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Abstract
By the late 1990s, several converging trends in economics, psychology, and neu-

roscience had set the stage for the birth of a new scientific field known as ‘‘neu-

roeconomics’’. Without the availability of an extensive variety of experimental

designs for dealing with individual and social decision-making provided by

experimental economics and psychology, many neuroeconomics studies could not

have been developed. At the same time, without the significant progress made in

neuroscience for grasping and understanding brain functioning, neuroeconomics

would have never seen the light of day. The paper is an overview of the main

significant advances in the knowledge of brain functioning by neuroscience that

have contributed to the emergence of neuroeconomics and its rise over the past two

decades. These advances are grouped over three non-independent topics referred to

as the ‘‘emo-rational’’ brain, ‘‘social’’ brain, and ‘‘computational’’ brain. For each

topic, it emphasizes findings considered as critical to the birth and development of

neuroeconomics while highlighting some of prominent questions about which

knowledge should be improved by future research. In parallel, it shows that the

boundaries between neuroeconomics and several recent sub-fields of cognitive

neuroscience, such as affective, social, and more generally, decision neuroscience,

are rather porous.
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1 Introduction

The question of how we make, and how we should make, decisions has occupied

researchers for many centuries, with different disciplines approaching the topic by

their characteristically methods and techniques. By the late 1990s, several

converging trends in economics, psychology, and neuroscience had set the stage

for the birth of a new field known as ‘‘neuroeconomics’’ for dealing with the

decision-making problem by integrating insights from these three disciplines.

The take-off of experimental and behavioral economics in the 1980s undoubtedly

favored the emergence of the first studies in neuroeconomics by offering a set of well-

codified experimental designs for dealing with individual and social decision-making

in economic environments. Nevertheless, it is generally agreed that this new field is

mainly based on the neuroscientific revolution of the 1990s, with the provision of

sophisticated investigating tools, primarily functional magnetic resonance imaging,

for visualizing what is happening inside the brain when humans make decisions. In a

more fundamental way, neuroeconomics has largely been built on the fundamental

knowledge developed by several branches of modern neuroscience.

Neuroscience has always been a multi-disciplinary field, covering different

explanatory goals, concepts and vocabularies, and different techniques and methods.

One explicit aim of the Society for Neuroscience, which came into existence in

1970, was to integrate all these fields with the common goal of understanding the

nervous system (Craver, 2007). Overall, neuroscience is usually divided into two

vast fields: molecular/cellular neuroscience and cognitive neuroscience. The former

studies neurons at a cellular level and examines the biology of the nervous system,

while the latter is devoted to the study of neural mechanisms of mental and

behavioral activities, or more generally, the relationships among the brain, mind,

and action (e.g., Gazzaniga & Mangun, 2014). Neuroeconomics is closely, but not

exclusively, associated with cognitive neuroscience.

More specifically, within the mosaic of neuroscience, several branches support

the field of neuroeconomics, including neurobiology, neuroimaging, neuroanatomy,

neuropsychology, neurophysiology, neuroendocrinology, and computational/theo-

retical neuroscience. On the other hand, cognitive neuroscience includes several

other sub-disciplines, in particular decision neuroscience, affective neuroscience,
and social neuroscience, three cutting-edge fields whose boundaries with neuroe-

conomics are occasionally blurred due to the shared focus on decision-making,

emotions, and behaviors. Decision neuroscience is broadly defined as a wide

converging field between cognitive neuroscience and decision sciences (such as

psychology and economics), while affective and social neurosciences pursue

neighboring but more limited ends: the former studies neural mechanisms involved

especially in emotion and affects, whereas the latter is devoted to understanding

how biological systems implement social processes and behavior.

Although neuroeconomics is still a nascent scientific field, 2 decades old at the

most,1 its domain is gigantic. It has already become the subject of a large number of

1 It is commonly admitted today that the birth of neuroeconomics coincides with the publication by the

neurobiologist Michael Platt and the neurophysiologist Paul Glimcher in Nature of a study on behavior of
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papers, chapters in collective books, and of monographs providing overviews of the

entire field, either as some of its parts, or as some major topics covered therein. Just

a few years after the emergence of this new interdisciplinary domain, the first wave

of surveys testified its double origin, with reviews from the perspective of

economics on one hand (e.g., Glimcher & Rustichini, 2004; Camerer et al., 2005;

Kennin & Plassman 2005) and from the perspective of neuroscience on the other

(e.g., Glimcher, 2003; Montague & Berns, 2002; Montague, 2007). Over the past

decade, a second wave of surveys on neuroeconomics has put forward the

complementary strengths of its contributing disciplines (e.g., Sanfey et al., 2006;

Sanfey, 2007; Camerer, 2008b; McCabe, 2008; Rangel et al., 2008; Loewenstein

et al., 2008; Clithero, Tankersley, & Huettel 2008; Schultz, 2008; Rustichini, 2009).

Last but not least, before the end of the decade, the first handbook of

neuroeconomics was published by a neuroscientist (Paul Glimcher), a psychologist

(Russell Poldrack), and two economists (Colin Camerer and Ernst Fehr), who

grouped together important reviews on many topics, highlighting the strong

interdisciplinary background of this new approach (Glimcher et al., 2009).

