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Abstract
Traditional statistical models allow population based inferences and comparisons. Machine learning (ML) explores datasets 
to develop algorithms that do not assume linear relationships between variables and outcomes and that may account for higher 
order interactions to make individualized outcome predictions. To evaluate the performance of machine learning models 
compared to traditional risk stratification methods for the prediction of major adverse cardiovascular events (MACE) and 
bleeding in patients with acute coronary syndrome (ACS) that are treated with antithrombotic therapy. Data on 24,178 ACS 
patients were pooled from four randomized controlled trials. The super learner ensemble algorithm selected weights for 23 
machine learning models and was compared to traditional models. The efficacy endpoint was a composite of cardiovascular 
death, myocardial infarction, or stroke. The safety endpoint was a composite of TIMI major and minor bleeding or bleed-
ing requiring medical attention. For the MACE outcome, the super learner model produced a higher c-statistic (0.734) than 
logistic regression (0.714), the TIMI risk score (0.489), and a new cardiovascular risk score developed in the dataset (0.644). 
For the bleeding outcome, the super learner demonstrated a similar c-statistic as the logistic regression model (0.670 vs. 
0.671). The machine learning risk estimates were highly calibrated with observed efficacy and bleeding outcomes (Hos-
mer–Lemeshow p value = 0.692 and 0.970, respectively). The super learner algorithm was highly calibrated on both efficacy 
and safety outcomes and produced the highest c-statistic for prediction of MACE compared to traditional risk stratification 
methods. This analysis demonstrates a contemporary application of machine learning to guide patient-level antithrombotic 
therapy treatment decisions.
Clinical Trial Registration  ATLAS ACS-2 TIMI 46: https​://clini​caltr​ials.gov/ct2/show/NCT00​40259​7. Unique Identifier: 
NCT00402597. ATLAS ACS-2 TIMI 51: https​://clini​caltr​ials.gov/ct2/show/NCT00​80996​5. Unique Identifier: NCT00809965. 
GEMINI ACS-1: https​://clini​caltr​ials.gov/ct2/show/NCT02​29339​5. Unique Identifier: NCT02293395. PIONEER-AF PCI: 
https​://clini​caltr​ials.gov/ct2/show/NCT01​83054​3. Unique Identifier: NCT01830543.
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MACE	� Major adverse cardiovascular events
MI	� Myocardial infarction
PCI	� Percutaneous coronary intervention
TIMI	� Thrombolysis in myocardial infarction
VKA	� Vitamin K Antagonist

Highlights

•	 Approximately 15% of acute coronary syndrome patients 
experience a recurrent event in 1 year.

•	 Identification of those who would benefit from intensified 
antithrombotic strategies is important.

•	 This analysis was the first to evaluate the performance 
of machine learning algorithms for prediction of major 
adverse cardiovascular and bleeding events in acute coro-
nary syndrome patients.

•	 Compared to the TIMI risk score and a surrogate risk 
score, developed in this dataset, machine learning mod-
estly improved the c-statistic for MACE.

•	 Importantly, the machine learning model demonstrated 
remarkable calibration on both efficacy and safety out-
comes.

•	 This analysis demonstrates a contemporary application 
of machine learning models to assist in clinical decision 
making by concurrently stratifying bleeding and throm-
botic risk.

Introduction

Approximately 15% of acute coronary syndrome (ACS) 
patients experience recurrent cardiovascular (CV) events 
within 1 year [1–3]. Individualized patient-level prediction 
of major adverse cardiovascular events (MACE) and bleed-
ing events among patients with ACS may help to identify 
those who would benefit from intensified antithrombotic 
strategies and finally, tailor a personalized approach [4–6]. 
Traditional statistical methods allow inferences to be made 
regarding populations, but are less powerful than machine 
learning in making predictions regarding individual patients. 
Traditional risk stratification scores are built using para-
metric and semi-parametric regression scoring systems that 
have several limitations, including primary reliance on lin-
ear models and limited capability in explorations of higher 
order interactions [7, 8]. This is particularly true among 
patients with extreme risk profiles, as the underlying para-
metric assumption extrapolates their risk profiles based on 
population means. These limitations result in sub-optimal 
performance of traditional risk prediction scores.

