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Abstract
We investigate risk attitudes when the underlying domain of payoffs is finite and the

payoffs are, in general, not numerical. In such cases, the traditional notions of

absolute risk attitudes, that are designed for convex domains of numerical payoffs,

are not applicable. We introduce comparative notions of weak and strong risk

attitudes that remain applicable. We examine how they are characterized within the

rank-dependent utility model, thus including expected utility as a special case. In

particular, we characterize strong comparative risk aversion under rank-dependent

utility. This is our main result. From this and other findings, we draw two novel

conclusions. First, under expected utility, weak and strong comparative risk aver-

sion are characterized by the same condition over finite domains. By contrast, such

is not the case under non-expected utility. Second, under expected utility, weak

(respectively: strong) comparative risk aversion is characterized by the same con-

dition when the utility functions have finite range and when they have convex range

(alternatively, when the payoffs are numerical and their domain is finite or convex,

respectively). By contrast, such is not the case under non-expected utility. Thus,

considering comparative risk aversion over finite domains leads to a better under-

standing of the divide between expected and non-expected utility, more generally,

the structural properties of the main models of decision-making under risk.
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1 Introduction

The traditional risk attitude concepts of economics are defined with reference to the

more primitive notion of an increase in risk. The most widespread notion of an

increase in risk is that of a mean-preserving spread (Rothschild and Stiglitz 1970).

This notion is usually introduced assuming that the underlying domain of payoffs is

a convex subset of the reals, as is the case when the payoffs form a monetary

interval, for instance. The resulting ideas of risk aversion, risk seeking, and risk

neutrality have led to numerous applications in insurance theory, finance, and other

areas of economics (e.g., Eeckhoudt et al. 2005). These model-free ideas can also be

used to axiomatically analyze the structural properties of the main models of

decision-making under risk. Specifically, they help better understand the funda-

mental divide between expected and non-expected utility. This is because risk

attitudes turn out to be treated differently across this divide. In particular, one can

define various logically nested kinds of increase in risk, accordingly, various

degrees of risk aversion (or risk seeking), and subsequently prove that under

expected utility, all degrees of risk aversion (or risk seeking) are characterized by

the same condition, while such is not the case under non-expected utility (see

esp. Chateauneuf et al. 1997).

However, many risky decisions are made with respect to finite domains of non-

numerical payoffs.1 Economically relevant examples include non-divisible con-

sumer goods, health conditions, or social positions, for instance. As the mean of an

option then becomes a meaningless notion, it is not obvious how to define an

increase in risk in those cases. Consequently, it is not obvious how to define risk

attitudes. A coarse notion of increasing risk seems readily available, however. It is

that (under suitable restrictions) any risky prospect is riskier than any riskless

prospect, i.e., any payoff given with certainty. One can retrospectively interpret

Yaari as building on that notion of increasing risk in his pioneering exploration

(Yaari 1969) of a comparative approach to risk aversion. In this approach, rather

than the absolute notion ‘‘being risk averse’’, the central concept of interest becomes

the more fundamental comparative notion ‘‘being more risk averse than’’.

Importantly, comparative notions do not apply only when the domain of payoffs

is finite and non-numerical, but also over convex real domains (e.g., Diamond and

Stiglitz 1974). However, in the former case, unlike in the latter, they turn out to be

the only useful risk attitude notions available. The literature has now explored

notions of increasing risk that are more refined than the coarse notion given above.

The most important references are Allison and Foster 2004, Mendelson 1987, and

Bommier et al. 2012, with motivations coming from health economics, general

statistics, and insurance economics, respectively. While only the first of these papers

focuses on the finite case, the remaining two nonetheless also provide analytical

tools that are applicable to that case. All three papers propose to define increasing

1 In a direction that is different from but complementary to the one explored here, one could also

maintain the numerical structure of the domain of payoffs but generalize risk to uncertainty to investigate

how to define an increase in uncertainty. See in particular Grant and Quiggin 2005 and the references

quoted therein. We are grateful to a referee for drawing our attention to Grant and Quiggin’s paper, to

which we briefly return in fn. 4 and 14.
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risk by a simple single-crossing condition on the distribution functions associated

with the options (see our Def. 1). Surprisingly, these three important contributions

are independent of one another and—the last one excepted—Yaari’s preexisting

pioneering work. Overall, the current literature on risk attitudes over finite domains

is not conceptually unified or systematically organized. Arguably it should, like the

classic literature on absolute risk attitudes (e.g., Chateauneuf et al. 1997), be

structured with reference to logically nested kinds of increasing risk.

Gathering insights from the above papers, we contribute to conceptually unifying

the currently available notions of comparative risk attitudes over finite domains (see

Sects. 3 and 4). In particular, building especially on Bommier et al. 2012 on the one

hand and the classic literature on absolute risk attitudes on the other, we propose to

distinguish between weak and strong comparative risk aversion (see Def. 2). We

then investigate (in Sect. 5) the characterization of these notions in a large class of

non-expected utility preferences, viz. the rank-dependent utility preferences

(Quiggin 1982). Such preferences include both expected utility and the so-called

dual expected utility model (Yaari 1987) as special cases. To the best of our

knowledge, when applied to finite domains of payoffs, our notion of strong

comparative risk aversion has not been hitherto characterized under expected utility,

dual expected utility, or general rank-dependent utility. Building on Chateauneuf

et al. 2005, we provide the missing characterizations (see Theorem 1, together with

Corollaries 1 and 2). Those are the main results in our paper. As regards our notion

of weak comparative risk aversion, it has already been characterized under expected

utility (Peters and Wakker 1987), but not under dual expected utility or rank-

dependent utility, to the best of our knowledge. We provide partial, yet instructive

results on weak comparative risk aversion under dual expected utility (the non-

necessity result in Observation 2) and general rank-dependent utility (the

sufficiency result in Observation 3).

Furthermore, bringing together these new results and preexisting ones, we reach

two novel conclusions (Facts 2 and 3). First, under expected utility, weak and

strong comparative risk aversion are characterized by the same condition, which is

not the case under non-expected utility. This conclusion holds not only when the

utility functions have convex range, which was already known (e.g., Chateauneuf

et al. 1997), but also when the utility functions have finite range, which had not

been hitherto established. Second and more novel, under expected utility, weak

(respectively: strong) comparative risk aversion is characterized by the same

condition when the utility functions have finite range and when they have convex

range (alternatively, when the payoffs are numerical and their domain is finite or

convex, respectively). By contrast, such is not the case under non-expected utility.

The latter kind of comparisons had not been hitherto studied in the literature, to the

best of our knowledge. Accordingly, it is worth making immediately clear that it

does not reduce to the former. Weak and strong comparative risk aversion could be

characterized by the same condition both in the finite and in the convex case, yet the

common condition differ across these two cases. Conversely, weak and strong

comparative risk aversion could be characterized by different conditions both in the

finite and in the convex case, yet the distinctive condition for each attitude remain

the same across these two cases. The take-home message from our conclusions on
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these two distinct issues is that like absolute risk attitudes, comparative risk attitudes

help better understand the fundamental divide between expected and non-expected

utility, more generally, the structural properties of the main models of decision-

making under risk. We consider this general conceptual insight, which we explain to

raise several interesting questions for further research, to be the main contribution of

our investigation of risk attitudes over finite domains.

The rest of the paper is organized as follows. Section 2 gathers some necessary

preliminaries. Section 3 presents the notion of increasing risk on which our analysis

relies. Section 4 introduces our notions of weak and strong comparative aversion.

Section 5 contains our main results and their discussion. Section 6 concludes.

2 Preliminaries

Let X ¼ fx1; . . .; xng be a finite set of payoffs. These payoffs may, but need not, be

numerical, i.e., elements of R; for our purposes, what matters is that there be, in any

case, finitely many of them. Let L ¼ DðXÞ, with generic element

l ¼ ðp1; x1; . . .; pn; xnÞ, be the set of all probability distributions, or lotteries, over

X. Let the preferences of the decision-maker be given by <, a binary relation over L,
with symmetric and asymmetric parts � and �, respectively. We always assume

that < is a weak order. Abusing notation as usual, < is also defined over X,
identified with the set of degenerate lotteries in L. Notice that, by the above

assumptions, the restriction of < to X can be represented by a utility function

u : X ! R, the range of which is finite. That representation is ordinally unique. For

non-triviality, we assume throughout that there are at least three payoffs between

which the decision-maker is not indifferent, i.e., x�y�z holds for some x; y; z 2 X.
Furthermore, we always assume that the elements of X have been indexed

consistently with their ranks in the decision-maker’s preferences, i.e., x1<. . .<xn
holds. Thus, given l ¼ ðp1; x1; . . .; pn; xnÞ and any i, 1� i� n,

Pi
j¼1 pj is the

probability that lottery l delivers a payoff x at least as good as xi, i.e., that x<xi.
In this paper, we focus on three models of decision-making under risk. Rank-

dependent utility (RDU; Quiggin 1982) holds if the following condition obtains.