The field of neuroeconomics matured intellectually after this first wide synthesis.

In the 2010s, a third wave of surveys outlined new advances for understanding how,

where, and when decision-making was accomplished in the brain and what

remained to be done in the discipline as a whole (e.g., Huettel, 2010; Camerer,

2013; Dean, 2013; Rose & Abi-Rached, 2013; Smith et al., 2014; Krajbich & Dean,

2015) or more specially in some sub-fields, including neuroeconomics for social

decisions (e.g., Rilling & Sanfey, 2011; Sanfey & Rilling, 2011; Singer, 2012;

Declerck & Boone, 2016; Engelmann & Fehr 2017; Allos-Ferrer, 2018), neuroe-

conomics of emotion (e.g., Pessoa, 2013, 2017; Kragel and LaBar, 2016; Saarimäki

et al., 2018; Adolphs & Anderson, 2018), or neural reward, learning, and

computational models (e.g., Kable & Glimcher, 2009; Fehr & Rangel, 2011;

Schultz, 2016; Padoa-Schioppa & Conen, 2017; Konovalov & Krajbich, 2019).

In the meantime, the second edition of the Handbook edited by Glimcher and

Fehr (2014a, 2014b) has widely reported many of these great advances. It includes

well-documented specialized contributions (but often rather technical) on core

concepts, methods, and tools used in neuroeconomic research (e.g., Rangel &

Clithero 2014; Tobler & Weber, 2014; Kable, 2014; Fehr & Krajbich, 2014;

Lempert & Phelps, 2014; Rustichini, 2005; Platt & Plassmann 2014; Crockett &

Fehr, 2014) and a deal of new advances on how we learn and represent ‘‘value’’ in

the brain (i.e., what is supposed to guide ‘‘economic behavior’’) (e.g., Berridge &

O’Doherty, 2014; Daw & Tobler, 2014; Daw, 2014), on the neural process of choice

itself (e.g., Glimcher, 2014a, c; Wallis & Rushworth, 2014; Wang, 2014), and on

Footnote 1 continued

monkey linked to anticipated ‘‘rewards’’ (in this case, food rewards) (Platt & Glimcher 1999). For the first

time, an electrophysiological experiment on a monkey proved that the brain ‘‘value’’ stimuli indepen-

dently of sensory or motor processes. Thanks to cerebral imaging, this finding was extended to humans in

the early 2000s (Berns et al., 2001; Breiter et al., 2001; Delgado et al., 2000; Elliot et al., 2000; Knutson

et al., 2000; Knutson et al., 2001). For a first brief history of neuroeconomics, refer to Glimcher & Fehr

(2014b) and Serra (2022), chap. 3.
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social decision-making within the framework of game theory (Camerer & Hare

2014; Singer & Tusche, 2014).

This paper is designed to be complementary to these previous studies, which are

often referred to in the literature. Its particular edge is to focus mainly on the

neuroscientific foundations of neuroeconomics to provide economists, particularly

decision-making specialized economists, with a concise synthesis of these

unfamiliar neuroscientific works the knowledge of which hopefully will allow

them to easily get well versed with the neuroeconomic literature. This is not a

survey of the great deal of neuroeconomic results available as on date; it just

mentions some findings for illustrating applications to questions that are important

to economists and how this new interdisciplinary approach can potentially improve

our understanding of various economic decisions (several surveys cited above

provide more thorough insights into neuroeconomic findings). The paper also does

not address the thorny methodological and epistemological issues that neuroeco-

nomic approach is likely to raise, including the ‘‘mindless economics’’ argument

that non-behavioral data (such that neural and physiological data) are not ‘‘relevant’’

in economics (Gul & Pesendorfer 2008) (on this issue, refer to Harrison & Ross,

2010; Mäki, 2010; Serra, 2021).

Another singularity of the paper is to group approximately three non-independent

broad topics as the main neuroscientific progress from which neuroeconomics has

benefited. The first topic is devoted to emotion processing by the brain and the

findings regarding the interconnection of emotions and higher cognitive processes.

The key role of emotion in economic decisions is now unanimously recognized as a

teaching of neuroeconomics, in the wake of behavioral economics. Yet, neu-

roanatomy, affective neuroscience, and neuropsychology are at the heart of

identifying neural structures and mechanisms involved in both cognitive processes

and emotional responses.

The second topic refers to the human brain’s considerable flexibility and ability

to undertake complex patterns of social cognition. Social neuroeconomics focuses

on decisions made in a social context and seeks to explain in particular prosocial

behaviors. This neuroeconomic subfield relies partly on findings of social

neuroscience about the neural networks that are responsible for interpreting other

people’s thoughts and feelings, sympathizing with their states of mind, and acting in

a moral manner, namely ‘‘mentalizing’’, mirror neurons, and empathy systems

respectively.

