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Abstract

This paper addresses how multiple individual credences on logically related issues
should be aggregated into collective binary beliefs. We call this binarizing belief
aggregation. It is vulnerable to dilemmas such as the discursive dilemma or the
lottery paradox: proposition-wise independent aggregation can generate inconsistent
or not deductively closed collective judgments. Addressing this challenge using the
familiar axiomatic approach, we introduce general conditions on a binarizing belief
aggregation rule, including rationality conditions on individual inputs and collective
outputs, and determine which rules (if any) satisfy different combinations of these
conditions. Furthermore, we analyze similarities and differences between our proofs
and other related proofs in the literature and conclude that the problem of binarizing
belief aggregation is a free-standing aggregation problem not reducible to judgment
aggregation or probabilistic opinion pooling.

Keywords Belief aggregation - Judgment aggregation - Probabilistic
opinion pooling - Belief binarization - Impossibility result - Social
epistemology

1 Introduction

Binarizing belief aggregation

This paper addresses how multiple individual credences on logically related issues
should be aggregated into collective binary beliefs. We call this binarizing belief
aggregation. This addresses two different types of belief: binary belief, which allows
only two options regarding a proposition, say 4 (she believes that 4 or she does not
believe that A4), and credence, which usually allows infinitely many options (she
believes to a degree of x that 4, where x is a numerical value). Binary beliefs and
credences have their own merits and disadvantages. Credences are informative and
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sophisticated, whereas binary beliefs are uninformative in some complex contexts
(e.g., decision contexts in uncertain environments). Meanwhile, binary beliefs are
computationally efficient and decisive, whereas credences are often computationally
demanding even for ideal reasoners.' Because one type does not dominate the other,
we have a good reason to embrace both credences and binary beliefs in belief
aggregation contexts. Considering two types of belief, we have the four possible
combinations of belief aggregation problems presented in Fig. 1.2

The existing research regarding belief aggregation has primarily focused on the
cases where individual and collective beliefs are of the same type, such as
aggregating probabilistic beliefs in probabilistic opinion pooling (Genest and Zidek,
1986; Dietrich and List, 2016), or aggregating binary beliefs in the judgment
aggregation literature (List and Puppe, 2009; Grossi and Pigozzi, 2014). However,
this study focuses on aggregating individual credences into collective binary beliefs,
leaving the fourth aggregation problem of aggregating individual binary beliefs into
collective credences for further research.

The need for binarizing belief aggregation arises in various contexts. Regarding
input data, credences would be generally preferred over binary beliefs. This is
because we can treat input data as evidence for the resulting collective beliefs and we
expect that sophisticated and informational input data are more likely to track the
truth. Credences usually contain more information than binary beliefs, so binary
beliefs may already suffer from information loss. However, for output data, binary
beliefs could be appropriate in many cases.® For example, political parties describing
society’s problems through their programs would face criticism if these programs
made or implied contradictory claims. In these processes, collective binary beliefs
and rationality norms, such as consistency and logical closure, are commonly
observed. This is not surprising as binary beliefs are efficient in conveying
information and communicating with other agents. Furthermore, the type of belief in
the final judgment is pre-determined in many institutions, whether written or
customary, and often binary. For example, the jury’s verdict in a criminal case is
supposedly expressed as “guilty” or “not guilty.” Combining these considerations
regarding input and output suggests that there are some contexts where binarizing

belief aggregation is particularly suitable.

! For more pros and cons of credences and binary beliefs, see Dietrich (2022).

2 In addition to the four types of belief aggregation problems, Bradley and Wagner (2012) suggest a
framework for modeling intermediate belief states (finitely many-valued doxastic states) between
probabilistic and binary beliefs. More complex belief aggregation methods might include different
dynamic processes: sequential evidence learning by Blackwell and Dubins (1962), deliberation processes
(the consensus formation model by DeGroot (1974)), and higher-order evidence learning (the peer
disagreement literature and supra Bayesianism by Morris (1974)). Note also that the input does not need to
be individual beliefs to form collective beliefs. If we use belief elicitation mechanisms, such as the
prediction market (Wolfers and Zitzewitz, 2004), the input can be individual actions, which supposedly
reveal individual beliefs.

3 We do not argue that only binary beliefs qualify as a group agent’s belief type: for a group’s decision-
making under risk or uncertainty, it might be more appropriate that the group’s beliefs take the form of
credence; for mere summaries of individual beliefs, credences would be a suitable output data type.
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Fig. 1 Four types of belief Individuals’ Opinion Group’s
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In addition to binarizing belief aggregation, another research field called belief
binarization deals with different types of beliefs. This subject matter explores rational
bridge principles between credences and binary beliefs, We can employ the
principles for a group agent as well as an individual agent. While belief binarization
takes a single agent’s credences as input, binarizing belief aggregation takes multiple
agents’ credences as input.

Figure 2 illustrates the relationship between binarizing belief aggregation and
other research fields.” It should be noted that binary beliefs are not necessarily 0/1-
valued probabilistic beliefs. Even if binary beliefs satisfy the “standard” rationality
norm—-Iogical closure and consistency—in formal epistemology (Alchourrén et al.,
1985; Leitgeb, 2017), they do not necessarily correspond to some probabilistic
beliefs unless they are complete. In this sense, binarizing belief aggregation cannot
be subsumed under probabilistic opinion pooling, but belongs to a generalized notion
of belief aggregation that can aggregate arbitrary [0, 1]-valued functions. Figure 2
also suggests how existing resources can be used to devise binarizing belief
aggregation methods: any combination of an opinion pooling function and collective
belief binarization yields a binarizing belief aggregation method; combining
individual belief binarization and a judgment aggregation rule can do so.

Thus far, addressing individual credences and collective binary beliefs has been
rare in social epistemology and formal epistemology. Ivanovska and Slavkovik
(2019, 2022) suggested a more general—embracing imprecise probabilities—
framework than ours and focused on defining aggregators that capture different
contexts and have different properties, rather than proving impossibility results.
Thorn (2018) investigated joint aggregation of individual belief states, each
comprising a quantitative and a qualitative belief, into a collective belief state. Our

4 In most of the literature regarding belief binarization, belief is associated with high credence. One of
them is the well-known Lockean Thesis which states that an agent should believe a proposition if and only
if its probability exceeds a given threshold. However, the lottery paradox shows that the Lockean thesis
might result in contradictory beliefs. Many attempts have been made to resolve this paradox (Kyburg,
1961; Leitgeb, 2017; Lin and Kelly, 2012).

> The interpretation of binarizing belief aggregation is flexible. The theory can be applied to belief
binarization of an imprecise probability that is represented by a (finite) set of probabilistic beliefs. It can
also be used for a judgment aggregation problem where a group is divided into several subgroups and each
subgroup’s credence is calculated somehow from the binary beliefs of subgroup members. For example,
consider the case where a political party requests separate opinions of two subgroups (e.g., machine
learning programmers and labor economists) on the effect of Al on the labor market, and the opinions of
each subgroup are collected through an anonymous and proposition-wise independent procedure. This
method is appropriate when we want to respect the subgroups’ opinions, rather than individual opinions.
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Fig. 2 Binarizing belief aggregation and other research fields

problem is different because we do not deal with joint aggregation that presupposes
individual belief binarization. We can find literature where belief binarization
methods are applied to judgment aggregation problems (e.g., Chandler (2013) and
Cariani (2016)). In contrast, our theory applies belief binarization methods—e.g.,
combined with an opinion pooling method—to binarizing belief aggregation.

Impossibility result

For the start of research on binarizing belief aggregation, this study aims to
explore impossibility theorems. Consider the following example. A political party
wants to establish its position on the basic income policy. Hence, it asks three experts
for opinions on the following logically related propositions: (4)“Al will outperform
humans in all areas by 2050.”; (B)*“Al will replace humans in the labor market.”;
(A — B)“If Al outperforms humans in all areas by 2050, then it will replace humans
in the labor market.” Three experts’ opinions are given in Table 1.° Suppose that the
party’s beliefs in the three propositions and their negations are formed using the
following method: a proposition is collectively believed if and only if the average
credence is no less than 0.6. We observe that the resulting collective beliefs are
neither deductively closed nor consistent. This example shows that binarizing belief
aggregation faces a problem such as the discursive dilemma in judgment aggregation
and the lottery paradox in belief binarization.’

