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Abstract
Standard models of portfolio investment rely on various statistical measures of

dispersion. Such measures favor returns smoothed over all states of the world and

penalize abnormally low as well as abnormally high returns. A model of portfolio

investment based on the tradeoff between expected return and expected loss con-

siders only abnormally low returns as undesirable. Such a model has a comparative

advantage over other existing models in that a first-order stochastically dominant

portfolio always has a higher expected return and a lower expected loss. Expected

return—expected loss model of portfolio investment can rationalize the equity

premium puzzle. Two random variables are not comoving if there is at least one

state of the world in which one random variable yields a positive return and the

other—a negative return. Such random variables provide hedging benefits from

diversification in portfolio investment according to the expected return—expected

loss model. A special case of this model, when an investor linearly trade-offs

expected returns and expected losses, is also a special case of the prospect theory

when a decision-maker has a piece-wise linear value function without any proba-

bility weighting.

Keywords Decision theory � Portfolio investment � Expected loss � First-order
stochastic dominance � Equity premium puzzle

1 Introduction

Existing models of portfolio investment (Konno & Yamazaki, 1991; Markowitz,

1952; Yitzhaki, 1982) use statistical measures of dispersion (variance or standard

deviation, mean absolute deviation, Gini (1912) mean difference) to capture the
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undesirable attribute (risk) of financial portfolios. Such statistical measures,

however, count both unexpectedly low and unexpectedly high returns. Arguably,

only the former are undesirable (cf. Roy, 1952) and investors may be even attracted

to the latter. A model of portfolio investment based on the tradeoff between

expected return and expected loss considers only returns below the reference point

as undesirable. Such an approach can be backed by a large literature in behavioral

economics finding evidence of loss aversion (Kahneman & Tversky, 1979). For

example, willingness to accept often exceeds willingness to pay, a behavioral

regularity known as the endowment effect (Kahneman et al., 1990; Thaler, 1980);

decision-makers often prefer to retain the status quo (Knetsch, 1989; Samuelson &

Zeckhauser, 1988); investors demand higher returns from stocks with downside risk

(Ang et al., 2006); traders who experience losses in the morning take extra risks in

the afternoon to recover (Coval & Shumway, 2005); investors are prone to the

disposition effect (Odean, 1998; Shefrin & Statman, 1985) etc.

Markowitz (1952) mean–variance approach always violates the first-order

stochastic dominance (Borch, 1969). Such violations are normatively unappealing

and rarely observed in the data (Carbone & Hey, 1995; Loomes & Sugden, 1998,

Table 2, p. 591; Hey, 2001, Table 2, p.14; see, however, Tversky & Kahneman,

1986, p. 264; Birnbaum & Navarrete, 1998, p. 61). A model of portfolio investment

based on the tradeoff between expected return and expected loss has an important

normative advantage over other models—a first-order stochastically dominant

portfolio always has a higher expected return and a lower expected loss (Proposition

1 below).

Behavioral finance literature typically models aversion to negative returns by

using the elements of Kahneman and Tversky (1979) prospect theory that

aggregates positive and negative returns together, with ‘‘losses looming larger than

gains’’. For example, Benartzi and Thaler (1995) combine loss aversion with mental

accounting to rationalize the equity premium puzzle (Mehra & Prescott, 1985).

Barberis et al. (2001) combine loss aversion with a sensitivity to prior outcomes to

explain anomalies in asset prices. This paper models aversion to negative returns in

the spirit of Markowitz (1952) mean–variance approach: investors tradeoff expected

returns versus expected losses.

The remainder is organized as follows. Section 2 presents the expected return–

expected loss model of portfolio investment. Section 3 compares this model with

other models. Section 4 shows that this model can rationalize the equity premium

puzzle. Section 5 concludes.

2 Expected return—expected loss model of portfolio investment

2.1 Set of feasible and efficient portfolios

There is a finite number of the states of the world n 2 N. Only one state of the world

is true ex post but an investor does not know ex ante which one. States of the world

are numbered by subscripts i 2 {1,…,n}. Notation p(si) denotes the probability of

the state of the world si, i 2 {1,…,n}. There is a finite number of securities m 2 N.
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Securities are numbered by subscripts j 2 {1,…,m}. In particular, the return of

security j in the state of the world si is denoted by Rj(si). Expected return of security

j is given by Eq. (1).