The third topic deals with reward learning as a new theoretical framework for

neuroscience and the identification of brain mechanisms deployed for learning and

valuing the many stimuli that the brain is continuously subjected to. Neuroeco-

nomics can now draw the contours of a computational model of how the brain

makes simple economic choices, and recent studies have explored how this

structural model may extend to more complex decisions, such as risky decisions,

intertemporal choices, and social decisions respectively. These works are mainly

rooted in neurobiology and computational/theoretical neuroscience while taking

into account findings from studies relating to the other two topics.

The paper is organized as follows. After a brief mention of the aim of

neuroeconomics from a historical perspective (Sect. 2), it will deal with these three
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topics by talking about the ‘‘emo-rational’’ brain (Sect. 3), ‘‘social’’ brain (Sect. 4),

and ‘‘computational’’ brain respectively (Sect. 5). To make the paper accessible to a

large audience, the various neuroscientific notions used are defined and briefly

explained accordingly. In the same way, the definition of the main economic models

referred to in the text is recalled for researchers not specialized in experimental and

behavioral economics,

2 The aims of neuroeconomics

2.1 From the two early distinct ‘‘behavioral-economics-in-the-scanner’’
and ‘‘neural economics’’ programs to the new unified ‘‘neural-and-
behavioral economics’’ program

The pioneers of this young scientific field have different definitions for neuroeco-

nomics. Originally, several definitions stood out from two separate communities:

one mainly (although not exclusively) behavioral economic—that will be called the

‘‘behavioral-economics-in-the-scanner’’ program—and the other mainly (although

not exclusively) neuroscientific—called the ‘‘neural economics’’ program, respec-

tively. However, it can be argued that these two trends recently are converging on a

largely shared research agenda that we suggest identifying to a ‘‘neural-and-

behavioral’’ program accordingly.

2.1.1 The ‘‘behavioral-economics-in-the-scanner’’ program

According to the most frequently used definitions given by economists, the purpose

of neuroeconomics is to study influence of the brain and of the nervous system on

economic behaviors. The now available neural and physiological measures should

be used for a better understanding of the nature of deliberative and affective

processes underlying decision-making by economic agents (McCabe, 2003;

Camerer, Loewenstein, & Prelec, 2004, 2005; Camerer et al., 2005; Camerer,

2007, 2008a, b). Neuroeconomics is recognized as a transdisciplinary domain using

neuroscientific tools of measure to identify the neural bases of economic decisions

(Zac 2004). At the crossroads of economics and neuroscience, this new approach

seeks to a better knowledge of choice models by taking the advantage of each

domain (Sanfey et al., 2006). In other words, neuroeconomics simply seeks to

complete the behavioral economics approach by inquiring upon the neurobiological

origin of psychological traits that these new economic models assign to individuals.

A large part of economics is now soaked with psychology; with the help of

neuroeconomics, this discipline should turn into a biological science.

The shared characteristic of these first definitions of neuroeconomics is

emphasizing the benefits of using neuroscientific tools—first, cerebral imaging—

for studying economic behaviors via well-established paradigms of experimental

economics. However, the whole range of tools used in cognitive neuroscience is

really much broader. It can be divided into two main categories: (1) measurement

techniques, that measure changes in brain function while an experimental subject
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(human or animal) engages in some cognitive activity, and (2) manipulation

techniques, which examine how perturbations of the brain’s function change

cognitive functions or behavior. Single-unit recording,2 electroencephalography

(EEG), magnetoencephalography (MEG),3 positron emission tomography (PET),4

and functional magnetic resonance imaging (fMRI)5 are measurement techniques

commonly used in neuroscience studies. Manipulation techniques can be grouped

into three classes: (1) brain stimulation techniques, including transcranial magnetic

stimulation (TMS)6 and transcranial direct current stimulation (tDCS)7; (2)

2 The most basic element of nervous system function is the ‘‘action potential’’ (or ‘‘spike’’) that arises

when a voltage of a neuron’s cell body rises above a particular threshold. Neurophysiologists use changes

in firing rate of a neuron as an index of whether a stimulus changes the ongoing information processing

with which that neuron is associated. Single-unit recording is a direct measurement of action potentials

requiring the insertion of very fine electrodes into the neural tissue immediately adjacent to the neurons of

interest. The invasive nature of this technique limits its use to non-human animals (except in the rare

cases of human patients with clinically indicated electrodes).
3 EEG and MEG are non-invasive neurophysiologic techniques. Input to a neuron changes the electrical

potential of its cell membrane. If many neurons evince similar changes in their membrane potential, the

collective electrical current they generate can be detected by electrodes positioned on the scalp. EEG

provides high-temporal-resolution access to the electrical activity of the brain. However, electrical

currents, like those generated by dendritic activity of neurons, also give rise to magnetic fields that MEG

is able to measure thanks to external sensors.
4 PET was the first functional imaging technique to gain wide-spread acceptance. It allows measuring

brain metabolic activity thanks to emissions made by positrons coming from a radioactive isotope that is

injected before or during scanning, depending on the isotope being used. The most salient disadvantage of

PET is its invasiveness: safety guidelines restrict how that radioactive material can be created, handled,

and administrated. This technique also has very limited temporal resolution.
5 Since its development in the early 1990s, fMRI has grown to become the dominant functional imaging

technique in cognitive neuroscience. Its success comes from the intertwining of the image creation

process from MRI with new insights into the metabolic changes associated with brain activity. It is based

on magnetic properties of hemoglobin: neural activity in a particular zone induces a stronger demand for

oxygenated hemoglobin, and then generates a higher BOLD (blood oxygenation-level-dependent) signal.