There exists a strictly increasing, continuous2 probability weighting function

w : ½0; 1� ! ½0; 1�, with wð0Þ ¼ 0 and wð1Þ ¼ 1, and a utility function u : X ! R,

such that, with the convention uðxnþ1Þ ¼ 0, < is represented by the function v :
L ! R given by:

vðlÞ ¼
X

i¼1

n

w
X

j¼1

i

pj

 !
�
uðxiÞ � uðxiþ1Þ

�
" #

: ð1Þ

In this representation, the utility function is cardinally unique and the probability

weighting function is absolutely unique. Expected utility (EU) is the special case of
(1) where, for all p 2 ½0; 1�, wðpÞ ¼ p. When the elements of X are numerical, dual

2 The literature has been more general in exploring discontinuities at 0 and 1. Motivations have included

accounting for the possibility effect, the certainty effect, and the like (e.g., Wakker 2010, Chap. 6). For

simplicity, we will assume these discontinuities away.
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expected utility (DEU; Yaari 1987) is the special case of (1) where, for all x 2 X,
uðxÞ ¼ x. Any model of decision-making under risk different from EU qualifies as a

non-expected utility (non-EU) model.

For future reference, we also state now the definition of one core property

satisfied by RDU and many other models of decision-making under risk. The

relation < respects first-order stochastic dominance if for any l; l0 2 L, with

l ¼ ðp1; x1; . . .; pn; xnÞ, l0 ¼ ðq1; x1; . . .; qn; xnÞ, if
Pi

j¼1 pj �
Pi

j¼1 qj holds for all i,

1� i� n, and the inequality is strict for some i, then l<l0. Thus, if the cumulative

distribution function of l is nowhere higher, and somewhere strictly lower, than the

cumulative distribution function of l0, then l<l0.
Finally, we recall the characterization of concavity, which we here adopt as a

definition, whereby a function f : R ! R is concave (respectively: convex) if for

any a; b; c; d 2 R such that a[ b� c[ d, the inequality
�
f ðcÞ � f ðdÞ

�
=
�
c�

d
�
�
�
f ðaÞ � f ðbÞ

�
=
�
a� b

�
(respectively: the inequality

�
f ðaÞ � f ðbÞ

�
=
�
a�

b
�
�
�
f ðcÞ � f ðdÞ

�
=
�
c� d

�
) holds. The function f is strictly concave (respectively:

convex) if this inequality is always strict. Furthermore, given two functions f and g
that are real-valued (but not necessarily defined over real domains), we say that f is
more concave (respectively: more convex) than g if there exists a strictly increasing

concave (respectively: convex) function h : R ! R such that f ¼ h 	 g. The

function f is strictly more concave (respectively: convex) than g if this transfor-

mation h is strictly concave (respectively: convex).

3 Increasing risk

The most fundamental definition in our paper is the following. As stated, it is (a

slight variation on)3 the definition proposed in Bommier et al. 2012.

Definition 1 Let l ¼ ðp1; x1; . . .; pn; xnÞ and l0 ¼ ðq1; x1; . . .; qn; xnÞ be two elements
of L. Say that l is a spread of l0, noted here l ‘ l0, if there exists a k, 2� k� n, such

that for all i� k � 1,
Pi

j¼1 pj �
Pi

j¼1 qj, and for all i� k,
Pi

j¼1 pj �
Pi

j¼1 qj, with

at least one strict inequality in each direction.

Thus, l ‘ l0 if the cumulative distribution functions of l and l0 single-cross, i.e., l
is first-order stochastically dominated by l0 on the left of the crossing point, then

first-order stochastically dominates it on the right of the crossing point. Therefore,

appreciating all payoffs with reference to that point, l makes the bad payoffs of l0

worse, the good payoffs, better.4 The same fundamental intuition underlies the

simplest kind of increase in risk in the classic convex real case (Diamond and

3 The variation consists in the final addition ‘‘with at least one strict inequality in each direction.’’ This

permits avoiding to say, e.g., that a lottery is riskier than its worst payoff. Given the comparative context

in which we study spreads, the variation is stylistic only.
4 Transposed to lotteries so that the two definitions are comparable, Grant and Quiggin’s (2005, Def. 1)

notion of increasing uncertainty is a particular case of our notion of increasing risk. Grant and Quiggin’s

notion then requires that the inter-quantile differences increase (in absolute value) away from the crossing

point. Our notion does not require that inter-quantile differences be defined or, even when they are, that

they be so constrained.
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Stiglitz 1974; Machina 1982; Machina and Pratt 1997). A major difference is that

the spread can then be calibrated as, e.g., mean-preserving, which is in general not

possible in the finite case, where the mean of a lottery is, in general (specifically,

when the payoffs are not numerical), a meaningless notion. This non-calibration

notwithstanding, one can say that whenever l ‘ l0, l is riskier than l0.
It is natural to single out the special case where l ‘ l0 and l0 is a degenerate

lottery, i.e., a riskless payoff. This is when the above conditions hold with
Pi

j¼1 qj ¼ 0 for all i� k � 1 and
Pi

j¼1 qj ¼ 1 for all i� k. Assuming the respect of

first-order stochastic dominance, this is equivalent to the definition of increasing risk

which—as a matter of retrospective attribution—one can naturally associate to the

seminal exploration of risk attitudes in Yaari 1969. We call such spreads basic.
They are, from a logical point of view, the most restrictive kinds of increase in risk

which one can define over finite domains.

Thus, ‘ is a binary relation over L and, as such, some of its basic properties may

be noted. First and most obvious, ‘ is an incomplete relation over L; i.e., for

arbitrary l; l0 2 L , it may be that neither l ‘ l0 nor l0 ‘ l holds. Second, ‘ respects so-

called von Neumann–Morgensten independence; i.e., with the usual notation for

convex combinations of lotteries, for any l; l0; l00 2 L and a 2 ð0; 1�, l ‘ l0 if and only

if alþ ð1� aÞl00 ‘ al0 þ ð1� aÞl00. Finally, ‘ is not necessarily transitive.5 Never-

theless, when desired, transitive sub-relations of ‘ may be defined as follows (see

Bommier et al. 2012, p. 1627–1628). Given r 2 ð0; 1Þ, say that l is a r-spread of l0,
noted here l ‘r l

0, if there exists a k, 2� k� n, such that for all i� k � 1,

r�
Pi

j¼1 pj �
Pi

j¼1 qj, and for all i� k, r�
Pi

j¼1 pj �
Pi

j¼1 qj. Notice that, given

two lotteries l and l0 defined over finitely many payoffs, l ‘r l
0 and l ‘r0 l

0 may

simultaneously hold for distinct r, r0 2 ð0; 1Þ.6 However, whether uniqueness holds
or not, each ‘r relation is transitive.

An example of the just introduced r-spread relations is with r ¼ 1=2, which
corresponds to the special case of a median-preserving spread (Allison and Foster

2004; Lasso de la Vega 2018). Given other values of r, other quantile-preserving
spreads can be similarly defined (Mendelson 1987; without this terminology but

with a similar idea, Bommier et al. 2012). By definition, if l is a basic spread of l0,
then it is a r-spread of l0 for a given (range of) r 2 ð0; 1Þ, which implies that it is a

spread of l0, while none of the converse implications holds. This delineates a map of

various degrees of increase in risk over finite domains. This map could be

enriched—but to a limited extent only, especially since following the present

approach, the associated cumulative distribution functions must single-cross.7

5 For illustration, take X ¼ fa; b; c; d; eg. Assume that the set is ordered alphabetically. Consider the

lotteries l ¼ ð2=5; a; 0; b; 2=5; c; 0; d; 1=5; eÞ, l0 ¼ ð1=5; a; 0; b; 0; c; 4=5; d; 0; eÞ, and

l00 ¼ ð0; a; 3=5; b; 0; c; 2=5; d; 0; eÞ. Then, l is a spread of l0 and l0 is a spread of l00, but l is not a spread

of l00 because the cumulative distribution functions of l and l00 multiple-cross.
6 Take the alphabetically ordered set X ¼ fa; b; cg and consider the lotteries l ¼ ð1=3; a; 1=3; b; 1=3; cÞ
and l0 ¼ ð1=4; a; 1=2; b; 1=4; cÞ. Then, l ‘r l

0 for all r 2 ½1=3; 2=3�.
7 While this seems to prevent one from generalizing the notion of a spread, in the other direction, some

special kinds of r-spread may very well be defined. Consider, for example, the variance order (Trojani
and Malamud 2009). In effect, it is defined with reference to 1/2-spreads, with the added restriction that,

for any function u : X ! R representing the restriction of < to X, the variance of u is greater in the riskier
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4 Risk aversion

Relative to the notions of increasing risk introduced in the previous section,

concepts of absolute risk attitude could certainly be defined. However, these

concepts would prove uninteresting, inasmuch as they would clash with core

properties of decision-making under risk.8 Accordingly, what one should examine

instead is the more flexible and more primitive notion of a comparative risk attitude.
To that end, consider decision-makers 1 and 2, endowed with binary preference

relations <1 and <2, respectively, over L. More specifically, assume throughout

that <1 and <2 coincide over X, i.e., they differ over non-degenerate lotteries only.