In contrast, machine learning explores large datasets and 
uses algorithms that can learn from and make predictions on 

data. Additionally, these models have built-in functionality 
for variable selection and do not require pre-specification 
of interaction terms. Over the past decade, machine learn-
ing techniques have made substantial advances in many 
domains, including health care [9, 10]. Thus, recent evi-
dence suggests that machine learning methods may offer a 
powerful alternative to the conventional methods for risk 
predictions. However, both the accuracy and the application 
of machine learning models to predict clinical outcomes in 
individual ACS patients remain unknown. The aim of this 
analysis was to evaluate the performance of machine learn-
ing models to predict the occurrence of MACE and bleeding 
events among ACS patients, compared to traditional risk 
stratification methods and to explore contemporary applica-
tions of machine learning models in individualized cardio-
vascular risk prediction.

Methods

Source of data

Data from 24,178 patients who received at least one dose of 
study drug were pooled from four large randomized clinical 
trials. The ATLAS ACS-TIMI 46 and 51 trials enrolled 3491 
and 15,526 adult patients with ACS, respectively. Patients 
were randomized to receive rivaroxaban or placebo in com-
bination with either aspirin alone or dual antiplatelet therapy 
(DAPT) consisting of aspirin plus a P2Y12 inhibitor. The 
GEMINI ACS trial enrolled 3037 patients with ACS who 
were on a P2Y12 inhibitor and randomized them to receive 
either rivaroxaban or aspirin. Finally, the PIONEER AF-
PCI trial enrolled 2124 patients with atrial fibrillation who 
underwent PCI. Patients were randomized to receive either 
dual or triple rivaroxaban-based antithrombotic regimens 
or Vitamin K Antagonist (VKA)-based triple therapy. 
The study designs and primary results for each of the four 
randomized clinical trials have been previously published 
[11–14].

Outcomes

The efficacy outcome was the composite of cardiovascular 
(CV) death, myocardial infarction (MI), or stroke within 
6 months of randomization. The safety outcome was the 
composite of TIMI (thrombolysis in myocardial infarction) 
major and minor bleeding and bleeding requiring medical 
attention within 6 months of trial randomization.

Predictive models

Ensemble learning is a type of machine learning that com-
bines predictions across different candidate models. The 
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Super Learner ensemble method uses cross validation to 
select weights applied to each candidate model. A total of 
23 machine learning algorithms were built using tenfold 
cross validation. Broadly, the families of candidate models 
built included Generalized Additive Models (GAMs), Elas-
tic Net (Penalized Logistic Regression), Gradient Boosted 
Machines (GBMs), Random Forests, a Bayesian logistic 
regression with default priors, and a naïve Bayes classifi-
cation model. A total of 48 variables were used for model 
building (Supplemental Table S1).

For the MACE endpoint, the Super Learner ensemble 
was compared to three traditional risk stratification tools: 
(1) TIMI risk score (2) a Surrogate risk score based on the 
dataset using traditional statistical methods and (3) Step-
wise logistic regression. The surrogate model was created by 
first randomly splitting the data 50/50 into training and test 
sets, then fitting a logistic regression model to 14 variables 
thought, a priori, to have the most predictive importance. 
For the bleeding endpoint, the Super Learner ensemble was 
compared to a stepwise logistic regression. The detailed sta-
tistical methods of these comparator models are described 
in the supplemental appendix.

Performance measures

Predictive performance was measured in two ways: (1) 
the ability of the model to discriminate between outcome 
classes, and (2) the accuracy of the methods probabilistic 
predictions, called calibration. Discrimination was assessed 
with a cross-validated concordance statistic (c-statistic). 
C-statistic comparisons were based on a bootstrapped test 
of significance. Calibration represents the reliability of mod-
els by assessing how closely the predicted risk estimate of 
a particular patient correlates to the observed event rate for 
this patient. In this analysis, calibration was assessed via 
high-resolution non-parametric calibration plots. In the cali-
bration plots, the diagonal line represents perfect calibration 
with perfect correlation of predicted estimates with observed 
event rates. Deviations above the diagonal line represent a 
model that underestimates risk and deviations below the 
diagonal line represent a model that overestimates risk. The 
Hosmer–Lemeshow goodness of fit test was used to test for 
statistical significance between the model and the perfect 
calibration (diagonal) line. A high p-value on this test is 
favorable and represents no significant difference from per-
fect calibration whereby a low p-value represents a signifi-
cant difference from perfect calibration.