This technique is a good combination of spatial and temporal resolution. Much of the growth of fMRI in

research has been facilitated by the prevalence of high-field scanners for clinical applications. Structural

MRI (morphometry), which is effective in discriminating between gray and white matter in the brain, and

diffusion tension imaging (DTI), which measures the direction and magnitude of water diffusion in brain

tissue, are also used in a few neuroeconomic experiments. Near-infrared spectography is another method

recently introduced in experiments.
6 TMS stimulates neurons by means of electromagnetic induction. It uses a magnetic field which can pass

easily through the skull, to generate an electrical current inside the brain. This electric current acts on the

underlying neurons and triggers action potentials in axons that cross the field at appropriate orientations

(e.g., perpendicular). This means that some locations in the cortex are easier to stimulate than others using

this technique. The artificial and temporary lesion of the target zone allows identifying the behavioral

effect. TMS is often applied repeatedly for changing induced neuronal excitability beyond the moment of

stimulation (rTMS).
7 tDCS is a more recent non-invasive electrostimulation tool able to change cortical excitability thanks to

electrodes that are wrapped in sponges soaked in saline solution and mounted to the head. It can be used

in two modes: anodal tDCS to upregulate and cathodal tDCS to downregulate neural processing in a brain

region. tDCS has an additional advantage: it helps to avoid a problem that may arise when using rTMS in

social neuroeconomic experiments; e.g., to study ‘‘social preferences’’. The issue is that each player must

face a series of one-shot stranger-matching games sequentially with the behavioral study focusing on the

participant playing second. This poses an implementation problem, because each participant will be faced

with a high number of protagonists and there is a great temptation to deceive the participants and to

confront them with prefabricated options. Yet, in experimental economics, it is well known that it is
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neuropharmacological interventions: classically, manipulation of neuromodulators,

including dopamine, serotonin, and noradrenaline/norepinephrine,8 as well as

hormones such as oxytocin and testosterone; and (3) approaches that study the

consequences of brain lesions and neurological or psychiatric disorders, known as

‘‘clinical studies’’.

Until recently, fMRI was by far the most frequently used tool in neuroeconomic

experiments. However, there is increasing emphasis on brain stimulation techniques

where mainly magnetic or electric stimulation is used to manipulate the activity of

specific regions of the brain, resulting in behavior changes (e.g., Knoch et al.,

2006a, 2006b, 2008, 2009; Figner et al., 2010; Karton & Bachmann, 2011;

Baumgartner et al., 2011; Ruff et al., 2013; Baumgartner et al., 2014). At the same

time, a lot of experiments involve neuropharmacological interventions, mainly

concerning hormones (see Crockett & Fehr, 2014, for a survey).

The strengths and limitations of these various neuroscience approaches are

evaluated in Ruff & Huettel (2014) and Genon et al. (2018). They were added to

older psychophysiology tools and methods for experimentally studying emotional

and affective responses. These included direct observation of body physiological

activation (heart rate, blood pressure, galvanic skin response, eye-tracking, response

delays, and recording of subjects’ activity) or measuring emotions via facial

expressions (Fernandez-Dols & Russell 2017)9; methods like these are also

commonly used today in neuroeconomic experiments in addition to neuro-imagery,

brain stimulation techniques, or neuropharmacological interventions for under-

standing the biological determinants of decisions.10

2.1.2 The ‘‘neural economics’’ program

A different neuroeconomics definition was initially adopted by other researchers. It

was the philosopher Don Ross who introduced the name ‘‘behavioral economics in

the scanner’’ for the works corresponding to previous definitions. He identified

Footnote 7 continued

strongly recommended not to deceive participants to keep their trust in the experimentalist. As tDCS is

inexpensive, it can be administered simultaneously too many interacting subjects. Deep brain stimulation,

microstimulation, and optogenetic are invasive stimulation methods reserved for animal experiments or

for patients with chronic and severe neurological disorders (Parkinson’s disease, epilepsy, and obsessive

compulsive disorder).
8 At least 60 different neurotransmitters have been identified. Some of them increase the probability that

the postsynaptic cell will transmit an action potential (‘‘excitatory’’ neurotransmitters), while others

decrease this probability (‘‘inhibitory’’ neurotransmitters). The main excitatory neurotransmitter is

glutamate and the main inhibitory one is GABA. Some neurotransmitters, known as neuromodulators, act

mainly by modulating the activity of glutamate and GABA releasing neurons. Examples of

neuromodulators include dopamine, serotonin, and noradrenaline/norepinephrine.
9 Charles Darwin was one of the first scholars to study emotions through facial expressions (Darwin

