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Abstract
While game theory has been transformative for decision making, the assumptions
made can be overly restrictive in certain instances. In this work, we investigate some
of the underlying assumptions of rationality, such as mutual consistency and best
response, and consider ways to relax these assumptions using concepts from level-k
reasoning and quantal response equilibrium (QRE) respectively. Specifically, we
propose an information-theoretic two-parameter model called the quantal hierarchy
model, which can relax both mutual consistency and best response while still
approximating level-k, QRE, or typical Nash equilibrium behavior in the limiting
cases. The model is based on a recursive form of the variational free energy principle,
representing higher-order reasoning as (pseudo) sequential decision-making in
extensive-form game tree. This representation enables us to treat simultaneous games
in a similar manner to sequential games, where reasoning resources deplete
throughout the game-tree. Bounds in player processing abilities are captured as
information costs, where future branches of reasoning are discounted, implying a
hierarchy of players where lower-level players have fewer processing resources. We
demonstrate the effectiveness of the quantal hierarchy model in several canonical
economic games, both simultaneous and sequential, using out-of-sample modelling.

Keywords Quantal hierarchy · Bounded rationality · Economic decision · Level-k ·
Cognitive hierarchy · Quantal response equilibrium

1 Introduction

A crucial assumption made in Game Theory is that all players behave perfectly
rationally. Nash Equilibrium (Nash, 1951) is a key concept that arises based on all
players being rational and assuming other players will also be rational, requiring
correct and consistent beliefs amongst players. However, despite being the traditional
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economic assumption, perfect rationality is incompatible with many human
processing tasks, with models of limited rationality better matching human behaviour
than fully rational models (Camerer, 2010; Gächter, 2004; Gabaix et al., 2006).
Further, if an opponent is irrational, then it would be rational for the subject to play
“irrationally” (Raiffa & Luce, 1957). That is, “[Nash equilibrium] is consistent with
perfect foresight and perfect rationality only if both players play along with it. But
there are no rational grounds for supposing they will” (Koppl et al., 2002). These
assumptions of perfect foresight and rationality often lead to contradictions and
paradoxes (Cournot et al., 1838; Glasner, 2022; Hoppe, 1997; Morgenstern, 1928).

Alternate formulations have been proposed that relax some of these assumptions
and model boundedly rational players, better approximating actual human behaviour
and avoiding some of these paradoxes (Simon, 1976). For example, relaxing mutual
consistency allows players to form different beliefs of other players (Camerer et al.,
2004; Stahl & Wilson, 1995) avoiding the infinite self-referential higher-order
reasoning which emerges as the result of interaction between rational players
(Knudsen, 1993) [I have a model of my opponent who has a model of me . . . ad
infinitum (Morgenstern, 1935)] and non-computability of best response functions
(Koppl et al., 2002; Rabin, 1957). The ability to break at various points in the higher-
order reasoning chain can be considered as “partial self-reference“ (Löfgren, 1990;
Mackie, 1971). Importantly, rather than implicating negation (Prokopenko et al.,
2019), this type of self-reference represents higher-order reasoning as a logically
non-contradictory chain of recursion (reasoning about reasoning...). Hence, bounded
rationality arises from the ability to break at various points in the chain, discarding
further branches. “Breaking” the chain on an otherwise potentially infinite regress of
reasoning about reasoning can be seen as the players limitations in information
processing, determining when to end the recursion.

Another example of bounded rationality based on information processing
constraints is the relaxation of the best response assumption of players, which
allows for erroneous play, with deviations from the best response governed by a
resource parameter (Goeree et al., 2005; Haile et al., 2008).

In this work, we adopt an information-theoretic perspective on reasoning
(decision-making). By enforcing potential constraints on information processing,
we are able to relax both mutual consistency and best response, and hence, players do
not necessarily act perfectly rational. The proposed approach provides an informa-
tion-theoretic foundation for level-k reasoning and a generalised extension where
players can make errors at each of the k levels.

Specifically, in this paper, we focus on three main aspects:

● Players reasoning abilities decrease throughout recursion in a wide variety of
games, motivating an increasing error rate at deeper levels of recursion. That is, it
becomes more and more difficult to reason about reasoning about reasoning . . .
(necessitating a relaxation in best response decisions).

● Finite higher-order reasoning can be captured by discounting future chains of
recursion and ultimately discarding branches once resources run out. This
representation introduces an implicit hierarchy of players, where a player assumes
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they have a higher level of processing abilities than other players, motivating
relaxation of mutual consistency.

● Existing game-theoretic models can be explained and recovered in limiting cases
of the proposed approach. This fills an important gap between methods relaxing
best response and methods relaxing mutual consistency.

The proposed approach features only two parameters, b and c, where b quantifies
relaxation of players’ best response, and c governs relaxation of mutual consistency
between players. In the limit, b ! 1 best response can be recovered, and in the limit
c ¼ 1 mutual consistency can be recovered. Equilibrium behaviour is recovered in
the limit of both b ! 1; c ¼ 1. For other values of b and c, interesting out-of-
equilibrium behaviour can be modelled which concurs with experimental data, and
furthermore, in repeated games that converge to Nash equilibrium, player learning
can be captured in the model with increases in b and c. Importantly, we also show
how fitted values of b and c also generalise well to out-of-sample data.

The remainder of the paper is organised as follows. Section 2 analyses bounded
rationality in the context of decision-making and game theory, Sect. 3 introduces
information-theoretic bounded rational decision-making, Sect. 4 extends the idea to
capture higher-order reasoning in game theory. We then use canonical examples
highlighting the use of information-constrained players in addressing bounded
rational behaviour in games in Sect. 5. We draw conclusions and outline future work
in Sect. 6.

2 Background and motivation

While a widespread assumption in economics, perfect rationality is incompatible
with the observed behaviour in many experimental settings, motivating the use of
bounded rationality (Camerer, 2011). Bounded rationality offers an alternative
perspective, by acknowledging that players may not have a perfect model of each
other or may not play perfectly rationally. In this section, we explore some common
approaches to modelling bounded rational decision-making.

2.1 Mutual consistency

Equilibrium models assume mutual consistency of beliefs and choices (Camerer
et al., 2003; Camerer, 2003), however, this is often violated in experimental settings
(Polonio & Coricelli, 2019) where “differences in belief arise from the different
iterations of strategic thinking that players perform“ (Chong et al., 2005).

Level-k reasoning (Stahl & Wilson, 1995) is one attempt at incorporating bounded
rationality by relaxing mutual consistency, where players are bound to some level k
of reasoning. A player assumes that other players are reasoning at a lower level than
themselves, for example, due to over-confidence. This relaxes the mutual consistency
assumption, as it implicitly assumes other players are not as advanced as themselves.
Players at level 0 are not assumed to perform any information processing, and simply
choose uniformly over actions (i.e., a Laplacian assumption due to the principle of
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insufficient reason), although alternate level-0 configurations can be considered
(Wright & Leyton-Brown, 2019). Level-1 players then exploit these level-0 players
and act based on this. Likewise, level-2 players act based on other players being
level-1, and so on and so forth for level-k players acting as if the other players are at
level-ðk � 1Þ. Various extensions have also been proposed (Levin & Zhang, 2022).

A similar approach to level-k is that of cognitive hierarchies (CH) (Camerer et al.,
2004), where again it is assumed other players have lower reasoning abilities.
However, rather than assuming that the other players are at k � 1, players can be
distributed across the k levels of cognition according to Poisson distribution with
mean and variance s. The validation of the Poisson distribution has been provided in
Chong et al. (2005), where an unconstrained general distribution offered only
marginal improvement. Again, various extensions have been proposed (Chong et al.,
2016; Koriyama & Ozkes, 2021) and there are many examples of successful
applications of such depth-limited reasoning in literature, for example, Goldfarb and
Xiao (2011).

Endogenous depth of reasoning (EDR) is a similar approach to level-k and CH,
but it separates the player’s cognitive bounds from their beliefs of their opponent’s
reasoning (Alaoui & Penta, 2016). EDR captures player reasoning as if they are
following a cost-benefit analysis (Alaoui & Penta, 2022), with cognitive abilities
(costs) and payoffs (benefits).

One fundamental similarity across these methods is that they all maintain best-
response. That is, they best respond based on the lower-level play assumptions. The
following section introduces methods that instead maintain mutual consistency, but
relax the best-response assumption.

2.2 Best response

Alternate approaches assume that a player may make errors when deciding which
strategy to play, rather than playing perfectly rationally. That is, they relax the best
response assumption. Quantal response equilibrium (McKelvey & Palfrey,
1995, 1998) (QRE) is a well-known example, where rather than choosing the best
response with certainty, players choose noisily based on the payoff of the strategies
and a resource parameter controlling this sensitivity. Another method of capturing
this erroneous play is Noisy Introspection (Goeree & Holt, 2004). Utility
proportional beliefs (Bach & Perea, 2014) is another method that relaxes the best
response assumption, where the authors note that “possibly, the requirement that only
rational choices are considered and zero probability is assigned to any irrational
choice is too strong and does not reflect how real world [players] reason”, giving
merit to the relaxation of best-response. By allowing for errors in decision-making,
these methods offer a more realistic perspective on how individuals make choices.

2.3 Infinite-regress

When considering reasoning about reasoning, infinite regress can emerge Knudsen
(1993). The problem of infinite regress can be formulated as a sequence
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A; f ðAÞ; f ðf ðAÞÞ; f ðf ðf ðAÞÞÞ
where the player is first confronted with an initial choice of an action a from the set
of actions A, or a computation f(A). If the action is chosen, the decision process is
complete. If, instead, the computation is chosen, the outcome of f(A) must be cal-
culated, and the player is then faced with another choice between the obtained result
or yet another computation. This process is repeated until the player chooses the
result, as opposed to performing an additional computation. Lipman (1991) inves-
tigates whether such sequence converges to a fixed point. A similar approach by
Mertens and Zamir (1985) formally approximates Harsanyi’s infinite hierarchies of
beliefs (Harsanyi, 1967, 1968) with finite states.