The main question of this study will be how to formulate and generalize this
problem. Thus, reviewing impossibilities in judgment aggregation, opinion pooling,
and belief binarization would provide some hints. After generalizing the problem of
proposition-wise majority voting in the discursive dilemma, the arrow-style
axiomatic method has been applied to issues that are logically represented and
interconnected (List and Pettit, 2002). Utilizing this method, much research in
judgment aggregation has explicated the tension between proposition-wise indepen-
dence and rationality norms respecting the logical relation between propositions. For
example, independent aggregation generating complete and consistent collective
judgments is, under certain minimal conditions, forced to be a dictatorship, if the
issues have certain logical interconnection (Dokow and Holzman, 2010). While
completeness and consistency are often assumed in judgment aggregation, a few

© Note that each agent’s opinion in Table 1 is probabilistically coherent, if we regard each formula as the
set of possible worlds satisfying the formula.

7 A typical discursive dilemma in judgment aggregation can also be viewed as a dilemma in binarizing
belief aggregation. We thank the first reviewer for this indication.
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Table 1 Example of binarizing

belief aggregation Issues A A4— B B
Agent 1 0.9 0.7 0.6
Agent 2 0.8 04 0.2
Agent 3 0.4 0.7 0.1
Collective Belief Belief Belief Disbelief

studies weakened completeness to deductive closure, where dictatorships were
replaced with oligarchies (Géardenfors, 2006; Dietrich and List, 2008). In opinion
pooling and belief binarization, the agenda has usually been assumed to have the
structure of an algebra because the two fields usually deal with probability measures.
Under this assumption, independent opinion pooling with a certain minor condition
(certainty preservation) was shown to be restricted to linear pooling (McConway,
1981). Belief binarization can be thought of as anonymous proposition-wise
independent judgment aggregation. Accordingly, some impossibilities demonstrated
the tension between independence and rationality norms such as deductive closure
(Dietrich and List, 2018, 2021).

These impossibilities shed some light on developing our theory. We address the
following two questions. First, what kinds of impossibility results can be formulated?
One may conjecture that, if we combine strong properties—completeness of
collective beliefs and anonymity—with the strong agenda condition of being an
algebra, then an impossibility of independent binarizing belief aggregation could be
easily obtained. We go further and make stronger claims: (i) we relax completeness
that is often required in judgment aggregation and assume deductive closure as in
belief binarization, and (ii) we drop anonymity hidden in the belief binarization
problem, which enables us to respect different degrees of expertise as in judgment
aggregation or opinion pooling. Second, how are our theorems and proofs compared
with impossibility results in judgment aggregation, opinion pooling, and belief
binarization? We analyze the similarities and differences between our results and
others and argue that our result is free-standing and novel.

To answer these questions, the remainder of this paper is organized as follows.
Section 2 illustrates our setting and formally defines binarizing belief aggregation.
Section 3 formulates some (possible) axiomatic requirements on binarizing belief
aggregation. Section 4 proves three impossibility theorems: the triviality result with
deductive closure and anonymity, the oligarchy result without anonymity, and the
non-existence theorem with completeness. Section 5 compares our main results with
some related results in other research areas. Finally, in the conclusion section, we
refer to some follow-up studies.

2 Binarizing belief aggregation
We now introduce our terminology and a formal definition of binarizing belief

aggregation. Let ¥ be a non-empty set of possible worlds and P(#) denote the set of
all subsets of W. An agenda A on W is a non-empty subset of P(W) that is closed
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under complement (i.e., for all 4 € A, A° € A, where A° stands for the complement
of A with respect to W). We call an element of A an event, which counts as a
proposition. We denote the set of n individuals by N := {1, ...,n} where n>1. An
agent’s credences on A are represented by a credence function P from A to [0, 1]. We
write P := (Py, ..., P,) = (P,) ey for a profile of » individuals’ credences on .A. We
call a function F taking P in a given domain into F(P) : A — [0, 1] an aggregator,
where F(P) represents collective credences on .A. For any individual or collective
credence function, if its codomain is restricted to {0, 1}, then the function is called a
binary belief function on A. For a binary belief function Bel and a proposition
A € A, Bel(4) =1 means that 4 is believed, and Bel(4) = 0 means that 4 is not
believed. In contrast, P : A — [0, 1] is called probabilistically coherent beliefs on A,
or simply, probabilistic beliefs on A, if P is extendable to a finitely additive
probability function on the algebra a(.A) generated by A (i.e., the smallest algebra
that includes .A).® Note that we do not require that a probabilistic belief function
should be extendable to a g-additive probability measure. This is because we will not
need g-additivity to prove any of our results. Binarizing belief aggregation deals with
individuals’ probabilistic beliefs and the group’s binary beliefs. It is formally defined
as follows:

Definition 1 (Binarizing Aggregator) Let A be an agenda. A binarizing aggregator
(BA) F'is a function that takes each profile Pofn probabilistic belief functions on A
in a given domain’ and returns a binary belief function F(P) : A — {0,1}.

Notice that this notion of binarizing aggregator is more general than usual opinion
pooling functions with the codomain restricted to 0/1-valued probability functions in
the following two senses: (i) the agenda of a BA does not need to be an algebra, but
just to be closed under complement, and (ii) the outputs of a BA does not need to be
subject to a rationality condition (e.g., probabilistic coherence) but can be arbitrary 0/
1-valued functions, which enables us to discuss various levels of rationality.
Moreover, it is worth noting that we could have defined the notion of BA with more
general inputs without imposing the rationality condition of probabilistic coherence
—i.e., inputs of profiles of n arbitrary functions from A to [0, 1]—and then we could
have incorporated the rationality condition later when we discuss individual
rationality. However, we build individual rationality into the above definition for
simplicity since we assume, throughout this paper, individual beliefs to be
probabilistic beliefs, and we will compare our theory with opinion pooling theory,
where probabilistic beliefs are usually addressed.

While studying binarizing belief aggregation, we also compare it with opinion
pooling, judgment aggregation, and belief binarization. For a start, let us compare the
above definition with the following formal definitions: a judgment aggregator (J4) is

a function that takes each profile P ofn binary belief functions on A in a given
domain and returns a binary belief function; an opinion pooling function (OP) is a

# In the opinion pooling context, finitely additive probability measures are used and discussed in Herzberg
(2015) and Nielsen (2019).

° A domain of F can be any non-empty set of profiles, which is not necessarily the set of all profiles.
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function that takes as input each profile Pofn probabilistic belief functions on A in a
given domain and outputs a probabilistic belief function.'®"'; finally, a belief
binarization function (BIN) is a function that assigns to a probabilistic belief function
on A a binary belief function. Note that a BIN can be construed as a special case of

binarizing aggregator with the number » of individuals being one.

3 Rationality norms on binarizing aggregators

This section introduces axiomatic requirements for binarizing belief aggregation and
explores their relations. The requirements can be divided into two groups. The first
group concerns inputs and outputs and involves rationality norms imposed on
individual and collective beliefs, whereas the second group is related to postulates
governing aggregation rules themselves.

Individual and Collective Rationality

We focus on obtaining “rational” collective beliefs given “rational” individual
beliefs. The kinds of rationality requirements may differ depending on whether they
are imposed on probabilistic beliefs or binary beliefs: a probabilistic belief should be
extendable to a finitely additive probability function, which is already assumed by
the definition of BA; for binary beliefs, rationality requirements pertain to the notions
of consistency, deductive closure, and completeness. To explicate these notions in our
setting, where the agenda is not necessarily an algebra, we first define an entailment
relation.

Definition 2 (Entailment) Let Y C P(W) and 4 C W. We say that ) entails 4 (in
symbols YFA) if there exists a finite subset X C ) such that (| X' C A2

In this definition, the finiteness clause is included because weaker notions of
deductive closure and consistency will suffice for our results, as will be explained in
detail in what follows. Based on the notion of entailment, we define the following
rationality norms.

Definition 3 (Rationality of Binary Beliefs) Let Bel : A — {0, 1} be a binary belief
function. We will use Bel not only for the function but also for the set of all believed
propositions, i.e., {4 € A| Bel(4) = 1}.

1 In most of the opinion pooling literature, the underlying agenda is a c-algebra, and o-additive
probability measures are addressed (McConway, 1981). However, the results relevant to our research—the
characterization of linear pooling—can be obtained under the weaker assumption of finite-additivity on an
algebra as well. Thus, we do not assume the agenda A to be a g-algebra and probability functions to be -
additive when we regard opinion pooling. Moreover, we do not demand our agenda A to form an algebra
and thus we only require inputs and outputs to be extendable to a finite-additive probability function on
a(A).