1872).
10 Using these relatively simple and inexpensive tools in neuroeconomic experiments rather than the

complex and very expensive neuroimaging is actively encouraged par Axel Rubinstein, an economist

rather skeptical about usefulness of neuroeconomics for economists without totaling rejecting this

approach (Rubinstein 2008). Reuter & Montag (2016, Part VII) give a scholarly introduction into the

constellation of methods and techniques relevant to neuroeconomics.
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another trend in the literature, which he named ‘‘neurocellular economics’’ (Ross,

2005, 2008) (Vromen, 2007, also identified these two distinct programs). Here, the

goal was to borrow from microeconomics concepts and mathematics of equilibrium

and optimum for modeling neural cells activity and testing hypotheses about neural

learning. According to this viewpoint, standard economic theory may be suitable for

modeling neuron networks than current individuals as economic ‘‘agents’’. The

objective functions optimized by ‘‘agents’’—their utility functions, as we suppose in

microeconomics—may in principle apply to all kinds of ‘‘agents’’, including sub-

personal agents such as the neuron, neurotransmitter system, or quasi-modular

circuit (Ross, 2008). In other words, this author rejects the idea of anthropomor-

phism as an initial necessary condition for neuroeconomics. Thus, neurocellular

economics, which we prefer to call ‘‘neural economics’’ by following Montague and

Berns (2002), borrows the conceptual arsenal of economic theory for understanding

neural mechanisms through which the brain is valuing and comparing the multiple

stimuli it is subjected to during decision-making. In a way, the project is in contrast

to the goal of behavioral economics in the scanner; rather than seeking to improve

economic theory by borrowing tools from neuroscience, the purpose is to use

standard economic theory for analyzing brain functioning (Glimcher, 2003;

Montague, 2007).

It is well known that neuroeconomics can be divided into these two distinct

topics based on theoretical roots and project programs (e.g., Glimcher & Fehr, 2014;

Glimcher et al., 2009). This distinction is useful, because in particular much of the

early criticism toward neuroeconomics expressed by some economists was aimed at

the behavioral-economics-in-the-scanner program.11 Nevertheless, in the light of

recent research evolution, its relevance is going to fade. Currently, these two

historical neuroeconomics programs are in the process of converging on a largely

shared research agenda.

11 In short, the argument is that if a phenomenon is already well known in psychological and behavioral

terms, knowledge of neural correlates and mechanisms would be useless for economists (e.g., Harrison

2008a, 2008b; Rubinstein 2008; Smith 2008). In addition to this issue of interest for economists and

beyond the philosophical issue of the ‘‘mindless economics’’ argument (Gul & Pesendorfer 2008),

controversial debates about neuroeconomics bear on reliability of findings, in relation to the non-trivial

statistical analysis of fMRI data and particularly with the so-called reverse inference ‘‘fallacy’’. The

reverse inference problem, which questions the validity of the rationale underpinning neuroimaging

methods—namely inferring thought processes from brain activity—is a practical issue also found in

cognitive psychology experiments that rely on neuroimaging to infer particular cognitive functions

(memory, attentiveness, language…). On this topic, see Poldrack (2006, 2011, 2018); Harrison (2008b);

Harrison & Ross (2010); Ross (2010); Bourgeois-Gironde (2010); Poldrack et al. (2017); Serra (2021).

Remark that recent progress in the development of methods for decoding human neural activity as

measured with fMRI should lead to bypassing the reverse inference problem. We know that fMRI studies

focused on associating brain zones with mental functions. The introduction of decoding using the so-

called ‘‘multivariate pattern analysis’’ (MVPA) has revolutionized fMRI research by changing the

questions that are asked. Instead of asking what a zone’s function is, in terms of a single brain state

associated with global activity, we can now ask what information is represented in a zone, in terms of

brain states associated with distinct patterns of activity, and how that information is encoded and

organized (see, e.g., Normann, Polyn, & Haxby 2006; Haxby, Connoly, & Guntupalli 2014; Efron &

Hastie 2016).
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2.1.3 A ‘‘neural-and-behavioral economics’’ program

For many scholars, the transfer of knowledge from economic theory to neuroscience

(i.e., the first goal of neural economics) would have constituted only a first step

during information exchange between the two scientific disciplines. A transfer in the

reverse direction, from neuroscience to economic theory, has to be followed.

Ultimately, the final goal of neuroeconomics is first and foremost improving the

predictive power of economic theory.12

How do we do this? By inserting in economic theory, the biological constraints

that brain functioning poses to behaviors (Glimcher, 2011a, 2014c). The common

ambition of many neuroeconomists now is to develop a computational model of

economic choice that would integrate the constraints applied to economic decision-

making process by the brain function to understand the precise mechanism behind

links between the biological or neural markers and the economic behavioral

outcomes.

This evolution—which could be seen as the emergence of a ‘‘neural-and-

behavioral-economics’’ research program—is clear in the writings of Paul

Glimcher, a pioneer in the neural economics program, between the beginning and

the end of the 2000s (Glimcher, 2003, 2011a) (see Vromen, 2011). However, it can

also be detected over the last decade in the works of many leading neuroeconomists,

including but not limited to, Colin Camerer, John Clithero, Ernst Fehr, Scott

Huettel, Joseph Kable, or Antonio Rangel (Serra, 2016).