ERj ¼
Xn

i¼1

Rj sið Þp sið Þ ð1Þ

Losses (gains) are returns below (above) the reference point. For expositional

clarity, we consider the simplest case when the reference point is the status quo

(zero return) so that losses are simply negative returns. A more general model with a

non-zero reference point is qualitatively similar. Expected loss of security j is given
by Eq. (2).

ELj ¼ �
Xn

i¼1
Rj sið Þ\0

Rj sið Þp sið Þ ð2Þ

Portfolio a ¼ a1; a2; . . .; amf g yields return
Pm

j¼1 ajRj sið Þ in the state of the world
si, aj 2 [0,1] for all j 2 {1,…,m} and

Pm
j¼1 aj ¼ 1. Expected return of any portfolio

Eq. (3) is simply the weighted average of expected returns of individual securities in

this portfolio.

ER að Þ ¼
Xm

j¼1

ajERj ð3Þ

Two securities are comoving if they yield losses in the same states of the world

(which implies that they yield gains in the same states of the world as well). Note

that this concept of comoving securities is different from the concept of (sign)

comonotonic securities (cf. Wakker et al., 1994) that is used in rank-dependent

utility (Quiggin, 1981, 1982) or cumulative prospect theory (Tversky & Kahneman,

1992). For example, two securities TSLA and NVDA1 presented in Table 1 are

comoving (both securities are in the red in the same states of the world) but not

comonotonic (NVDA yields a higher return in state s1 but TSLA yields a higher

return in state s2). If all securities are comoving then the expected loss of a portfolio

is simply the weighted average of expected losses of individual comoving securities

Eq. (4).

EL að Þ ¼
Xm

j¼1

ajELj ð4Þ

It is conventional to represent securities/portfolios in a two-dimensional diagram

with their desirable attribute (expected return) plotted on the vertical axis and their

undesirable attribute (expected loss)—on the horizontal axis. A set of portfolios that

1 These are monthly changes in close prices (adjusted for dividends and splits) on the first day of the

month between June 2019 and May 2020 for Tesla, Inc. (TSLA) and NVIDIA Corporation (NVDA). Data

downloaded from https://finance.yahoo.com/
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can be constructed with two comoving securities is then represented by a straight

line connecting these two securities. For example, Fig. 1 shows the set of all

feasible portfolios that can be constructed with securities TSLA and NVDA

presented in Table 1 (on the assumption that all states of the world are equally

likely).

Let us now consider two securities that are not comoving. In other words, there is

at least one state of the world si in which there is no comovement i.e.
R1(si)R2(si)\ 0. For any such state, we calculate a share a1(si) of the first security

such that the expected return of the binary portfolio is equal to the reference point

(zero return) in state si.
2

a1 sið Þ ¼ R2 sið Þ
R2 sið Þ � R1 sið Þ ð5Þ

We plot binary portfolios corresponding to all such ‘‘break even’’ shares as well

as a1 = 0 and a1 = 1 on the expected return—expected loss plane. Finally, we

connect them by straight lines. The obtained piece-wise linear curve represents the

set of all feasible portfolios that can be constructed with two securities that are not

comoving.3

For example, two securities WMT and AAPL4 presented in Table 2 are not

comoving in states s3 and s10 (AAPL is in the red but not WMT) and s5, s6, s8 and
s11 (WMT is in the red but not AAPL). The last column of Table 2 shows the

implied ‘‘break even’’ shares Eq. (5) of WMT for these six states of the world.

Table 1 An example of two

comoving securities
State of the world TSLA (%) NVDA (%)

s1 4.80 9.90

s2 49.21 10.88

s3 - 21.56 - 2.34

s4 2.68 14.23

s5 55.52 0.48

s6 26.79 8.64

s7 4.77 7.82

s8 30.74 15.48

s9 6.76 4.02

s10 - 6.62 - 0.72

s11 8.12 2.73

s12 20.68 21.38

2 In any state of the world si in which there is comovement (i.e. R1(si)R2(si) C 0) the ratio (5) is not a

well-defined share (being either negative or greater than one).
3 The case with comoving securities that we discussed first is just a special case of this algorithm when

there are no ‘‘break even’’ shares.
4 These are monthly changes in close prices (adjusted for dividends and splits) on the first day of the

month between June 2019 and May 2020 for Walmart Inc. (WMT) and Apple Inc. (AAPL). Data

downloaded from https://finance.yahoo.com/
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Figure 2 presents six binary portfolios constructed with these ‘‘break even’’ shares

on the expected return—expected loss plane (on the assumption that all states of the

world are equally likely). A piece-wise linear curve that connects these six

portfolios (as well as two degenerate portfolios with 100% of WMT and AAPL)
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Fig. 1 Feasible portfolios that can be constructed with two securities in Table 1