When it will be necessary to repeat this assumption, to be discussed shortly, we will

refer to it as the assumption that <1 and <2 are ordinally equivalent. Notice that

under the ordinal equivalence assumption, there is no need to index spread relations

by either <1 or <2. This is because the notion of first-order stochastic dominance,

hence the notion of single-crossing, are entirely ordinal notions; i.e., they are robust

to any strictly increasing transformation of the underlying utility function on the set

of payoffs. Equipped with this observation, consider the following definitions. For

greater generality, they are given with reference not to r-spreads, for some

r 2 ð0; 1Þ, but to any spread.9

Definition 2 Let <1 and <2 be two ordinally equivalent decision-makers. Say that
<1 is strongly more risk averse (respectively: seeking) than <2, noted here
1 SMRA 2 (respectively: 1 SMRS 2), if for all l; l0 2 L such that l ‘ l0, if l<1l

0, then
l<2l

0 (respectively: if l0<1l, then l0<2l). Say that <1 is weekly more risk averse

(respectively: seeking) than <2, noted here 1 WMRA 2 (respectively: 1 WMRS 2),

if the previous implication holds under the additional condition that l0 is degenerate,
i.e., the spread is basic.

Thus, generally speaking, 1 is more risk averse (respectively: seeking) than 2 if

there is no increase (respectively: decrease) in risk which 1 would accept but 2

refuse.10 The ‘‘weak’’ or ‘‘strong’’ qualification then applies depending on the

restrictiveness of the kind of spread considered. For brevity, we henceforth focus on

comparative risk aversion only; i.e., we forego expliciting the parallel statements

pertaining to comparative risk seeking.

Footnote 7 continued

lottery than in the less risky one. (Surprisingly perhaps, some such comparisons are indeed ordinally

robust.)
8 For instance, given some r 2 ð0; 1Þ, say that < is averse to all r-spreads if for any l; l0 2 L, if l ‘r l

0,
then l0<l. Assuming mixture-continuity (a standard property satisfied by RDU and many other models),

one can show that this attitude clashes with the strict respect of first-order stochastic dominance. Similar

conclusions obtain varying the kind of spread under consideration, or replacing risk aversion by risk

seeking or risk neutrality.
9 From now on, the notion of r-spread, by contrast with the more general notion of a spread, will not play

any role in our paper. Our results will show that, under RDU at least, focusing on a specific r-spread is not
relevant for analyzing comparative risk attitudes.
10 Hence Yaari’s ‘‘acceptance set’’ terminology (Yaari 1969, for instance on p. 316).

123

Risk aversion over finite domains 377



Notice that by definition, 1 SMRA 2 implies 1 WMRA 2, but the converse does

not hold in general. This is a simple, but important fact to which we will return in

the next section. We record it in the following statement.

Fact 1 Necessarily, if 1 SMRA 2, then 1 WMRA 2. The converse does not
necessarily hold.

To the best of our knowledge, there is, in the current literature, no established

terminology to describe various degrees of comparative risk aversion. The

terminology which we propose is natural in light of the implication just highlighted.

It is also aligned with the terminology already established to describe the various

degrees of absolute risk aversion over classic convex real domains (see, e.g.,

Chateauneuf et al. 1997). Finally, speaking of ‘‘weak’’ and ‘‘strong’’ comparative

risk aversion to describe the specific attitudes previously defined is justified by the

observations made in Sect. 3. To wit, basic spreads seem to be the most restrictive,

and spreads, the most inclusive, degrees of increase in risk which one could define

over finite domains.

We close this section by briefly discussing the ordinal equivalence assumption.

This assumption is typically considered necessary to meaningfully compare risk

attitudes across individuals (e.g., Kihlstrom and Mirman 1974, p. 366; Bommier

et al. 2012, p. 1620).11 This assessment could be qualified, however. First, we

observe that, in some cases, the addition of this assumption can be spared. Assume

that, restricted to X, <2 is known to be a strict order. If 1 WMRA 2 holds, it then

follows that <1 is also strict, furthermore that it coincides with <2, over X. Thus, in
particular, if <1 and <2 are comparable in terms of risk attitudes and strict over X,
they are ordinally equivalent. Second and more important, we observe that the

ordinal equivalence assumption could be naturally generalized as follows. Say that

<1 and <2 are permutation-ordinally equivalent if they are identical over X up to

some permutation on X. The permutation ordinal equivalence condition fails

when <1 and <2 do not have the same number of indifference classes over X. When

the condition obtains, however, the previous notions of comparative risk aversion

can apply, provided they are generalized as explained next. Let r21 : X ! X be any

permutation such that the permutation ordinal equivalence condition holds.12

Furthermore, abusing notation, for any l 2 L, let r21ðlÞ denote the lottery induced by

applying the permutation r21 to the payoffs of l. Finally, let l ‘<i l0 denote the fact

that l is a spread of l0 with respect to <i, with i ¼ 1; 2. Then, notice that l ‘<1 l0

holds if and only if r21ðlÞ ‘<2 r21ðl0Þ holds, with the crossing point being the same in

both cases. Accordingly, we would find it natural to say, for example, that 1 is

strongly more risk averse than 2 if for all l; l0 2 L such that l ‘<1 l0, if l<1l
0, then

r21ðlÞ<2r21ðl0Þ. This illustrates the fact that risk attitude comparisons are not, in

principle, bound by the ordinal equivalence assumption.

11 Absent special assumptions, it does not follow from 1 WMRA 2 that 1 and 2 are ordinally equivalent.

Indeed, 1 WMRA 2 can hold with, for instance, <2 the constant relation such that x� 2y for all x; y 2 X
and <1 any non-constant preference relation over X.
12 When indifference between payoffs is allowed, the permutation is not uniquely defined.
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5 Characterizations

We now turn to the comparison of two RDU decision-makers, <1 and <2,

characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively. To this

end, we introduce the following two inter-individual indices. In the second index,

owing to the ordinal equivalence assumption, we forego defining the domain over

which the supremum is taken with specific reference to either <1 or <2, and we

write < instead.13

I1;2w ¼ inf
fp;q;r;s2½0;1�jp[ q� r[ sg

w1ðpÞ�w1ðqÞ
w2ðpÞ�w2ðqÞ
w1ðrÞ�w1ðsÞ
w2ðrÞ�w2ðsÞ

: ð2Þ

I1;2u ¼ sup
fa;b;c;d2Xja�b<c�dg

u1ðaÞ�u1ðbÞ
u2ðaÞ�u2ðbÞ
u1ðcÞ�u1ðdÞ
u2ðcÞ�u2ðdÞ

: ð3Þ

To interpret these indices, observe first that, by the definition of RDU, there must

exist a strictly increasing function g1 : R ! R such that w1 ¼ g1 	 w2. Likewise, by

the additional assumption that <1 and <2 are ordinally equivalent, there must exist

a strictly increasing function h1 : R ! R such that u1 ¼ h1 	 u2. Therefore, using
these increasing transformations g1 and h1, one could also introduce I1;2w and I1;2u as

follows.

I1;2w ¼ inf
fp;q;r;s2½0;1�jp[ q� r[ sg

g1 w2ðpÞð Þ�g1 w2ðqÞð Þ
w2ðpÞ�w2ðqÞ

g1 w2ðrÞð Þ�g1 w2ðsÞð Þ
w2ðrÞ�w2ðsÞ

: ð2Þ0

I1;2u ¼ sup
fa;b;c;d2Xja�b<c�dg

h1 u2ðaÞð Þ�h1 u2ðbÞð Þ
u2ðaÞ�u2ðbÞ

h1 u2ðcÞð Þ�h1 u2ðdÞð Þ
u2ðcÞ�u2ðdÞ

: ð3Þ0

These variants make the following facts apparent. The minimand in (2) is a discrete

and multiplicative analogue of a second derivative value for w1 as a function of (the

range of) w2. Therefore, I
1;2
w is an index of non-convexity of w1 as a function of w2.

