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Abstract

For decades, discrete choice modelling was practically dominated by only two
models: multinomial probit and logit. This paper presents a novel alternative—
harmonic choice model. It is qualitatively similar to multinomial probit and logit: if
one choice alternative greatly exceeds all (falls below at least one of) other alter-
natives in terms of utility then it is chosen with probability close to one (zero).
Compared to probit and logit, the new model has relatively flat tails and it is steeper
in the neighborhood of zero (when all alternatives yield the same utility and the
decision maker chooses among them at random).

Keywords Probabilistic choice - Independence from irrelevant alternatives - Luce
choice model - Fechner model of random errors - Odds ratio

1 Introduction

Any choice model ultimately yields a choice decision and avoids indecisive
scenarios/preferences. For example, in the context of standard deterministic choice, a
decision maker who weakly prefers 4 over B, B—over C, and C—over 4 is
indecisive among all three and such preferences are typically ruled out by the
transitivity axiom as irrational. In the context of probabilistic choice, a decision
maker can choose 4 over B, B—over C, and C—over 4 and the literature identifies
several possible driving forces behind such revealed cycle: random mistakes
(Fechner, 1860; Hey & Orme, 1994), imprecise preferences (Butler & Loomes,
2007, 2011; Falmagne, 1985), lapses of concentration/trembles (Harless & Camerer,
1994), or an asymmetric information when some attributes of choice alternatives are
observable to decision makers but not—to outside researchers (McFadden, 1976).
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One possible avenue for building a model of probabilistic choice is to limit the
likelihood of a revealed choice cycle such as the one described above. This requires
some metric to measure the likelihood and some benchmark to compare it with. A
rather natural benchmark is the likelihood of the opposite indecisive cycle when a
decision maker chooses alternative 4 over alternative C, C—over B, and B—over 4.
Indeed, if the likelihood of the first choice cycle relatively exceeds that of the second,
or vice versa, a choice model can be regarded as tilted/biased towards an indecisive
scenario.

This leaves us with a question which metric to use for assessing the likelihood of
an indecisive cycle. Let P(4,B) denote the probability that a decision maker chooses
alternative A4 over alternative B in a direct binary choice. The likelihood of the first
choice cycle is then some function of P(4,B), P(B,C), and P(C,A4). One possibility is
to take the geometric average of these three binary choice probabilities. This results
in the following Eq. (1).

V/P(A4,B)P(B,C)P(C,4) = y/P(4,C)P(C,B)P(B,A) (1)

Getting rid of the cubic root in (1) yields a condition that is known as the product
rule (e.g., Estes, 1960, p. 272; Luce & Suppes, 1965, definition 25, p. 341). Binary
choice probabilities satisfy the product rule if and only if they take the form of a
binary Luce (1959) choice model (¢f. Luce & Suppes, 1965, Theorem 48, p. 350): P
(4,B)=u(A)/[u(4)+u(B)], where u(.) is utility function mapping choice alternatives
to strictly positive real numbers. Luce (1959) choice model is also known as strict
utility or multinomial logit and it is widely used in economics and psychology.
However, utility functions in economics and psychology are typically not restricted
to the range of strictly positive real numbers and require some ad hoc monotone
transformation (with exponentiation being the most popular one) before they can be
embedded into Luce (1959) choice model.

Another possible metric for assessing the likelihood of an indecisive scenario
when a decision maker chooses 4 over B, B—over C, and C—over 4 is to take the
arithmetic average of binary choice probabilities P(4,B), P(B,C), and P(C,A4). This
results in Eq. (2).

P(4,B) + P(B,C) +P(C,4A) _P(4,C)+P(C,B) + P(B,A) @)
3 N 3

Getting rid of the common denominator in (2) results in a so-called sum rule,
which is the same as the product rule except that probabilities are added rather than
multiplied. Under probabilistic completeness (defined in Eq. (4) below), binary
choice probabilities satisfy the sum rule if and only if they take the form of an
additive choice model: P(4,B)=0.5+v(4)-v(B)], where v(.) is utility function
mapping choice alternatives to a bounded interval of real numbers (Blavatskyy,
2023). Additive choice model offers remarkable analytical convenience such as a
closed form solution for quantal response equilibria (McKelvey & Palfrey, 1995) but
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utility functions in economics are typically not restricted in range to a bounded
interval.

Another possible metric for assessing the likelihood of an indecisive scenario
when a decision maker chooses 4 over B, B—over C, and C—over 4 is to take the
harmonic average of binary choice probabilities P(4,B), P(B,C), and P(C,A). This
results in the following Eq. (3). This paper presents a new model of probabilistic
choice synonymous with condition (3). Therefore, we call it harmonic choice model.
The main comparative advantage of this model is that its utility function is
unrestricted in range, i.e., it does not require any ad hoc monotone transformations.