Table 2 An example of two securities that are not commoving

State of the world WMT (%) AAPL (%) ‘‘Break even’’ share a1 of WMT

s1 1.54 5.35

s2 7.46 15.54

s3 5.51 - 6.76 0.551

s4 - 5.95 - 11.68

s5 - 3.22 5.40 0.626

s6 - 0.21 10.21 0.980

s7 1.56 7.43

s8 - 1.20 11.07 0.903

s9 4.38 7.70

s10 3.52 - 2.02 0.365

s11 - 0.10 7.64 0.987

s12 9.50 13.49
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represents all feasible portfolios that can be constructed with shares of WMT and

AAPL.

We assume that an investor prefers portfolios with a higher expected return and a

lower expected loss. Thus, a set of efficient portfolios is a subset of feasible

portfolios for which there is no other feasible portfolio with a higher expected return

and/or lower expected loss. For example, in Fig. 1 the set of efficient portfolios

coincides with the set of feasible portfolios. On the other hand, in Fig. 2, the set of

efficient portfolios is a subset of feasible portfolios with WMT share being at most

62.6%.

The algorithm of constructing the set of efficient portfolios over two securities is

then extended, by iteration, to efficient portfolios over any finite number of

securities (comoving or not). For example, Fig. 3 plots the set of feasible portfolios

that can be constructed with three securities: TSLA from Table 1, WMT and AAPL

from Table 2. This set is bounded by three piece-wise linear curves: (1) a solid curve

showing all binary portfolios feasible with only two securities WMT and AAPL (the

same as presented in Fig. 2); (2) a dashed curve showing all binary portfolios

feasible with WMT and TSLA; and (3) a dashed-dotted curve showing all binary

portfolios feasible with AAPL and TSLA.5 Figure 3 shows that the set of efficient

portfolios that can be constructed with three securities TSLA, WMT and AAPL is

the same as the set of efficient portfolios that can be constructed with only two
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Fig. 2 Feasible portfolios that can be constructed with two securities in Table 2

5 The dashed-dotted curve on Fig. 3 has only one kink corresponding to the ‘‘break even’’ share of AAPL

a1 = 0.187 because AAPL and TSLA are comoving in all but one state (s4).
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securities TSLA and WMT (a section of the dashed curve with WMT share being at

most 79.6%).

In the example presented in Fig. 3, three piece-wise linear curves corresponding

to feasible binary portfolios do not intersect (they only meet at points representing

degenerate portfolios with 100% share of one security). In this case, the set of

efficient portfolios contains only binary portfolios (i.e. one security is never used for

diversification). Let us now consider a more complex example when the set of

efficient portfolios contains fully diversified portfolios (with positive shares of all

available securities). We consider securities WMT and AAPL from Table 2 (that are

also presented in the second and fifth columns of Table 3) and security REGN6

presented in the third/sixth column of Table 3. The fourth (seventh) column of

Table 3 presents ‘‘break even’’ shares Eq. (5) of WMT (AAPL) in a binary portfolio

with REGN.

A solid piece-wise linear curve in Fig. 4 shows all binary portfolios feasible with

WMT and AAPL (the same as presented in Fig. 2). A dashed (dashed-dotted) piece-

wise linear curve in Fig. 4 shows all binary portfolios feasible with WMT (APPL)
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Fig. 3 Feasible portfolios that can be constructed with three securities WMT, AAPL and TSLA from
Tables 1, 2 (portfolio A is 94.5%WMT and 5.5%TSLA; portfolio B is 96.3%WMT and 3.7%TSLA;
portfolio C is 98.8%WMT and 1.2%TSLA; portfolio D is 99.2%WMT and 0.8%TSLA; portfolio E is
62.6%WMT and 37.4%AAPL; portfolio F is 90.3%WMT and 9.7%AAPL; portfolio G is 98%WMT and
2%AAPL; and portfolio H is 98.7%WMT and 1.3%AAPL)

6 These are monthly changes in adjusted close prices between June 2019 and May 2020 for Regeneron

Pharmaceuticals, Inc. (REGN). Data downloaded from https://finance.yahoo.com/.
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Table 3 ‘‘Break even’’ probabilities for binary portfolios WMT-REGN and AAPL-REGN