" Note that Dietrich and List (2017a, 2017b) explored generalized opinion pooling where the agenda A
does not need to be an algebra and is just required to be closed under complement as our agenda. However,
unlike our definition of probabilistic beliefs, they require inputs and outputs of opinion pooling to be
extendable to g-additive probability measures.

12 In this definition, we do not exclude J = () and adopt the convention that (J@ = ¥, which implies
O=w.

@ Springer



46 M. Wang

(1) Bel is complete if 4 € Bel or A° € Bel for all 4 € A.
(2) Bel is deductively closed if for all 4 € A such that BelFA, A € Bel.
(3) Bel is consistent if Bel#().

Completeness says that, for every event, at least one of the event and its negation
should be believed. This norm is quite demanding in the sense that suspending
judgment on a proposition—believing neither the proposition nor its negation—is not
allowed. Next, deductive closure means that every proposition that includes the
intersection of finitely many believed propositions should be believed (see the
finiteness clause in Definition 2).'* This can be compared with the condition that
every proposition that includes the intersection of countably many believed
propositions should be believed and the condition that every proposition that
includes (] Bel should be believed. If the agenda is finite, then those two conditions
and our notion of deductive closure are all equivalent.'* Our notion of deductive
closure is weaker than those conditions.'® For our results in this paper, our weaker
notion of deductive closure will suffice. Lastly, consistency means that the set of
believed propositions should not entail a contradiction, i.e., every intersection of
finitely many believed propositions should be non-empty. This notion is weaker than
the requirement that every intersection of countably many believed propositions
should be empty, which we call o-consistency and the requirement that () Bel # (), as
we can observe similarly to the above.'® We will need only the weaker notion of
consistency for our results. Another alternative definition of consistency could be
considered: a contradiction should not be believed—i.e., Bel/((}) = 0. Under the
assumption of () € A, our consistency of Bel implies Bel(()) = 0, and the converse
holds if Bel is deductively closed. Since we do not always require that ) € A, we will
use the definition of part (3).

13 Provided that the agenda is an algebra, our notions of deductive closure and consistency are the same as
the notions of individual or social logical closure and consistency in Gérdenfors (2006).

14 There are also cases with the agenda being infinite where no distinction is made between our notion of
deductive closure and the other two notions: Let W be the set of all 0/1—valuations on classical
propositional language L with countably infinite atomic propositional letters and A = {[y] C
W] is a formula in L} where [/] is the set of all valuations assigning 1 to ¥. In this space, for any
Bel C A, any superset of (] Bel in the agenda A is a superset of the intersection of finitely many elements
in Bel due to compactness of propositional logic. For example, consider Bel = {[y] C W| v(y) = 1} for
some v € . Then, (| Bel = {v} is not in A and hence not in Be/ since a singleton valuation {v} cannot be
expressed by a formula. However, any superset of {v} in the agenda A can be expressed by a finite
conjunction of formulas and thus, Bel is not only deductively closed by our definition but also satisfies the
other two stronger notions.

15 Let us explain this with the following two examples. (1) Let W be the set N of natural numbers and the
agenda A = P(N). Consider the belief set Bel = {4 € P(N)| A° is finite }, called Fréchet filter on N.
(2) Let W be the set R of real numbers and the agenda A be the Borel algebra B. Consider
Bel = {4 € B| (0,¢] C 4 for some ¢ > 0}. In both examples, we have (| Bel = ) ¢ Bel and there is an
empty intersection of a countable subset of Bel (e.g., (W{[n,00) € P(N)]neN} =0 and
N{(0,%] € B| n € N} = 0)). However, Bel is deductively closed according to our definition.

'6 Consider the two examples in Footnote 15. In both examples, there is an empty intersection of
countably many believed propositions, and () Bel = (). However, they are consistent according to our
definition.
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This paper will address two kinds of rationality norms on binary beliefs: (i)
consistency and deductive closure, and (ii) consistency and completeness. Let us
compare them. First, it is well-known that deductive closure follows from
consistency and completeness. Second, unlike binary beliefs with consistency and
deductive closure, binary beliefs with completeness and consistency count as 0/1-
valued probabilistic beliefs and vice versa, as the following lemma states. Note that
they might not be extendable to o-additive probability functions on the g-algebra
generated by the agenda. To obtain the latter property, we need to strengthen
consistency of binary beliefs to g-consistency.

Lemma 1 Let W be a non-empty set, A C P(W) be an agenda, and Bel : A —
{0, 1} be a binary belief function. Then, (i) Bel is complete and consistent iff Bel is
extendable to a finitely additive 0/1-valued probability function on the algebra a(A)
generated by A (ii) Bel is complete and o-consistent iff Bel is extendable to a o-
additive 0/1-valued probability function on the g-algebra o(A) generated by A.

Now, we are ready to state some postulates of BAs concerning individual and
collective rationality. First, the requirement of individual rationality is related to the
domain of an aggregator. The requirement is alluded to by what is called universal
domain, which states that the domain should include all profiles of “rational”
individual beliefs.

Definition 4 (Universal Domain) A BA F satisfies universal domain (UD) if the
domain of F is the set of all profiles of n probabilistic belief functions on 4.

Let us define the universal domain of an OP and a JA to compare our results about
a BA with the corresponding ones regarding an OP or a JA later. We define the
universal domain of an OP as the same as the universal domain of a BA in the above
definition; a JA satisfies universal domain if and only if its domain is the set of all
profiles of n binary belief functions on A that are consistent and complete. The
reason why we require completeness here, rather than deductive closure, is that most
of the literature on judgment aggregation assumes completeness of individual beliefs,
and we would like to compare our results with the ones in judgment aggregation.
Moreover, consistent and complete binary beliefs can be viewed as 0/1-valued
probabilistic beliefs, as shown in Lemma 1, which can be inputs of a BA.
Accordingly, the domain of a JA can be thought of as a subset of the domain of a BA,
and a JA can be regarded as a restriction of a BA.

Next, we will define constraints imposed on the outputs of an aggregator, i.e.,
collective beliefs. While UD regulates the domain of an aggregator, collective
rationality governs the codomain.

Definition 5 (Collective Rationality) A BA F satisfies collective completeness
(CCP)/ collective consistency (CCS)/ collective deductive closure (CDC) if F (15) is
complete/ consistent/ deductively closed for all P in the domain of F, respectively.

In opinion pooling, collective rationality corresponds to the requirement that ' (13)
is a probabilistic belief function. In judgment aggregation, we have the same
definition as above with the domain of /" understood as the domain of a JA. Some
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research investigates judgment aggregation under the assumption of CCP and CCS
(Dokow and Holzman, 2010; Nehring and Puppe, 2010), and some under the
assumption of CCS and CDC (Gérdenfors, 2006; Dietrich and List, 2008). In our
study, we will address both assumptions.

Unanimity, Anonymity, and Independence

Now, we consider the second group of postulates of BAs. Irrespective of whether
Fis a BA, an OP, or a JA, these postulates can be defined in the same ways, except
that the domain of F is interpreted differently. Let P(4) denote the vector
(P1(A), ..., Py(A))(= (Pi(A));cy) for any 4 € A We define a kind of unanimity
required whenever everyone has a probabilistic belief of 1 or everyone has a
probabilistic belief of 0.

Definition 6 (Unanimity) Let F be an aggregator.

(1) F satisfies certainty preservation (CP) if for all 4 € A and all P in the domain
of F,if B(4) =1 (:= (1,...,1) € [0,1]"), then F(P)(4) = 1.

(2) F satisfies zero preservation (ZP) if for all 4 € A and all P in the domain of F,
if B(4) =0 (:= (0,...,0) € [0,1]"), then F(P)(4) = 0.

CP posits that, if everyone in a group is certain of a proposition being true, then
the group should also believe it. Meanwhile, ZP states that, if everyone in a group is
certain of a proposition being false, then the group should not believe it (the group
does not necessarily have to disbelieve it though). In opinion pooling, CP and ZP are
equivalent.'” In binarizing belief aggregation as well as judgment aggregation, we
have the following lemma.

Lemma 2 [n binarizing belief aggregation and judgment aggregation, the following
holds:

(1) Given CCS, CP implies ZP.

(2) Given CCP, ZP implies CP.

