exogenous TF1 microvesicles on thrombo-
sis in murine models [130]. Collectively, these fundamental 
and clinical investigations propose that the administration of 
antiplatelet agents may serve as a preventive measure against 
venous thromboembolism in select cancer patients [123].

Numerous platelet receptors and signaling pathways, in 
addition to the release of platelet agonists by malignant cells, 
are implicated in TCIPA [131–133]. At the same time, the 
specific mechanism of platelet aggregation in malignant 
tumor cells is related to the type of cancer cell [132]. Sev-
eral cancer cell lines, including melanoma, are capable of 
producing ADP [133], glioblastoma [134], breast cancer 
[135, 136], lung cancer [137], pancreatic ductal adenocar-
cinoma [138], and TCIPA induced by fibrosarcoma [137]. 
The activation of the P2Y12 receptor initiates a positive 
feedback mechanism in ADP-induced platelet activation, 
leading to the release of more ADP, ATP, and calcium from 
dense granules [139]. In human MCF-7 breast cancer cells, 
the reduction of ADP levels and the inhibition of the ADP 
receptor P2Y12 were found to diminish platelet activation 
and aggregation [136].

Platelets in the tumor microenvironment 
and interaction with PD‑L1

Further clinical retrospective studies provide additional evi-
dence that platelets present in the TME contribute to chem-
otherapy resistance and are associated with early disease 
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recurrence and poor survival outcomes [140]. GPIbα platelet 
markers were detected in 59% of HER2-negative breast can-
cer biopsies and were significantly associated with reduced 
efficacy of neoadjuvant therapy. Circulating platelets are not 
mere pliable sacs summoned by VWF to impede damaged 
blood vessels and avert hemorrhage [141]. Platelets indeed 
express PD-L1, which facilitates direct interaction with T cells 
and may have an impact on the efficacy of immune check-
point therapy [142]. Studies have shown that the proliferation 
and activity of T cells bound to platelets decreased [143]. 
This may be linked to the significantly reduced efficacy of 
immune checkpoint therapy utilizing PD-1 antibodies, indi-
cating the direct involvement of platelets in cancer-related 
immune evasion. In addition to the aforementioned tumor-
promoting effects, there is compelling evidence that thrombin 
cleaves platelet glycoprotein A (GARP) repeats, resulting in 
the liberation of TGF-β derived from platelets [144, 145]. 
Activated platelets can also trigger innate immune responses 
by recruiting neutrophils and inducing reticulocytosis, thereby 

unleashing a cascade of physiological events [146]. Neutro-
phils can block the function of cytotoxic T cells through the 
expression of inducible nitric oxide synthase (iNOS) and pro-
duction of nitric oxide (NO) [147]. In addition, the presence 
of PD-L1 on neutrophils is associated with initiating T cell 
apoptosis through interference induced activation of T cells 
and subsequent interaction with PD-1 [148].

Tumor patients exhibiting a procoagulant state, who sub-
sequently develop CAT, manifest significant tumor progres-
sion, limited treatment efficacy and poor overall survival. 
Current evidence from in vitro and in vivo studies suggests 
that the procoagulant environment not only facilitates tumor 
immune evasion but also impedes immunotherapeutic inter-
ventions. Revealing the intricate mechanisms by which 
endothelial cells orchestrate inflammation and thrombo-
sis is pivotal in devising innovative strategies to augment 
the potency of immune checkpoint inhibition and targeted 
therapy (Fig. 3). A combined approach targeting both tumor-
mediated coagulation and tumor-induced immune evasion 

Fig. 3  Interaction between 
cancer-associated immune 
thrombosis and immune 
checkpoint inhibition Immune 
thrombosis associated with can-
cer is formed by the interaction 
of a variety of cells. Activa-
tion of plasma coagulation and 
complement factor, as well 
as TF released by endothelial 
cells, platelets, monocytes and 
neutrophils can modify T cell 
responses in relation to immune 
checkpoint inhibition

Table 4  Immune thrombosis inhibitors

Medicine Targets Reference

M7824 Fusion protein against PD-L1 and TGF- β Cancer [151]
Caplacizumab Nano-body antagonizes VWF A1 domain Thrombocytopenic purpura (TTP) [149, 152]
Eculizumab Anti-C5 monoclonal antibody Atypical haemolytic uraemic syndrome(aHUS); 

Paroxysmal nocturnal hemoglobinuria (PNH)
[153, 154]

IPH5401 Anti-C5a receptor antibody Cancer [155]
Recombinant ADAMTS13 Cutting and inactivating VWF TTP [156]
Low molecular weight 

heparin(LMWH)
Activate antithrombin III and inhibit thrombin 

activation
Venous thromboembolism; Cancer [157]