State of the

world

WMT

(%)

REGN

(%)

‘‘Break even’’ share

of WMT

AAPL

(%)

REGN

(%)

‘‘Break even’’ share

of AAPL

s1 1.54 8.55 5.35 8.55

s2 7.46 7.70 15.54 7.70

s3 5.51 9.83 - 6.76 9.83 0.593

s4 - 5.95 31.55 0.841 - 11.68 31.55 0.730

s5 - 3.22 - 10.00 5.40 - 10.00 0.649

s6 - 0.21 1.76 0.892 10.21 1.76

s7 1.56 20.48 7.43 20.48

s8 - 1.20 10.41 0.897 11.07 10.41

s9 4.38 - 4.36 0.499 7.70 - 4.36 0.362

s10 3.52 - 4.83 0.579 - 2.02 - 4.83

s11 - 0.10 - 2.63 7.64 - 2.63 0.256

s12 9.50 3.74 13.49 3.74
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Fig. 4 Feasible portfolios that can be constructed with three securities WMT, AAPL and REGN
(portfolio A is 76.3%WMT, 6.8%AAPL and 16.9%REGN; portfolio B is 47% WMT, 32.2%AAPL and
20.8%REGN; portfolio C is 22.6%WMT, 53.4%AAPL and 24%REGN)
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and REGN that is constructed using five ‘‘break even’’ shares from the fourth

(seventh) column of Table 3.

The dashed and dashed-dotted curves in Fig. 4 intersect (unlike those in Fig. 3)

so that the set of feasible portfolios is bounded not only by solid, dashed and

dashed-dotted curves (corresponding to feasible binary portfolios). To construct the

set of feasible portfolios we proceed as follows. Table 3 shows that there are eight

states of the world where the returns of three available securities are not comoving

(s3–s6 and s8–s11). We calculate a share a1(si,sj) of the first security and a share

a2(si,sj) of the second security such that the expected return of a diversified portfolio

over three securities is equal to the reference point (zero return) in two distinct states

si and sj where the returns of three available securities are not comoving (i.e.
i,j 2 {3–6,8–11}, i = j). This amounts to solving a system of linear Eq. (6).

a1 si; sj
� �

R1 sið Þ þ a2 si; sj
� �

R2 sið Þ þ 1� a1 si; sj
� �

� a2 si; sj
� �� �

R3 sið Þ ¼ 0

a1 si; sj
� �

R1 sj
� �

þ a2 si; sj
� �

R2 sj
� �

þ 1� a1 si; sj
� �

� a2 si; sj
� �� �

R3 sj
� �

¼ 0

�
ð6Þ

such that a1 si; sj
� �

; a2 si; sj
� �

2 0; 1½ �, a1 si;ð Þ þ a2 si; sj
� �

� 1, i = j,

min R1 sið Þ;R2 sið Þ;R3 sið Þf g\0\max R1 sið Þ;R2 sið Þ;R3 sið Þf g,
min R1 sj

� �
;R2 sj

� �
;R3 sj

� �� �
\0\max R1 sj

� �
;R2 sj

� �
;R3 sj

� �� �
.

The solution a1(s4,s11) = 0.763 and a2(s4,s11) = 0.068 to system Eq. (6) is

represented as point A in Fig. 4; the solution a1(s4,s10) = 0.47 and a2(s4,s10) = 0.322

to system Eq. (6) is represented as point B in Fig. 4; and the solution a1(s3,s4)-
= 0.226 and a2(s3,s4) = 0.534 to system Eq. (6) is represented as point C in Fig. 4.7

Points A, B and C as well as the two nearest binary portfolios (84.1%WMT-

15.9%REGN and 59.3%AAPL-40.7%REGN) that form a convex hull with these

points are connected by a piece-wise linear dotted curve in Fig. 4. The set of all

feasible portfolios is then bounded by this piece-wise linear dotted curve as well as

solid, dashed and dashed-dotted curves. The set of efficient portfolios is then the set

of feasible binary portfolios AAPL-REGN with AAPL share being at most 59.3%

plus the set of (compound/conglomerate) portfolios that can be constructed by

mixing a binary portfolio 59.3%AAPL-40.7%REGN with portfolio C (22.6%WMT,

53.4%AAPL and 24%REGN).