The lower the value of the index, the less convex the function. Similarly, the

maximand in (3) is a discrete and multiplicative analogue of a second derivative

value for u1 as a function of (the range of) u2. Thus, I
1;2
u is an index of non-

concavity of u1 as a function of u2. The higher the value of the index, the less

concave the function. Notice that u1 is more concave than u2 if and only if I1;2u � 1.

Furthermore, it can be shown that w1 is more convex than w2 if and only if I1;2w ¼ 1.

This is because one can show that I1;2w � 1 always holds. This can be derived either

from the fact that the range of the weighting functions is convex, or from the fact

that their domain is convex (while by contrast, with a finite domain of payoffs,

13 Further notice the use, in this index, of the assumption that there are at least three non-indifferent

payoffs. Without this assumption, w in (1) is not behaviorally identified anyhow (e.g., Gilboa

1987, p. 71).
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neither the domain nor the range of the utility functions is convex). We record the

resulting equivalences in the following observation.

Observation 1

(1) u1 is more concave than u2 if and only if I1;2u � 1.

(2) w1 is more convex than w2 if and only if I1;2w ¼ 1.

Proof See the Appendix. h

The two inter-individual indices I1;2w and I1;2u are inspired by, and can be

compared to, the two intra-individual indices introduced in Chateauneuf et al. 2005

to characterize so-called ‘‘monotone risk aversion’’. This is a specific degree of

absolute risk aversion which one can define when the domain of payoffs is a convex

subset of the reals. Instrumental in Chateauneuf et al.’s characterization of that

attitude are the following indices Pw and Gu, called by them indices of ‘‘pessimism’’

and ‘‘greediness’’, respectively.

Pw ¼ inf
fp2ð0;1Þg

1�wðpÞ
1�p

wðpÞ
p

: ð4Þ

Gu ¼ sup
fa;b;c;d2Xja[ b� c[ dg

uðaÞ�uðbÞ
a�b

uðcÞ�uðdÞ
c�d

: ð5Þ

As can be seen by re-interpreting the domain of u1 as the range of u2, there is no

fundamental difference between I1;2u and Gu. By contrast, even after a similar

transposition has been made, a relevant difference between I1;2w and Pw remains. To

wit, define the following index of ‘‘relative pessimism’’.

P1;2
w ¼ inf

fp2ð0;1Þg

1�w1ðpÞ
1�w2ðpÞ
w1ðpÞ
w2ðpÞ

: ð6Þ

As comparing (2) and (6) makes clear, P1;2
w corresponds to the particular case of I1;2w

where the minimand is taken assuming p ¼ 1, q ¼ r, and s ¼ 0 while I1;2w ranges,

more generally, over any p; q; r; s 2 ½0; 1� such that p[ q� r[ s. Accordingly,

given functions w1 and w2, I
1;2
w �P1;2

w obviously always holds, while I1;2w \P1;2
w

demonstrably holds in some cases. We will later return to this observation to

illustrate the fact that the condition P1;2
w � I1;2u —which would be the direct com-

parative transposition of Chateauneuf et al.’s characterization—would not be strong

enough to characterize SMRA under RDU (see esp. Observation 3 and Exam-

ple 3).14 The above differences notwithstanding, like Pw and Gu in Chateauneuf

14 By contrast, in their characterization of their notion of comparative uncertainty aversion under

Choquet Expected Utility, Grant and Quiggin (2005, Proposition 5) can use a comparative transposition

of Chateauneuf et al.’s characterization. Before a referee draw our attention to Grant and Quiggin’s paper,

we were unaware that the conditions in Chateauneuf et al. 2005 had already been put to use to investigate

general notions of comparative risk or uncertainty aversion. Grant and Quiggin’s precedence
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et al. 2005, I1;2w and I1;2u can be interpreted as indices of pessimism and greediness,

respectively—only, as inter-individual, relative ones.

We can now state our main result.

Theorem 1 Let <1 and <2 be two ordinally equivalent RDU decision-makers,
characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively. Then, 1
SMRA 2 if and only if I1;2w � I1;2u .

Proof See the Appendix. h

Next, notice that if w1 ¼ w2 (respectively: u1 ¼ u2), then I1;2w ¼ 1 (respec-

tively: I1;2u ¼ 1). Besides, recall that I1;2u � 1 if and only if u1 is more concave

than u2, that I
1;2
w � 1 always holds, and that I1;2w ¼ 1 if and only if w1 is more convex

than w2. Thus, Theorem 1 has as immediate corollaries the following two results.

Inasmuch as they pertain to finite domains, they are also new, to the best of our

knowledge.

Corollary 1 Let <1 and <2 be two ordinally equivalent EU decision-makers,
characterized by the functions u1 and u2, respectively. Then, 1 SMRA 2 if and only
if u1 is more concave than u2.

Corollary 2 Assuming that the elements of X are real numbers, let <1 and <2 be
two DEU decision-makers, characterized by the functions w1 and w2, respectively.
Alternatively, with general X, let <1 and <2 be two RDU decision-makers,
characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively, with
u1 ¼ u2 (up to some affine transformation). Then, 1 SMRA 2 if and only if w1 is
more convex than w2.

It is worth examining what becomes of the above characterizations in the convex

case, thereby meaning either that (i) the payoffs are numerical, their domain is

convex, and the utility functions are strictly increasing over that domain; or (ii) the

range of the utility functions is convex. While neither sense of convexity implies the

other, either suffices to derive the following corollary. The corollary holds because

on either sense of convexity, I1;2u � 1 always holds (which is like in Chateauneuf

et al. 2005, e.g., p. 658, and following the same reasoning as the one explained with

respect to I1;2w in the proof of Observation 1). It then follows that, in the convex case,

u1 is more concave than u2 if and only if I1;2u ¼ 1.

Corollary 3 Let <1 and <2 be two ordinally equivalent RDU decision-makers,
characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively.
Furthermore, let either the range of u1 and u2 be convex, or the payoffs be
numerical, their domain be convex, and the utility functions u1 and u2 be strictly
increasing over that domain. Then, 1 SMRA 2 if and only if u1 is more concave than
u2 and w1 is more convex than w2.

Footnote 14 continued

notwithstanding, our main result cannot be obtained as a corollary of theirs (see Observation 3 and

Example 3).
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Corrollary 3 also implies that, in the convex case, the characterizations of SMRA

under EU and DEU remain the same as the ones given in Corollaries 1 and 2,

respectively.15 On the assumption that the utility functions have convex range, more

specifically, the three preceding results can also be obtained as corollaries of the

classic characterizations of the absolute concept of ‘‘strong risk aversion’’ (i.e.,

aversion to all mean-preserving spreads; see, e.g., Chateauneuf et al. 1997).16 See,

for EU, Rothschild and Stiglitz 1970; for DEU, Yaari 1987, Theorem 2; for RDU

(under various technical restrictions), Chew et al. 1987, Theorem 1, Ebert 2004,

Theorem 4, and Schmidt and Zank 2008, Theorem 1.

Thus, under either EU or DEU, SMRA is characterized by the same condition in

the finite and the convex case. However, interestingly, the same conclusion does not

hold under general RDU. Now, under RDU, for 1 SMRA 2 to hold, it is necessary

in the finite case, like it is in the convex case, that u1 be more concave than u2.

Indeed, I1;2w � 1 always holds and I1;2u � 1 if and only if u1 is more concave than u2,

so that I1;2w � I1;2u together with non-concavity would lead to a contradiction. But in

the finite case, unlike in the convex case, w1 need not be more convex than w2 for

1 SMRA 2 to hold. Indeed, when X is finite, it can even be under RDU that 1

SMRA 2 and w1 is strictly more concave than w2. This is established by the

following example.

Example 1 Let X ¼ f1; 4=9; 1=9g. For all x 2 X, let u2ðxÞ ¼ x and u1ðxÞ ¼
ffiffiffi
x

p
.

For all p 2 ½0; 1�, let w2ðpÞ ¼ p and w1ðpÞ ¼ 9=8p� 1=8p2, as illustrated
graphically in Fig. 1.17

Thus, u1 is strictly more concave than u2. As w1
0ðpÞ ¼ 9=8� 2=8p� 7

8
[ 0 and

w1
00ðpÞ ¼ �2=8\0, it also holds that w1 is strictly more concave than w2. But

I1;2u ¼
1�2=3
1�4=9

2=3�1=3
4=9�1=9

¼ 3=5 while I1;2w ¼ inf
1[ p� q[ 0

w1
0ðpÞ

w1
0ðqÞ ¼

7=8
9=8 ¼ 7=9, so that I1;2w [ I1;2u . By

Theorem 1, 1 SMRA 2.