2.4 Contributions of our work

In contrast to existing works, we propose an information-theoretic approach to
higher-order reasoning, where each level or hierarchy corresponds to additional
information processing for the player. While Alaoui and Penta (2016) capture the
trade-off between additional reasoning and payoff, by measuring the first intersection
of the players’ payoff improvement (from k to k þ 1), and the cost of performing this
additional reasoning cðk þ 1Þ. This cost function c has to be determined (for all c(k)),
for example, with maximum likelihood estimation to estimate the average cost of
performing this extra level of reasoning (Alaoui & Penta, 2022). In contrast, we
propose capturing this trade-off with information processing costs by using the
Kullback–Leibler divergence to constrain the overall change in action probabilities at
each stage of reasoning.

Our approach constrains the overall amount of information processing available to
the players, leading to potential errors at each stage of reasoning, which is not present
in existing level-k type approaches. By doing so, we establish a foundation for
“breaking“ the chain of higher-order reasoning based on the depletion of players’
information processing resources.

This results in a principled information-theoretic explanation for decision-making
in games involving higher-order reasoning. Best response is relaxed with b\1
(linking to quantal response equilibrium) and mutual consistency is relaxed with
c\1 (linking to level-k type models). Best response and mutual consistency are
recovered with b ! 1 and c ¼ 1. This contributes to the existing literature on game
theory and decision-making by adopting an information-theoretic perspective on
bounded rationality, quantified by information processing abilities. A key benefit of
the proposed approach is while level-k models relax mutual consistency, but retain
best response, and QRE models relax best response but retain mutual consistency
(Chong et al., 2005), the proposed approach is able to relax either assumption
through the introduction of two tunable parameters. We apply this model to various
games, demonstrating the usefulness of the proposed approach for capturing human
behaviour when compared to these existing approaches.
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3 Technical preliminaries: information-theoretic bounded rationality

Information theory provides a natural way to reason about limitations in player
cognition, as it abstracts away specific types of costs (Wolpert, 2006; Harre, 2021).
This means that we can assume the existence of cognitive limitations without
speculating about the underlying behavioural foundations. As pointed out by Sims
(2003), an information-theoretic treatment may not be desirable for a psychologist, as
this does not give insights to where the costs arise from, however, for an economist,
reasoning about optimisation rather than specific psychological details may be
preferable, for example, in the Shannon model (Caplin et al., 2019). Such models
have seen considerable success in a variety of areas for information processing, for
example, embodied intelligence (Polani et al., 2007), self-organisation (Ay et al.,
2012) and adaptive decision-making of agents (Tishby & Polani, 2011) based on the
information bottleneck formalism (Tishby et al., 1999).

In this work, we adopt the information-theoretic representation of bounded
rational decision-making proposed by Ortega and Braun (2013), which has been
further developed in Ortega and Braun (2011), Braun and Ortega (2014), Ortega and
Stocker (2016), Gottwald and Braun (2019). This approach has a solid theoretical
foundation based on the (negative) free energy principle and has been successfully
applied to several tasks (Evans & Prokopenko, 2021). We begin by providing an
overview of single-step decisions and then sequential decisions, before discussing
extensions for capturing the relationship between processing limitations and higher-
order reasoning.

3.1 Single-step decisions

A boundedly-rational decision maker who is choosing an action a 2 A with payoff U
[a] is assumed to follow the following negative free energy difference when moving
from a prior belief p[a], e.g., a default action, to a (posterior) choice f[a], given by:

�DF½f ½a�� ¼
X
a2A

f ½a�U ½a� � 1

b

X
a2A

f ½a� log f ½a�
p½a�

� �
ð1Þ

The first term represents the expected payoff, while the second term represents a cost
of information acquisition that is regularised by the parameter b. Formally, the
second term quantifies information acquisition as the Kullback–Leibler (KL) diver-
gence from the prior belief p[a]. Parameter b, therefore, serves as the resource
allowance for a decision-maker.

By taking the first order conditions of Eq. (1) and solving for the decision function
f[a], we obtain the equilibrium distribution:

f ½a� ¼ 1

Z
p½a�ebU ½a� ð2Þ

where Z ¼ P
a02A p½a0�ebU ½a0;x� is the partition function. This representation is

equivalent to the logit function (softmax) commonly used in QRE models, and

123

76 B. P. Evans, M. Prokopenko



relates to control costs derived in economic literature (Mattsson & Weibull, 2002;
Stahl, 1990).

The parameter b serves as a resource allowance for the decision-maker,
modulating the cost of information acquisition from the prior belief. Low values
of b correspond to high costs of information acquisition (and high error play), while
as b ! 1, information becomes essentially free to acquire, and the perfectly rational
homo economicus player is recovered.

3.2 Sequential decisions

This free energy definition can be extended to sequential decision-making by
considering a recursive negative free energy difference, as described in Ortega and
Braun (2013, 2014). This corresponds to a nested variational problem, and involves
introducing new inverse temperature parameters bk for K sequential decisions, which
allows for different reasoning at different depths of recursion to choose a sequence of
K actions a�K .

Therefore, for sequential decision-making, Eq. (1) can be represented as:

�DF½f � ¼
X
a�K

f ½a�K �
XK
k¼1

U ½ak j a\k � � 1

bk
log

f ½ak j a\k �
p½ak j a\k �

� �
ð3Þ

where a\k abbreviates the history ao; ::; ak�1 of decisions. We can expand the sum:

¼
X
a1

f ½a1�
�
U ½a1� � 1

b1
f ½a1� log f ½a1�p½a1�

þ
X
a2

f ½a2 j a1�
�
U ½a2 j a1� � 1

b2
f ½a2 j a1� log f ½a2 j a1�p½a2 j a1�

þ . . .

þ
X
aK

f ½aK j a\K �
�
U ½aK j a\K � � 1

bK
f ½aK j a\K � log f ½aK j a\K �

p½aK j a\K �
��

ð4Þ

which we can see as first choosing an action a1 at k ¼ 1, while considering that to
choose this action, we must consider the future stages by analysing the result at k ¼ 2
given the choice a1, and so forth. To compute this, we can solve the innermost sum
first:

f ½aK j a\K � ¼ 1

ZK
p½aK j a\K �ebKU ½aK ja\K � ð5Þ

which recovers Eq. (2) with the introduction of conditioning on decision histories.
This represents the base-case for recursion. For steps where k\K, we get the fol-
lowing equilibrium solution for sequential decisions:
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f ½ak j a\k � ¼ 1

Zk
p½ak j a\k � exp bkðU ½ak j a\k � þ 1

bkþ1
log Zkþ1Þ

� �

¼ 1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PriorBelief

� Z
bk=bkþ1

kþ1|fflfflffl{zfflfflffl}
FutureContribution

� ebkU ½ak ja\k �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
CurrentPayoff

ð6Þ

where decisions are now dependent on the history of decisions as well as on a
recursive component based on the future contribution of each decision. Here

Zk ¼
X
ak

p½ak j a\k �Zbk=bkþ1

kþ1 ebkU ½ak ja\k � ð7Þ

where ZK ¼ 1, i.e., the base-case for recursion at the final level.

3.3 Extension

With this formal and generic treatment of information-processing costs for sequential
decision-making, it is desirable to use this to capture bounded rational reasoning of
an agent making sequential or simultaneous decisions in games. By representing
reasoning as an extensive-form game tree, these two can be captured in a similar
manner. Simultaneous decisions can be treated as if they are pseudo-sequential
decisions, considering possible repercussions for various choices.

To model higher-order reasoning, we extend the information-theoretic formulation
for sequential decisions discussed in Sect. 3.2. This involves representing reasoning
as a (pseudo) sequence of decisions, where each decision corresponds to a ”level“ of
reasoning. At each level, players may play incorrectly, producing a level-k play that
is modulated by bk. A high bk corresponds to an exact level-k thinker, while a low bk
corresponds to an error-prone level-k thinker. We can formalise this chain of
reasoning as an extensive-form game tree, where at the root node, a player is faced
with a decision to choose from a set of available options A or perform additional
processing f(A) to acquire new information on the beliefs and repercussions of each
choice. If the player chooses not to process additional information, each branch is
terminated early, and the player makes a decision based solely on the immediately
available information. However, if the player chooses to process additional
information, each action branch is (potentially) extended to analyze the possible
repercussions of taking an action, and a higher level thinker can examine these
repercussions. This process continues until the player runs out of processing
resources or, in a finite problem, converges to a solution. For example, in the p-
beauty contest analyzed in later sections, convergence occurs once the guess hits 0.

This extensive-form game tree representation means reasoning about simultaneous
decisions can be treated in the same manner as decisions in sequential games.
However, the key issue here is the requirement of Eq. (6) to have K information
processing parameters for each step or level of reasoning. To analyse the purpose of
these parameters, we consider a simple case, setting bk ¼ b for all k, giving discrete
control (Braun et al., 2011):
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f ½ak j x; a\k � ¼ 1

Zk
p½ak j a\k �Zkþ1e

bU ½ak ;xja\k � ð8Þ

which clarifies that the boundedness applies to the computation of payoff U, but the
depth of reasoning (or recursion-depth) is dependent on the length of the sequence
(or level) K, not on b. To represent higher-order reasoning more succinctly, it would
be desirable to implicitly base the sequence length K on the resource parameter b
rather than keeping them separate. This would allow us to treat recursive reasoning in
information-theoretic terms. For instance, when b ! 1, K ! 1, which captures
(potential) infinite-regress, while b ¼ 0 would imply K ¼ 0, leaving the player with
no information processing abilities.