Individualized risk predictions

The secondary objective of this study was to explore the 
ability of the super learner ensemble to produce clinically 
relevant individual patient risk predictions. This was done 

by randomly selecting 3000 patients that had both efficacy 
and safety outcome assessments, and computing risk esti-
mates according to their antithrombotic regimen. The pro-
cedure produces four risk estimates for each patient: (1) The 
predicted probability of a MACE event on rivaroxaban and 
(2) on the study-specific control regimen, (3) the predicted 
probability of a bleeding event on rivaroxaban and (4) on 
the study-specific control regimen. The patient-specific pre-
dicted risk of an event on rivaroxaban was plotted against 
the predicted risk of an event on the study-specific control 
(Supplemental Fig. S1).

To assess benefit-risk, a two dimensional plot was derived 
by calculating the difference between the individual patient 
predicted risk in the control group and predicted risk in the 
treatment group for both MACE and bleeding for 3000 ran-
domly selected patients. The plot displays the difference in 
MACE risk estimates on the Y-axis and the difference in 
bleed risk estimates on the X-axis (Supplemental Fig. S2).

Results

Baseline characteristics

Of the 24,178 pooled patients 22,955 had both ACS and an 
efficacy outcome assessment and were included in the effi-
cacy dataset. Similarly, 22,936 had both ACS and a safety 
outcome assessment and were included in the safety dataset.

Baseline characteristics and outcome summary of the 
patients in the pooled dataset are shown in Table 1. Overall, 
the mean age was 61.7 years, 49.2% of patients had STEMI, 
64.2% of patients were randomized to receive a rivaroxa-
ban-based regimen and 35.8% to a control. Approximately 
66% of patients underwent PCI for the index event, 4.2% 
experienced a MACE event, and 7.5% experienced a TIMI 
major or minor bleeding event, or bleeding requiring medi-
cal attention.

Performance measures

The super learner demonstrated the best discriminative abil-
ity for both outcomes achieving a c-statistic of 0.734 for 
MACE and 0.670 for bleeding (Fig. 1). The best perform-
ing candidate model varied according to the outcome. For 
MACE, the best performing candidate model was the GBM, 
which achieved a c-statistic of 0.714. For the safety outcome, 
the best performing candidate model was the Elastic Net, 
which achieved a c-statistic of 0.669.

The MACE outcome super learner performed signifi-
cantly better than the TIMI risk score (c-statistic 0.734 vs. 
0.489, p < 0.001), the best performing candidate model 
GBM (c-statistic 0.734 vs. 0.714, p < 0.001), and the sur-
rogate risk score (c-statistic 0.734 vs. 0.644, p < 0.001). The 
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Table 1   Baseline characteristics Overall
(N = 22,955)

No MACE event
(N = 21,982)

MACE event
(N = 973)

p-Value

Age 61.65 ± 9.57 61.55 ± 9.51 64.10 ± 10.36 < 0.001
Male 17,216 (75.0) 16,514 (75.1) 702 (72.1) 0.039
Body Mass Index 27.93 ± 5.10 27.93 ± 5.10 27.98 ± 5.22 0.737
Stratum
 Aspirin only 1811 (7.9) 1688 (7.7) 123 (12.6) < 0.001
 DAPT 17,752 (77.3) 17,034 (77.5) 718 (73.8) 0.008

Thienopyridine only 355 (1.5) 336 (1.5) 19 (2.0) 0.359
Region < 0.001
 Asia 3256 (14.2) 3128 (14.2) 128 (13.2)
 Australia 970 (4.2) 935 (4.3) 35 (3.6)
 Eastern Europe 10,062 (43.8) 9570 (43.5) 492 (50.6)
 Western Europe 4451 (19.4) 4304 (19.6) 147 (15.1)
 North Africa 393 (1.7) 378 (1.7) 15 (1.5)
 South Africa 20 (0.1) 18 (0.1) 2 (0.2)
 North America 1726 (7.5) 1668 (7.6) 58 (6.0)
 South America 2077 (9.0) 1981 (9.0) 96 (9.9)

Race 0.736
 Asian 3280 (14.3) 3152 (14.4) 128 (13.2)
 African American/Black 196 (0.9) 186 (0.8) 10 (1.0)
 Indian Native 13 (0.1) 12 (0.1) 1 (0.1)
 Pacific Islander 13 (0.1) 12 (0.1) 1 (0.1)
 White 18,565 (81.0) 17,773 (81.0) 792 (81.4)
 Other 851 (3.7) 810 (3.7) 41 (4.2)

Index event
 NSTEMI 6613 (28.8) 6271 (28.5) 342 (35.1) < 0.001
 STEMI 11,287 (49.2) 10,837 (49.3) 450 (46.2) 0.067
 Unstable Angina 5055 (22.0) 4874 (22.2) 181 (18.6) 0.01