1 1 T 1 1 1 (3)

2 Modelling framework

Let Q denote a fixed universal set with n>2 choice alternatives (the decision is trivial
when the choice set contains only one element). Choice alternatives are labeled by
capital Latin letters 4, B, C, DeQ and they can be consumption bundles, risky
lotteries (probability distributions), uncertain Savage (1954) acts (random variables),
streams of intertemporal outcomes, behavioral strategies etc. A menu of two
alternatives 4, BeQ is denoted by {4,B}.

A decision maker is an individual or a group of individuals. A decision maker
chooses alternative 4€Q from the choice set Q with probability P(4|Q)e(0,1). As
mentioned in the introduction, the probability that a decision maker chooses
alternative A over alternative B in a direct binary choice is denoted by a conventional
simplified notation P(4,B)=P(A|{A4,B}). For simplicity, we assume that there are no
dominated alternatives in the choice set, i.e. each available alternative is chosen with
a strictly positive probability. One possibility could be that a decision maker first
detects and discards any dominated alternatives and then chooses among the
remaining alternatives in a probabilistic manner, as in Luce (1959) choice model. We
assume that choice probabilities add up to one, which is also known as probabilistic
completeness. In binary choice probabilistic completeness is P(4,B)+P(B,4)=1 for
all 4, BeQ.

> PAlQ) =1 4)

AcQ

Finally, for any choice alternative 4€Q the odds against choosing A4 (5) are
defined as the ratio of the probability that 4 is not chosen to the probability that 4 is
chosen from set Q. For binary choice, we use a simplified notation O(4,B)=0(4|{4,

BY).
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0(4Q) = Y P(BIQ)/P(4]Q) (5)
BeQ
B#4

Dogan and Yildiz (2021) recently proved that Luce (1959) choice model is
equivalent to odds modularity: O(4|Q) + O(4|Q') = O(4|QU Q') for any two
choice sets QO and Q’ such that QNQ ‘={4}. In this paper, we impose a different
condition on odds. In particular, we consider the difference in odds against choosing
A vs. B from the same choice set. We show that this condition is equivalent to a new
model of probabilistic choice.

3 Independence from irrelevant alternatives

Luce (1959) derived his choice model from a principle of independence from
irrelevant alternatives: “... if one is comparing two alternatives according to some
algebraic criterion, say preference, this comparison should be unaffected by the
addition of new alternatives or the subtraction of old ones (different from the two
under consideration). Exactly what should be taken to be the probabilistic analogue
of this idea is not perfectly clear, but one reasonable possibility is the requirement
that the ratio of the probability of choosing one alternative to the probability of
choosing the other should not depend upon the total set of alternatives available”.
The assumption that choice decision between two alternatives is not influenced by
the presence (or absence) of other choice alternatives is intuitively appealing. Yet, the
specific form of this principle employed in Luce’s choice model—that the ratio of
choice probabilities remains unaffected—appears somewhat ad hoc.

In Luce’s choice model, the ratio of choice probabilities is equal to the ratio of
utilities of the corresponding choice alternatives. Choice probabilities, by definition,
cannot be negative. Therefore, the ratio of utilities in Luce’s choice model must be
non-negative as well. This imposes a restriction on the range of utility function that
must map all choice alternatives either to positive real numbers or—to negative real
numbers (but not both at the same time).

One possibility to avoid such restriction on the range of utility function is the
following. We can assume that the difference (rather than the ratio) of choice
probabilities remains independent from irrelevant alternatives. Analogously to Luce’s
choice model, this assumption implies that the difference in choice probabilities is
equal to the difference in utilities of the corresponding alternatives. Since the
difference in choice probabilities can be positive or negative, a priori, this does not
restrict the range of the utility function only to positive or only to negative real
numbers. Yet, choice probabilities, by definition, belong to a bounded interval [0,1].
Therefore, the difference in choice probabilities must be in a bounded interval. This
imposes another restriction on the range of utility function that now must map all
choice alternatives to a bounded interval.

In sum, the principle of the independence from irrelevant alternatives is
traditionally formulated for choice probabilities. This principle links choice
probabilities to utilities of choice alternatives. This creates a theoretical inconsistency
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if choice probabilities are defined as positive bounded numbers, but utility function is
unrestricted in range. In this paper we propose a novel form of the independence
from irrelevant alternatives to avoid this problem.