966 Y. Zhang et al.

has been postulated to potentially bestow clinical benefits 
upon cancer patients. In view of the intricacy of the tumor 
microenvironment, targeted therapies aimed at specific path-
ways may augment response rates and ameliorate adverse 
effects (Table 4). Inhibition of the hypercoagulable state can 
be accomplished by administering anti-VWF nanoparticles 
that obstruct the A1 domain, thereby impeding VWF-medi-
ated platelet binding. Alternatively, recombinant disintegrin 
and metalloproteinase member 13 (ADAMTS13) with throm-
bin reactive protein type 1 motif can cleave and inactivate 
VWF to provide a therapeutic option for supporting immune 
checkpoint inhibition [149]. In addition, the investigation of 
platelet mRNA analysis or detection of cancer cell activation 
induced by platelets is also being explored for diagnostic and 
monitoring purposes related to tumor development [150].

Therapeutic perspectives targeting tumor 
progression

Platelets are critical not only for hemostasis and coagula-
tion but also, as extensive research has shown, in tumor 
progression, including aspects like invasion and exosmosis, 
closely linking them to CAT. This means that this property 
of platelets could be used for anti-tumor therapy. Integrin 
αIIbβ3, which is highly expressed in platelets and their pro-
genitors, plays a pivotal role in platelet function, hemostasis, 
and arterial thrombosis, as well as in tumor progression, 
including cell proliferation and metastasis [158]. The bind-
ing of abciximab to integrin αIIbβ3 creates steric hindrance, 
preventing fibrinogen and other ligands from interacting 
with the integrin, thus interfering with platelet aggregation 
and thrombosis [159]. Caplacizumab, a humanized immu-
noglobulin fragment, specifically targets the A1 domain 
of vWF, disrupting the interaction between vWF and the 
platelet receptor GP1b- α [160]. This action prevents plate-
let adhesion, a critical step in the formation of microvascu-
lar thrombosis, and has been shown to normalize platelet 
counts in preclinical studies [160, 161]. Currently approved 
for the treatment of acquired TTP [162–164], but there is 
no relevant research in the field of cancer. The combination 
of antitumor drugs with Caplacizumab may be a potential 
treatment to reduce the occurrence of CAT and improve the 
prognosis of tumor patients, which needs further research 
to prove. Whilding et al. constructed αVβ3 specific CAR 
T cells and evaluated their antitumor function in vitro and 
in vivo preclinical models. These αVβ3-CAR T cells rapidly 
and specifically targeted αvβ3-positive tumor cells, secret-
ing IFN-γ and IL-2. In a mouse xenograft model of meta-
static A-375 melanoma, the intervention led to the complete 
eradication of melanoma lesions and long-term tumor-free 
survival. Integrins are also used to generate specific, control-
lable, and improved cytotoxicity of CAR-T therapies [165]. 

These studies illustrate the potential of the integrin family 
in anti-cancer and prevention of CAT.

Targeted drug delivery has become a new therapeutic 
strategy for cancer treatment. The tumor microenvironment 
is highly acidic compared to normal tissues, so Ph-sensitive 
nanosystems have been developed based on this difference. 
Drug release is activated in response to the acidic microenvi-
ronment and can enhance the therapeutic effects of cancer ther-
apy. Crucially, platelets present promising avenues for targeted 
drug delivery. Nanocarriers can be engineered with peptides, 
enzymes, and antibodies [166]. For instance, a dual-targeted 
delivery system, consisting of paclitaxel-supported PEGylated-
polylactic acid nanoparticles and cyclic peptides, is designed to 
selectively bind to the platelet-derived PDGF/PDGβ, offering 
improved treatment options for multiple myeloma [167].

Liposomes have been extensively studied as drug deliv-
ery systems, and many liposomal nanomedicines have been 
approved for clinical use [168]. Exosomes, which are biolog-
ical extracellular vesicles, transmit signals through ligands 
or adhesion molecules on their membranes and have shown 
significant potential for targeted cancer drug delivery due to 
their origin from tumor cells [169]. Additionally, virus simu-
lation systems are being developed for cancer diagnosis and 
targeted therapy. These systems mimic viruses in structure 
but lack genetic material, allowing them to be ingested by 
host cells without causing infection. Importantly, nanocar-
riers can be functionalized with small molecules, aptam-
ers, and antibodies that possess high specificity and affinity 
[168]. There's growing evidence that these platelet-targeted 
drug delivery systems can enhance the efficacy of cancer 
treatments while minimizing potential side effects.