In order to achieve this, b must be reduced at each level k. This reduction in b at
each level is related to the relaxation of mutual consistency, reflecting how a player
perceives other (lower-level) players’ reasoning about the problem. In the next
section, we outline our proposed approach for modelling this. This extension allows
us to reason directly about resource constraints instead of sequential level-k thinking.

4 Proposed approach

The proposed approach implicitly enforces the assumption that, in sequential games,
it becomes more difficult to reason to later stages in the game (e.g. in chess, it is
difficult to reason 5 steps-ahead), and likewise in simultaneous games, it is difficult
to perform the level of higher-order reasoning required to arrive at the equilibrium
solution. The further a player mentally tries to reason, the more likely an error is to
occur, as the processing resources deplete. This assumption is captured under the
proposed model in a generic information-theoretic sense.

The key concept is that it becomes more difficult to reason about reasoning, that is
the further one tries to explore through the extensive-form tree. This overall process
is visualised Fig. 1, where the players reasoning error increases throughout the steps
of reasoning. This representation can be thought of as a hierarchy of players noisily

Depth 1 Depth 2 Depth 3 Depth K...

Fig. 1 The effect of discounting resources over time. In the beginning, the player has b resources and may
make some error (red bars). Parameter c controls how this error grows over time and, implicitly, how the
player believes lower-level players will respond. A low c means the errors increase drastically at each level,
assuming opponents with much lower reasoning abilities. As bck ! 0, the noise increases, and the
recursion eventually stops once the utilities become indistinguishable (i.e., the player can not reason any
deeper)
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responding to lower level players, or as a sequential decision with increasing noise at
each step. Once a player’s resources deplete, the later depths simply echo the prior
beliefs as the noise obstructs the payoffs.

4.1 Quantal hierarchy model

To model higher-order reasoning with processing costs, we propose a more flexible
and succinct approach than simply setting a maximum depth K and corresponding
parameters bk in a pseudo-sequential decision-making task. Instead, we introduce an
overall information processing parameter b, which captures the available information
processing resources for a player, and a discount parameter c 2 ½0; 1�, which controls
the reduction in player rationality throughout the reasoning chain. This approach
allows for heterogeneous bounds on player reasoning, relaxing the assumptions of
best response and mutual consistency. We refer to this approach as the quantal
hierarchy (QH) model, as it shares formal similarities with quantal response
equilibrium and cognitive hierarchy models, as discussed in previous sections.

4.1.1 Formulation

We represent reasoning as information-constrained sequential decision-making. The
proposed formulation features only two parameters, b and c 2 ½0; 1� (as opposed to
the vector bk and number of levels K). Reasoning resources are then set as

bk ¼ bck

i.e., bk is b discounted based on c and the current depth of reasoning. This can be
represented by the following recursive free energy difference:

�DF½f � ¼
X
a�K

f ½a�K �
X1
k¼0

U ½ak j a\k � � 1

bck
log

f ½ak j a\k �
p½ak j a\k �

� �
ð9Þ

where we have represented the sequence as an infinite-sum. The sum converges due
to the discount parameter as the later (inner-most sums) simply echo the prior beliefs
once the player’s computational resources are exhausted. This formalisation draws
parallels with the reinforcement learning (RL) methods, where such representations
are common for reasoning about future states for the player. In RL, c is used to
discount future timesteps. Here, c is used to discount future chains of reasoning about
reasoning (i.e., the depth of recursion is governed by b discounted by c), and to
represent the limited resources that we believe other players have. We have repre-
sented this as in infinite sum with k ! 1, however, in various problems (such as
sequential games) K can be assumed to be finite. The solution for the decision
function f ½ak j a\k � with the discounted b becomes:
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f ½ak j a\k � ¼

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

; if bck � 0

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

� ebU ½ak ja\k �|fflfflfflfflffl{zfflfflfflfflffl}
Current Payoff

; if c ¼ 0

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

� Z1=c
kþ1|ffl{zffl}

Future Contribution

� ebc
kU ½ak ja\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Current Payoff

; otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

which aims to capture decisions based on the beliefs of other players reasoning at
later stages. With the assumption of a discount rate c, we can see the recursion is now
depth-bound based on the (discounted) resource parameter. Once bck ! 0,1 the
recursion will stop since the result will simply echo the prior belief as no focus will
be placed on the payoff, becoming the base case for recursion (the “naive” player).
This means that in the new implicit limit K2 (denoted by the case where bk � 0),
reasoning about the future provides no new information, which recovers the original
form of Eq. (5) (when c ¼ 1) with the introduction of conditioning on histories.

With the proposed representation, what was previously thought of in the context
of sequential decisions, can be extended and modified to think about hierarchies of
beliefs. The informationally constrained players “break“ the chain of reasoning due
to depleting their cognitive or computational capabilities as bounded by b and c.
Formally, this is represented as a (potentially) infinite-sum that converges based on c.
By discounting future computation in a chain of recursion, we can approximate
higher-order reasoning, where players become increasingly limited as the reasoning
chain progresses, making it more challenging to reason about reasoning.

4.1.2 Parameters

Resource parameter The resource parameter b quantifies the amount of processing a
player can perform. Perfect utility maximisation behaviour is recovered with b ! 1.
With b\1, players are assumed to be limited in computational resources and must
now balance the trade-off between their computation cost and payoff. With b ! 0,
players have no processing resources, and choose based on their prior beliefs (default
actions). Anti-rational (or adversarial) play can be modelled with b ! �1.

Discount parameter The discount parameter c quantifies other players mental
processing abilities in terms of level-k thinking. A high c assumes other players play
at a relatively similar cognitive level, whereas a low c assumes other players have
less playing ability. With c\1, Eq. (10) is guaranteed to converge to a finite
sequence of decisions, where the ability to process information decreases the further
we get through the sequence. This captures the belief about play at later stages of
reasoning, where other players are assumed to be less rational (and thus, more noisy)
as governed by c. The case c\1 implicitly relaxes mutual consistency as lower-level

1 e.g. when bck\� where � is some small enough term where the payoffs become indistinguishable, here,
� ¼ 10�8.
2 In contrast to level-k, here K indicates the level with the lowest resources.
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thinkers are then governed by a lower resource parameter, and allows for players to
believe that players at later nodes behave more noisily. In the case of otherwise
infinite regress (where backward induction can not be used), the limited foresight
approach proposed converges to a finite approximation of the sequence by relaxing
the assumption of mutual consistency. In tractable problems, we recover an
approximation of backward induction where the player performing such induction
may make errors at each step due to limited computational processing abilities. With
c ¼ 1, we recover mutual consistency, as we assume other players are just as rational
as ourselves, and in the special case with uniform prior beliefs and c ¼ 1, we collapse
to a logit form of agent QRE (McKelvey & Palfrey, 1998; Turocy, 2010). The special
case for c ¼ 0 exists in Eq. (10) as in this case, no future processing will be
performed.

In the limit, with b ! 1; c ¼ 1, perfect backward induction is recovered (see
Sect. B.1). Crucially, the proposed QH model allows for a general representation,
relaxing the perfect rationality assumption (with b\1; c\1), which can model out-
of-equilibrium behaviour compatible with observed experimental data. We explore
the role of these parameter values in more detail in the following section.

Parameter interactions In Fig. 2 we visualise how b and c interact in a general
setting. For b ! 1 and c ¼ 1, we approach payoff maximisation behaviour, i.e., the
perfectly rational (Nash Equilibrium) player is recovered. For b ! �1 and c ¼ 1,
payoff minimisation behaviour (an adversarial player) is recovered. In between, we
can see how c adjusts b. It is these values in between random play (b ¼ 0) and
perfect payoff maximisation behaviour which are particularly interesting, as they
give rise to out-of-equilibrium behaviour not predicted by traditional methods.

4.2 Explanation

We work through a generic example of the QH model on an extensive-form game
tree. A player is given decision-making resources, governed by b, to make a decision
f. At each stage of reasoning k, the player’s resources are discounted by c. Ultimately,
the player’s resources become depleted (at K, i.e., once bck � 0), and the game tree is
considered terminated, and the naive player chooses based on their prior belief
(which we assume to be uniform). This decision is then propagated backwards, and

Fig. 2 A heatmap visualising the
resulting players expected payoff
based on the values of b and c.
The yellow colour represents the
maximal expected payoff, and
the purple colour represents the
minimum expected payoff.
When either parameter is 0, the
result is a random choice
amongst the actions
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becomes the prior belief at the higher stage of reasoning p½aK�1�, where the player
has processing resources bcK�1, and hence, noisily responds to the lower-level play
based on these resources. This process is continued, with noisy responses from the
lower-level thinker captured by the resource constraint. Finally, once all results have
been recursively propagated, the higher-level players’ decision is made (which may
still be noisy, as captured by b). That is, their decision is made recursively, starting
from the most basic level of player reasoning (the naive player) and reasoning
upwards.

4.2.1 Basic example

To help illustrate the proposed approach, we will use a simplified version of the
Ultimatum game (see Sect. C.4) as a specific example. In this game, a player must
decide what percentage of a pie to take. We assume that there are uniform priors
among the available options at each stage.