Decision theory conventionally characterizes the likelihood of a choice decision
by its probability. Yet, choice likelihood can be alternatively described by other
means. In a multi-attribute choice in particular, when a decision maker chooses
among many alternatives, choice probabilities may not be as practical as the odds in
conveying likelihood information. For example, most betting markets use the odds
rather than probabilities. This paper formulates the principle of independence from
irrelevant alternatives for choice odds rather than choice probabilities. The odds
against choosing an alternative (5) convey the same likelihood information as the
choice probability but they are not restricted to a bounded interval. Yet, both the odds
and choice probabilities are defined as non-negative numbers. Hence, formulating the
principle of independence from irrelevant alternatives for the odds ratio leads to
similar restrictions as in Luce’s choice model. On the other hand, formulating the
principle of independence from irrelevant alternatives for differences in odds is rather
promising. The difference in odds against choosing two alternatives is an unrestricted
real number that can be negative, zero, or arbitrary large. So is the difference in
utilities of two choice alternatives. Hence, there is no theoretical inconsistency if
these two concepts are linked (as we shall prove below in the subsequent section).
Specifically, we assume that the difference in odds against choosing two alternatives
is independent from the presence (or absence) of other “irrelevant” choice
alternatives (cf. definition 1 below).

Definition 1 The odds form of the independence from irrelevant alternatives holds if
Eq.(6) is satisfied for any two choice alternatives A, BeQ.

O(4|Q) — O(B|Q) = O(4,B) — O(B,A) (6)

Ordinal TIA in Fudenberg et al., (2015, Definition 5) with f(x) = e'/* is equivalent
to (6).

4 Results

Proposition 1 If the choice set Q contains at least three elements and the
independence from irrelevant alternatives (6) holds then (3) holds for any three
choice alternatives A,B,CeQQ).

The proof is presented in the appendix.

It is relatively well-known that the principle of independence from irrelevant
alternatives has no bite when the choice set contains only two elements. In this case,
choice decision between two alternatives can only depend on these two alternatives
and it is automatically independent from irrelevant alternatives (since there are no
other available options). Thus, in the special case of a binary choice, we need to
assume (3) directly. The harmonic mean is the most conservative of three
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Pythagorean means. Thus, we assess the likelihood of an indecisive cycle more
conservatively by making assumption (3), compared to (1) and (2).

Proposition 2 Binary choice probability function P : Q x Q — (0, 1) satisfies (3)
for any A,B,CeQ if and only if there is utility function u:Q — R unique up to
addition of a constant such that

1+ ) - u(B)P/4— 1
_ 3"

P(4,8) = o) —ulB) W#AuB) )
3 u(A4) = u(B)

The proof is presented in the appendix.

Choice model (7), like Luce’s choice model, is a special case of binary Fechner
(1860) model. Figure 1 plots binary choice probability (7) as a function of utility
difference u(4)-u(B). When this difference is large (small) probability (7) converges
to one (zero). As mentioned in the introduction, a comparative advantage of model
(7) is its unrestricted range of utility u(.). Probability (7) is always well-defined
(between zero and one) even when alternatives yield negative, zero, or arbitrary large
utility. For comparison, Fig. 1 plots probability P(4,B) = Fos(u(A4) —u(B)) in
Fechner (1860) model with normally distributed random errors, where Fj s(.) is the
cumulative distribution function of a normal distribution with zero mean and ¢=>5.
Compared to this normal cumulative distribution function, model (7) has relatively
flat tails and it is steeper in the neighborhood of (0, %2). Model (7) is relatively less
(more) discriminatory in choice between alternatives that differ a lot (little) in terms

0.9

0.8

Model (7)

0.7
= = = Normal cdf

0.6

0.5
0.4
0.3
0.2

0.1
- u(A)-u(B)

-20 -15 -10 -5 0 5 10 15 20

Fig. 1 Binary choice probability (7) as a function of utility difference u(4)-u(B) compared to the
cumulative distribution function of a normal distribution £ s(.)
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of utility. Propositions 1 and 2 are the analogue of Theorem 48 in Luce and Suppes
(1965) for Luce’s choice model.

We next show that model (7) satisfies the quadruple condition (¢f. Davidson and
Marschak, 1959; Luce & Suppes, 1965, definition 24, p. 341): if P(4,B)>P(C,D)
then P(4,C)>P(B,D) for all 4,B,C,DeQ.

Proposition 3 Conditions (3) and (4) imply the quadruple condition.

The proof is presented in the appendix.

The quadruple condition implies strong stochastic transitivity (Luce & Suppes,
1965, Theorem 39, p. 346). Hence, model (7) satisfies strong stochastic transitivity: if
P(4,B)>"> and P(B,C)>'": then P(A4,C)>max{P(4,B),P(B,C)} for all 4,B,CeQ.
Strong stochastic transitivity also implies the triangle condition P(4,B8)+ P(B,C)>P
(4,0) for all 4,B,CeQ (Luce & Suppes, 1965, Theorems 35, 37 and 38). Thus, model
(7) also satisfies the triangle condition.