Conclusion and future prospects

Cancer-related venous thromboembolism is a well-known 
disease, but little is known about the potential biological 
mechanism of linking tumors to thrombosis [170]. Platelets 
play an important role in the process of blood coagulation. 
From a clinical point of view, platelet therapy may reduce 
the incidence of CAT and the rate of tumor progression. 
The use of some antiplatelet drugs may have a certain effect 
on the treatment of tumors (Table 5). Patient-related fac-
tors (including acquired and genetic determinants), cancer 
biology, and antineoplastic therapy are thought to play a 
synergistic role in venous thrombosis [11]. It is worth noting 
that the hemostatic system in cancer patients not only causes 
thrombosis, but also contributes to the growth and spread of 
tumors, suggesting cancer-related coagulation disorders may 
not be an accidental phenomenon [171].

In view of the adverse effects of venous thromboembo-
lization on the prognosis of patients, disease prevention in 
cancer patients is important. It has been difficult to identify 
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coagulation and fibrinolysis biomarkers. There is a strong 
correlation between TF and primary tumor types, while 
fibrinolysis is more closely related to the cellular composi-
tion of the TME [178], which requires exploration of the 
kinetics of coagulation and fibrinolysis simultaneously [8]. It 
was recently reported that longitudinal evaluation of D-dimer 
significantly improved the estimation of VTE risk in cancer 
patients [179]. Functional analysis of thrombin production is 
also used in the early diagnosis of postoperative recurrence 
of breast cancer [180]. Because studies in the general popula-
tion have shown that venous thromboembolism is hereditary, 
genetic markers, especially genetic polymorphisms, are attrac-
tive candidates for predicting cancer-related venous thrombo-
embolism. In addition, given the role of hemostatic compo-
nents in cancer development, these genetic markers may also 
predict cancer susceptibility and/or progression [11].

Thrombosis in tumor patients may be different from 
VTE in the general population. According to tumor models, 
some biological mechanisms are more related than others. 
In terms of the susceptibility and progression of cancer, the 
few studies so far have mainly focused on oral squamous 
cell carcinoma, breast cancer, and gastrointestinal cancer. 
Twelve and nine genetic polymorphisms related to cancer 
susceptibility and progression have been reported. It is worth 
noting that most of these variants have not been confirmed as 
predictors of cancer-related venous thromboembolism [3]. 
However, according to rare data, hemostatic gene polymor-
phisms seem to have an impact on cancer occurrence, which 
seems to be specific to cancer models, but may also may 
be related to tumor staging. Taking into account thrombus 
prevention, cancer screening, prognostic assessment, and 
the development of potential antineoplastic therapy target-
ing coagulation, the scientific basis of these observations 
requires further investigation  [11].

Blood coagulation is closely related to cancer, and plate-
lets are an important player in blood clotting. The devel-
opment of strategies that selectively target blood coagula-
tion and simultaneously affect complement factors and the 
inflammatory response may promote anti-tumor effects. 
Further research is needed to fully understand the interac-
tion of these pathways in the TME. Targeted coagulation, 
as a bridge between innate and acquired immune systems, 
may provide a new strategy to overcome drug resistance to 
checkpoint inhibition [181, 182]. Specifically, targeted plate-
lets may provide a novel idea for the treatment of tumors and 
tumor-related embolism in the future.
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Table 5  Commonly used and potential antiplatelet drugs [172–177]

LTA light transmission aggregometry, PDI protein disulfide isomerase, TEM thrombo-elastometry, TKI tyrosine kinase inhibitor, VP VASP phos-
phorylation, PAGT  platelet aggregation test

Target Drugs Inhibition mechanism Platelet function testing

Current target
  COX1 Aspirin and NSAIDs Block the formation of TXA2 (autocrine) LTA, PFA-100
  P2Y12 Clopidogrel and prasugrel Irreversible inhibition of ADP receptor (autocrine) LTA, PAGT, VP

ticagrelor Reversible inhibition of ADP receptor (autocrine) LTA, PAGT, VP
  Integrin αIIbβ3 Abciximab, eptifibatide and tirofiban Inhibition of integrin αIIbβ3 aggregation LTA, PAGT 
  PAR1 Vorapaxar Block thrombin receptor LTA, PAGT 

Potential target
  Factor Xa or thrombin Inhibition of coagulation TEM, Blood clotting test
  GPIb-V–IX Hinder vWF adhesion PFA-100, microfluidics
  GPVI and CLEC2 revacept Block ITAM-like signal receptor LTA, microfluidics
  PI3Kβ and PDI Inhibition of integrin αIIbβ3 aggregation LTA, microfluidics
  PAR1 and PAR4 pepducins Block thrombin receptor LTA, PAGT 
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