At the first stage, Player 1 must request the percentage of the pie they want to take,
denoted by a1 2 ½0; 100�, with 100 giving the highest payoff (i.e., they receive the
entire pie). However, at the second stage, Player 1 encounters a fairness calculator
(Player 2). Player 2 decides whether or not to approve Player 1’s request, denoted by
A2 ¼ faccept; rejectg. The decisions are based on the following utilities:

U1½a1� ¼ a1 � f2½accept j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ 50

ð11Þ

where Un corresponds to Player n’s payoff, and fn the probability with which Player n
chooses the action. A player who has no look-ahead, i.e., one who assigns zero
weight to future decisions (or assumes that their opponent has zero processing
abilities), can be represented with b ! 1 and c ¼ 0. Such a player simply looks at
the first stage and sees that it is in their best interest to request 100% of the pie.
However, this player fails to take into account the repercussions of their chosen
action, as they did not consider the future decisions. They did not compute f2½a2 j a1�,
and thus assumed that f2½a2 j a1� is uniform and that their opponent would be
indifferent to accepting or rejecting their request regardless of the value of a1.

A perfectly rational player with unlimited computational resources, i.e., b ¼ 1
and c ¼ 1, would request 49 (assuming integer requests). They assign weight to the
future of their actions, and can see that for any a[ 50, the fairness calculator will
deny their request, and they will be left with nothing (at a ¼ 50, the calculator will be
indifferent to accepting or rejecting their request). This corresponds to the subgame
perfect equilibrium, where the player performed backward induction. That is, the
player examined the future until they reached the end of the game and then reasoned
backwards to request the optimal choice.

A player with limited computational resources, i.e., b\1, requests the best
action they can subject to their resource constraint. For example, they may only
request a ¼ 40, as they are unable to complete the search for a ¼ 49. A player with
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no information processing abilities, i.e., b ¼ 0, cannot search for any optimal choices
and therefore chooses based on the prior distribution, which we assumed to be
uniform. Therefore, the player is equally likely to choose any a 2 A.

An interesting question that arises is what if we assume that the ”fairness“
calculator may make errors, and that it is not necessarily defined by a step function
that rejects all requests above 50 and accepts all below. For example, there may be a
range where 100 will get rejected, but perhaps 75 would not. This can be captured
with bc\1, where the calculator is assumed to make errors for low values, and for
bc ! 1, it is assumed to be perfectly rational. If the fairness calculator is broken
and is indifferent to accepting or rejecting values, this can be represented with c ¼ 0,
which gives 0 processing ability to the calculator. This means
f2½accept2 j a1� ¼ f2½reject2 j a1� ¼ 0:5, and therefore, a rational Player 1 should
request a1 ¼ 100.

This example shows the usefulness of the proposed approach, and how modifying
b and c can capture a variety of heterogeneous behaviours between the two players.

5 Results

In this section, we perform out-of-sample comparisons across various canonical
economic games, including both sequential and simultaneous games. We compare
the proposed quantal hierarchy model against well-known approaches to capturing
bounded rational reasoning, including QRE, level-K and cognitive hierarchy, as well
as the Nash equilibrium predicted solutions. To assess the performance of each
method, we fit the corresponding parameter values to experimental data and then
evaluate the performance on hold-out data. For the quantal hierarchy method, these
parameter values are b and c. For QRE, the parameter value is k, which serves a
similar purpose as b in our approach, i.e., relaxing best response. For level-k, the
parameter value is the steps of reasoning k. For cognitive hierarchy, the parameter
value is s, corresponding to the Poisson distribution of level-k thinkers. Further
information on model fitting is given in Sect. A.

We show how the proposed approach convincingly captures human behaviour and
generalises beyond the training examples, outperforming existing approaches on a
wide range of games.

5.1 Performance on canonical games

For this work, we use various experimental data from canonical economic sequential
and simultaneous games. Specifically, for simultaneous games, we analyse market
entrance and beauty contest games, and for sequential games, centipede, and
bargaining games.

For market entrance games, we use the data of Camerer (2011), originally
presented in Sundali et al. (1995). For the beauty contest game, we use p-beauty
contest results from Bosch-Domenech et al. (2002). For the Centipede games, we use
the four and six-level data from McKelvey and Palfrey (1992). For the sequential
bargaining games, we use the Ultimatum game and two-stage game from Binmore
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et al. (2002) (Game 1 and 3 in their paper). Further discussion on game specifics,
utilities, and experimental analysis is given in Sect. C.

For each game, we perform 5 � 2 repeated cross-fold validation (Dietterich,
1998), analysing the out-of-sample performance. This analysis ensures that the
inclusion of an additional parameter does not overfit to the original training data, and
instead, ensures the approach generalises well to unseen data. We present the average
RMSE on the unseen data and the resulting rankings (Demšar, 2006) of each method
in Table 1. The rankings account for the independence of the games, and the inability
to compare errors directly across game classes. A visualisation of the resulting ranks
in Fig. 3. By using these evaluation metrics, we are able to determine the
effectiveness of the proposed method in comparison to existing approaches for
predicting (out-of-sample) human behaviour on a range of canonical games.

The proposed quantal hierarchy method consistently performs well across the
various games trialled, resulting in the best (lowest) overall rank (Table 1), as well as
the most consistent (narrowest distribution of results, Fig. 3), always performing in
the top 2. These results validate the modelling assumption that it becomes more
difficult to reason at deeper levels of reasoning, and thus, the reasoning process
becomes more erroneous. This motivates the usage of the quantal hierarchy model
for capturing human decision-making in a wide-range of settings.

In the following subsections, we analyse the game results in more detail.

5.2 Simultaneous games

Market entrance
In the market entrance game, players must simultaneously decide whether to enter

or stay out of a market, where the payoff depends on the decisions of the other
players and market capacity c (see Sect. C.1). Experimental data show that player
behaviour in market games is inconsistent with either mixed or pure Nash equilibria,
although, with repeated play, players begin to approach the mixed strategy
equilibrium (Duffy & Hopkins, 2005).

These deviations from equilibrium are captured well by the proposed quantal
hierarchy model (Fig. 4). We see that in the beginning (before learning, Fig. 4a), the
players overestimate for low c and underestimate for high c. Towards the final rounds
(after learning, e.g. Fig. 4b), the behaviour approaches equilibrium, and the proposed
QH model approximates this well using an increase in processing resources b and/or
c (see Table 2) to capture this player “learning”. These changes highlight an
important property of the QH model. If a player is learning, i.e., becoming closer to
rational, this should correspond to an increase in b (and/or an increase in c).

The level-k model fails to capture the overall trend, and is best fitted with k ¼ 0,
performing worse than the mixed strategy equilibrium (and all other alternatives).
The reason for this is simple. Level-k (k� 1) implies a step function, where for c[ T
where T is some threshold, the player enters with certainty, and for c� T, the player
stays out with certainty. The distance to the experimental data from this step function
is greater than the uniform case (k ¼ 0), so the uniform case is chosen. The cognitive
hierarchy model improves upon level-k, by fitting a distribution of k thinkers, able to
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Table 1 Average out-of-sample (5 � 2-fold cross-validation) error

Quantal hierarchy Level-k Cognitive hierarchy QRE Nash

Market entrance

Block 1 0.565 (2) 1.503 (5) 0.725 (3) 0.564 (1) 1.242 (4)

Block 2 0.426 (1) 2.115 (5) 1.077 (4) 0.442 (2) 0.726 (3)

Block 3 0.387 (1) 2.230 (5) 1.283 (4) 0.406 (2) 0.548 (3)

Block 4 0.493 (2) 2.344 (5) 1.365 (4) 0.431 (1) 0.559 (3)

Block 5 0.489 (1) 2.513 (5) 1.387 (4) 0.519 (2) 0.574 (3)

Average rank 1.4 5 3.8 1.6 3.2

Beauty contest

Lab 0.020 (1) 0.191 (4) 0.175 (3) 0.027 (2) 0.194 (5)

Classroom 0.042 (2) 0.188 (4) 0.162 (3) 0.019 (1) 0.190 (5)

Take Home 0.056 (2) 0.188 (4) 0.162 (3) 0.020 (1) 0.192 (5)

Internet 0.053 (2) 0.180 (4) 0.149 (3) 0.024 (1) 0.181 (5)

Newspaper 0.061 (2) 0.186 (4) 0.149 (3) 0.024 (1) 0.187 (5)

Theorists 0.071 (2) 0.171 (4) 0.135 (3) 0.040 (1) 0.172 (5)

Average rank 1.83 4 3 1.17 5

Centipede

4-level 0.469 (1) 1.774 (4) 0.611 (3) 0.606 (2) 3.715 (5)

6-level 0.350 (1) 1.950 (4) 0.439 (2) 1.120 (3) 2.837 (5)

Average rank 1 4 2.5 2.5 5

Bargaining

Ultimatum

− (10, 10) 0.051 (1.5) 0.098 (3.5) 0.098 (3.5) 0.051 (1.5) 0.197 (5)

− (10, 60) 0.030 (1) 0.093 (3.5) 0.093 (3.5) 0.057 (2) 0.192 (5)

− (70, 10) 0.048 (2) 0.090 (3.5) 0.090 (3.5) 0.047 (1) 0.187 (5)

Two-stage

�D ¼ 0:9 0.040 (1) 0.096 (3.5) 0.096 (3.5) 0.084 (2) 0.198 (5)

�D ¼ 0:8 0.054 (1) 0.095 (3.5) 0.095 (3.5) 0.076 (2) 0.198 (5)

�D ¼ 0:7 0.048 (1) 0.099 (3.5) 0.099 (3.5) 0.075 (2) 0.197 (5)

�D ¼ 0:6 0.067 (1) 0.128 (3.5) 0.128 (3.5) 0.095 (2) 0.197 (5)

�D ¼ 0:5 0.037 (1) 0.111 (3.5) 0.111 (3.5) 0.054 (2) 0.190 (5)

�D ¼ 0:4 0.030 (1) 0.105 (3.5) 0.105 (3.5) 0.039 (2) 0.191 (5)

�D ¼ 0:3 0.024 (1.5) 0.081 (3.5) 0.081 (3.5) 0.024 (1.5) 0.192 (5)

�D ¼ 0:2 0.052 (2) 0.117 (3.5) 0.117 (3.5) 0.050 (1) 0.196 (5)

Average rank 1.27 3.5 3.5 1.73 5

Overall

Rank 1.37 4.12 3.2 1.75 4.55

Resulting ranks are indicated in brackets. In both cases, lower is better. Tied values receive the average
rank between the ranks which would have been achieved had there been no ties. The overall rank is
determined as the mean rank of the average rank across the game classes, meaning each game has an equal
weighting in the overall rank, and the number of experiments for a game class does not affect this overall
weight
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“smooth“ out this step function, with the line shown in Fig. 4. While this captures the
qualitative trend (over entry for low c, under entry for high c, near equilibrium for
mid c), quantitatively, the approach is not as strong as QRE, quantal hierarchy, or
even the mixed-strategy equilibrium in most cases.