Proposition 4 Given that the choice set Q contains at least three elements, the
independence from irrelevant alternatives (6) holds if and only if there is utility
function u:Q — R such that alternative A€Q is chosen with probability
P(A|1Q) = 1/[x(Q) — u(A)], where x(Q) is the highest root of Eq. (8).

1
2@ —uld) ®)

ac0”

The proof is presented in the appendix.
Binary choice model (7) can be also viewed as a special case of multinomial

model (8) with the highest x({4,B}) that solves [x({4,B})—u(4)] '+
[x({4,B}) —u(B)]”" = 1 being (9).

({4, B}) = 1 +M+ 1+ [u(4) — u(B)P /4 )

Plugging x({4,B}) defined by (9) into P(A4,B) = 1/[x({4,B}) — u(A4)] yields
model (7).

If all choice alternatives yield the same utility v then x(Q) that solves (8) is equal
to v+ n so that each choice alternative is chosen with the same probability P(A4|Q)=
1/n for all 4eQ. Multinomial choice model characterized in Proposition 4 satisfies
the regularity condition (¢f. Luce & Suppes, 1965, definition 26, p. 342): choice
probabilities cannot increase when more alternatives are added to the choice set. To
see this, note that adding more alternatives to the choice set increases the number of
elements in the sum on the left-hand side of (8). Therefore, to keep Eq. (8) satisfied x
(Q’) of an extended set Q’ must exceed x(Q) of the original set Q, which implies that
all elements of Q are chosen with a smaller probability from the extended set Q.

Example 1 In ternary choice if alternative 4 yields the same utility as alternative C
then both are chosen with probability (10).
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56 P. R. Blavatskyy

P(A|{4,B,C}) = 4 U(A) M(B)] 7

Figure 2 plots choice probability (10) in comparison with bivariate normal
distribution (11) with mean vector [0,0] and the covariance matrix o> ( 01 5 Ois ) ,
for 6=9.

}y n

F(u(4) — u(B),0) = \/_noz/ - / dxdy (11)

Figure 2 illustrates that choice probability P(4|{4,B,C}) converges to zero when
utility u(4) falls substantially below utility u(B). On the other hand, choice
probability P(4|{4,B,C}), as well as P(C|{4,B,C}), converges to 2 when utility u(4)
greatly exceeds utility u(B). Compared to the bivariate normal distribution, ternary
choice probability (10) has relatively flat tails and it is steeper in the neighborhood of
(0, 1/3), where two distributions intersect. Thus, model (10) is qualitatively similar to
bivariate probit but it discriminates less (more) in choice among alternatives that
differ a lot (little) in terms of utility.

Example 2 Ternary choice among three alternatives none of which yield the same
utility.

0.5

e
- -

0.45

0.4

Model (10

0.35 )

= = = Bivariate normal

0.3

0.25
0.2

0.15

- u(A)-u(B)

-20 -15 -10 -5 0 5 10 15 20

Fig. 2 Ternary choice probability (10) as a function of utility difference u(4)-u(B) compared to the
bivariate normal distribution (11)
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Let Ay =1/[u(4) —u(B)] and A; = 1/[u(4) — u(C)]. Furthermore, let r =
(2A1—|—2A2—1)2/9+A1/3—|—A2/3—A1A2 and
g =2A +2A — 1 /27 + (A; 4+ A2)[A1/3 + Ay/3 — AjAy — 1/6]. A decision
maker then chooses alternative 4 among alternatives 4, B and C with probability
(12).

1 1 2
3 + 2+/rcos <§arccos (— L)) — g(Al +Ay), A >0,A,>0
r

1 1 2 2
P(A|{4,B,C}) = §+2\/;cos(§arccos<—rq7> —g) —g(Al +Ay), AN <0
2
> §(A1 +A2), A1 <0,A; <0

1 1 q 4n
3 + 2+/rcos (§ arccos (— m) -3
(12)

Figure 3 plots ternary choice probability (12) as a function of utility differences u
(A)-u(B) and u(A)-u(C). When both of these differences are relatively large, the
decision maker choses alternative 4 with probability close to one. When at least one
of these differences is relatively small, the decision maker choses alternative 4 with
probability close to zero. When both utility differences are close to zero, the decision
maker chooses alternative 4 with probability close to 1/3. Thus, ternary choice
probability (12) qualitatively resembles bivariate normal distribution, but it has
relatively flat tails and it is steeper in the neighborhood of (0,0,1/3). Since ternary
choice probability (12) is a function of utility differences u(A4)-u(B) and u(A4)-u(C), it

o
P(A]{A,B,C})

u(A)-u(C)