Next, we consider the weakening of SMRA to WMRA. The characterization of

WMRA under general RDU is a difficult problem on which we have little progress

to report. We observe that this characterization is an open question even in the

convex case. More specifically, even on the assumption that the utility functions

have convex range, providing the result would require characterizing under RDU

the absolute concept of ‘‘weak risk aversion’’ (i.e., aversion to mean-preserving

spreads with the added condition that the less risky lottery is degenerate). This is a

15 For alternative proofs of these characterization results under EU and DEU, see Bommier et al. 2012,

Results 3.1 and 3.2, respectively. The fact that Bommier et al.’s results pertain to the convex case follows

from how they model the larger intertemporal decision problem in which they embed their

characterization exercises (see esp. p. 1617). These modeling assumptions also explain why their Result

3.2 is a theorem about DEU.
16 The corollaries hold because the fact stated next follows from Theorem 1 in Machina and Pratt 1997

(perfecting Theorem 1 in Rothschild and Stiglitz 1970). In the case of RDU preferences (among others),

aversion to single-crossing mean-preserving spreads is equivalent to aversion to all mean-preserving

spreads (multiple-crossing ones included).

17 More generally, for any k 2 1; 5=4ð Þ, one could take w1ðpÞ ¼ kpþ ð1� kÞp2 here.
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longstanding open problem of the field (see Chateauneuf and Cohen 1994;

Chateauneuf et al. 1997).

However, as we now explain in several steps, interesting conclusions can be

reached nonetheless. First, as a baseline observation, we recall the characterization

of WMRA under EU. It is proved for arbitrary domains as Theorem 2 in Peters and

Wakker 1987.18

Theorem 2 (Peters and Wakker) Let <1 and <2 be two ordinally equivalent EU
decision-makers, characterized by the functions u1 and u2, respectively. Then, 1
WMRA 2 if and only if u1 is more concave than u2.

Next, we consider DEU. However preliminary to a characterization under DEU

of WMRA over finite domains, the following result—the crux of which is not the

sufficiency, but the non-necessity part—is new. It seems to have been previously

conjectured (Köbberling and Peters 2003, Lemma 2.2), but not proved, to the best

of our knowledge.

Observation 2 Assuming that the elements of X are real numbers and X is a finite
set, let <1 and <2 be two DEU decision-makers, characterized by the functions w1

and w2, respectively. Alternatively, with general X, let <1 and <2 be two RDU
decision-makers, characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ,
respectively, with u1 ¼ u2 (up to some affine transformation) and u1, u2 finite-
ranged. Then, for 1 WMRA 2 to hold, it is sufficient but not necessary that for all
p 2 ½0; 1�, w1ðpÞ�w2ðpÞ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w2

w
1

Fig. 1 w1ðpÞ ¼ 9
8
p� 1

8
p2,

strictly more concave than
w2ðpÞ ¼ p

18 While the result given next states that under ordinal equivalence, 1 WMRA 2 holds under EU if and

only if u1 is a strictly increasing concave function of u2, Peters and Wakker show that, without any

assumption about ordinal equivalence or the lack thereof, 1 WMRA 2 holds under EU if and only if u1 is
a non-decreasing concave function of u2.
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Proof Sufficiency is obvious from (11) and the observation that a spread is basic if

the spread conditions hold, for some k, with
Pi

j¼1 qj ¼ 0 for all i� k � 1 and
Pi

j¼1 qj ¼ 1 for all i� k. Non-necessity is established by the following example. h

Example 2 Let X ¼ f1; 1=2; 0g. For all x 2 X, let u1ðxÞ ¼ u2ðxÞ ¼ x. For all
p 2 ½0; 1�, let w2ðpÞ ¼ p and w1ðpÞ be defined as follows:19

w1ðpÞ ¼

5

4
p if p 2 0;

2

10

� �

5

7
pþ 3

28
if p 2 2

10
;
9

10

	 


:

5

2
p� 3

2
if p 2 9

10
; 1

� �

8
>>>>>>><

>>>>>>>:

ð7Þ

This is illustrated graphically in Fig. 2.

Then, we have that w1ðpÞ\w2ðpÞ for all p 2 3
8
; 1

� �
but w1ðpÞ[w2ðpÞ for all

p 2 ð0; 3
8
Þ. Although w1ðpÞ�w2ðpÞ thus does not hold for all p 2 ½0; 1�, it still holds

that 1 WMRA 2, as we show in the Appendix.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w2

w
1

Fig. 2 w1ðpÞ defined as in (7),
with w1ðpÞ[w2ðpÞ for all
p 2 ð0; 3

8
Þ

19 More generally, with any a 2 ð0; 1=2Þ, b 2 ð1=2; 1Þ such that aþ b[ 1, one could here define w1 as

the polygon through the points (0, 0), ða; 1=4Þ, ðb; 3=4Þ, and (1, 1), i.e.:

w1ðpÞ ¼

p

4a
if p 2 0; a½ �

1

4
þ p� a
2ðb� aÞ if p 2 a;bð Þ:

3

4
þ p� b
4ð1� bÞ if p 2 b; 1½ �

8
>>>>>><

>>>>>>:
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The full characterization of WMRA under DEU is a problem which we leave

open and hope to solve in future work.

Finally, consider general RDU. However preliminary, the following result—the

crux of which is not the non-necessity, but the sufficiency part—also seems new,

and its relevance will be seen shortly. It builds on insights in Chateauneuf and

Cohen 1994 and Chateauneuf et al. 2005, respectively.

Observation 3 Let <1 and <2 be two ordinally equivalent RDU decision-makers,
characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively. Then, for
1 WMRA 2 to hold, it is sufficient but not necessary that P1;2

w � I1;2u and that for all
p 2 ½0; 1�, w1ðpÞ�w2ðpÞ.

Proof Non-necessity is obvious from Example 2, since 1 WMRA 2 holds but

w1ðpÞ�w2ðpÞ for all p 2 ½0; 1� does not. Sufficiency is proved in the Appendix. h

Once again, the preceding results about WMRA are preliminary. As we now

explain, they are instructive nonetheless. First, observe that in the convex case, the

following characterizations obtain. Under EU, it still holds that 1 WMRA 2 if and

only if u1 is more concave than u2. (This is because Peters and Wakker’s result has

no domain restriction; assuming u1 and u2 convex-ranged, more specifically, the

result could also be obtained as a corollary of the classic characterization of absolute

weak risk aversion.) Under DEU, 1 WMRA 2 if and only if, for all p 2 ½0; 1�,
w1ðpÞ�w2ðpÞ. (This is, on either construal of convexity, a corollary of the

characterization of absolute weak risk aversion; see Quiggin 1991, Proposition 1,

Köbberling and Peters 2003, Lemma 2.2, as well as Yaari 1986.) Thus, under EU,

WMRA is characterized identically across the finite and the convex cases. However,

the same conclusion does not hold under DEU, hence, under RDU more generally.

This much can be claimed even though, once again, the full characterizations of

WMRA under RDU and under DEU are still unknown.

Second, one should put side by side Corrollary 1 and Theorem 2 on EU, and

Corrollary 2 and Observation 2 on DEU together with Theorem 1 and Observa-

tion 3 on general RDU. Recall Fact 1 to the effect that 1 SMRA 2 implies

1 WMRA 2 by definition, while the converse does not hold in general. But under

EU, the converse implication does hold, i.e., 1 WMRA 2 implies 1 SMRA 2. By

contrast, under DEU or under general RDU, the converse implication does not hold,

i.e., it can be that 1 WMRA 2 but not 1 SMRA 2. As a first example, take any pair

of DEU decision-makers with probability weighting functions w1 and w2,

respectively, such that (i) for all p 2 ½0; 1�, w1ðpÞ�w2ðpÞ (ii) w1 is not more

convex than w2. Under DEU, condition (i) and the negation of condition (ii) are

respectively sufficient for WMRA and necessary for SMRA, so that 1 WMRA 2 but

not 1 SMRA 2. As another example, take any pair of RDU decision-makers

characterized by the pairs of functions ðu1;w1Þ and ðu2;w2Þ, respectively, such that

(i) P1;2
w � I1;2u and for all p 2 ½0; 1�, w1ðpÞ�w2ðpÞ (ii) I1;2w \I1;2u . Under RDU,

condition (i) and the negation of condition (ii) are respectively sufficient for WMRA

and necessary for SMRA, so that once again, 1 WMRA 2 but not 1 SMRA 2. The

following concrete example illustrates both possibilities at once.
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Example 3 Let X ¼ f4:5; 4:1; 3:1; 3; 2:1; 2; 1:1; 1; 0:5; 0g.20 For all p 2 ½0; 1�, let
w2ðpÞ ¼ p and w1ðpÞ be defined as follows:

w1ðpÞ ¼
pð1� pÞ if p 2 0;

1

2

� �

3ðp� 1

2
Þ2 þ 1

4
if p 2 1

2
; 1

	 �

:

8
>>><

>>>:

ð8Þ

This is illustrated graphically in Fig. 3.
In the DEU variant of the example, let u1ðxÞ ¼ u2ðxÞ ¼ x. Given that

w2ðpÞ�w1ðpÞ for all p 2 ½0; 1� but w2 is strictly more concave than w1 over [0, 1/

2], we have by Corollary 2 and Observation 2 that 1 WMRA 2 but not 1 SMRA 2.
To verify the latter, take lotteries l ¼ ð1=8; 4:5; 1=8; 4; 1=8; 2; 1=8; 0:5; 1=2; 0Þ and
l0 ¼ ð1=8; 4:1; 1=8; 3:1; 1=8; 2:1; 1=8; 1:1; 1=2; 0Þ. As v1ðlÞ ¼ 53

64
[ 50

64
¼ v1ðl0Þ but

v2ðlÞ ¼ 25
20
\ 26

20
¼ v2ðl0Þ, we have that l�1l

0 but l 
2 l
0. Thus, since l ‘ l0, it is not the

case that 1 SMRA 2.