The QRE model is also a good fit here, however, due to the representation is
constrained to linear lines. In contrast, the QH representation can capture such “S”
shape curves, better approximating the experimental data in 3 out of the 5 blocks.
QRE and QH significantly outperform the approaches which just relax mutual
consistency (level-k and CH), motivating the relaxation of best-response in addition
to mutual consistency.

p-Beauty contest
In the p-beauty contest (Moulin, 1986), players must try and guess p times the

average guess (in the range [0, 100]) of other competitors (see Sect. C.2). The Nash
equilibrium is for all players to guess 0, however, experimentally, we see large
deviations from this behaviour.

Analysing the experimental results (Fig. 5), we see very strong performance for
the QH model when modelling the less experienced players, e.g. in the Lab
experiments. The QH model fits the data well, capturing the overall distribution and
achieving the lowest error rate. However, for the other experiments composed of
more experienced players or players with more time (take home, newspaper), we see
the distribution is better approximated by QRE.

The reason for this performance is because under the proposed approach, as a
player becomes more rational, the distribution of choices narrows in to the optimal
choice (see Fig. 6). However, under these experimental settings, even in the theorist
case, there is bounded rational (and anti-rational) behaviour. These deviations are
captured well by QRE. However, it is difficult for the QH model to capture the wide
distribution of choices, as well as the bulk probability mass around the optimal case.
For example, in Fig. 6 we show the proposed approach approximating level-k. As k
increases, the distribution narrows. Here, this narrowing of the distribution makes it
difficult to capture the entire prediction range for the more advanced subjects, due to
the fact there are many sub-rational choices mixed in. As a result, we see similar
fitted models for each case, despite the fact that the theorists clearly have a higher
level of reasoning. If, instead, we tried to approximate the average player for each

Fig. 3 Overall rankings for out-of-sample errors across the various game classes trialled. The vertical bars
indicate the full range of achieved ranks across the games, with the horizontal middle bar indicating the
median ranking. A lower ranking is better (with 1 = best)
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case, we could capture this increase in reasoning effort, and it would reflect an
increase in b and/or c as expected.

Nevertheless, in all cases, the model still significantly outperforms level-k,
cognitive hierarchy, and the mixed strategy equilibrium. The level-k model predicts
some of the representative spikes in the experimental data (e.g., with k ¼ 1 guesses
of 33, k ¼ 2 of 22, etc.). However, we can see that the players do not necessarily
choose according to level-k, and may make errors around the best response suggested
by level-k reasoning. Level-k thinking presupposes that players will predict a
multiple of p, i.e., with p ¼ 2

3, we get p� 50; p2 � 50; . . .; pk � 50, as the players at
each level are best responding to lower-level players. In the proposed QH model,
level-k reasoning can be recovered if bt ¼ 1 for t� k and bt ¼ 0 for t[ k.

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5

Fig. 4 Market entrance game. The darker lines indicate the mean result from the 5 � 2 cross-validation.
The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black
circles. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the
orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution
is indicated as the diagonal dashed grey line
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However, with bt\1, the proposed QH model produces a distribution around these
best-responding values anticipating potential errors in player reasoning, with these
errors growing throughout the chain of reasoning.

The cognitive hierarchy model can improve upon the level-k approach here by
weighting the “spikes“ of the level-k model differently, however, this still fails to capture
the underlying distribution. A large reason for this is that certain predictions in the p-
beauty contest are considered irrational, for example, any prediction over 67. However,
we can see experimentally that such predictions occur, for example, in Fig. 5. If a player

Table 2 Average fitted parameter values for each approach. Explanation of the parameters and the fitting
procedure is given in Sect. A

Quantal
hierarchy
b, c

Level-
k
k

Cognitive
hierarchy
s

QRE
k

Nash

Market entrance

Block 1 0.43, 0.24 0.0 0.72 10.39

Block 2 0.67, 0.18 0.0 0.68 34.56

Block 3 0.62, 0.28 0.0 0.65 59.44

Block 4 0.32, 0.54 0.0 0.69 83.51

Block 5 0.75, 0.19 0.2 0.72 80.8

Beauty contest

Lab 0.08, 0.76 1.2 5.45 1.21

Classroom 0.1, 0.69 1.7 5.52 1.9

Take Home 0.06, 0.79 2.4 5.36 2.2

Internet 0.07, 0.72 3.3 5.67 2.31

Newspaper 0.08, 0.64 6.3 5.76 2.8

Theorists 0.05, 0.67 5.6 5.84 3.02

Centipede

4-level 12.43, 0.22 0.0 1.82 2.09

6-level 19.1, 0.14 0.3 2.3 1.09

Bargaining

Ultimatum

− (10, 10) 0.08, 0.92 0.0 4.36 0.08

− (10, 60) 0.2, 0.32 0.0 4.84 0.09

− (70, 10) 0.06, 0.88 0.0 3.68 0.06

Two-stage

�D ¼ 0:9 0.24, 0.13 0.0 4.07 0.04

�D ¼ 0:8 0.2, 0.22 0.0 4.29 0.05

�D ¼ 0:7 0.22, 0.28 0.0 3.73 0.06

�D ¼ 0:6 0.52, 0.2 0.0 3.89 0.08

�D ¼ 0:5 0.2, 0.36 0.0 2.97 0.11

�D ¼ 0:4 0.19, 0.38 0.0 3.78 0.1

�D ¼ 0:3 0.13, 0.49 0.0 3.69 0.08

�D ¼ 0:2 0.17, 0.52 0.0 8.02 0.11
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believes that other players would choose the maximal offer of 100, then the player
should choose 2

3 100 ¼ 67. Level-k or cognitive hierarchy models cannot capture such
irrational behaviour where players choose [ 67. That is, there is no distribution of level-
k thinkers that would predict 100. However, this feature can be captured directly under
the proposed QH and QRE models due to the errors in play, again motivating the
usefulness of relaxing best response in addition to mutual consistency.

In summary, we see that under the lab experiment, the QH approach is the best fit.
However, QRE is a better fit in other cases of the beauty contest game.

5.2.1 Sequential games

Centipede games
In the centipede game (see Sect. C.3), “two players alternately get a chance to take

the larger portion of a continually escalating pile of money. As soon as one person

Fig. 6 Example comparing the
decisions of level-k (dashed
vertical lines) to the proposed
QH model (solid lines) in the p-
beauty contest for various
settings

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 5 Beauty contest games. The darker lines indicate the mean result from the 5 � 2 cross-validation.
The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black line.
The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the orange line.
The level-k and cognitive hierarchy plots are shown in Fig. 12 due to the large difference in scales,
distorting the figure. The Nash equilibrium solution is indicated as the diagonal dashed grey line
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takes, the game ends with that player getting the larger portion of the pile, and the
other player getting the smaller portion” (McKelvey & Palfrey, 1992).

The subgame perfect equilibrium of the centipede game is for each player to
immediately take the pot without proceeding to any further rounds, however, we see
this is not the case experimentally, where players behave far from the subgame
perfect equilibrium (Fig. 14). In general, many players take towards the middle of the
game. The proposed QH model can capture this trend well, with QRE and cognitive
hierarchy generally over-weighting the earlier nodes and under-weighting the later
modes (Fig. 7).

The quantal hierarchy model provides the best fit for both the four and six-level
centipede games, capturing realistic beliefs. When modelling this reasoning process,
the player believes they are reasoning at a higher level than their opponent, but in
addition, it is as if the player overestimates how noisy their own play will be when
faced with a decision at later nodes. This overestimation is because once actually
faced with the decision, there will be a smaller game tree for the player to consider.
This reasoning process was shown to approximate the experimental results well,
motivating the discounting of information processing resources for capturing future
beliefs. When comparing the resulting parameters (b and c) from the four and six-
level variants (Table 2), we note that the six-level variant results in additional
information processing costs for the player (larger b and c). The additional
processing costs result from the longer chain of reasoning, requiring higher
processing resources.

The significantly improved performance over quantal response equilibrium on
both games motivates the usefulness of relaxing mutual consistency in addition to
best response. By relaxing mutual consistency, we captured the perceived “lapse“ in
reasoning when considering the full extensive form game tree by reducing the
information processing resources the further the player tries to reason through the
tree.

(a) Four Move. (b) Six Move.

Fig. 7 Four and six-level centipede games. The darker lines indicate the mean result from the 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown in the
dark grey bars. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is
the orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium
solution is indicated as the light grey bar at the first move
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Bargaining games
In bargaining games, players alternately bargain over how to divide a sum (see

Sect. C.4). We examine two types, single-stage (Ultimatum) and two-stage
bargaining games. These are extensions of the example game considered in
Sect. 4.2.1.