-20 .18
-16 .14
12 10
8 5
-4

2 4 6
10
u(A)-u(B) N U

B -20

m00,1 m0,1-02 ®02:0,3 ®030,4 m040,5 W050,6 M06-0,7 M0,7-0,8 W0,80,9 mM09-1

Fig. 3 Ternary choice probability (12) as a function of utility differences u(4)-u(B) and u(A)-u(C)
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is a special case of the generalized Fechner model/strong utility (Blavatskyy, 2018,
p. 76). Binary choice probability (10) illustrated on Fig. 2 is the asymptotic limit of
ternary choice probability (12) when utility difference u(A4)-u(C) goes to zero, i.e.
Figure 2 can be obtained from Fig. 3 by cutting along the plane u(4)-u(C)=0 (the
“depth” axis z=0).

5 Application: harmonic quantal response equilibrium

This section applies harmonic choice model to normal form games. Specifically, we
introduce the concept of harmonic quantal response equilibrium. It is a special
parametric form of quantal response equilibrium (McKelvey & Palfrey, 1995, Sect. 2,
p. 8). In harmonic quantal response equilibrium, players choose among strategies
according to harmonic choice model. Logit quantal response equilibrium is an
alternative parametric form of quantal response equilibrium when players choose
among strategies according to Luce’s choice model (McKelvey & Palfrey, 1995,
Sect. 3, p. 11). In quantal response equilibrium players choose in a probabilistic
manner, i.e., the best responding strategies are not necessarily chosen with certainty.

We consider a finite normal-form game with k>1 players. Every player ie {1,...,k}
has a non-empty set €; of pure strategies and a payoff function
u;: Hie{l,.“,k} Q; — R. Players choose among available strategies according to

harmonic choice model and they believe that other players do so as well. In harmonic
quantal response equilibrium, players’ choice probabilities coincide with players’
beliefs. Specifically, harmonic quantal response equilibrium is defined by a system of
Eq. (13) for every player i€ {l,...,k} and every pure strategy AeQ ;.

1
x,-(Q,-) — MI(A X Q,l‘)

Pi(A4]Q;) = (13)
where x;(€;) is the highest root of equation » g ¢ m =1 and
u;(4 x Q_;) denotes player i’s expected utility of strategy 4€Q ; given that other
players choose their strategies with harmonic choice probabilities (13).

Example 3 Consider a generalized matching pennies game presented in Table 1
taken from Goeree and Holt (2001, Table 1, p.1406).

Let v =u(1) —u(0) and o = ZE‘;;:ZEg; Harmonic quantal response equilibrium of

the generalized matching pennies game is then defined by the following system of
Egs. (14)—(15).

Table 1 The normal form of a

generalized matching pennies Player 1
game Left (p) Right (1-p)
Player 2 Top (¢) (a, 0) 0, 1)
Down (1-q) 0, 1) (1, 0)
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1+\/1+v2[1—2q}2/4—1 )1
p=42 v(1—29) 175 (14)
1 1
2 =3
1 \/1+v2Lp(1+a)—1]2/4—1 1
g=12" vp( + o) — 1) PP (15)
1 1
2 p_l—i—oc

When a=1 a unique harmonic quantal response equilibrium is given by p=g="-.
This corresponds to experimental results reported in Goeree and Holt (2001, p.1407).

When a#1 harmonic quantal response equilibrium depends on parameter v.
Figure 4 plots harmonic quantal response equilibrium for the case when « = 4 and
various values of v as shown on the horizontal axis. If v is small, then both players
randomize between their strategies with probabilities 50-50%. If v is large, then
harmonic quantal response equilibrium converges to the unique mixed strategy Nash
equilibrium p=1/(z+1)=0.2 and g='2. For intermediate values of v player 1 (2)
chooses ‘Right’ (‘Top’) with a relatively high probability. This resembles experi-
mental findings of Goeree and Holt (2001, p.1407).

For comparison, Fig. 4 also plots logit quantal response equilibrium (16)—(17).
Figure 4 shows that the set of harmonic quantal response equilibria is quite similar to

0.4

0.3

0.2
0.01 0.1 1 10 100

P(Top,Down) P(Left,Right) = = =Plogit(Top,Down) Plogit(Left,Right)

Fig. 4 Harmonic quantal response equilibrium (14)—(15) and logit quantal response equilibrium of the
generalized matching pennies game when o = 4 and values of v as shown on the horizontal axis
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that of logit quantal response equilibria (the only difference appears to be the level of
noise v required for rationalizing these equilibria).