2.2 ‘‘Value-based’’ decisions: the main research topic assigned
to neuroeconomics

2.2.1 Perceptual decisions and value-based decisions

In decision-making, how does the brain choose among options? To answer this

question, we have to first make the decision nature precisely relevant. Cognitive

psychologists and decision neuroscientists now distinguish between two great

decision families: (1) ‘‘perceptual’’ decisions, which refer to processes by which a

subject is reacting to a sensorial input (e.g., at the airport, for the employee who is

scanning the personal luggage of passengers, to decide instantly whether it is a gun

or a hair-drier, or for a woman who is about to cross a street, to decide how quickly

is a particular car moving toward her); (2) ‘‘value-based’’ decisions (VBDs), which
correspond to the subject idiosyncratic preferences (for instance, to choose between

eggs or cereals for the breakfast, or between different financial investments in a

retirement plan). Contrary to perceptual decisions, VBDs are subjective by nature.

In this regard, they correspond to behaviors that economists typically are studying in

their models. Glimcher (2014a) and Wang (2014) proposed an overview of these

‘‘twin approaches’’ of decision-making in neuroscience. The theoretical background

12 In the same time, neuroeconomics results are viewed as useful in psychiatry for analyzing a

constellation of mental and neurological disorders including frontotemporal dementia, obsessive–

compulsive disorder, and drug addiction (see, e.g., Millan, 2013; Schutt et al., 2015; Conn 2016; Lis &

Kirsch 2016; Dreher & Tremblay, 2017; Alos-Ferrer 2018).
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of these approaches is clearly distinct: perceptual decisions are based on the

standard neurobiological theory of perceptual categorization, i.e., the ‘‘signal

detection theory’’, whereas VBD refers originally to the standard microeconomic

theory, i.e., the expected utility theory.

The modern idea that perceptual experience could be studied as a mental

phenomenon distinct from external physical measurements has its origins in the

work of the nineteenth century German physiologist Ernst Weber (Weber, 1834/

1996). The key assumptions of the signal detection theory are that real-world stimuli

give rise to percepts through a random process like drawing from a Gaussian

distribution (Green & Sweets, 1966; Macmillan & Creelmann, 2004). This notion

that subjects have variable internal experiences from the same stimulus is indeed far

removed from expected utility theory. Standard economic theory and perceptual

psychology are quite different (Gold & Heekeren, 2014). Although randomness is a

concept known to economists, the theory of revealed preference assumes that there

is a stable determinist choice correspondence from choices to observable behaviors.

Yet, taking up an idea set forth by Luce (1959/2005), McFadden (1974) proposed

that, like the percept curves of psychophysics, the utility curves of economics

should be considered variable, or, said differently, that the very same tools used to

study confusability in perceptual judgments should be brought to bear on ‘‘errors’’

in choice observed under economic conditions. This class of theory is now called

‘‘random utility models’’ in economics (see e.g., McFadden, 2005; Gul &

Pesendorfer, 2006). The computational model arising from the neuroeconomics

literature (see Sect. 5) should be regarded as providing a neurobiological foundation

for these random utility models (Fehr & Rangel, 2011; Glimcher, 2011a; Krajbich,

Ouf, & Fehr 2014).13

2.2.2 The subjective value of decision and choice

Economic theories of choice behavior have a cornerstone in the concept of value.

While choosing, individuals are supposed to assign values to available options and a

decision is then made by comparing these values. Thus, value represents a common

unit of measure for making comparisons. Neuroeconomists seized this concept from

economists, and in the past 10 years, considerable research has focused on neural

representations of value and selection mechanisms of a decision by comparing the

values.

Like for economists, the notion of ‘‘subjective value’’ is a core concept for

neuroeconomists. However, there exists a crucial difference between the two. In

economics, the concept of value is behavioral and analytical, nor psychological. The

‘‘as if’’ stance captures a fundamental limit: based on behavior alone, values cannot

be measured independently of choice. The assertion that ‘‘choices maximize

values’’ is intrinsically circular. Neuroeconomics breaks this circularity by

establishing that values are computed in the brain. By showing correspondence

13 However, there is a significant difference between neuroeconomic choice models and random utility

models. While the latter posit that preferences are in essence stochastic and that choices always reflect

these underlying preferences, neuroscience research suggests that the choice process itself might be

systematically biased and sub-optimal (we shall return to this point in Sect. 5).
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between a neural signal and a behavioral measure of value, that signal in the brain

provides an independent measure of value, in principle dissociable from choices.

Therefore, the assertion that ‘‘choices maximize values’’ becomes potentially

falsifiable and thus truly scientific (Padoa-Schioppa, 2011).