(3) Let W,0 € A. Then, F(P)(W) = 1 by CDC or CP, and F(P)(0)) = 0 by CCS
or ZP.

(4) Let® € A and F satisfy CDC and CP. Then, F satisfies ZP if F satisfies CCS.

Next, let us introduce the anonymity norm of a BA, which requires that collective
beliefs should not be inclined to some particular agents’ opinions. Although this
norm has been extensively studied in social choice theory and judgment aggregation,
this kind of fairness norm might be questionable in epistemic collective decisions.
Indeed, it could be better to prioritize some agents’ opinions who are experts on the
issue. However, there may be situations where it is unknown to whom the submitted
opinions belong or which agents are experts on the issue, or where the group consists

'7 In opinion pooling, (i) P(4¢) =T is equivalent to P(4) = 0, and (ii) F(P)(4) = 0 is equivalent to
F(P)(4°) = 1. However, in binarizing belief aggregation, (ii) does not hold unless we assume that CCP
and CCS. Under the assumption of CDC and CCS, F(P)(4°) = 1 does not follow from F(P)(4) = 0.
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of epistemic peers. In the next section, we will proceed with and without this norm to
address various situations.

Definition 7 (Anonymity) Let F be an aggregator. F' satisfies anonymity (AN) if
F((Pr(i))ien) = F((Pi);cy) for all P in the domain of F and all permutations 7 on N.

The last property we now introduce is the most controversial one. Independence
between propositions ensures that the resulting belief in a proposition depends only
on individual probabilistic beliefs in that proposition; thus, an aggregation should be
performed proposition-wise. It is of practical use as we do not need to consider all
values of a profile if we want to focus on the result of one proposition. However, this
norm can create tension with the requirement of consistency and deductive closure or
the one of consistency and completeness, when propositions are logically related.
This tension has been pointed out as one of the main culprits of impossibility results
in the judgment aggregation literature. Let us define the independence norm and a
stronger norm, the systematicity norm.

Definition 8 (Independence and Systematicity) Let F be an aggregator.

(1) F satisfies proposition-wise independence (IND) if for all 4 € A, there is a
function G : [0,1]" — {0, 1} such that F(P)(4) = G4(P(4)) for all P in the
domain of F.

(2) F satisfies systematicity (SYS) if there is a function G : [0,1]" — {0,1} such
that F(P)(4) = G(P(4)) for all P in the domain of F and all 4 € A

Systematicity can be viewed as the independence norm plus the neutrality norm,
where a BA F is neutral if and only if for all 4,Bc A, if P(4) =
P(B), then F(P)(4) = F(P)(B) for all P in the domain of F. Neutrality means
that each proposition is determined to be believed or not by the same rule.
Combining neutrality with independence yields the norm of systematicity—i.e., the
group’s belief in each proposition should be determined by the same function of
individual probabilistic beliefs in that proposition.

4 Impossibility results

This section presents the main results. We prove that any proposition-wise
independent BA with collective deductive closure and anonymity satisfying universal
domain and certainty and zero preservation yields a trivial aggregation function.
Furthermore, we drop anonymity and show that it is not so helpful in avoiding
degenerate procedures. Additionally, we demonstrate that if we add the assumption
of collective consistency and collective completeness, then there will be no
aggregation function that satisfies the above-mentioned postulates.

Here and in the following section, we assume the complexity of the logical
interconnections in the agenda to be a non-trivial algebra, defined as follows.
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Definition 9 (Non-trivial Algebra) An algebra A is non-trivial if it has at least three
elements besides the empty set and W.

Thus, a trivial algebra on a set W has the form of {0, 4, 4°, W} for some 4 C W.
In this case, the logical connection is so minimal that collective deductive closure is
too lenient for an independent BA to yield impossibility results. Thus, we require that
the agenda is not a trivial algebra in order to formulate impossibility results. Non-
trivial algebras have quite complex logical connections. In Wang and Kim (2023), we
have relaxed this assumption of being a non-trivial algebra and found minimal
agenda conditions to obtain each result in this study. The reason why we provide our
main results under a restricted assumption in this study is to compare our results with
similar findings in opinion pooling and belief binarization, where finitely additive
probability functions on an algebra are usually dealt with.'® Moreover, we take the
aggregation problems where individual beliefs are finitely additive probability
functions on a given algebra to be the most typical ones in binarizing belief
aggregation. Therefore, this paper provides direct proofs for this restricted but most
typical case of binarizing belief aggregation.

Triviality Result

To prove our main results, we need a lemma stating that certainty and zero
preserving (CP, ZP) independent (IND) binarizing belief aggregation satisfies
systematicity (SYS) under the assumption of universal domain (UD) and collective
deductive closure (CDC). We will compare this with the corresponding result in
opinion pooling, which says that given UD of opinion pooling—since .4 is a non-
trivial algebra, the universal domain is the set of all profiles of n finitely additive
probability functions—, an OP satisfies CP and IND if and only if it satisfies SYS
(McConway, 1981; Herzberg, 2015). In judgment aggregation, there is a lemma,
called the contagion lemma, that can be stated in the same way as ours, except that
UD of binarizing belief aggregation is replaced by UD of judgment aggregation
(Dokow and Holzman, 2010).

Lemma 3 (Contagion Lemma) Let A be a non-trivial algebra and F be a BA with
UD. If F satisfies CDC, ZP, CP, and IND, then it satisfies SYS.

This lemma shows that to obtain SYS from CP and IND, we need CDC and ZP,
neither of which is required to get the corresponding result in opinion pooling. First,
let us focus on CDC. Recall that the requirement of collective rationality on a
credence function is that it is extendable to a finitely additive probability measure. In
opinion pooling, this requirement is satisfied not by a separate collective rationality
condition, but rather by the definition of the codomain of opinion pooling functions.
Accordingly, one may expect that some collective rationality conditions might be
needed in binarizing belief aggregation. This lemma shows that we need to add CDC.
Second, ZP can be replaced with CCS by Lemma 2 (4). Note that to prove this
lemma ZP (or equivalently CCS) is only used for the case where () € A. If our
agenda is not an algebra and () ¢ A, then ZP is not required. Provided that () € A as

'8 For an exception, see Footnote 11.
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in this section, we need ZP, which does not follow from CP, unlike the case in
opinion pooling.

Now, we prove our main results formulated by the subsequent two theorems
stating that the conditions for obtaining SYS in the previous lemma lead to
degenerate procedures. It is worth comparing our theorems with the corresponding
ones in judgment aggregation formulated in our terminology: if a JA F satisfies UD
of JA, ZP, CP, IND, and CDC, then F'is oligarchic, and if AN is added, then F is the
unanimity rule (Dietrich and List 2008'?). In opinion pooling, given UD of OP, an
OP satisfies CP and IND if and only if it is a linear pooling function (McConway,
1981). In binarizing belief aggregation, the first main result is related to the
unanimity rule defined as follows.

Definition 10 (Unanimity Rule) An aggregator F is the unanimity rule if

1 ifPA) =1
0 otherwise

F(P)(4) = {

for all 4 € A and all profiles P in the universal domain.

Thus, the unanimity rule states that a proposition is believed if and only if every
individual assigns the probability of 1 to the proposition. Therefore, a proposition
should not be believed even if only one individual assigns a probability slightly
below 1 (e.g., 0.9999). Thus, the unanimity rule is quite demanding in two senses: (i)
it requires unanimous opinions to believe a proposition, and (ii) the unanimous
opinions should not have a probability less than 1.° Consequentially, we consider
the unanimity rule to be trivial and also call it the trivial rule. Here is our first main
result, called the triviality result:

Theorem 4 (Triviality Result) Let A be a non-trivial algebra. The only BA satisfying
UD, ZP, CP, IND, CDC, and AN is the unanimity rule.

This theorem shows that, under certain mild conditions (UD, ZP, and CP), it is
impossible that an anonymous (AN) proposition-wise independent (IND) binarizing
belief aggregation guarantees deductively closed collective beliefs (CDC), except for
the unanimity rule. Note that we can replace ZP with CCS, by Lemma 2 (4) since we
have CDC, CP, and () € A. Completeness is not required to obtain this result. CDC
serves as a sufficient rationality condition on collective beliefs to create tension with
IND. Interestingly, the conditions leading to the unanimity rule are the same as those
in the corresponding result in judgment aggregation. One might question whether our
result can be directly derived from that result, but this is not the case. In the next

9 Their formal setting and their notion of deductive closure are different from ours. However, we can
easily check that their results can be adapted to our setting. Note that they assumed, instead of ZP and CP,
the weaker condition of unanimity preservation such that if P; = P for all i, then F((P;),c) = P, which
follows from ZP and CP, but not in general vice versa. However, it is easily shown that, if we have IND,
the converse also holds. Therefore, their result is equivalent to the above statement.