PCI for index event 15,197 (66.2) 14,678 (66.8) 519 (53.3) < 0.001
CABG for index event 394 (1.7) 373 (1.7) 21 (2.2) 0.338
During study PCI or CABG 6148 (26.8) 5718 (26.0) 430 (44.2) < 0.001
Medical history
 Diabetes 6804 (29.6) 6465 (29.4) 339 (34.8) < 0.001
 Hypertension 15,420 (67.2) 14,689 (66.8) 731 (75.1) < 0.001
 Prior MI 5854 (25.5) 5493 (25.0) 361 (37.1) < 0.001
 Smoker 10,564 (46.0) 10,135 (46.1) 429 (44.1) 0.230
 Hypercholesterolemia 11,083 (48.3) 10,612 (48.3) 471 (48.4) 0.962
 Prior stroke 386 (1.7) 348 (1.6) 38 (3.9) < 0.001
 Congestive heart failure 2461 (10.7) 2275 (10.3) 186 (19.1) < 0.001

Medications
 Beta blockers 17,501 (76.2) 16,741 (76.2) 760 (78.1) 0.174
 ACE or ARB 13,430 (58.5) 12,859 (58.5) 571 (58.7) 0.934
 Statin 20,709 (90.2) 19,839 (90.3) 870 (89.4) 0.421
 Insulin 2947 (12.8) 2746 (12.5) 201 (20.7) < 0.001

Rivaroxaban dose 0.177
 2.5 mg BID 7147 (31.1) 6854 (31.2) 293 (30.1)
 5 mg QD 155 (0.7) 145 (0.7) 10 (1.0)
 5 mg BID 5642 (24.6) 5423 (24.7) 219 (22.5)
 10 mg QD 529 (2.3) 510 (2.3) 19 (2.0)
 7.5 mg BID 178 (0.8) 169 (0.8) 9 (0.9)
 15 mg QD 470 (2.0) 450 (2.0) 20 (2.1)
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super learner performed similarly to the stepwise logistic 
regression (0.734 vs. 0.714, p = 0.076). The safety outcome 
super learner performed similarly to the best candidate 
model (0.670 vs. 0.669, p = 0.611) and the stepwise regres-
sion model (0.670 vs. 0.671, p = 0.946).

Calibration plots suggest that the super learner ensemble 
demonstrates good calibration for both outcomes (Fig. 2). 
For the MACE outcome, the super learner calibration plot 
is close to the perfect calibration line for risk predictions 
between 0 and 0.3. The Hosmer–Lemeshow test failed to 
reject good calibration for the super learner (p = 0.612). In 
contrast, it rejected good calibration for the best performing 
candidate model (GBM) (p < 0.001), the TIMI risk score 
(p < 0.001), and stepwise regression model (p < 0.001).

Inspection of the calibration plots for the safety outcome 
leads to similar conclusions. The super learner demonstrated 
excellent calibrations for predicted risks between 0 and 0.25. 
Visually, the best performing candidate model and the step-
wise regression were less well-calibrated compared to the 
super learner ensemble. Formally, the Hosmer–Lemeshow 
test failed to reject good calibration for the super learner 
(p = 0.970), the best performing candidate model (Elastic 
Net) (p = 0.993), and the stepwise regression (p = 0.088).

Individualized risk predictions

The super learner-derived MACE risk estimates were plotted 
on rivaroxaban vs. control (Fig. 3a). The model predicted 
that approximately 81% of patients fall above the diagonal 
line and would have reduced MACE risk on rivaroxaban. 
Approximately 5% (N = 135) of the 3000 randomly selected 
patients were below the diagonal line and are predicted to 
have decreased risk of bleeding with rivaroxaban, compared 
to the control (Fig. 3b). The combined benefit-risk plot con-
veys the patient level risk prediction results in a single plot. 
Using this method, individual differences in treatment ben-
efit or harm may be discerned (Fig. 4).