In the general RDU variant of the example, let u1ðxÞ ¼
ffiffiffi
x

p
and u2ðxÞ ¼ x. Then,

it can be checked that I1;2u ¼
u1ð4:1Þ�u1ð4Þ
u2ð4:1Þ�u2ð4Þ
u1ð4Þ�u1ð3:1Þ
u2ð4Þ�u2ð3:1Þ

¼ 9
ð
ffiffiffiffiffi
4:1

p
�2Þ

ð2�
ffiffiffiffiffi
3:1

p
Þ � 0:9, that P1;2

w ¼ 1 (P1;2
w � 1

holds since w1ðpÞ�w2ðpÞ for all p 2 ½0; 1�, and P1;2
w � 1 holds since w0

1ð0Þ ¼ 1),

and that I1;2w =0 (since w0
1ð12Þ ¼ 0). Thus, it holds that P1;2

w [ I1;2u [ I1;2w , so that by

Theorem 1 and Observation 3, 1 WMRA 2 but not 1 SMRA 2. To verify the latter,
take again the lotteries l and l0 previously specified. As v1ðlÞ � 0:445[ 0:443 �

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w2

w
1

Fig. 3 w1ðpÞ defined as in (8)

20 Both variants of the example would deliver the same conclusions if one took, instead of this finite set

X, its convex hull. The DEU variant would then apply without any change, while the only change in the

RDU variant would consist in that I1;2u ¼ 1.

123

386 J. Baccelli et al.



v1ðl0Þ but v2ðlÞ ¼ 25
20
\ 26

20
¼ v2ðl0Þ, we have that l�1l

0 but l 
2 l
0. Thus, since l ‘ l0, it

is not the case that 1 SMRA 2.

Thus, we can now state synthetically how our study improves on the current state

of the literature on the treatment of risk attitudes in EU and RDU, respectively.

First, from classic results on absolute risk attitudes over convex domains of real

payoffs, it was already known that, unlike RDU, EU imposes what can be called the

‘‘strengthening of risk attitudes’’ (Chateauneuf et al. 1997; Chateauneuf et al. 2004;

Baccelli 2018). For example, under EU, unlike under RDU, a decision-maker

cannot be weakly, yet not strongly, risk averse. More or less directly, it then follows

that, in the convex case, a similar conclusion holds true of the strengthening of

comparative risk attitudes. Thus, what our study adds to the current state of the

literature in this respect is that, when the domain is finite, the comparative variant of

the strengthening conclusion still holds. Indeed, even when the utility functions

have finite range, under EU, it cannot be that 1 WMRA 2 but not 1 SMRA 2, while

this is possible under RDU. We record this fact in the following statement.

Fact 2 When the utility functions have finite range, under EU, WMRA and SMRA
are characterized by the same condition. Under RDU, such is not the case.

Second, we have also shown that there is a previously unnoticed dimension along

which the different ways in which EU and RDU treat risk attitudes can be analyzed.

To wit, we have introduced the question of whether the same condition

characterizes WMRA (respectively: SMRA) in the finite and the convex case

(convexity referring here either to the domain, or to the range, of the utility

functions). As we have shown, the characterizing condition is the same under EU

(viz., greater concavity), but not under RDU. Recall indeed that under general RDU,

in the convex case, 1 SMRA 2 holds if and only if u1 is more concave than u2 and
w1 is more convex than w2, but that the latter condition is unnecessary in the finite

case (see Example 1). As another example, under the special DEU case of RDU, in

the convex case, 1 WMRA 2 holds if and only if w1ðpÞ�w2ðpÞ for all p 2 ½0; 1�,
but this condition is unnecessary in the finite case (see Example 2). Thus,

notwithstanding the fact that the complete characterization of WMRA under RDU

(or even its special DEU case) is currently open question, the findings above can be

summarized as stated next.

Fact 3 Under EU, WMRA (respectively: SMRA) is characterized by the same
condition in the finite and the convex case. Under RDU, such is not the case.

Admittedly, fully appreciating Fact 3—including how its interpretation should

compare to that of the more straightforward Fact 2—will demand more work. But it

is in any case relevant evidence for understanding the structural differences between

EU and RDU in their respective treatment of risk attitudes.
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6 Conclusion

We have investigated notions of weak and strong comparative risk aversion that are

applicable even over a finite, non-numerical domain of payoffs. We have shown that

under expected utility, weak and strong comparative risk aversion are characterized

by the same condition not only when the compared utility functions have convex

range, which was already known, but also when they have finite range, which had

not been hitherto established. We have also shown that, under expected utility still,

weak (respectively: strong) comparative risk aversion is characterized by the same

condition in the finite and the convex case, thus introducing a new kind of

comparisons to the literature. As we have explained by contrast in the rank-

dependent utility model, neither of the above conclusions needs to hold under non-

expected utility.

As we now illustrate by singling out four possible directions for future research,

our study of risk aversion over finite domains thus raises several interesting further

questions. First, we have left open how to fully characterize weak comparative risk

aversion in the dual expected utility model. This task should be more manageable

than, and preparatory to, the much more difficult task of characterizing that attitude

under general rank-dependent utility. As previously noted, the latter problem is

tightly connected to a famous open question of the field. Given the results already

available, solving either of these problems would improve on our current

understanding of the divide between expected and non-expected utility. Second,

we have focused exclusively on either the finite or the convex case. However, it

would also be worth investigating intermediary cases, such as the case of utility

functions with a countable range. Through the characterization of weak and strong

comparative risk aversion, such intermediary cases could lead to a more nuanced

understanding of the structural properties of the main models of decision-making

under risk. Third, we have focused exclusively on rank-dependent utility prefer-

ences. One natural next step would be to consider the larger class of ‘‘smooth’’ non-

expected utility preferences, for which characterizations of comparative risk

aversion are available in the convex-ranged case (Machina 1982, Sect. 3.3; Cerreia-

Vioglio et al. 2016, Sect. 4). An interesting first task would be, then, to determine

how these characterizations should be generalized in the finite-ranged case. Finally,

equipped with the more expressive notions of comparative risk aversion discussed

in our paper, it would be worth revisiting some of the comparative statics exercises

already presented in the literature. For instance, building on Bommier et al. 2012

and Köbberling and Peters 2003, respectively, the notions we have examined here

could provide new insights on classic comparative statics topics in the economics of

saving behavior or in bargaining theory. Other comparative statics analysis could be

similarly refined.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
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Appendix

Proof of Observation 1

Proof The proof of the first claim is obvious, so we focus on the second one. First, if

I1;2w ¼ 1, then w1 is more convex than w2. Second, if w1 is more convex than w2,

then I1;2w � 1. But, as we now show, I1;2w � 1 always holds. More specifically, as we

now explain, this fact can be proved either from the convexity of the range of the

weighting functions, or from the convexity of their domain.

Consider first the proof from the convexity of the range of the weighting

functions.21 We start by observing that by the defining properties of weighting

functions, the function w1 	 ðw2Þ�1
is well defined. Next, since w2 has a convex

range, the composition w1 	 ðw2Þ�1
has a convex domain. Additionally, since w1

and w2 are strictly increasing, w1 	 ðw2Þ�1
also has this property. Thus, by the

variant of the Lebesgue Differentiability Theorem pertaining to increasing

functions, the transformation w1 	 ðw2Þ�1
has at least one point of differentiability.