1
1+ e (2PL(,g,v, (Top,Down)—1 )

PLogit(LeﬁvRight) = (16)

1
1+ ev(17(1+1)PL(,g,-,(Left‘Right))

Piogit(Top, Down) = (17)

6 Empirical application: fit to experimental data collected by Hey
and Orme (1994)

Hey and Orme (1994) asked 80 experimental subjects to choose twice between 100
pairs of risky lotteries each yielding one of four possible outcomes: £0, £10, £20, and
£30. The data set collected by Hey and Orme (1994) is convenient for comparing
decision theories and models of stochastic choice and it has been re-examined to that
purpose in numerous studies e.g., Hey (1995), Hey and Carbone (1995), Carbone and
Hey (2000), Buschena and Zilberman (2000) and Wilcox (2008, 2011). This section
compares our proposed harmonic choice model with standard logit model of discrete
choice (Luce’s choice model) according to their goodness of fit to the experimental
data collected by Hey and Orme (1994). We aggregate two repetitions in Hey and
Orme (1994) into one data set. Subjects revealing indifference between two lotteries
are treated as choosing with probabilities 50—50%.

Under harmonic choice model, the likelihood that a subject chooses lottery L :
{£0,£10,£20,£30} — [0, 1] over lottery R : {£0,£10,£20,£30} — [0, 1] is given by

1+ AEU(L,R)*/4 — 1
P(L7R):%+\/ AEU((L’R))/ (18)

where the difference in lotteries” expected utility is AEU(L,R) = a(L — R)u' and
u = (0,uy,up,1) is a vector of normalized Bernoulli utilities. Three subjective
parameters ¢ = u(£30), u; = u(£10)/u(£30) and u, = u(£20)/u(£30) are estimated
to maximize total log-likelihood of all revealed binary choices. Estimation is done
separately for each subject. Optimization is performed in MatlabR2017b based on the
Nelder—Mead simplex algorithm.

For comparison, the same estimation is done for logit model where the likelihood
that lottery L is chosen over lottery R is given by (19).

1

P(L,R) = T o MR (19)
For 43 out of 80 subjects (53.8%) harmonic choice model provides a better
goodness of fit than standard logit model. The two models are non-nested, and they
can be compared using Vuong’s likelihood ratio test (Vuong, 1989; Loomes et al.,
2002, p.128). Vuong’s statistic z has a limiting standard normal distribution when
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Vuong's likelihood ratio statistic

Fig. 5 Distribution of Vuong’s likelihood ratio statistic

two models make equally good predictions. A significant positive (negative) value of
Vuong’s z indicates that harmonic (logit) choice model fits the data better. Since both
models have the same number of free parameters, there is no need for adjustment via
Akaike or Schwarz information criterion. Figure 5 shows the distribution of Vuong’s
likelihood ratio statistic across 80 subjects. For a great majority of subjects there is no
statistically significant difference between models (18) and (19) under conventional
significance levels. Estimated subjective parameters are also very similar across two
models. For example, Fig. 6 shows the scatterplot of parameter u, (normalized utility
of £20) estimated using harmonic and logit models (across all 80 subjects).

7 Discussion

The main theoretical advantage of harmonic choice model is that its assumptions do
not conflict with the mathematical properties of a standard microeconomic utility
function. Thus, there is no need for any ad hoc transformation of the latter (e.g.,
exponentiation to map utilities only to positive reals). This brings extra clarity in
applications. For example, a so-called noise parameter in quantal response
equilibrium or the volatility of random errors in econometric estimation are clearly
the same as the scale parameter of utility function. If the scale parameter is relatively
small (so that all choice alternatives are mapped to similar utilities), then a decision
maker chooses almost at random. If the scale parameter is relatively large, then a
decision maker is nearly certain to choose the most desirable alternatives. In standard
microeconomic theory derived from a (deterministic) binary preference relation, the
scale parameter is irrelevant (multiplying all utilities by the same factor has no effect
on preferences). In a model of probabilistic choice, the scale parameter becomes
quite important as it captures noise, i.e., departure from deterministic choice to
random choice.
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Fig. 6 Scatterplot of parameter u, estimated using harmonic and logit models

Harmonic choice model, like standard logit model, is derived from the well-
known principle of the independence from irrelevant alternatives. The main
difference between the two is that the former imposes independence from irrelevant
alternatives on choice odds whereas the latter—on choice probabilities. One of the
consequences is that logit model restricts the geometric average of binary choice
probabilities whereas harmonic choice model restricts the harmonic average of
binary choice probabilities, which explains its name. This also offers the possibility
of a clean empirical test for model selection.