Discussion

This analysis is the first report of a machine learning 
model to predict MACE and bleeding outcomes among 
patients with ACS enrolled in randomized controlled tri-
als. The super learner ensemble method demonstrated 
improved performance compared to traditional risk strati-
fication methods. The super learner model improved the 

Table 1   (continued) Overall
(N = 22,955)

No MACE event
(N = 21,982)

MACE event
(N = 973)

p-Value

 10 mg BID 307 (1.3) 297 (1.4) 10 (1.0)
 20 mg QD 304 (1.3) 296 (1.3) 8 (0.8)
 No dose 8223 (35.8) 7838 (35.7) 385 (39.6)

Fig. 1   Receiver operator characteristics curve. a Shows the receiver 
operator characteristics curve for the MACE outcome for the super 
learner ensemble, the best candidate model (GBM), the stepwise 
logistic regression, the surrogate risk score, and the TIMI risk score. 

b Shows the receiver operator characteristics Curve for the bleeding 
outcome for the super learner ensemble, the best candidate model 
(GBM), and the stepwise logistic regression
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c-statistic for predicting ischemic risk compared to the 
TIMI risk score, a surrogate risk score derived from the 
dataset, but similar discrimination as the stepwise logistic 
regression. For bleeding risk, it demonstrated a similar 
c-statistic as the logistic regression model. The machine 

learning model produced risk estimates that were highly 
calibrated with observed efficacy and bleeding outcomes. 
The calibration of the machine learning model exceeded 
that of logistic regression and risk scores. This analy-
sis additionally explored a new application of the super 

Fig. 2   Calibration plots. a Shows the calibration plot for the MACE 
outcome for the super learner ensemble, the best candidate model 
(GBM), the stepwise logistic regression, the surrogate risk score, and 
the TIMI risk score. The 45° diagonal line represents perfect calibra-
tion between predicted risk estimates and observed risk. b Shows 

the calibration plot for the bleeding outcome for the super learner 
ensemble, the best candidate model (GBM), and the stepwise logis-
tic regression. The 45° diagonal line represents perfect calibration 
between predicted risk estimates and observed risk

Fig. 3   Individualized predicted risk plot. The points on the predicted 
risk plot represent a patient’s risk profile for a particular outcome. 
The diagonal line represents equal risk of the outcome with and with-

out rivaroxaban treatment. Patients below the 45° line are predicted to 
have lower risk on rivaroxaban versus control. Patients above the 45° 
line are predicted to have higher risk on rivaroxaban versus control
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learner method to assist the treatment decision making 
process.

On an individual level, patients and physicians are pri-
marily concerned about the accuracy of a prognostic esti-
mate after an ACS event, and not merely about the overall 
discrimination of outcomes. Thus, beyond the c-statistic 
calibration is a key component of risk stratification tools. 
Indeed, the predicted risk in a poorly calibrated model may 
over or under estimate the observed event rate. In contrast, 
in a well-calibrated model, a 5% predicted risk of event cor-
responds to an observed 5% event rate. Therefore, the most 
significant advance in this analysis was the high calibration 
of the super learner model as compared to logistic regression 
and conventional risk score techniques.

Previous studies have demonstrated inconsistent results 
regarding the performance of machine learning algorithms 
as compared to regression models [15–23]. In the current 
analysis, there was a dissociation in the performance of 
the super learner method in the efficacy endpoint versus 
the safety endpoint. There may be several reasons for this 
inconsistency. First, there are numerous types of machine 
learning models that may fit and perform differently in 
different datasets. Even among the same types of mod-
els, there are countless combinations of tuning parameters 
that may influence model performance. However, the super 
learner method provides the advantage of combining any 

number of models to arrive at the best combined estimate 
that performs at least as well as the best candidate model. 
Second, one of the components of the bleeding outcome 
(bleeding requiring medical attention) is a sensitive end-
point but is non-specific and thus, may be more difficult 
to predict. Moreover, additional variables that are not cap-
tured in the dataset may be associated with the occurrence 
of an outcome (e.g. genetic or environmental factors) and 
could improve model performance.

One promise of precision medicine is to identify 
patients most likely to benefit from treatment and to with-
hold treatment from those in whom treatment is more 
likely to cause harm. Notably, the current analysis dem-
onstrates a novel application of machine learning to assist 
in clinical decision making. Prior traditional analysis 
methods estimate mean treatment benefits of antithrom-
botic regimens across populations enrolled in clinical 
trials. Even if overall classification rates remain similar, 
this one-size-fits-all approach does not allow for identi-
fication of patients more likely to derive larger relative 
risk reductions from therapy. The machine learning meth-
ods employed here incorporate non-linear mappings from 
exposures to risk such that a differential benefit of rivar-
oxaban in ACS patients may be identified. The benefit-risk 
plots of different antithrombotic regimens may be easily 
visualized and understood by both physicians and patients 
to facilitate shared decision making. An application for 
handheld devices can allow real time calculation and dis-
play of these results.