2% Note that the unanimity rule parallels the notion of the unanimity rule in judgment aggregation, where,
however, the opinion short of 1 means the opinion of 0, as opposed to binarizing belief aggregation.
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section, we will conduct a detailed comparison of our results with those in judgment
aggregation and provide the reasons for the differences.

It is worth understanding the structure of our proof because this method will also
be applied to prove the next theorem and discussed in several places throughout this
paper. First, SYS follows from UD, CDC, ZP, CP, and IND by Lemma 3, so we have
a function G such that F(P)(4) = G(P(4)) and G(1) = 1. Our proof unfolds in three
steps. [Step 1] presents the following two key facts, utilizing the agenda condition of
being a non-trivial algebra and the property of CDC (closure under superset for (Fact
1) and closure under intersection for (Fact 2)):

(Fact 1) if @<b and if G(@) = 1, then G(b) = 1
(Fact 2) if @+b —1>0 and if G(@) = 1 and G(b) = 1, then G@@+b—1) = 1

where < is applied component-wise.”' (Fact 1) means that if G assigns 1 to a vector,
then G does so to every component-wise greater vector than that, which we call
upward closure of G~'(1) (the preimage of 1 under G). In contrast, (Fact 2) claims
that certain component-wise smaller vectors than a vector in G~'(1) are also
contained in it, which we call restricted downward closure of G~'(1). Next, [Step 2]
demonstrates that any non-trivial BA where G(d) = 1 with some a; # 1 yields

G(dlai—0,ap—1 forall 1 #1i]) =1

indicating that substituting a; and a; with 0 and 1, respectively, does not alter the
value of G, i.e., we have (1,...,1,0,1,....,1) € G~!(1) where 0 is the i-th component.
Indeed, through the upward closure of G~!(1), we can substitute ¢; with 1 for all
[ # i; by iterating the process of upward and restricted downward closure of G~!(1),
we can then substitute @; with 0. Finally, using AN and (Fact 2), [Step 3] shows

which contradicts ZP.

One may ask whether AN is the main culprit in the difficulty of a proposition-wise
BA to get deductively closed collective beliefs. The following theorem shows that
that is not the case, and dropping AN is insufficient to avoid the difficulty.

Without Anonymity: Oligarchy

Now, we drop the assumption of anonymity and show that it leads to other
degenerate BAs as well. To this end, we define an oligarchy first. Recall that N
denotes the set of all individuals.

Definition 11 (Oligarchy) An aggregator F' is an oligarchy if there is a non-empty
subset M of N such that

21 (Fact 1) represents a kind of monotonicity defined by

(MON) if B(4) <P'(4) and F(P)(4) = 1,then F(F)(4) = 1.
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- {1 if Pi(4)=1for allie M
0 otherwise

for all 4 € A and all profiles P in the universal domain. When M| =1,wecall Fa
dictatorship.

So an oligarchy refers to a rule where the unanimous certain beliefs of a group of
oligarchs are the necessary and sufficient condition for the collective belief in a
proposition. This procedure is also problematic partly because individuals other than
the oligarchs are excluded from the decision process. However, one could argue that
relying on experts, who are considered oligarchs, would not be irrational to obtain
true collective beliefs. Nevertheless, non-oligarchy is still a rational requirement even
in epistemic contexts, as after excluding non-experts, the decision process among the
oligarchs can be viewed as the trivial aggregation among the oligarchs. With this type
of degenerate BA, we have another impossibility theorem stating that the same
conditions as the triviality result, except for AN lead to oligarchies.

Theorem 5 (Oligarchy Result) Let A be a non-trivial algebra. The only BAs
satisfying UD, ZP, CP, IND, and CDC are the oligarchies.

This theorem generalizes the triviality result and shows that dropping AN leads to
the oligarchy result. In the proof, we adopted [Step 1]—thus, (Fact 1) and (Fact 2)—
and [Step 2] in the proof of the triviality result since we have not used AN to prove
them. The two proofs are similar in spirit. However, instead of deriving
G((0,...,0)) =1 from G(d) =1 where a; #1 for some i€ N, we derived

-

G((Tp(i));en) = 1, where 14,(i) = 1 if i € M, otherwise 1),(i) = 0, from G(b) =
1 where b; # 1 for some j € N \ M. In this process, we used [Step 2] and applied
induction analogously to [Step 3]—except that induction is used on non-oligarchs,
not on all individuals—to prove that, even if all non-oligarchs certainly believe that a
proposition is false, the oligarchs’ unanimous certain beliefs in that proposition yield
the collective belief in it.

With CCP and CCS: Non-existence

Until now, we have assumed only CDC. However, if we impose a stronger
rationality constraint on collective belief, we obtain another impossibility result,
which we achieve as a corollary of the oligarchy result. In judgment aggregation,
there is an impossibility result for a finite agenda, which can be rephrased in our
terminology as follows: if F satisfies UD of judgment aggregation, CP, IND, CCP,
and CCS, then F is a dictatorship (Dokow and Holzman, 2010), and if we add AN,
then there is no such JA. We now present our result in binarizing belief aggregation.

Corollary 6 (Non-existence Result) Let A be a non-trivial algebra. There is no BA
satisfying UD, CP, IND, CCP, and CCS.

Note that, to use the contagion lemma and the oligarchy result, we add CCS since
we need to get CDC from CCP and CCS. Under the assumption of CCS and CCP, it
holds that ZP if and only if CP (see Lemma 2). In judgment aggregation, from the
same assumptions, we obtain dictatorships, where a dictator’s binary beliefs are
complete. By contrast, in binarizing belief aggregation, a dictator’s binary beliefs
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determined somehow from her probabilistic beliefs—e.g., in the way that a
proposition is believed if and only if a dictator gives it a probability of 1—hardly
satisfy completeness. That is why we need neither non-dictatorship nor anonymity to
obtain the above impossibility result in binarizing belief aggregation.

To summarize this section, we proved three impossibility theorems—provided that
A is a non-trivial algebra, there is no BA satisfying any of the following:

(1) UD, ZP, CP and IND + CDC + Non-oligarchy;
(2) UD, ZP, CP and IND + CDC + AN + Non-triviality;
(3) UD, CP and IND + CCS and CCP.

Note that, from the impossibility of (1), we could obtain the ones of (2) and (3)
because the only anonymous oligarchy is the trivial rule. Nevertheless, we first
provided a direct proof of the triviality result separately and then modified the proof
to obtain the oligarchy result. This is because the fact that the triviality result follows
from the oligarchy result holds only under certain agenda conditions, such as the
agenda being a non-trivial algebra.”” In some other settings, where the oligarchy
result does not hold,® we need to prove the triviality result separately using [STEP
3].

5 Comparison with judgment aggregation, opinion pooling,
and belief binarization

Judgment Aggregation and Binarizing Belief Aggregation

Let us compare our results with certain impossibility results in judgment
aggregation. The impossibility results with (1),(2), and (3) in Table 2 summarize our
results in the last section. The ones with (1’) and (2') are derived from Dietrich and
List (2008) and reformulated in our terminology, and the ones with (3') and (4') are
from Dokow and Holzman (2010) and Nehring and Puppe (2010). To compare all of
them in a common underlying space, we assume, throughout this section, the agenda
A to be a non-trivial algebra as in the last section. When we compare (3) with (3)
and (4'), we further assume A to be finite as in Dokow and Holzman (2010) and
Nehring and Puppe (2010).

The universal domain of judgment aggregation can be viewed as a subset of the
one of binarizing belief aggregation since consistent and complete binary beliefs can
be seen as probabilistic beliefs, as proven in Lemma 1. Therefore, the restriction of a
BA F with UD to the universal domain of judgment aggregation, denoted by F'[, can
be regarded as a JA. Conversely, any extension of a JA F' to the universal domain of
binarizing belief aggregation, denoted by F'1, can be seen as a BA. So it is of interest
to know whether our results can be obtained “directly” from the corresponding

22 In Wang and Kim (2023), we have proven that path-connectedness and even-negatability constitute the
necessary and sufficient agenda condition for the oligarchy result. Thus, the triviality result follows from
the oligarchy result only under that agenda conditions.