2.2 Investor’s indifference curves

As the next step, we specify investor’s preferences to determine the most preferred

efficient portfolio. In general, investor’s preferences are represented by the utility

function U(ER(a),EL(a)) that is increasing in the first argument and decreasing in

the second argument. A major theoretical advantage of the expected return—

expected loss model of portfolio investment over other models proposed in the

literature is that utility function U(ER(a),EL(a)) does not violate the first-order

stochastic dominance (cf. Proposition 1 below). In contrast, the influential

Markowitz (1952) mean–variance approach always violates the first-order stochastic

7 In our example, system (6) has nine other solutions that are located inside the convex hull of feasible

binary portfolios and hence they cannot be fully diversified boundary portfolios.
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dominance (Borch, 1969). The mean-absolute deviation approach (Blavatskyy,

2010; Konno & Yamazaki, 1991) respects the first-order stochastic dominance only

when indifference curves are not too steep (with a slope less than 0.5) in the

expected return—absolute deviation plane. A similar restriction also applies to the

mean-Gini approach (Shalit & Yitzhaki, 1984; Yitzhaki, 1982) that employs Gini

(1912) mean absolute difference statistic for measuring statistical dispersion of

assets’ returns.8

Proposition 1 If portfolio a first-order stochastically dominates portfolio b then
ER(a) C ER(b) and EL(a) B EL(b).

The proof is presented in the appendix.

For practical applications a useful parametric form is a quasi-linear utility

function U(ER(a),EL(a)) = ER(a)—a*EL(a)b, where a,b C 0 are constant. When

a = 0, an investor does not care about expected losses (does not diversify) and picks

a portfolio with the highest expected return as manifested by horizontal indifference

curves. When a is infinitely large, an investor does not care about expected returns

and picks a portfolio with the lowest expected loss (extreme loss aversion) as

manifested by vertical indifference curves. Parameter b captures investor’s

sensitivity to expected losses: if b[ 1 (\ 1) the investor becomes more (less)

averse to larger expected losses. Given the set of efficient portfolios and

indifference curves representing investor’s preferences, the optimal (most preferred)

portfolio is an efficient portfolio that is located on the highest indifference curve.

Figure 5 illustrates an optimal portfolio (59.3% AAPL and 40.7% REGN) for an

example with three securities WMT, AAPL and REGN (presented in Table 3) when

investor’s preferences are such that expected losses are twice as undesirable as

expected gains. Since the set of efficient portfolios is a piece-wise linear curve,

‘‘sharp’’ kink points on this curve are likely to be optimal portfolios for a wide range

of preferences.

3 Relationship to other models of portfolio investment

The expected return—expected loss model of optimal portfolio investment is closest

to the mean-absolute deviation approach (Blavatskyy, 2010; Konno & Yamazaki,

1991). In the expected return—expected loss model the reference point is constant

(the same for all securities). In the mean-absolute deviation approach, the reference

point is context-dependent (different for different securities). Specifically, the

reference point of security j is the expected return ERj of this security.9 The

expected loss of a security j is then equal to the mean absolute semideviation of this

security (7).

8 Mean-Gini approach is equivalent to Yaari (1987) dual model with a quadratic probability weighting

function (Blavatskyy, 2016).
9 This is similar to Gul (1991) theory of disappointment aversion where outcomes are disappointing if

they are below a lottery’s certainty equivalent.
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ELj ¼
Xn

i¼1
Rj sið Þ\ERj

ERj � Rj sið Þ
� �

p sið Þ ¼ 1

2

Xn

i¼1

Rj sið Þ � ERj

		 		p sið Þ ð7Þ

To understand the relationship between the mean-Gini approach (Shalit &

Yitzhaki, 1984; Yitzhaki, 1982) and the expected return—expected loss model we

need to assume that the reference point is both context-dependent and state-

dependent (i.e. the reference point is stochastic). Specifically, the reference point

RPij of the j-th security in the i-th state of the world is the expected return of this

security in all states that bring a higher return than j-th return in state i:

Gij � k 2 1; . . .; nf gjRj skð Þ[Rj sið Þ
� �

.