If this point has zero derivative, then I1;2w ¼ 0� 1. If this point has non-zero

derivative, then it cannot be the case that I1;2w [ 1, for using its four degrees of

freedom, the minimand can then be made arbitrary close to 1. In all cases, then,

I1;2w � 1.

Consider next the proof from the convexity of the domain of the weighting

functions. Since w2 is a strictly increasing function over a convex domain, by the

same variant of the Lebesgue Differentiability Theorem as in the preceding

paragraph, w2 has at least one point p of differentiability. This implies in particular

that w2 has, with p, at least one point of continuity. This in turn means that there is a

neighborhood ðp� e; pþ eÞ, where w2 is a strictly increasing continuous function.

Thus, due to the Intermediate Value Theorem, the restriction of w2 to that

neighborhood has a convex range. Based on this observation, the proof for the

convex-domained case can be reduced to the proof for the convex-ranged case by

replacing w1 	 ðw2Þ�1
by w1 	 ð ~w2Þ�1

, with ~w2 the restriction of w2 to the

neighborhood ðp� e; pþ eÞ. h

Proof of Theorem 1

I1;2w � I1;2u ) 1SMRA2:

21 Since weighting functions are defined and strictly increasing over [0,1], the convexity of the range of

w1 and w2 is equivalent to w1 and w2 being continuous over their domain. As regards the adaptation of the

above arguments to prove Corrollary 3, notice that a utility function can be convex-ranged and

nevertheless defined over a non-numerical domain.
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Proof Assume I1;2w � I1;2u . We need to show that if l ‘ l0 and l<1l
0, then l<2l

0.
Let l ¼ ðp1; x1; . . .; pn; xnÞ and l0 ¼ ðq1; x1; . . .; qn; xnÞ. Under RDU, l<1l

0 if and only
if:

X

i¼1

n

w1

X

j¼1

i

pj

 !

� w1

X

j¼1

i

qj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

� 0: ð9Þ

Define an index i in (9) as null if either u1ðxiÞ ¼ u1ðxiþ1Þ or
P

j¼1

i

pj ¼
P

j¼1

i

qj, and as

non-null otherwise. Eliminate all null indices in (9) and let I be the set of all non-

null indices.22 Thus, (9) reads as follows:

X

i2I
w1

X

j¼1

i

pj

 !

� w1

X

j¼1

i

qj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

� 0; ð10Þ

with the sum in (10) featuring only non-null terms.

Now, by definition, l ‘ l0 if and only if for some k with 2� k� n, for all i� k � 1,

P

j¼1

i

pj �
P

j¼1

i

qj, and for all i� k,
P

j¼1

i

pj �
P

j¼1

i

qj, with at least one strict inequality in each

direction. Accordingly, let Iþ (resp. I�) be the set of all non-null indices with

Pi

j¼1

pj �
Pi

i¼1

qj (resp.
Pi

j¼1

pj �
Pi

i¼1

qj). Thus, (10) holds if and only if:

X

i2Iþ
w1

X

j¼1

i

pj

 !

� w1

X

j¼1

i

qj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

�
X

i2I�
w1

X

j¼1

i

qj

 !

� w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

;

ð11Þ

with only strictly positive terms, if any, on both sides of the inequality sign in (11).

Next, let B be:

B ¼
Y

i2I

w2

P

j¼1

i

pj

 !

� w2

P

j¼1

i

qj

 !

w1

P

j¼1

i

pj

 !

� w1

P

j¼1

i

qj

 !
Y

i2I

u2ðxiÞ � u2ðxiþ1Þ
u1ðxiÞ � u1ðxiþ1Þ

; ð12Þ

noticing that:

22 Notice that n must be a null index, since
Pn

j¼1pj ¼
Pn

j¼1qj ¼ 1. Further notice that if all indices are

null, then l� 1l
0 and by the definition of the weighting function or the ordinal equivalence assumption,

l� 2l
0 holds as well, which trivially establishes the claim. Accordingly, one may make the non-triviality

assumption that I is not empty.
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Y

i2I�

w2

P

j¼1

i

pj

 !

� w2

P

j¼1

i

qj

 !

w1

P

j¼1

i

pj

 !

� w1

P

j¼1

i

qj

 ! ¼
Y

i2I�

w2

P

j¼1

i

qj

 !

� w2

P

j¼1

i

pj

 !

w1

P

j¼1

i

qj

 !

� w1

P

j¼1

i

pj

 ! :

Similarly, assuming that I is not a singleton,23 let B�l be:

B�l ¼
Y

i2Inflg

w2

P

j¼1

i

pj

 !

� w2

P

j¼1

i

qj

 !

w1

P

j¼1

i

pj

 !

� w1

P

j¼1

i

qj

 !
Y

i2Inflg

u2ðxiÞ � u2ðxiþ1Þ
u1ðxiÞ � u1ðxiþ1Þ

: ð13Þ

Since all i 2 I are non-null and the ordinal equivalence assumption holds, B[ 0 and

similarly, B�l [ 0 for all l 2 I. Thus, (11) holds if and only if:

B
X

i2Iþ
w1

X

j¼1

i

pj

 !

� w1

X

j¼1

i

qj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

�B
X

i2I�
w1

X

j¼1

i

qj

 !

� w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

,
X

i2Iþ
B�i w2

X

j¼1

i

pj

 !

� w2

X

j¼1

i

qj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�
X

i2I�
B�i w2

X

j¼1

i

qj

 !

� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð14Þ

Next, observe that I1;2w � I1;2u can be rewritten equivalently as:

inf
fp;q;r;s2½0;1�jp[ q� r[ sg

w2ðrÞ�w2ðsÞ
w1ðrÞ�w1ðsÞ
w2ðpÞ�w2ðqÞ
w1ðpÞ�w1ðqÞ

� sup
fa;b;c;d2Xja�b<c�dg

u2ðcÞ�u1ðdÞ
u1ðcÞ�u1ðdÞ
u2ðaÞ�u2ðbÞ
u1ðaÞ�u1ðbÞ

:

Thus, I1;2w � I1;2u implies that for any i 2 I,

w2

P

j¼1

i�1

pj

 !

� w2

P

j¼1

i�1

qj

 !

w1

P

j¼1

i�1

pj

 !

� w1

P

j¼1

i�1

qj

 !
u2ðxi�1Þ � u2ðxiÞ
u1ðxi�1Þ � u1ðxiÞ

�
w2

P

j¼1

i

pj

 !

� w2

P

j¼1

i

qj

 !

w1

P

j¼1

i

pj

 !

� w1

P

j¼1

i

qj

 !
u2ðxiÞ � u2ðxiþ1Þ
u1ðxiÞ � u1ðxiþ1Þ

:

Thus, I1;2w � I1;2u implies that B�l increases in l. Accordingly, with i� the last index in

23 If I is a singleton, then it must be that the only non-null index is in Iþ, for otherwise the assumption

l<1l
0 would be violated. When there is only one non-null index, multiplying by B both sides in inequality

(11) directly establishes the claim.
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Iþ and l� the first index in I�, we have that for all i 2 Iþ, B�i �B�i� and for all

i 2 I�, B�i �B�l� . Consequently, together with I1;2w � I1;2u , (14) implies:

B�i�
X

i2Iþ
w2

X

j¼1

i

pj

 !

� w2

X

j¼1

i

qj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�B�l�
X

i2I�
w2

X

j¼1

i

qj

 !

� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð15Þ

Since B�l [ 0 for all l 2 I and B�l increases in l, we have that B�i�
B�l�

is well defined

and B�i�
B�l�

� 1, so that (15) implies:

X

i2Iþ
w2

X

j¼1

i

pj

 !

� w2

X

j¼1

i

qj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�

X

i2I�
w2

X

j¼1

i

qj

 !

� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð16Þ

Reestablishing the indices null in (9) and rearranging the equation, we thus obtain

from (16):

X

i¼1

n

w2

X

j¼1

i

pj

 !