Since harmonic choice model, like logit, relies on the principle of independence, it
is also vulnerable to the well-known criticism of this principle. Specifically, the new
model is ill-suited in situations when there are strong substitution effects between
choice alternatives. Debreu (1960) criticized logit model using the following three
choice alternatives: the Debussy quartet (4), the 8th symphony of Beethoven (B) and
the same symphony with a different conductor (C). Debreu (1960) argued that a
decision maker who reveals a slight preference for French music in a direct binary
choice and no preference between different conductors, so that P(4,B)=P(4,C)=0.6
and P(B,C)=0.5, must have P(4|{4,B,C}=3/7 in Luce (1959) choice model. In other
words, a slight preference for French music in binary choice is reversed in ternary
choice. Beethoven pieces with different conductors are nearly perfect substitutes for
each other, which undermines the principle of independence in this example.
Harmonic choice model is also prone to Debreu’s critique. If P(4,B)=P(4,C)=0.6
and P(B,C)=0.5 then Eq. (7) implies u(B)=u(C) and u(4)=u(B)+ 5/6. Equation (10)
then implies that P(4]{4,8,C}=0.3 and P(B|{4,B,C}=P(C|{4,B,C}=0.35.

Debreu’s critique applies not only to models of probabilistic choice that are
explicitly built on the independence principle but also—to very different approaches
to probabilistic choice such as the random preference (also known as random utility
or random parameter) approach (e.g., Falmagne, 1985; Loomes & Sugden, 1995). To
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Table 2 Random preference

Preference ordering Probability of preference ordering
example
A>B>C 7/30
A>C>B 7/30
B>C>A 2/15
B>A>C 2/15
C>B>A 2/15
C>A>B 2/15

illustrate this, let us consider six possible preference orderings of Debreu’s musical
pieces, listed in Table 2. Consider a decision maker who has a slight preference for the
French music so that the first two orderings in Table 2 (where the Debussy quartet is the
most preferred option) are picked with probability 7/30 each and the remaining four
orderings are picked with equal probability (2/15). In binary choice, this decision maker
behaves as in the original Debreu’s example: 4 is chosen over B (or C) with probability
0.6, and B is chosen over C with probability 0.5. In ternary choice, this decision maker
also reverses his preference for the French music, similar to the original Debreu’s
example: 4 is chosen among all three alternatives with probability 7/15<0.5 and B (or C)
is chosen among all three alternatives with probability 4/15. In sum, Debreu’s critique
challenges harmonic choice model but it also challenges the whole literature on
probabilistic choice including standard logit, probit, and random utility models.

8 Conclusion

Standard microeconomic theory takes a binary preference relation as the primitive of
choice so that revealed choices are nearly always deterministic. More often than not
such simple theory cannot be taken directly to data. For example, the same decision
maker may not repeat his or her choice decision when presented with the same
decision problem for the second time. Camerer (1989), Starmer and Sugden (1989),
Hey and Orme (1994), Ballinger and Wilcox (1997) report respectively inconsistency
rates of 31.6%, 26.5%, 25%, and 20.8%. Models of probabilistic choice are
developed to capture such stochastic decision making.

This paper presents a new model of probabilistic choice, which we call harmonic
choice model. The proposed model has standard properties—it is regular, satisfies
strong stochastic transitivity, the quadruple condition, and the triangle inequality.
Harmonic quantal response equilibrium is qualitatively similar to the well-known
logit quantal response equilibrium. In empirical application, the new model yields
results comparable with standard logit model.

Harmonic choice model is not only very similar to logit, but it is also derived from
the same principle of the independence of irrelevant alternatives. The crucial
difference is that we impose this principle on choice odds whereas Luce (1959)
imposed independence on choice probabilities. The latter approach yields a
somewhat simpler algebra but requires a restricted range of utility function. In
practice, this restricted range is obtained by some ad hoc transformation of utilities
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such as exponentiation or using a power function (e.g., Holt & Laury, 2002, Eq. (1),
p-1652). This is not needed in the model presented in this paper.

Assuming that the independence of irrelevant alternatives holds for choice odds rather
than choice probabilities yields harmonic choice model that is very similar to logit but
does not require a restricted range of utilities. Compared to multinomial probit or logit,
harmonic choice model has relatively flat tails and a steeper slope in the neighborhood of
zero (when all alternatives yield the same utility). In other words, compared to standard
models, harmonic choice model discriminates less (more) when alternatives differ a lot
(little) in terms of utility. Harmonic choice model is vulnerable to Debreu’s critique just
like logit, probit, and random utility models.