A common problem with machine learning models is 
difficulty in incorporating prior scientific knowledge. It is 
also difficult to understand exactly how the super learner 
makes use of the variables to arrive at predictions due to 
their “black box” nature [24, 25]. In the absence of causal 
pathways linking exposure to outcomes, the role of machine 
learning algorithms should not supersede clinical judgement, 
but rather serve as a tool to guide clinical decisions. Machine 
learning algorithms may supplement physician decision 
making by accounting for interactions among variables that 
clinicians may not be aware of.

Interest in the potential for machine learning in health-
care has recently increased [26]. There have been sugges-
tions that machine learning will drive changes in patient 
care within a few years, specifically in clinical settings that 
rely on the accuracy of prognostic models and those based 
on pattern recognition [9, 27]. For example, deep learning 
algorithms demonstrated high accuracy in detecting dia-
betic retinopathy [28], malignant melanoma [29], and in 
predicting mortality in patients admitted to the ICU [30]. 
Personalized benefit-risk estimates are one viable appli-
cation of machine learning algorithms in cardiovascular 
medicine. Machine learning models may also be used for 
the enrichment of clinical trials with high-risk individuals 

Fig. 4   Individualized benefit-risk plot. The points on the plot repre-
sent a patient’s individual predicted benefit-risk profile, based on a 
combination of that patient’s characteristics. A positive value on the 
Y-axis represents reduced MACE risk with rivaroxaban treatment 
and a positive value on the X-axis represents reduced risk of bleed on 
rivaroxaban, compared to the control arm
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that may benefit from a particular investigational therapy, 
magnifying the expected effect size, increasing power and 
thus, reducing the sample size.

Limitations

First, the TIMI score was designed to predict short-term 
mortality and was only available for a subset of patients. 
However, it is unlikely that the performance estimate is 
biased enough to compensate for the approximate 20-point 
difference in c-statistic values. The Killip class variable, 
required to calculate the GRACE score (which is validated 
for long term ischemic outcomes) was not available in this 
dataset. Second, clinical trials are not representative sam-
ples of patient populations, possibly limiting the general-
izability of the model. Therefore, the model needs to be 
evaluated in an external data set. Third, the clinical trials 
evaluated different dosing regimens of rivaroxaban, differ-
ent control arms, and enrolled ACS patients with and with-
out atrial fibrillation. The differences in enrollment criteria 
between the included studies introduces population hetero-
geneity and is associated with different baseline MACE 
rates. Though in principle, the inclusion of diagnostic 
variables like atrial fibrillation could account for this 
difference, in practice, heterogeneous populations often 
confound prediction tools. More accuracy could possibly 
be obtained by fitting the model on a subset of patients, 
though loss of power from decreasing the size of train-
ing data could mitigate the effect of having a more homo-
geneous population. Furthermore, the studies employed 
different lengths of follow-up, which could also bias our 
estimator. Further refinement of the model is needed to 
provide dose and control-specific prediction estimates. 
Fourth, the super learner ensemble was not compared to a 
validated bleeding risk score such as the CRUSADE score 
as the variables required to calculate it were not available 
in the dataset. Finally, the super learner model was highly 
calibrated on MACE risk estimates from 0 to 0.3 but pre-
dicted few patients (n = 15) with a risk estimate above 0.3, 
and consequently over-fits the data in this range. Similarly, 
for the bleeding outcome, a relatively small proportion of 
patients had a predicted risk above 0.25 (n = 78). However, 
for both bleeding and efficacy outcomes, patients with a 
probability above 0.25 are considered at extremely high 
risk and would warrant maximal medical therapy (for 
MACE) and caution (for bleeding). Thus, despite loss of 
calibration in this extremely high-risk range, the model 
demonstrates excellent calibration for the most clinically 
relevant range for which the nuances of individual patient 
characteristics need to be discerned for appropriate clinical 
decision making.

Conclusion

This analysis is the first to evaluate the performance of 
machine learning algorithms, built on pooled randomized 
clinical trial data, for the prediction of MACE and bleed-
ing outcomes among patients with ACS. The super learner 
produced the highest c-statistic for prediction of MACE 
compared to traditional risk stratification methods includ-
ing the TIMI risk score, a surrogate risk score derived from 
the dataset and a stepwise logistic regression. Importantly, 
the super learner ensemble method demonstrated remark-
able calibration on both efficacy and safety outcomes which 
greatly exceeded that of traditional logistic regression. 
This analysis also displayed a contemporary application of 
machine learning models to assist in clinical decision mak-
ing based on easily interpreted plots of robust individual-
ized predicted risks of efficacy and safety events in coronary 
artery disease patients on antithrombotic therapy.
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