RPij ¼
X

k2Gij

Rj skð Þ p skð ÞP
h2Gij

p shð Þ ð8Þ

The expected loss of the j-th security is then equal to one-half of Gini (1912)

mean absolute difference statistic Eq. (9) with mean differences weighted by the

inverse of the j-th decumulative distribution function in the state with a lower return.
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Fig. 5 Optimal portfolio with three securities WMT, AAPL and REGN for utility function
U(ER(a),EL(a)) = ER(a)—2EL(a) represented by dashed indifference curves
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ELj ¼
Xn

i¼1

RPij � Rj sið Þ
� �

p sið Þ

¼
Xn

i¼1

X

k2Sij

Rj skð Þ � Rj sið Þ
� �
P

h2Gij
p shð Þ p sið Þp skð Þ

¼ 1

2

Xn

i¼1

Xn

k¼1

Rj skð Þ � Rj sið Þ
		 		
P

h2Gmin i;kf gj
p shð Þ p sið Þp skð Þ

ð9Þ

The expected return—expected loss model is overlapping with Kahneman and

Tversky (1979) original prospect theory as well as Tversky and Kahneman (1992)

cumulative prospect theory. The special case when an investor tradeoffs the

expected return vs. the expected loss in a linear manner, i.e. U(ER(a),EL(a)) =
ER(a)—a*EL(a), corresponds to the special case of both versions of the prospect

theory with a piece-wise linear value function with a loss aversion coefficient

k = 1 ? a and without non-linear probability weighting.

There is no obvious mathematical relationship between the expected return—

expected loss model and Markowitz (1952) mean–variance approach. The

relationship between these two models can be illustrated with the example of three

securities WMT, AAPL and REGN. The solid line in Fig. 6 shows the set of

efficient portfolios that can be constructed with these three securities according to

the expected return—expected loss model (the same as in Figs. 4 and 5). The set of

efficient portfolios according to Markowitz (1952) mean–variance approach is the
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Fig. 6 Efficient portfolios with three securities WMT, AAPL and REGN according to the expected
return—expected loss model and mean variance approach
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set of binary portfolios AAPL-REGN with AAPL share being at most 62.4% plus

the set of (compound/conglomerate) portfolios that can be constructed by mixing a

binary portfolio 62.4%AAPL-37.6%REGN with a fully diversified portfolio

65.2%WMT, 14.9%AAPL and 19.9%REGN. This set is represented by a dashed

line in Fig. 6.

The set of efficient portfolios according to the expected return—expected loss

model (a solid line in Fig. 6) overlaps with that according to Markowitz (1952)

mean–variance approach (a dashed line in Fig. 6) when efficient portfolios have a

relatively high expected return and a relatively high expected loss. In this case,

according to both models, efficient portfolios are binary portfolios AAPL-REGN

with AAPL share being at most 59.3%. Thus, if investors prefer stocks with high

returns and are relatively less averse to expected losses (or variance of returns), the

optimal portfolio is likely to be the same according to both models.

If investors are sensitive to expected losses, the optimal portfolio differs in two

models. Optimal portfolio according to the mean–variance approach generally has a

lower expected return and higher expected losses compared to the optimal portfolio

according to our model. This happens because a portfolio with low expected losses

may have abnormally high returns, which makes it too ‘‘volatile’’ according to the

mean–variance approach. The latter favors portfolios with returns smoothed over all

states of the world (at the cost of lower returns).

4 The equity premium puzzle

The equity premium puzzle (Mehra & Prescott, 1985) refers to an empirical finding

that an unreasonably high degree of risk aversion (under expected utility theory) is

required to rationalize a diversified portfolio that includes a stock market index and

relatively low-interest governmental bonds. To illustrate the equity premium puzzle,

the second column of Table 4 shows yields on a 13 week US treasury bill between

June 1st, 2019 and May 1st, 2020 and the third column of Table 4 shows monthly

changes in adjusted close prices of NASDAQ Composite Index for the same time

period.10 Let us assume that each of the twelve months listed in Table 4 is an

equally likely state of the world. We ignore the possibility of different taxation rates

for treasury bills and traded stocks. Under these assumptions, an investor

maximizing expected utility with a constant relative risk aversion utility function

u xð Þ ¼ x1�r

1� r
ð10Þ

holds both a 13 week US treasury bill and NASDAQ Composite Index in her

portfolio if her coefficient of relative risk aversion is r[ 2.41. For example, an

investor with a coefficient of relative risk aversion r = 2.5 holds a diversified

portfolio 4% T-bills and 96% NASDAQ index. A decision-maker with r = 2.5 sells

a 50–50% chance to receive either $100 or $1 for only $1.58, which might be an

unreasonably low certainty equivalent. Indeed, many empirical studies find lower

10 Data (^IRX and ^IXIC) downloaded from https://finance.yahoo.com/.
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coefficients of relative risk aversion. For instance, Blavatskyy and Pogrebna (2010,

Table III, p.973) estimate coefficients of relative risk aversion to be between - 0.12

and 0.45 (depending on the econometric model of probabilistic choice) in a natural

experiment with Italian contestants standing to win up to €500000. de Roos &

Sarafidis (2010, Table XIV) estimate coefficients of relative risk aversion to be

between 0.46 and 0.65 (depending on econometric model) for Australian contestants

standing to win up to AUD 200000.