In brief, for most neuroeconomics researchers today, the ultimate goal assigned

to this new scientific field is to understand more profoundly these VBDs by studying

the neurobiological processes and cognitive mechanisms that implement human

decisions. In other words, neuroeconomics intends to discover the neurobiological

and computational bases underpinning these kinds of decisions that we can identify

with ‘‘economic behaviors’’14 (Montague, 2007; Rangel et al., 2008; Schultz, 2009;

Balleine, Daw & O’Doherty, 2009; Kable & Glimcher, 2009; Fehr & Rangel, 2011;

Padoa-Schioppa, 2011; Rangel & Clithero 2014; Glimcher, 2014a; Padoa-Schioppa

& Conen, 2017).

3 The emo-rational brain

3.1 The dual-process framework: automatic versus controlled systems

When studying decision-making, psychologists often use a valuable distinction

between automatic processes (fast, specialized, rigid, intuitive, unconscious, and

heuristics-based) and controlled processes (slightly slow, generic, flexible, delib-

erate, conscious, rule-based, and using high cognitive faculties, such as reasoning).

It was indeed an old dichotomy. William James is one of the first psychologists who

defended this view by the end of the nineteenth century (James, 1890). This general

‘‘dual-process’’ framework is a simplified and reductionist way for analyzing

cerebral activities. It is always debated in cognitive psychology (see Melnikoff &

Bargh, 2018, for critics, and Pennycook et al., 2018, for several arguments in favor

of it). Its main merit is facilitating the understanding of many decision biases.

We find this dichotomy today in many theoretical analyses of modern behavioral

economics that oppose two systems: one would depict a quasi-automatic or short-

sight behavior, while the other would reflect optimization (e.g., Loewenstein &

O’Donoghue, 2004; Bernheim & Rangel, 2005; Benhabib & Bisin, 2005; Fudenberg

& Lenine 2006). In the formal analysis built by Kahneman (2003)—maybe the most

general one—these two systems are called ‘‘system 1’’ (intuitive system) and

‘‘system 2’’ (deliberative system), respectively. The main features of system 1 are its

automatic operation and minimal demands on working memory, acting mostly

through components of associative memory, while the main features of system 2 are

the active engagement of working memory and analytic thinking (see also Sloman,

2002; Evans 2010; Kahneman, 2011; Evans & Stanovich 2013). Within the

cognitive architecture, system 1 occupies a central position midway between the

merely automatic functioning of perception and the merely deliberative functioning

14 In this respect, as suggested by Huettel (2010), neuroeconomics may be viewed as a subfield of

decision neuroscience which deals with both perceptual and VBD decisions. Yet, some scholars do not

distinguish between neuroeconomics and decision neuroscience by opposing them to molecular

neuroscience (e.g., Montague 2007).

123

Decision-making: from neuroscience to neuroeconomics—an… 11



of system 2. The latter is similar to processes implicitly involved in standard

microeconomic theory, whose many results were disproved by an increasing

number of economic experiments since 1960s. In addition, the primary goal of

behavioral economics is to build new empirically more relevant models by

integrating, in a formal way, some features of system 1 (for a recent overview of

these new models of behavioral economics, see, e.g., Cartwright, 2016; Serra,

2017).

From a neurobiological point of view, the rough distinction between emotional
and cognitive systems is largely akin to the duality between automatic and

controlled systems from a psychological point of view (Sanfey et al., 2006). The

overview that Camerer et al. (2005) proposed is expected to be more comprehen-

sive; by supposing mutual independence between both systems (i.e., automatic

versus controlled systems and emotional versus cognitive systems), these authors

define by crossing four kinds of systems of which the only one corresponding to

‘‘controlled and cognitive system’’ may be identified to the standard economic

model. But what modern neuroscience teaches is that in reality there exists a set of

interactions among the four kinds of systems.

To deal with these interactions at the anatomical–functional level, the cognitive–

emotional distinction is adopted for convenience. The study of neural-learning

mechanisms offers a more relevance dynamic framework for analyzing the links

between automatic and controlled systems; this topic will be addressed later in

Sect. 5.

3.2 Cognitive systems

3.2.1 A brief introduction to the brain

Anatomical structures of the brain: Broadly speaking, the primate (and hence

human) brain can be divided into four main divisions: (1) the telencephalon or

forebrain (the cerebral cortex, basal ganglia, amygdala, and hippocampus); (2) the

diencephalon (essentially the thalamus); (3) the mesencephalon or midbrain (the

superior and inferior colliculus, substantia nigra, and tegmental area); (4) the

brainstem or hindbrain (the pons and medulla). In addition, from a macroscopic

viewpoint, cerebral hemispheres are divided into lobes: in the main, frontal, parietal,

occipital, and temporal lobes, respectively. These are not functional subdivisions

but rather names of convenience. Other subdivisions are usually used: lobules

(internal divisions in some lobes), sulcus (troughs in the cortex, the deepest ones are

called fissure), and gyrus (convolutions in lobes bounded by some sulcus).