23 For example, if the agenda is negation connected, which is proven in Wang and Kim (2023) to be the
necessary and sufficient agenda condition for the triviality result, the triviality result holds, but the
oligarchy result does not hold.

@ Springer



Aggregating individual credences into collective... 55

Table 2 Impossibility results in binarizing belief aggregation and judgment aggreagtion

There is no BA with UD of binarizing belief aggregation satisfying

(1) ZP, CP and IND + CDC + Non-oligarchy
(2) ZP, CP and IND + CDC + AN + Non-triviality
(3) CP and IND + CCS and CCP

There is no JA with UD of judgment aggregation satisfying

(1) ZP, CP and IND + CDC + Non-oligarchy

(2") ZP, CP and IND + CDC + AN + Non-triviality
(3") CP and IND + CCS and CCP + Non-dictatorship
(4") CP and IND + CCS and CCP + AN

results in judgment aggregation or vice versa, by looking at some restrictions or
expansions. In what follows, (I) and (II) will argue that those are not the case. In
addition, (III) will illustrate the similarities and differences between the proofs in
binarizing belief aggregation and judgment aggregation, explaining in detail the
originality of our proofs. From now on, BAs and JAs are assumed to satisfy their
UD. Our arguments are based on the following observations.

(Observation 1) If a BA F satisfies ZP/CP/IND/CDC/AN/CCP/CCS, then so does
the JA FJ, respectively.

(Observation 2) If a JA F’ satisfies non-oligarchy/non-triviality, then so does any
BA F'1, respectively.

(Observation 1) holds because each property mentioned is stated with “for all Pin
the domain” and the universal domain of BA includes the one of JA. (Observation 2)
holds because, if a BA F is an oligarchic/trivial function, then the JA F[ is an
oligarchic/trivial function, respectively, as demonstrated in Fig. 3.

()  First, consider whether our results follow “directly” from the results in
judgment aggregation. In (Observation 1), which pertains to ZP/CP/IND/
CDC/AN/CCP/CCS, each mentioned property of a BA F alone leads to that
of F[ in an obvious way without combining other properties or agenda
conditions. However, when it comes to non-oligarchy/non-triviality, this is
not the case: without combining any other properties—e.g., CP, IND, and
CDC—and some agenda conditions—e.g., being a non-trivial algebra—, it
does not hold that, if a BA F satisfies non-oligarchy/non-triviality, then so
does the JA F[, respectively, in contrast to (Observation 2). If that did hold,
then we could, together with (Observation 1), argue as follows: if there were
a BA F with UD satisfying (1)/(2)/(3), then F| would satisfy (1')/(2")/[(3)
and (4')], respectively. This would imply that there were no such BA,
allowing us to establish the impossibility of (1)/(2)/(3) directly from the one
of (1')/(2')/[(3") or (4")]. In this sense, we can conclude that our results do not
directly follow from the results in judgment aggregation. Indeed, in our
proof of Theorem 4, [Step 2] involves showing that for any non-trivial BA
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Py(A) 4 Py(A)

S 4 Pi(A) e , Py(A)

Psy(A) ¥ P3(A)

Fig. 3 The left and right figures describe an oligarchy in judgment aggregation and the one in binarizing
belief aggregation, respectively, where N = {1,2,3} and M = {1,2}. The gray points represent all and the
only vectors to which 1 is assigned

F, F is a non-trivial JA, using (Fact 1) and (Fact 2) of [Step 1], which can
be proved under the assumption of SYS and CDC combined with the agenda
condition of being a non-trivial algebra.

(IT)  Next, let’s consider the reverse scenario: whether the results in judgment
aggregation can be directly derived from our results. For the sake of
argument, let’s assume that there was a direct and typical way to extend a JA
F’ satisfying ZP, CP, and IND, together with either CDC, [AN and CDC], or
[CCS and CCP] to a BA F'] satisfying the same properties of binarizing
belief aggregation. In such a case, F’{ would either result in an oligarchy, the
trivial rule, or the non-existence. Each of these outcomes would, in turn,
imply an oligarchy, the trivial rule, or the non-existence of F’ according to
(Observation 2). However, there is no such direct and typical way.>*

(IIT)  Nevertheless, by employing the same methods as our proofs, we can derive
analogous statements to Lemma 3, Theorem 4, and Theorem 5 for judgment
aggregation. It is possible because our reasoning remains valid even when
we restrict every P in our proofs to profiles of 0/1-valued probability
functions. For instance, it is evident that (Fact 1) and (Fact 2) in [Step 1] of
our proofs of triviality and oligarchy results imply the corresponding
restrictions to the vectors whose components are 0 or 1, denoted by (Fact 1)
and (Fact 2[).%°

In contrast, adopting the corresponding proofs in judgment aggregation does not
suffice to obtain our results. First, even though the proofs in judgment aggregation
could give (Fact 1]) and (Fact 2[), we need to demonstrate that they extend to our
domain in order to obtain (Fact 1) and (Fact 2). On top of that, in the proofs of our
triviality and oligarchy results, a; 7 1 (where i is any individual)/a; # 1 (where j is
not an oligarch) do not necessarily imply that a; = 0/a; = 0, contrary to the case of
judgment aggregation. Thus, we need to prove that

2% Two natural ways to extend a JA to a BA might include (i) assigning 0 to all profiles of probability
functions that are not 0/1-valued or (ii) extending while maintaining monotonicity in a minimal manner.
However, Wang and Kim (2023) have demonstrated that neither of these approaches serves as a direct and
typical extension method preserving all the properties mentioned above.

25 (Fact 17) corresponds to closure under supersets of winning coalitions (sets of agents whose beliefs and
the other agents’ non-beliefs are the necessary and sufficient condition for the collective belief) in judgment
aggregation.

@ Springer



Aggregating individual credences into collective... 57

G(dlap—0,a—1 for all I #i]) = 1/G(d[ap—0,ap—1 for alll#,]) =1 in [Step
2], which is the step mentioned in (I). Precisely, this step can be divided into two
sub-steps: (i) substitute every a;(/ # i/l # j) with 1 and prove that G still assigns 1 by
(Fact 1); (ii) substitute a;/a; with 0 and prove that G still assigns 1 by (Fact 1) and
(Fact 2). Therefore, while (i) and (Fact 1) are required both for binarizing belief
aggregation and for applying our proofs to judgment aggregation, (ii) is specific to
binarizing belief aggregation.”® Table 3 provides a comparison of the key claims
necessary to prove the triviality result in binarizing belief aggregation with the claims
needed when applying our proofs to establish the triviality result in judgment
aggregation.

Opinion Pooling and Binarizing Belief Aggregation

We cannot apply the proofs from opinion pooling to derive our contagion lemma
and the triviality/oligarchy results because we do not assume CCS and CCP to get
them, and thus collective beliefs cannot be regarded as 0/1-valued probabilistic
beliefs. The pivotal step in the corresponding proofs in opinion pooling hinges on the
use of the additivity axiom: F(P)(4UB) = F(P)(4)+ F(P)(B), assuming
AN B = (. In binarizing belief aggregation, however, this property does not hold
under the assumption of CCS and CDC.

In contrast, we can employ the proofs of McConway (1981) to obtain the non-
existence result in binarizing belief aggregation, given the assumption of CCP and
CCS. Under this assumption, our outputs—collective binary beliefs—can be thought
of as 0/1-valued finitely additive probabilities, as shown in Lemma 1. Thus,
binarizing belief aggregation can be viewed as a form of opinion pooling with the
restricted codomain. It is worth recalling that given UD of OP, an OP satisfies CP and
IND if and only if it is a linear pooling. This provides the non-existence result, as
some linear averages fall outside the codomain of a BA.

Belief Binarization and Binarizing Belief Aggregation

In binarizing belief aggregation, we would usually assume that the number n of
individuals is more than one because we would investigate collective epistemic
decisions dealing with multiple opinions. However, it is noteworthy that none of the
proofs presented thus far have relied on the assumption that » > 2. Thus, our results
can be applied to the case where n = 1, which aligns with the problem of belief
binarization. It is worth highlighting that, as pointed out by Dietrich and List (2018),
anonymous (AN) and proposition-wise independent (IND) judgment aggregation
(with individual rationality of consistency and completeness) is the same problem as
the problem of belief binarization because the ratio of believers in a proposition can
be regarded as the probability of that proposition. Therefore, it should not come as a
surprise that our findings for n = 1 recover the theorems positing that there exists
neither JA with AN satisfying (2') or (4) in Table 2, nor belief binarization satisfying

26 It does not imply that (Fact 21) is unnecessary for the results in judgment aggregation, as (Fact 21) is
required in [Step 3], which is needed when using our proofs for judgment aggregation.