� w2

X

j¼1

i

qj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

� 0; ð17Þ

which, under RDU, holds if and only if l<2l
0, as was to be shown. h

1SMRA2 ) I1;2w � I1;2u :

Proof Recalling our assumption that there are at least three non-indifferent payoffs,

consider any a; b; c; d 2 X such that u1ðaÞ[ u1ðbÞ� u1ðcÞ[ u1ðdÞ. Take any p; s 2
½0; 1� such that p[ s. Our first step is the observation that by the continuity of w1,

there exists q; r 2 ðp; sÞ such that q� r and:

w1ðrÞ � w1ðsÞ
w1ðpÞ � w1ðqÞ

¼ u1ðcÞ � u1ðdÞ
u1ðaÞ � u1ðbÞ

: ð18Þ

Our second step is the observation that for any x; y; z 2 X such that

u1ðxÞ� u1ðaÞ[ u1ðbÞ� u1ðyÞ� u1ðcÞ[ u1ðdÞ� u1ðzÞ, with p[ q� r[ s, l; l0 2 L
given by l ¼ s; x; ðr � sÞ; a; ðq� rÞ; y; ðp� qÞ; d; ð1� pÞ; zð Þ and l0 ¼
s; x; ðr � sÞ; b; ðq� rÞ; y; ðp� qÞ; c; ð1� pÞ; zð Þ are such that l ‘ l0. Besides, under
RDU, (18) holds if and only if l� 1l

0. As 1 SMRA 2, it then follows that l<2l
0.

Under RDU, l<2l
0 holds if and only if:
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w2ðrÞ � w2ðsÞ
w2ðpÞ � w2ðqÞ

� u2ðcÞ � u2ðdÞ
u2ðaÞ � u2ðbÞ

: ð19Þ

Combining inequality (19) and equality (18), we thus have that for those particular

a�1b<1c�1d 2 X and p[ q� r[ s 2 ½0; 1�:
w1ðpÞ�w1ðqÞ
w2ðpÞ�w2ðqÞ
w1ðrÞ�w1ðsÞ
w2ðrÞ�w2ðsÞ

�
u1ðaÞ�u1ðbÞ
u2ðaÞ�u2ðbÞ
u1ðcÞ�u1ðdÞ
u2ðcÞ�u2ðdÞ

: ð20Þ

Next, call k the term on the right-hand side of the inequality in (18). Lemma 1 in

Chateauneuf et al. 2005 can then be adapted to establish that:

inf
fp; q; r; s 2 ½0; 1�jp[ q� r[ s;

w1ðrÞ � w1ðsÞ
w1ðpÞ � w1ðqÞ

¼ kg

w1ðpÞ�w1ðqÞ
w2ðpÞ�w2ðqÞ
w1ðrÞ�w1ðsÞ
w2ðrÞ�w2ðsÞ

¼ inf
fp;q;r;s2½0;1�jp[ q� r[ sg

w1ðpÞ�w1ðqÞ
w2ðpÞ�w2ðqÞ
w1ðrÞ�w1ðsÞ
w2ðrÞ�w2ðsÞ

: ð21Þ

Thus, (20) implies in particular that:

inf
fp;q;r;s2½0;1�jp[ q� r[ sg

w1ðpÞ�w1ðqÞ
w2ðpÞ�w2ðqÞ
w1ðrÞ�w1ðsÞ
w2ðrÞ�w2ðsÞ

� sup
fa;b;c;d2Xja�1b<1c�1dg

u1ðaÞ�u1ðbÞ
u2ðaÞ�u2ðbÞ
u1ðcÞ�u1ðdÞ
u2ðcÞ�u2ðdÞ

; ð22Þ

which, by the ordinal equivalence assumption, establishes the claim. h

Proof of the claim in Example 2

Proof We need to show that under the assumptions of the example, 1 WMRA 2.

Notice that under these assumptions, under DEU:

1WMRA2 , ðp1; 1; p2; 1=2; p3; 0Þ <1 1=2 ) ðp1; 1; p2; 1=2; p3; 0Þ <2 1=2

, w1ðp1Þ �
1

2
þ w1ðp1 þ p2Þ �

1

2
� 1

2
) w2ðp1Þ �

1

2
þ w2ðp1 þ p2Þ �

1

2
� 1

2

, w1ðp1Þ þ w1ðp1 þ p2Þ� 1 ) 2p1 þ p2 � 1:

Next, case by case, one can check that w1 is such that w1ðpÞ þ w1ð1� pÞ\1 for all

p 2 ð0; 1Þ. First, for any p 2 0; 1
10

� �
, we have that ð1� pÞ 2 9

10
; 1

� �
, which implies

that w1ðpÞ þ w1ð1� pÞ ¼ 5
4
pþ 5

2
1� pð Þ � 3

2
¼ � 5

4
pþ 1\1. Second, for any

p 2 1
10
; 2
10

� �
, we have that ð1� pÞ 2 8

10
; 9
10

� �
, which implies that w1ðpÞþ

w1ð1� pÞ ¼ 5
4
pþ 5

7
1� pð Þ þ 3

28
¼ � 15

28
pþ 23

28
� 15

28
2
10
þ 23

28
¼ 6

28
\1. Finally, for

any p 2 2
10
; 1
2

� �
, we have that ð1� pÞ 2 1

2
; 8
10

� �
, which implies that

w1ðpÞ þ w1ð1� pÞ ¼ 5
7
pþ 3

28
þ 5

7
1� pð Þ þ 3

28
¼ 6

28
þ 5

7
¼ 26

28
\1. All cases where

p[ 1
2
can be checked analogously by switching the roles of p and ð1� pÞ in the

above arguments. Now, the fact that w1ðpÞ þ w1ð1� pÞ\1 holds for all p 2 ð0; 1Þ
ensures that 1 WMRA 2 holds. Indeed, this property, w1ðp1Þ þ w1ðp1 þ p2Þ� 1, and
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the fact that w1 is increasing together imply that p1 þ p2 [ 1� p1, thus, that

2p1 þ p2 � 1, as was to be shown. h

Proof of Observation 3

Proof Assume P1;2
w � I1;2u and w1ðpÞ�w2ðpÞ for all p 2 ½0; 1�. We need to show that

if l ‘ l0, l0 is riskless, and l<1l
0, then l<2l

0. The proof closely resembles that of the

sufficiency direction of Theorem 1, so we state it more succinctly.

First, observe that if l ‘ l0 and l0 is riskless, then with the same notation for (and

under the same qualifications regarding) non-null indices as in the proof of

Theorem 1, l<1l
0 implies:

X

i2Iþ
w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

�
X

i2I�
1� w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

:

ð23Þ

Next, let B be:

B ¼
Y

i2Iþ

w2

P

j¼1

i

pj

 !

w1

P

j¼1

i

pj

 !
Y

i2I�

1� w2

P

j¼1

i

pj

 !

1� w1

P

j¼1

i

pj

 !
Y

i2I

u2ðxiÞ � u2ðxiþ1Þ
u1ðxiÞ � u1ðxiþ1Þ

; ð24Þ

with the necessary adaptations for B�l, l 2 I. Given that B[ 0, (23) implies:

B
X

i2Iþ
w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

�B
X

i2I�
1� w1

X

j¼1

i

pj

 ! !
�
u1ðxiÞ � u1ðxiþ1Þ

�
" #

,
X

i2Iþ
B�i w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�
X

i2I�
B�i 1� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð25Þ

Now, let i� 2 Iþ (resp. l� 2 I�) be the index—or, in case of ties, one of the indi-

ces—such that for all i 2 Iþ (resp. i 2 I�), B�i �B�i� (resp. B�i �B�l� ). Thus, (25)

implies:
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B�i�
X

i2Iþ
w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�B�l�
X

i2I�
1� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð26Þ

Next, as w1ðpÞ�w2ðpÞ for all p 2 ½0; 1�, one can show (see Chateauneuf et al.

2005, Proposition 2.(vi)) that the following equality holds:

inf
fp2ð0;1Þg

1�w1ðpÞ
1�w2ðpÞ
w1ðpÞ
w2ðpÞ

¼ inf
fp� q2ð0;1Þg

w2ðqÞ
w1ðqÞ

1�w2ðpÞ
1�w1ðpÞ

: ð27Þ

Accordingly, P1;2
w � I1;2u can be equivalently stated as follows:

inf
fp� q2ð0;1Þg

w2ðqÞ
w1ðqÞ

1�w2ðpÞ
1�w1ðpÞ

� sup
fa;b;c;d2Xja�b<c�dg

u2ðcÞ�u1ðdÞ
u1ðcÞ�u1ðdÞ
u2ðaÞ�u2ðbÞ
u1ðaÞ�u1ðbÞ

:

Consequently, for any i 2 Iþ, l 2 I�, we have that:

w2

P

j¼1

i

pj

 !

w1

P

j¼1

i

pj

 !
u2ðxiÞ � u2ðxiþ1Þ
u1ðxiÞ � u1ðxiþ1Þ

�
1� w2

P

j¼1

l

qj

 !

1� w1

P

j¼1

l

qj

 !
u2ðxlÞ � u2ðxlþ1Þ
u1ðxlÞ � u1ðxlþ1Þ

: ð28Þ

Thus, we have that B�i�
B�l�

� 1, so that (26) implies:

X

i2Iþ
w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

�
X

i2I�
1� w2

X

j¼1

i

pj

 ! !
�
u2ðxiÞ � u2ðxiþ1Þ

�
" #

:

ð29Þ

Reestablishing the null indices and rearranging the equation, we thus obtain that

l<2l
0, as was to be shown. h
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