Ultimatum The results are presented in Fig. 8 for the ultimatum game. We see the
QH model explains important features of the observed experimental behaviour. For
example, with higher V1, Player 1 is likely to make a larger initial request (Fig. 8a vs
8c). Perfect rationality does not capture this (with the Nash equilibrium remaining
unchanged), whereas the QH model suggests higher initial requests (due to higher V1

if the request is rejected). The QRE model and the QH model behave similarly here.
The reason for this similar behaviour is because the ultimatum game is nearly a
single-stage decision, meaning the QH model “collapses” to QRE. This is also
confirmed in the fitted parameters Table 2, with the (10, 10) and (70, 10) having
almost identical values for b and k, and QH having relatively high values of c,
meaning the differences between Player 1 and Player 2 processing resources are
small. However, something interesting happens in the (10, 60) case, where QRE
cannot capture the distribution. For example, if we look to the right of the rational
rejection region for Player 2 (Fig. 16), we do not see any acceptances in (10, 10) or
(70, 10). Whereas, if we look in the rational rejection region of (10, 60), we see
several acceptances. This behaviour is irrational, because if the player rejected the
request, they would have received a higher payoff. In contrast, Player 1’s initial
requests are relatively rational, with the peak occurring around the rational request of
40. This mismatch in player rationality is captured under the proposed model with a
small c, i.e., a large discount in processing resources. This mismatch in rationality
cannot be captured with the standard QRE, which assumes a fixed b for both players.
These results motivate the discounting of player resources, which can capture
heterogeneous information processing resources between the two players. Alternate
forms of QRE, such as Heterogenous QRE have also been proposed to deal with such
dilemmas (Rogers et al., 2009), however, this is captured natively by the QH model.

The level-k model fails to capture any of the trends, with the uniform level-0 case
being the best fit. The cognitive hierarchy model predicts a representative spike at the

(a) (10,10) (b) (10,60) (c) (70,10)

Fig. 8 Ultimatum game. The darker lines indicate the mean result from the 5 � 2 cross-validation. The
shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black line. The
proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the orange line, level-
k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution is indicated as
the vertical dashed grey line
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rational capacity in the (70, 10) and (10, 60) cases, however, it is still clearly
outperformed by both QRE and QH.

These results confirm the usefulness of QH. When both players behave with
similar levels of rationality, this can be captured with c ! 1, and the model acts the
same as QRE. However, when there is a mismatch in player rationality, this
heterogeneity can be captured directly with c\1, which became most pronounced in
the (10, 60) case.

Two-stage While we saw similar behaviour between QRE and QH in the
ultimatum game, under the two-stage game, the differences between the approaches
become more pronounced due to the longer game tree. Under such conditions, the
usefulness of discounting future paths (and relaxing mutual consistency) becomes
more noticeable. The QH model convincingly outperforms QRE across the
experimental results with the small disagreement penalties3 (i.e., D[ 0:5), and still
generally outperforms QRE for the larger disagreement penalties (i.e., D� 0:5),
although the two methods become closer.

With the larger disagreement penalties (i.e. smaller D), the experimental data are
closer to the perfectly rational case, as indicated with the peaks corresponding
roughly to the rational request in Fig. 9. This distribution around the rational request
is precisely the premise QRE is founded on, so QRE achieves adequate performance.
However, with the smaller disagreement penalties (larger D, top row of Fig. 9), the
distribution is not centred around the rational request, meaning QRE struggles to
capture such phenomena. In contrast, the QH approach is robust to this shift due to
the relaxation of mutual consistency, and is able to capture the varying distributions
regardless of whether they are approximating the best-response case.

5.3 Results summary

The quantal hierarchy method consistently performed well out-of-sample in all
games, ranking the best overall and achieving either the first or second position in
every game. The results analysis was categorised into two game types: sequential and
simultaneous games, where reasoning is represented as an extensive-form game tree
with depleting information-processing resources. Although the representation
worked well in both game types, it showed more improvement over alternative
methods in sequential games. This improvement in sequential games can be
attributed to the discount parameter that captures the heterogeneity of players,
allowing for different information processing resources between the players at each
stage, relaxing mutual consistency, which was crucial in bargaining games.

On the other hand, in simultaneous games, the approach aims to fit a
representative distribution of the entire group, but it can struggle to capture the
entire distribution of players, particularly when they exhibit widely varying levels of
rationality, as in certain versions of the beauty-contest game. This highlights a
potential limitation of the approach when attempting to capture multimodal
distributions with varying levels of rationality, such as a bi-modal distribution with

3 These are referred to as “discount“ rates in Binmore et al. (2002). We have used the term disagreement
penalties to avoid confusion with the information processing “discount” parameter c.
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beginners and experts. To address this limitation, multiple versions of the model may
need to be fitted, such as one for beginners and one for experts, as modelling more
rational play narrows the distribution to the rational prediction and modelling less
rational play widens the distribution to account for larger errors, as demonstrated in
Fig. 6. However, despite this potential limitation, the method still performed
exceptionally well overall.

6 Discussion and conclusions

The assumption of perfect rationality amongst players is violated in numerous
experimental settings, particularly in non-repeated games. In this work, we utilised
experimental datasets for several games, showing that the equilibrium behaviour is
often a poor predictor of the observed actions. The proposed quantal hierarchy model
offers a concise alternative representation, relaxing some traditional game-theoretic
assumptions underlying rationality. The model is a good fit for experimentally
observed behaviour on a range of canonical economic games, outperforming existing
bounded rationality approaches on out-of-sample validation.

(a) D=0.9 (b) D=0.8 (c) D=0.7

(d) D=0.6 (e) D=0.5 (f) D=0.4

(g) D=0.3 (h) D=0.2

Fig. 9 Two-stage bargaining game. The darker lines indicate the mean result from the 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the
black line. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the
orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution
is indicated as the vertical dashed grey line
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In the QH model, we represent higher-order reasoning as pseudo-sequential
decision-making. At each level, players may reason erroneously, and this error grows
the deeper one reasons (i.e., it becomes more difficult to reason about reasoning). The
magnitude of the errors is governed by b, with b ¼ 0, players do not perform any
reasoning, and with b ! 1 players reason perfectly. Parameter b, therefore, relaxes
the best response assumption of players at each level of reasoning.

Decreasing b at each level of reasoning was shown to work well on a wide variety
of games, reinforcing the assumption that players cognitive abilities decrease
throughout the depth of reasoning. This reduction in player cognition is captured
with c, introducing an implicit hierarchy of players, relaxing the mutual consistency
assumption. Representing this hierarchy of players as extensive-form game trees
allowed for an information-theoretic representation, where lower-level players are
assumed to make more significant playing errors (constrained by lower information
processing resources). With a single-step decision, this recovers the quantal response
equilibrium model. With multi-stage decisions, we recover an approximation of a
generalised level-k formulation, where at each step, players are assumed to have
higher resources and reasoning ability than players below themselves, but may still
play erroneously.

Similar to QRE, the resource parameter b is problem dependent, and depends on
the payoff magnitude (McKelvey et al., 2000). This opens an area of research
analysing whether a normalised b can be used to measure problem difficulty, or
whether some relationship holds between the the experimentally fitted b and the b
which corresponds to the Nash solution. For example, a question arises if a
normalised b can provide insights across games, and if so, can this average distance
to the Nash solution be generally useful across games. A similar consideration is
given to whether such payoff perturbations in QRE can be related across different
games (Haile et al., 2008), and whether the boundedness parameter can be
endogenised (Friedman, 2020).

There is a clear relationship between the decision-making components proposed in
this work and the decision-making in multi-agent systems, such as agent-based
models (ABMs) and multi-agent reinforcement learning (RL) approaches. For
example, Wen et al. (2020) outline a novel framework for hierarchical reasoning RL
agents, which allows agents to best respond to other less sophisticated agents based
upon level-k type models. Likewise, Łatek et al. (2009) propose a recursion based
bounded rationality approach for ABMs. Replacing the agents in these multi-agent
approaches with the informationally constrained agents presented in our work
provides a distinct area of future research, where we could examine the resulting
dynamics and out-of-equilibrium behaviour from heterogeneous QH agents.

In summary, we proposed an information-theoretic model for capturing higher-
order reasoning for boundedly rational players. Bounded rationality is achieved in the
model by the relaxation of two central assumptions underlying rationality, namely,
mutual consistency between players and best response decisions. Through relaxing
these assumptions, we showed how the predictions from the proposed quantal
hierarchy model align well with the experimentally observed human behaviour in a
variety of canonical economic games.
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Appendix A Model fittingEach model is fit to the training portion of the data
(from 5 � 2 cross-fold validation), using Bayesian hyperparameter optimisation
(Bergstra et al., 2013). Every model is given 1000 evaluations for a fair comparison.
With level-k, due to the integer parameter, rather than Bayesian optimisation, we
instead perform an exhaustive search for k 2 ½0; 1; . . .; 100�, noting that this is an
extensive range of k, easily capturing standard k’s reported in the literature. The fitted
parameter values with the lowest mean squared error between the predictions and the
training values are selected. The out-of-sample (testing) portion is never seen by the
optimisation process and is only used for evaluation after the parameter optimisation
has been complete.

For quantal response equilibrium and quantal hierarchy, we sample from the range
0� b\100. While b is unbounded, we find this upper bound to be more than enough
with no fitted values coming close to this upper threshold. For c, this is bounded
0� c� 1. For cognitive hierarchy, we sample from the range 0� s\10, which
despite s being unbounded, again provides a more than sufficient range for the
experimental data, and covers common s’s reported in literature (Camerer, 2010;
Camerer et al., 2004).

For the beauty contest games, as well as the bargaining games, due to the large
action space (a 2 ½0; . . .; 100�), rather than using the raw data directly, a fitted
Gaussian kernel density estimate of the training and testing data is used to account
for the large action space and the relatively small number of observations. Scott’s rule
is used to determine the bandwidth automatically (Scott, 2015), and we validate the
robustness of this rule choice in Sect. D.2. The same kernel density estimates are
used across all methods to ensure fair comparisons. For the remaining game classes,
the action space is sufficiently well sampled from the observations, so no density
approximation is required.