27 Tt is worth noting that the difference between their notions of consistency and deductive closure, which
involve the intersection of arbitrary sets, and our weaker notions, which only involve the intersection of
finitely many sets, does not impact the proof of (2”) and (4”). This is because they assume the agenda to be
a (non-trivial) algebra, and our weaker notions suffice to establish (2”) and (4”).
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Table 3 Steps for proving the triviality results

[Step 1] [Step 2] [Step 3]
BA (Fact 1), (Fact  G(d[a;—0,a/—1 for all I # i]) = 1 (using (Fact 1) G(0,...,0) = 1 (using
2) and (Fact 2)) (Fact 2))
JA  (Fact 1), (Fact G(d[ap—1 for all / #i]) =1 (using (Fact 1[)) G(0,...,0) = 1 (using
20 (Fact 21))

Table 4 Impossibility results in belief binarization

There is no BIN with UD of belief binarization satisfying

(2") CCS', CP and IND + CDC + Non-triviality?
(4") CP and IND + CCS and CCP

In Dietrich and List (2021), the assumption of CCS is used rather than ZP. However, as indicated in
Lemma 2 (4), CCS is equivalent to ZP here since () € A and we have CDC and CP

Non-triviality here corresponds to non-looseness in Dietrich and List (2021)

(2") or (4”) in Table 4, which are the results derived from Dietrich and List
(2021, 2018).%”

6 Conclusion

We conclude this paper by highlighting some follow-up studies conducted in Wang
and Kim (2023, MS) and Wang (2023). We have weakened the structure of a non-
trivial algebra commonly required in opinion pooling and belief binarization and
characterized impossibility agendas as in judgment aggregation.”® In our efforts to
find escape routes from the impossibility results, we have primarily focused on
relaxing the independence norm and studied specific binarizing belief aggregation
procedures. These include collective belief binarization combined with a probabilis-
tic opinion pooling method as well as direct rules generating collective beliefs
directly from individual credences. In the realm of collective belief binarization, we
have undertaken an analysis of threshold-based methods and proposed distance- and
utility-based belief binarization methods. Furthermore, we have introduced and
explored direct binarizing belief aggregation procedures based on threshold, distance,
and epistemic utility.

27 1t is worth noting that the difference between their notions of consistency and deductive closure, which
involve the intersection of arbitrary sets, and our weaker notions, which only involve the intersection of
finitely many sets, does not impact the proof of (2”) and (4”). This is because they assume the agenda to be
a (non-trivial) algebra, and our weaker notions suffice to establish (2”) and (4”).

28 Wang and Kim (2023) have demonstrated that the agenda conditions for the oligarchy/triviality/non-
existence results are path-connectedness and even-negatability/negation-connectedness/blockedness,
respectively.
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Appendix — Proofs

Lemma 1 Let W be a non-empty set, A C P(W) be an agenda, and Bel : A —
{0, 1} be a binary belief function. Then, (i) Bel is complete and consistent iff Bel is
extendable to a finitely additive 0/1-valued probability function on the algebra a(.A)
generated by A. (ii) Bel is complete and c-consistent iff Bel is extendable to a o-
additive 0/1-valued probability function on the g-algebra o(A) generated by A.

Proof Proof of part (i)
(—) It is well-known that any 4 € a(A) has the form of [ Ji_, (), £, where £,

is Ej(€ A) or Ej. Since the agenda A is closed under complement, we let
4=UL N~ Ey, Define Bel* : a(A) — {0,1} as

Bel” <U ﬂ E,jl> = l_inaxnj:r{linm_Bel(Eij,)

i=1j=1

(a) Bel* is well defined: Assume (., (", Ej =U, (=1 Frg- Then

n m; c ! 7 : n ;i c
(Ui ﬂj,:l Ey) N (U mq,;,:l quk) =0. Since (Ui ﬂ;:l Ey) =
Ug.er Nizt E5, where J = {1, ...;mi} x ... x {1,...,m,}, we have

UN N &, NFig) =0 (1)

(i)yed k=1 i=1 gi=1
Now suppose Bel*(U,_, (=, Ey;) = 0 and Bel*(U,_, M=t Frg) = 1. Then
foralli € {1,...,n} we can plck aji € {1,...,m;} such that Bel(Ej; ) = 1. Note

that this tuple (ji, ..., /) is contained in J defined above. Moreover, there exists
ke {1,...,1} such that for all g € {1,...,rx}, Bel(Fi,) = 1. Since Bel is
consistent, (., (V.= (Ef, N Fiy,) # 0, which contradicts Equation (1). Sim-

ilarly, we can prove that it is not the case that Bel*(U_, (), Ej) = 1 and
Bel*(Uy_y M}~y Fig,) = 0. Therefore,

gr=1
Bel (U, (", Ey) = Bel' (U (!, Fia).
(b) By constructwn Bel*(A) = Bel(A) for all 4 € A.
(c) Bel* is a finitely additive probability function: Bel*(W) = Bel(E U E°) =
max{Bel(E) ,Bel(E)} =1 for some E € A(# () since Bel is complete. Let

A=, 4; where 4; = ()", Ej, and B = Ui:] By where By =) _; Eig

and assume that 4 and B is disjoint. Then we have
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Bel*(A U B) = Bel* (U ﬁEJ U U ﬂ Fm)

i=1ji= =1 qr=1
= max{Bel*(4,), ..., Bel*(4,), Bel*(By), ..., Bel*(B;) }
= max{Bel*(4), Bel"(B)} = Bel*(4) + Bel*(B)

The last equality follows from Bel*(4) = 0 or Bel*(B) = 0. This holds, for
otherwise there would exist i € {1, ...,n} such that for all j; € {I,...,m;}
Bel(E;) =1 and also k€ {l,..,/} such that for all ¢ € {1,...,r}
Bel(Fiy,) =1, from which it follows, by consistency of Bel, that
Vet Ej N (V=1 Frg # 0, a contradiction to 4N B = 0.

(+) Let P be a finitely additive 0/1-valued probability function extending Bel. (a) P
is complete and so is Bel since P(4) =1 or P(4) =0, i.e., P(4°) =1. (b) Let
P(4)),....,P(4) = 1. Then P(N_,4) =1 and hence N, 4;#0. So P is
consistent and so is Bel.

Proof of part (ii)

(—) (a) If Bel is complete and o-consistent, then the extension Bel* on a(.A)
defined in the proof of part (i)(a) is also complete and o-consistent: completeness of
Bel* follows from the finite-additivity of Bel* in the proof of part (i)(c). For o-

consistency, assume Bel*(4,) = 1 forall n € N. Let 4, = Ul H ﬂm Ej;. Then there

exists i(n) € {1,...,/(n)} such that Bel(E;;) = 1 for all j € {1, ..., m;, }. Note that
A, D ﬂj "f) Einy and thus (),cn 4n 2 ﬂneN i ! Ej()- Since Bel is o-consistent,
Muen N " Ey() is not empty and neither is ﬂneN A,,. Thus Bel* is o-consistent. (b)

Bel* is o- addltlve: since it follows from completeness and o-consistency of Bel* that
Bel*(U,en An) = 0 iff Bel*(AS) = 1 for all n € N, where 4,s are pairwise disjoint,
we obtain Bel*({,cn 4n) = D pen Bel*(4,). (¢) Combining this with Carathéodory
extension theorem yields the claim. («) It can be shown similarly to the proof of
(«) in part (i). O

Lemma 2 [n binarizing belief aggregation and judgment aggregation, the following
holds:

(1) Given CCS, CP implies ZP.

(2) Given CCP, ZP implies CP.

(3) Let W,0 € A. Then, F(P)(W) = 1 by CDC or CP, and F(P)(0)) = 0 by CCS
or ZP.

(4) Let® € A and F satisfy CDC and CP. Then, F satisfies ZP iff F satisfies CCS.

Proof

(1) Assume P(4) = 0, which is equivalent to P(4°) = 1 since P is a profile of
probabilistic beliefs. By CP, we have F(P)(4°) = 1, from which it follows that
F(P)(4) = 0 by CCS.
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(2) Assume P(4) = 1, which is equivalent to P(4°) = 0 since P is a profile of
probabilistic beliefs. By ZP, we have F(P)(4¢) = 0, from which it follows that
F(P)(4) = 1 by CCP.