To rationalize even a small share of treasury bonds in a diversified portfolio that

includes a stock market index, an expected utility maximizer must exhibit the levels

of risk aversion that are descriptively unjustifiable. In contrast, the expected

return—expected loss model of portfolio investment can rationalize the equity

premium puzzle without unrealistic assumptions about investor’s preferences. The

last column of Table 4 lists ‘‘break even’’ shares of treasury bills needed for

constructing the set of efficient binary portfolios over a 13 week US Treasury bill

and NASDAQ Composite Index. This set of efficient binary portfolios is shown as a

solid piece-wise linear curve in Fig. 7. Note that binary portfolios with 100% or

99.7% share of treasury bills have no negative returns, i.e. their expected loss is

zero.

Figure 7 shows that the optimal binary portfolio includes 57.4% of a 13 week US

treasury bill when the slope of the investor’s indifference curve touching the solid

line in the expected return—expected loss plane is between 0.52 and 0.64. As

discussed in the previous section, this corresponds to a coefficient of loss aversion

between 1.52 and 1.64 in a version of prospect theory without non-linear probability

weighting. Coefficients of loss aversion greater than two are not uncommon in the

empirical literature (e.g., Tversky & Kahneman, 1992). Hence, we can conclude that

a relatively modest aversion to expected losses is sufficient for rationalizing a

Table 4 Yields on a 13 week US treasury bill and monthly changes in NASDAQ index

Date Yield on a 13 week Treasury bill (%) NASDAQ

(%)

‘‘Break even’’ share a1 of T-bill

May 01 2020 0.128 6.753

Apr 01 2020 0.090 15.447

Mar 01 2020 0.030 - 10.123 0.997

Feb 01 2020 1.230 - 6.377 0.838

Jan 01 2020 1.510 1.988

Dec 01 2019 1.505 3.544

Nov 01 2019 1.540 4.499

Oct 01 2019 1.498 3.663

Sep 01 2019 1.770 0.458

Aug 01 2019 1.933 - 2.600 0.574

Jul 01 2019 2.030 2.113

Jun 01 2019 2.035 7.421
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relatively large share of treasury bonds in a diversified portfolio together with a

stock market index.

5 Conclusion

The problem of optimal portfolio investment amounts to finding the most desirable

convex combination of several random variables. Often regarded as a normative

benchmark, expected utility theory (von Neumann & Morgenstern, 1947) employs a

non-linear Bernoulli utility function. Thus, in general, under expected utility theory

there is no closed-form solution for an optimal convex combination of several

random variables. This limitation carries over to many well-known generalizations

of expected utility theory such as rank-dependent utility (Quiggin, 1981, 1982) or

cumulative prospect theory (Tversky & Kahneman, 1992). The possibility to

characterize a closed-form solution for an optimal convex combination is valued in

practical applications in finance. Hence, several models of optimal portfolio

investment were proposed with a linear utility function, e.g. Markowitz (1952)

mean–variance approach. Such models produce a closed-form solution for an

optimal convex combination but lack a solid preference foundation. For example,

Markowitz (1952) mean–variance approach may lead to violations of the first-order

stochastic dominance. This state of the literature demands for a model of optimal

portfolio investment that, on the one hand, is based on intuitive micro-economic

preferences (e.g. respects the first-order stochastic dominance) and, on the other

hand, produces a closed-form solution for an optimal convex combination (which

essentially boils down to avoiding any non-linear transformations of state-

contingent payoffs). The main contribution of this paper is to advance one such

model.