Appendix B Special cases

B.1 Backwards induction

Backwards induction can be recovered as a limiting case of the proposed model. We
can see this as follows from Eq. (10) (and the expansion process from Eq. (4)), noting
that softmax ebU ½a�=Z converges to argmax with b ! 1:

f ½ak j a\k � ¼ 1

Zk
� Z1=c

kþ1|ffl{zffl}
Future Contribution

� ebc
kU ½ak ja\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Current Payoff

¼ argmax
ak2Ak

U ½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Current Payoff

þ Vkþ1|ffl{zffl}
Future Contribution

0
B@

1
CA

ð12Þ

where Vkþ1 is derived recursively based on choosing ak . Backward induction
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assumes that all future decisions will be rational, i.e., at each stage, players choose
rationally.

Appendix C Canonical games and experimental data

C.1 Market entrance/El Farol bar problem

The market entrance game was outlined in the context of cognitive hierarchies in
Camerer et al. (2004), and has also been considered in prior studies, e.g., Rapoport
et al. (1998). This game is fundamentally similar to the El Farol bar problem of
Arthur (1994), and minority games of Challet et al. (2013). A player will profit
(enjoy) in the market (bar) if less than d � N ; d 2 ½0; 1� players also enter the same
market (bar).

For this work, we use the experimental data from Camerer (2011), specifically the
results originally presented in Sundali et al. (1995). The payoff for staying out is
fixed

U ½stay outk � ¼ 1 ð13Þ
However, the payoffs for entering are dependent on the total demand from the other
(lower-level) players and a preferential capacity c ¼ d � N :

U ½enterk � ¼ 1þ 2ðc� f ½enterkþ1�Þ ð14Þ
There were N ¼ 20 subjects, and various c’s trialled c 2 ½1; 3; 5. . .; 19�.

C.1.1 Comparison methods

We can represent this pseudo-sequential structure (Camerer et al., 2004) as an
extensive-form game, with each level of reasoning forming a new node in the game
tree.

Level-k Under this configuration, a level-0 player is assumed to randomise, i.e.,
enter or stay out with equal probability (the same level-0 configuration is used for the
naive player in the QH model). A level-1 player exploits this and attends the bar if
d[ 0:5, or stay home with d\0:5, at d ¼ 0:5 the player is indifferent and would
attend with 50% probability. Level-2 players then base their decision assuming other
players are level-1, and enter only if the level-1 players underestimated the expected
capacity. Likewise, level-3 players base their decision on reasoning about level-2.
Level-k behaviour necessitates step functions in the response, where players only
enter at a capacity c if they believe lower-level thinkers have over or under entered.

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Following Camerer et al. (2004), we use the
Poisson distribution.

Quantal response equilibrium To derive the (mixed strategy) quantal response
equilibrium, we use the logistic function of the differences in payoffs (between enter
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and stay out) as the distribution function, with numeric estimations for the fixed-point
solution since no analytical solution exists, following Goeree et al. (2016, Sec-
tion 2.2.2 and Section 8) and Goeree and Holt (2005) (Fig. 10).

C.2 Beauty contest

Keynes (1937, 2018) originally formulated the beauty contest game as follows.
Contestants are asked to vote for the six prettiest faces out of a selection of 100. The
winner is the contestant who most closely picks the overall consensus. A naive
(level-0) strategy is to choose based on personal preference. A level-1 strategy is to
choose as if everyone is choosing on personal preference, so the player chooses
whom they think others will find most desirable. A level-2 strategy is then for players

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5

Fig. 10 Market entrance game at various blocks using the experimental data from Sundali et al. (1995). We
see over time, the experimental data becomes closer to the equilibrium of perfect attendance (dotted gray
line)
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to choose whom they think that others will think others will choose, and so on (with
Keynes believing there are players who “practise the fourth, fifth, and higher“ levels).
The game was originally outlined to highlight how investors are not necessarily
driven by fundamentals but rather by anticipating the thoughts of others.

An extension of the game is the p-beauty contest of Moulin (1986), where
contestants are asked to guess fraction p 2 ½0. . .1� (commonly p ¼ 2

3) of the average
value of the other competitors guesses within the range ½0; . . .100�. The Nash
equilibrium dictate that every player should choose 0. However, experimentally this
is not the case, and players act boundedly rational (Nagel, 1995). Such a game shows
out-of-equilibrium behaviour and motivates the modelling of such decisions in a
finite-depth manner (Aumann, 1992; Binmore, 1987, 1988; Stahl, 1993).

We use the experimental data provided by Bosch-Domenech et al. (2002) with
p ¼ 2

3. The resulting guesses are visualised in Fig. 11.
The utilities are represented as follows:

gk ¼ p�
P

akþ1
akþ1 � f ½akþ1�P
akþ1

f ½akþ1�
U ½ak � ¼ jak � gk j

ð15Þ

where gk represents the predicted goal, i.e., 2/3’s of the average weighted prediction
of the lower level thinkers. The utilities for each choice then become the distance to
the goal.

C.2.1 Comparison methods

Level-k Level-0 competitors are assumed to guess randomly between [0, 100] (the
same level-0 configuration is used for the naive player in the QH model). Level-1

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 11 Visualisation of various experimental p-beauty contests. The dotted vertical line indicates the
average for the given dataset. Datasets source: Bosch-Domenech et al. (2002)
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players then anticipate this and guess p� 50 (50 being the average from the level-0
players), level-2 players then guess p� ðp� 50Þ and so forth. As the levels increase,
the guesses, therefore, approach 0, coinciding with the perfectly rational choice.

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Again, following the convention of Camerer
et al. (2004), we use the Poisson distribution.

Quantal response equilibrium For the quantal response equilibrium, we use the
logit rule following Breitmoser (2012) estimated using fixed point iteration (see also
Section F4.1 of the supplementary material for Anufriev et al. (2022)) (Fig. 12).

C.3 Centipede game

With perfectly rational backward induction, the subgame perfect equilibrium of
the centipede game is for each player to immediately take the pot without proceeding
to any further rounds. However, this is a poor predictor of what happens
experimentally (Ho & Su, 2013), where players are shown to “grow“ the money
pile by playing for several rounds before taking (Ke, 2019). Again, there are multiple
reasons proposed to explain players deviation from the predicted unique subgame
equilibrium (Georgalos, 2020; Kawagoe & Takizawa, 2012; Krockow et al., 2018).

In this work, we use the experimental data of McKelvey and Palfrey (1992) (from
their Appendix C) for four and six-level centipede games. The utilities are
represented as:

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 12 Beauty contest games (extended). The darker lines indicate the mean result from 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the
black line. The level-k model is shown as the blue line. The Cognitive hierarchy model as the green line.
The Nash equilibrium solution is indicated as the diagonal dashed grey line
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U1½take1� ¼ 0:4

U1½pass1� ¼ 0:2� f ½take2� þ V1 � f ½pass2�
U2½take2� ¼ 0:8

U2½pass2� ¼ 0:4� f ½take3� þ V2 � f ½pass3�
. . .

ð16Þ

where V1;V2 are derived as the average expected return for the remainder of the
moves. These payoffs are also visualised in Fig. 13. The conditioning on the history
of decisions is implicit here, as to take an action an at n[ 1, all previous actions
must have been to pass (otherwise the game would have ended) (Fig. 14).

C.3.1 Comparison methods

Level-k
Under the level-k framework, we assume a level-0 agent is equally as likely to

take or pass at each stage of the game (the same configuration is used as the naive
player under the proposed quantal hierarchy approach). A level-1 player then takes at
the node which maximises the expected utility subject to this, and so on and so forth.
A full analysis of level-k framework in centipede games is presented in Kawagoe and
Takizawa (2012), but this configuration used [referred to as Random Behavioral
strategy (RBS) in Kawagoe and Takizawa (2012)] was shown to be the best
specification for matching the experimental data (for both level-k and cognitive
hierarchy).

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Again, the Poisson distribution was used,
which was shown to be the best experimental fit in Kawagoe and Takizawa (2012).

Quantal response equilibirum An agent-form of the QRE (McKelvey & Palfrey,
1998) is used here, where at each node, the agent choices nosily based on resource
parameter b, and assuming their opponent is also operating under the same resource
constraint b. This is calculated recursively following (McKelvey & Palfrey, 1998).

0.4
0.1

0.2
0.8

1.6
0.4

0.8
3.2

6.4
1.6

TAKE TAKE TAKE TAKE

PASS PASS PASS

3.2
12.8

25.6
6.4

TAKE TAKE TAKE

PASS PASS PASS

Fig. 13 The six move extensive-form centipede Game. Green (orange) circles highlight Player 1(2)’s turn,
and the top (bottom) row of the boxes highlights Player 1(2)s payoff. The four-move game is equivalent
until the fourth node, however, the payoffs for the fifth node become the “PASS” payoffs for Node 4
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C.4 Sequential bargaining

We examine the experimental results of the ultimatum game (one-stage) and two-
stage alternating-offer bargaining games (Binmore et al., 2002), which consistently
demonstrate violations of backward induction (Webster, 2013), even when account-
ing for “fairness” in the system (Johnson et al., 2002).

C.4.1 Ultimatum game

For the ultimatum game, we use the experimental data of Game 1 from Binmore et al.
(2002). In the ultimatum game, the players are faced with the following payoffs:

U1½a1� ¼ a1 � f ½accept j a1� þ V1 � f ½reject j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ V2

ð17Þ

where V1;V2 are the rejection payoffs for Player 1 and Player 2.
If opponents (Player 2) are rational, then Player 1, being rational, should request

no more than their opponent’s rejection payoff V2. However, if opponents are not
believed to be rational, then there is potential for Player 1 to exploit this fact and
request higher (or lower) amounts. That is, it becomes rational for Player 1 to play as
if Player 2 is not perfectly rational.