(3) As noted already, CDC and CCS imply F(P)(W) =1 and F(P)(0) =0,
respectively. The rest parts hold since B(W) = 1 and B() = 0.

(4) (<) ZP follows from CCS and CP by part (1). (—) When §) € A, from ZP it

follows that F(P)(() = 0 by part (3), which is equivalent to CCS when we
have CDC.

O

Lemma 3 (Contagion Lemma) Let A be a non-trivial algebra and F be a BA with
UD. If F satisfies CDC, ZP, CP, and IND, then it satisfies SYS.

Proof By IND, we can let F(P)(4) = G4(P(4)) for all P. We need to show that
G, =Gpgforall 4,B € A.

(Case ) 0 £AACB#AW

By UD, P given as in Fig. 4 can be an argument of F: since there exist possible
worlds in 4 and B¢, which are represented by dots in Fig. 4, due to UD, we can assign
the probabilities @ and 1—GtoAand B, respectively. Then B has the probabilities
d. This gives the following:

() If G4(@) = F(P)(4) =1, then F(P)(B) = Gs(d@) =1 by CDC (closure
under superset).

(i)  Since F(P)(4UB°) =1 by CP, if Gz(d) = F(P)(B) = 1, then F(P)(4) =
G4(d@) = 1 by CDC (closure under intersection) since (4 U B°) N B = A.

(Case 2) A\B # () and B\A # )

Let v € A\B and w € B\4 as in Fig. 5. We can use C € A such that {v,w} C
C # W since A is a non-trivial algebra. (Take the union of two elements in A one of
which includes v and one of which includes w. We can find such two elements whose
union is not W because A is non-trivial: if there were no such two elements, it means
that (4 — B) U (B — A) = W, hence A = {0, 4, B, W} where B = A°, which contra-
dicts the non-triviality of A.) By the result of (Case 1), we have
G4 = Gync = Gc = Genp = Gp.

(Case 3) We can let Gy = G4 and Gy = Gy, for any A(# 0, W) € A since
G4(0) = 0 by ZP and G,(1) = 1 by CP. O

Fig. 4 A dot e represents a Bl
possible world (T-a) @
L]
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Fig. 5 The triangles A indicate
all possible locations at one of A B
which a possible world is
ensured to exist so that C # W A % A
REG
C

Theorem 4 (Triviality Result) Let A be a non-trivial algebra. The only BA satisfying
UD, ZP, CP, IND, CDC, and AN is the unanimity rule.

Proof 1t is easily seen that the unanimity rule satisfies all mentioned properties. For
the other direction, by Lemma 3 we have SYS and thus, we can let F(P)(4) =
G(B(4)) where G(1) = 1 by CDC (in particular F(B)(W) = 1) or CP. Now suppose
that G(d) = 1 for some d # T and pick up any a; # 1 in @. To derive a contradiction,
we take the following three steps.

[Step 1] We show the following:

(Fact 1) if @< b and if G(@) = 1, then G(b) = 1

(Fact 2) if @+ b —1>0 and if G(@) = 1 and G(b) = 1, then G(@@+b—1) = 1

Since A is non-trivial, we have at least 3 non-empty elements of A that have no
intersections with each other. We represent each possible world of such elements by a
dot in Fig. 6. Since A is an algebra, there are 4 and B in A as in the left figure and 4,
B and 4 N B as in the right figure. By UD, we can assign to 4 and B, respectively, the
probabilities @ and b such that @ < l_;, as in the left figure. In the right figure, by UD
we can assign to 4, B and 4 N B, respectively, the probabilities d, 5, and d + h—1
where @ + b — 1> 0. The left figure gives us (Fact 1) by closure under superset from
CDC and the right figure gives us (Fact 2) by closure under intersection from CDC.

[Step 2] We show that G(d[a;—0,a;—1 for all I #i]) = 1.

By (Fact 1), we can substitute @; and a; with any higher value keeping the value of
G as 1 and by mixed applications of (Fact 1) and (Fact 2), we can substitute a; with
any lower value using the fact that for any @ > (0.5, ...,0.5),

if G(@) =1then G(@+a—1)=1 )

as follows. By (Fact 1), we can substitute all other components g; (i.e., / # i) that are
not 1 with 1 and so we have G((1,...,1,a;,1,....,1)) = 1. This process enables us to
focus on the i-th component of vectors when we apply (2) because 1 +1 —1 = 1.
Now employ (Fact 1) and (2). (i) If ¢; <0.5, we have G(1,...,1,0.5,1,...,1) = 1 by

.Ilii Afzsz

ANB@+bo-1)

Fig. 6 The left one is for (Fact 1) and the right one is for (Fact 2)
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(Fact 1) and G(1,...,1,0,1,...;1) = 1 by (2). (ii) Now let a; > 0.5. After applying
@) to G((1,..,1,a;,1,...,1)) = 1 k times, we have G((1,...,1,a",1,.... 1)) =1
where afk) =1- 2]‘(1 — a;) and there must be & such that al(k) <0.5. Then, we can
use (i) and obtain G(1,...,1,0,1,...,1) = 1.

[Step 3] We show, by induction, G((0, ...,0)) = 1, which contradicts ZP.

We have G((0,1,...,1)) = G((1,0,1,...,1)) = ... = G((1, ..., 1,0) by UD, AN
and (Step 2). Let g be a vector (0, ..., 0, 1, ..., 1) where the first k components are 0
and the others are 1. For k =1, we have G(d;) = 1. Assume G(d;) = 1. Since
G((1,...,1,0,1,...,1)) = 1 where all components are 1 except for the (k+1)-th one,
which is 0, we have G(d;.) = 1 by (Fact 2). O

Theorem 5 (Oligarchy Result) Let A be a non-trivial algebra. The only BAs
satisfying UD, ZP, CP, IND, and CDC are the oligarchies.

Proof 1t is obvious that an oligarchy satisfies the properties. For the other direction,
to construct the set M of oligarchs in Definition 11, we employ [Step 1] and [Step 2]
in the proof of Theorem 4. (By UD, ZP, CP, IND and CDC, we have SYS by
Lemma 3, and [Step 1] and [Step 2] follow from UD and CDC. Note that in the proof
of Theorem 4, we did not use AN except in [Step 3].) Consider the set G~!(1) :=
{d@) G(d@) =1} where G is a function satisfying F(P)(4) = G(P(4)). We collect
individuals i such that a; =1 for all @ € G™'(1) and define the set M of such
individuals: M := {i € N| a; = 1 for all @ such that G(d@) = 1}. We will show (i)
and (ii) in the following.

(i) M is non-empty.
Suppose M is empty. Then G(0,1,..,1)=G(1,0,1,..,1)=..=
G(1,..,1,0) =1 by [Step 1] and [Step 2], and we have G(0,...,0) =1
using the same way of [Step 3], which contradicts ZP.

(i) a;=1 forallie M iff G(d@) = 1.
(«) It is obvious by the construction of M. (—) Since we have (Fact 1) in
[Step 1], it is enough to show that G((1y/(i)),cy) = 1 where Ty (i) = 1 if
i € M, otherwise 1,,(i) = 0. For any j ¢ M, there is d such that G(d) = 1 and
a; # 1, by definition of M. By [Step 2],

G(dla}—0,ap—1 for all I #j]) =1 (3)

Now, we proceed by induction analogously to [Step 3]. Enumerate
individuals who are not in M, like ji,j2, ..., jjn|—|n| @nd let d; be a profile
where a;, = 0,...,a;, = 0 and other components are all 1. For £ = 1, we have
G(d;) =1. Assume G(d;)=1. Since by Equation (3) we have
G(1,...,1,0,1,....1) = 1 where 0 is the ji;;-th component, by (Fact 2) in
[Step 1, we have  G(dy+1)=1. Therefore, we  have
Gl -pr) = G((Iu(1))jey) =1
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Corollary 6 (Non-existence Result) Let A be a non-trivial algebra. There is no BA
satisfying UD, CP, IND, CCP, and CCS.

Proof Since CDC follows from CCP and CCS, and ZP follows from CCS and CP,
the only possible BAs satisfying the above conditions would be the oligarchies by
Theorem 5, which do not satisfy collective completeness. O
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