The idea that investors weight expected returns vis-à-vis expected losses is

intuitively appealing. Such a model also has normatively attractive properties. For

100% NASDAQ

57.4% T-bills

83.8% T-bills

99.7% T-bills

100% T-bills
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0.016

0.018

0.020

0.022

0.024

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

expected loss

expected return

Fig. 7 Set of efficient binary portfolios of a 13 week US treasury bill and NASDAQ Composite Index
(solid line) and indifference curves (dashed line) rationalizing the optimal portfolio with 57.4% share of
treasury bills
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example, it does not lead to violations of the first-order stochastic dominance. On

the descriptive side, the model can be supported by a large behavioral literature

finding evidence of loss aversion. To construct a set of efficient portfolios in the

expected return—expected loss plane we only need to solve (a system of) linear

equations. Thus, a closed-form solution for an optimal convex combination under

this model is even simpler compared to the classic mean–variance approach (which

requires solving a quadratic optimization problem).

An important concept in the expected return—expected loss model is that of

comoving random variables. Two random variables are comoving if there is no state

of the world in which one random variable yields a positive return and the other—a

negative return. Comoving random variables do not provide any additional benefit

from diversification. The expected return (loss) of a convex combination of

comoving random variables is equal to the weighted average of the expected returns

(losses) of individual comoving random variables. In contrast, random variables that

are not comoving provide additional benefits from diversification. The expected loss

of a convex combination of such variables is less than the corresponding weighted

average of the expected losses of individual random variables. In other words,

securities that are not comoving provide hedging benefits in portfolio investment.

The efficiency frontier under expected return—expected loss model is qualita-

tively similar to that under the mean–variance approach. The mean-absolute

deviation approach (Konno & Yamazaki, 1991) can be viewed as the expected

return—expected loss model with an endogenous reference point that is equal to the

expected return of a security. The mean-Gini approach (Shalit & Yitzhaki, 1984;

Yitzhaki, 1982) can be viewed as the expected return—expected loss model with an

endogenous state-dependent reference point. Finally, the expected return—expected

loss model is overlapping with prospect theory (Kahneman & Tversky, 1979;

Tversky & Kahneman, 1992). A special case of the former, when an investor

linearly trade-offs expected returns and expected losses, is also a special case of the

latter, when a decision-maker has a piece-wise linear value function without any

probability weighting.

One possible criticism of the expected return—expected loss model is that the

model predicts no diversification in a bear market when all securities yield negative

returns (since the security with the smallest loss is then also the security with the

highest expected return). Yet, in such a relatively rare stock market where all

securities yield negative returns, the assumption that investors maintain zero return

as their reference point is not realistic. On such a bear market the investors would

lose money anyway and they might be concerned with avoiding larger losses so that

their reference point is a negative return. With a negative reference point, the

expected return—expected loss model predicts diversification on a bear market

when all securities yield negative returns.

123

78 P. Blavatskyy



Appendix

Proof of proposition 1

For any portfolio a we denote the return of this portfolio in state of the world si as

Ri að Þ ¼def
Xm

j¼1

ajRj sið Þ

For any two portfolios a and b let X denote the set of their possible returns:

X ¼def
[n

i¼1

Ri að Þ;Ri bð Þf g

Let N be the number of elements in set X and let us number those elements by

subscript k in the ascending order so that x1 is the minimum element and xN is the

maximum element in X. Finally. We denote the cumulative distribution function of

portfolio a as

Fk að Þ ¼def
Xn

i ¼ 1

Ri að Þ� xk

p sið Þ

If portfolio a first-order stochastically dominates portfolio b then Fk að Þ�Fk bð Þ
for all xk 2 X.

Expected return (3) of portfolio a can be then written as

ER að Þ ¼
Xm

j¼1

ajERj ¼
Xn

i¼1

Ri að Þp sið Þ

¼ xN þ
XN�1

k¼1

Fk að Þ xk � xkþ1½ � � xN

þ
XN�1

k¼1

Fk bð Þ xk � xkþ1½ � ¼ ER bð Þ

Let X- denote the set of all losses (negative returns) in X and zero:

X� ¼def x 2 Xjx\0f g [ 0f g

Let L be the number of elements in set X-. As before. We keep the numbering in

the ascending order so that x1 is the minimum element (the biggest loss) in X- and

xL = 0. Expected loss of portfolio a can be then written as

EL að Þ ¼ �
Xn

i¼1
Ri að Þ\0

Ri að Þp sið Þ ¼
XL�1

k¼1

Fk að Þ xkþ1 � xk½ � �
XL�1

k¼1

Fk bð Þ xkþ1 � xk½ � ¼ ER bð Þ

Q.E.D.
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