Appendix

Proof of Proposition 1 If the choice set contains at least three elements, then we can
select three alternatives 4, B, CeQ. If the independence from irrelevant alternatives
(6) holds, then we must have

0(4]Q) — O(B|Q) = O(4, B) — O(B, 4)
0(B|Q) — 0(C|Q) = O(B,C) — O(C, B)

0(ClQ) — 0(4|Q) = O(C, 4) — O(4, C)

Adding these three equations together yields

0(4,B) + O(B,C) + O(C, 4) = O(4,C) + O(C, B) + O(B, 4)

Using the definition of choice odds (5) we can rewrite this equation as

Finally, using probabilistic completeness, we can rewrite this equation as

1-P(4,B) 1—P(B,C) 1—P(C,A)

P(4,B) P(B,C) P(C,4)
1 —-P(4,C) 1-P(C,B) 1—P(B,A)
- P(4,0) P(C,B) P(B,A)
Simplifying and rearranging then yields (3). U

Proof of Proposition 2 Consider first the case when binary choice probability function
P:QxQ— (0,1) satisfies (3) for any 4,B,CeQ. Using probabilistic completeness
(4), we can rewrite (3) as follows:
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1 1 1 1 1 1

PA.B) " P(B.C) T T-P(4,C) 1-PA,B) 1-PB,C)  PAC)

Rearranging this equation yields

1 1 1 1 1 1
P(4,B) 1_P(4,B) 1-P(B.C) P(B.C) |P(4,C) 1-P4C)

The left-hand side of this equation does not depend on C. Hence, the right-hand
side must also not depend on C. Let us then fix C and define a real-valued function

1 1

“O =TTh0 0 PLO)

‘We obtain then : .

P(A,B) 1—P(4,B)

=u(B) —u(A)
Rearranging yields quadratic equation
P*(A4,B)[u(B) — u(A)] + P(A4,B)[u(4) —u(B) —2] +1=0

If u(A4) = u(B) then we have an immediate solution P(4,B) = 1/2. Otherwise,
the solution to this quadratic equation is given by

1T ) — u(B)P/4 - 1
P(4,B) =5+ u(4) —u(B)

Note that utility function u(.) is unique up to addition of a constant. If we fix the
third alternative to be C’, then this corresponds to a different real-valued utility

function: . .
W)= PLC) POy Y- u(C)

Reversely, if there is utility function u : Q — R such that binary choice proba-
bility is given by (7) for any 4,B€(, then a relatively straightforward algebra yields

1 1
P8 Py B A
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1 1
P(B,C)  P(C,B)

11
P(C,A)  P(4,C)

Adding these three equations together and rearranging then yields (3). U
Proof of Proposition 3 Let us consider four choice alternatives 4,8,C,DeQ such that
P(4,B)>P(C.D).

If condition (3) holds for 4,B,Ce(), then we have

1 1 1 1 1 1

P(A4,B)  P(B,C)  P(C,A) P(4,C)  P(C,B) " P(B,4)

If condition (3) holds for B,C,DeQ, then we have

1 1 1 1 1 1
P(D.B) " PB,C) "P(C.D)P(D,C) " P(C.B) " P(B.D)

Subtracting one of these equalities from another then yields

1 1 1 1 1 1 1
P(4,B) P(C,D) + P(D,C) P(B,A) P(4,C) P(B,D) + P(D,B)
1

If P(4,8)>P(C,D), then 5} s - 7o

ness holds, then we also have DO

< 0. Moreover, if probabilistic complete-

D <)~ PEA) B’ v < 0. Therefore, we must have

1 1 1 1
P(4,C) P(B,D) + P(D,B) P(C,A) =0

If probabilistic completeness holds, then this inequality can be rearranged as

1 1 1 1
P(4,C) 1-P(4,C) = P(B,D) 1—P(B,D)

Since function 1/x-1/(1-x) is strictly decreasing in x, we must then have P(4,C)>P
(B.D). O
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Proof of Proposition 4 We first prove the sufficiency part. If the independence from
irrelevant alternatives (6) holds then

0(4|Q) — O(B|Q) = O(4,B) — O(B, A)

Using probabilistic completeness, this equation can be rewritten as

1 1 1 1

P(A]Q) P(B|Q) P(4,B) 1—P(4,B)

By proposition 1 and 2 there is utility function u :  — R such that the right-hand
side of this equation is equal to u(B) — u(4). Rearranging then yields

! +u(d) = P(1;|Q) + u(B)

A similar argument implies that er u(A) is constant for any other choice

alternative. Let us denote this constant by x(€2). Then choice probability is given by
P(A|1Q) = 1/[x(Q) — u(A)]. Summing over all choice alternatives 4€Q and using
(4) then yields Eq. (8) that implicitly defines constant x(Q2). In general, Eq. (8) has n
real roots but only the highest root is such that all choice probabilities are strictly
positive.

For the “necessity” part, if alternative 4€Q is chosen with probability P(4|Q) =
1/[x(Q) — u(A4)] then

1 1 1 1

P(41Q)  P(BIQ) u(B) — u(4) = P(4,B)  1—P(4,B)

Using probabilistic completeness, the equality between the left-most and the right-
most part can be rewritten as the independence from irrelevant alternatives (6). [
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