A rational opponent implies a step function, where for a1, with payoff 100�
a1 [V2 the player accepts with probability 1, and for payoffs below V2 the player
reject with certainty as shown in Fig. 16. However, from Fig. 16 we can see
deviations from rationality in the observed play. This is directly shown by non-
deterministic outputs, where the players may or may not accept the request based on
the requested value, as well as violations where the players reject or accept with
probability 1 even if a rational actor would do the opposite.

Now, knowing the opponent has potential bounds on their rationality, a rational
player would respond accordingly. Figure 17 plots the distribution of Player 1

(a) Four Move. (b) Six Move.

Fig. 14 Four and six-level centipede games using the dataset from McKelvey and Palfrey (1992)
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requests. We observe that Player 1’s request still deviates from perfect rationality.
Perfect rationality would imply a Dirac delta function with the probability mass
situated at the optimal request. The observed deviation from rationality may be due to
uncertainty in their opponent’s abilities (reflected in the probabilities from Fig. 16),
or limitations of Player 1’s reasoning.

C.4.2 Two-stage bargaining

Next, we examine a two-stage bargaining game (shown in Fig. 15b). Now, if Player 2
rejects Player 1’s request, they can come back with a counteroffer of their own. If the
players can not come to an agreement, they both receive 0. It is, therefore, in both
players best interest to reach an agreement. This is represented with the following
utilities:

U1½a1� ¼ a1 � f ½accept j a1� þ V1 � f ½reject j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ V2

U2½a3� ¼ Dð100� a3Þ � f ½accept j a3�
U1½accept4 j a3� ¼ D� a3

U1½reject4 j a3� ¼ 0

ð18Þ

where now V1 and V2 are derived from the expected payoff of the rejection branch.
Conditioning on past decisions are excluded from U2½a3� as it is implicit that this can
only occur when Player 2 rejects Player 1’s request. We use experimental data of
Game 3 from Binmore et al. (2002), considering all disagreement penalties

x
100-x

REJECTACCEPT

V1
V2

x0 100

(a) Ultimatum (One-stage)

x
100-x

REJECTACCEPT

x0 100

Dy
D(100-y)

REJECTACCEPT

y0 100

0
0

(b) Two-Stage

Fig. 15 Example extensive-form sequential bargaining games. In the ultimatum game (Fig. 15a), Player 1
makes a request x 2 ½0; 100�. If Player 2 accepts the request, Player 2 receives a payoff of 100� x, and
Player 1 receives x. If Player 2 declines the request, they each receive the rejection payoff (V1 or V2). In the
two-stage game, if Player 2 rejects, they can come back with a counteroffer y. Now the process repeats, and
it is up to Player 1 to accept or reject. If Player 1 accepts, Player 2 gets a disagreement penalised (D) payoff
of Dð100� yÞ, and Player 1 gets a payoff of Dy. However, if both decline they each get a payoff of 0
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D 2 ½0:2; 0:3; . . .; 0:9�. For discussion sake, here we assume D ¼ 0:9. With perfect
rationality, it is in Player 1’s best interest to accept any counteroffer greater than the
rejection payoff of 0 (see Fig. 15b). Therefore, if prompted, Player 2 should provide a
counteroffer of y ¼ 1, which gives Player 2 a payoff of Dð100� yÞ ¼ 89:1, and
Player 1 a payoff of Dy ¼ 0:9. Since Dy[ 0 (the rejection payoff), Player 1 should
prefer this to the alternative and accept. With this in mind, Player 1 now knows the
payoff for the rejection branch for Player 2 is 89.1, so if they request x[ 10 (as-
suming integer requests), Player 2 will reject this request since 100� x\89:1 if
x[ 10. Therefore, the rational Player 1 requests x ¼ 10, maximising their payoff,
assuming Player 2 is rational.

However, from Fig. 18 which summarises results from the experiments presented
by Binmore et al. (2002), we can see substantial deviations from the subgame perfect
equilibrium for both players. No Player 1 requests x\10 or the perfectly rational
request x ¼ 10. Furthermore, no Player 2 requests the rational counteroffer of y ¼ 1.
The distribution of initial and counteroffers is visualised in Fig. 19.

C.4.3 Comparison methods

Level-k Under the level-k model, level-0 players are assumed to be indifferent to all
choices, and chooose uniformly. Level-1 players exploit this, and choose based on
their opponent being a level-0 player, and so on.

(a) (V1=10, V2=10) (b) (V1=10, V2=60) (c) (V1=70, V2=10)

Fig. 16 Observed rejection rates from experimental data of Binmore et al. (2002). A rational opponent is
governed by the step function (black line), where a rational player would reject in the red area and accept in
the green area. The observed points show deviations from rationality

(a) (V1=10, V2=10) (b) (V1=10, V2=60) (c) (V1=70, V2=10)

Fig. 17 Player 1 requests in the ultimatum game, with experimental data from Binmore et al. (2002). The
black line indicates the perfectly rational choice (when assuming opponent is perfectly rational), i.e., a
rational opponent would reject any lower request (left of the black line), and would accept any value above
their rejection payoff (right of the black line)
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Cognitive hierarchy Similar to the other game classes, again rather than assuming
all players are at k � 1, the cognitive hierarchy model fits a distribution to these k
players, and best responds according to this distribution of lower level thinkers.
Again, the Poisson distribution is used.

Quantal response equilibrium For the quantal response equilibrium, again, an
agent form of QRE is used to account for players noisily responding at each level,
which is calculated recursively from the final step.

Appendix D Sensitivity

To ensure the method’s robustness, we check the sensitivity of the proposed results to
various factors that may affect the outcome. Specifically, we carried this testing out
with respect to the convergence/termination parameter � and the fitted density
estimates.

Fig. 18 Two-stage bargaining with disagreement penalty D ¼ 0:9. Initial requests are shown as black
circles. The y-position gives the rejection rate of these requests. For rejected requests, the counteroffers are
shown as a purple star (linked to their original request by a line), where again, the y-position shows the
rejection rate of the counteroffer. The perfectly rational initial request would be x ¼ 10 (black line), as any
requests in the red region would be rejected by a rational opponent. After a rejection, the perfectly rational
counteroffer would be y ¼ 1 (purple line). Deviations from the subgame perfect equilibrium are clear, with
no player performing perfect backward induction

(a) Player 1 Requests (b) Player 2 Counteroffers

Fig. 19 Initial requests and counteroffers in the two-stage bargaining game with D ¼ 0:9

123

The quantal hierarchy model 105



D.1 Termination parameter �

For the bargaining and centipede games, the reasoning naturally ends at the end of
the extensive-form game. However, for the market entry and beauty contest games
(with no defined end point), the reasoning continues until the resources are depleted,
i.e., bck\�. We have used the threshold � ¼ 10�8 to determine termination. To check
the robustness of the method to �, here we perform sensitivity analysis across the
range 10�7\�\10�9, i.e. ± one order of magnitude from the default value. We
sample 1000 points uniformly from this range, presenting the results in Fig. 20.

In both cases, we can see the approach is robust to these large changes in �, with
an order of magnitude change only having slight effects on the resulting outcomes.
These results show that � does not need to be treated as a hyperparameter to optimise
(as b/c), but rather as a fixed parameter to determine “convergence“ towards 0 and
termination, the choice of which depends on computational/numeric requirements.
We recommend using as small value as possible (e.g. �� 10�8) while still achieving
reasonable convergence speed.

D.2 Density estimates

We evaluate how the resulting rankings would change with different density
estimation methods. Specifically, we analyse the resulting average (out-of-sample)
ranks when using Scott’s rule (Scott, 2015) (as presented), Silverman’s rule
(Silverman, 2018), and the (improved) Sheather & Jones (Botev et al., 2010) for
automatic bandwidth identification. While this does not provide an exhaustive list, it
covers the most common rules used in literature. Density estimates are only used for
the bargaining and beauty contest games, so these are the two game classes analysed
here.

In Table 3, we see no change in average ranking between Scott’s and Silverman’s
rules for the beauty contest games. However, when using Sheather & Jones, the
rankings between Level-k and Nash change, going from 4 and 5, respectively, to 4.33

(a) Beauty Contest (b) Market

Fig. 20 Termination parameter � sensitivity. The outcome for the default value is displayed as the red line.
The outcome for the upper (lower) threshold is the dashed blue (green) bar. Intermediary values are
displayed as light grey lines
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and 4.67. This rank change does not alter any of the claims made within the paper, so
we can confirm the robustness of the resulting rankings to density estimates for the
beauty game.

For the bargaining games, we see slight improvement for the proposed method
when comparing Scott’s rule with Silverman’s and Sheather & Jones–in both cases,
going from 1.27 with Scott’s rule to 1.23. At the same time, QREs rank worsens from
1.73 to 1.77. The remaining methods keep the same ranking. These rank changes
strengthen the claims made in the paper, showing not only robustness to the rule used
but also improvements for the proposed approach when utilising alternative rules for
bandwidth estimation.
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Table 3 Robustness to changes in density estimation. Average rankings are computed using the results
from various automatic bandwidth determination methods. Scott’s is the method we present in the paper

Quantal hierarchy Level-k Cognitive hierarchy QRE Nash

Beauty contests

Scott’s 1.83 4.00 3.00 1.17 5.00

Silverman’s 1.83 4.00 3.00 1.17 5.00

Sheather & Jones 1.83 4.33 3.00 1.17 4.67

Bargaining games

Scott’s 1.27 3.50 3.50 1.73 5.00

Silverman’s 1.23 3.50 3.50 1.77 5.00

Sheather & Jones 1.23 3.50 3.50 1.77 5.00
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