Furthermore, it should be noted that various terms used for specifying the position

of the brain and its regions are the same that are used for describing the macroscopic

anatomy of the rest of the body: the terms ‘‘anterior’’ and ‘‘posterior’’ indicate front

and back of the head, ‘‘inferior’’ and ‘‘superior’’ indicate above and below;

‘‘medial’’ and ‘‘lateral’’ indicate toward the center or to the side, respectively. Other

terms come from drawing the axis of the body and the brain. ‘‘Dorsal’’ refers to the

back or upper half depending on whether the focus is the body or the brain;

‘‘ventral’’ refers to the front or the lower half. ‘‘Rostral’’ indicates the direction
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towards the nose and ‘‘caudal’’ towards the back (these terms will be frequently

used in the paper) (Purves et al. 2011) (see Fig. 1).

The cerebral cortex. Among the many brain divisions of the cerebral cortex

based on histological criteria that were evolved, the map including 52 areas built by

the German neuroanatomist Korbinian Brodmann in the early twentieth century is

the most well-known (Brodmann, 1909/1994). Yet, this cytoarchitectonic organi-

zation—each Brodmann area (BA thereafter) being characterized by a specific

cellular organization—faces a problem related to heterogeneity of data from

different organisms, which makes the comparison of their neural activities difficult.

The standard proportional stereotaxic space (Talairac & Tournoux 1988) allows

responding to this problem. Frequently used in brain imaging experiments, the

method suggests an atlas describing a ‘‘standard’’ brain anatomically and

cytoarchitectonically.15 Most brain localization studies in neuroscience are based

on this idea of a standard brain (see Fig. 2 for the map of the main BA16). We need

to be aware, however, that the discovery of ‘‘neuroplasticity’’ (i.e., the fact that

experience directly changes the brain throughout an individual’s life) weakens the

reliability of this static view (for a short overview on this issue, see Schutt et al.,

2015).

Traditionally, ‘‘association areas’’ in the cortex are considered as the cognitive

abilities center. Association areas fill the greatest part of human brain surface

(maybe about four-fifths), and the other part corresponds to the sensorial and motor

cortices, which encode sensory information (mechanical or thermal sensitivity,

vision, audition, sense of smell, and taste) as well as movements control (see, e.g.,

Fuster, 2008; Purves et al. 2011).

The frontal cortex. All mammalians have a frontal cortex; however, its relative

size in the brain varies widely with species. While in non-human primates, such as

monkeys or lemurs, its size is enormous compared with other species (e.g., rats or

hedgehogs), in humans, the frontal cortex is simply gigantic (a third of the cerebral

Fig. 1 Terminology to describe
location in the brain

15 Today, neuro-imagery studies use more frequently the Montreal Neurological Institute (MNI) space,

which slightly differs from Talairach–Tournoux normalization by relying on a highly number of fMRI

images (see, e.g., Poldrack et al., 2011, 2017).
16 Notice that the different neural regions referred to in the text often include only a part of the BAs

mentioned in bracket.
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volume). Despite this human singularity, our information about frontal cortex

connectivity in humans has been essentially derived from studies in monkeys (for

comparisons between the frontal cortex of humans and monkeys, see Ongür &

Price, 2000; Ongür et al., 2003). Although some studies suggest a strong similarity

in this respect between humans and monkeys, caution must be executed when

directly correlating the results obtained from non-human primates and, among other

mammals with humans (Dehaene et al., 2005). Monkeys have brain structures that

rodents lack, and humans have brain structures that both monkeys and rodents lack.

This restricts the conclusions we could draw about the human brain from studies of

animals with much smaller cortices. The localization of neural areas in humans

similar to those in monkeys remains to be studied in the neuroanatomy research

agenda (Mackey & Petrides, 2014).

The human frontal cortex plays a fundamental function. It collects complex

perceptive information from the sensory and motor cortices as well as from the

parietal and temporal associate cortices, respectively. It is view as the ‘‘executive’’

region of the brain (Pribram, 1973) that is located In front of the motor and premotor

areas in the frontal cortex stands the prefrontal cortex—a wide cortical region

involved in cognitive processes.

3.2.2 Cortical regions involved in cognitive processes

The prime importance of the prefrontal cortex (PFC) in highly intellectual functions

has always been recognized. Yet, knowing if these various functions are performed

by well-defined specific zones has been a matter of debate for a long time. Today,

neuroscientists agree that a certain specialization exists—a partial one, at any rate.

However, a better understanding of the neural mechanisms is through ding of

Fig. 2 Broodmare’s cytoarchitectonic map of the human cerebral cortex
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information sending back to loops, networks or circuitries (we will address this

important point below).

In this respect, it is generally agreed that highly complex cognitive processes

(i.e., logic reasoning, planning, problem-solving, and decision-making) strongly

involve some anterior and lateral zones in PFC, namely the anterior cortex and

dorsolateral PFC.17 However, nowadays, it is recognized that other neural areas

engaged in high-level cognitive processes are in the more posterior cortical zones,

including the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC),

temporo-parietal junction (TPJ), and posterior parietal cortex (PPC)18 (Miller, 2000;

Miller & Cohen, 2001; Semendeferi et al., 2001; Ramnani & Owen, 2004; Zald &

Rauch 2006; Fuster, 2008; Passingham & Wise, 2012). Furthermore, using a

comprehensive battery of neuropsychological tasks on a large set of individuals with

damage to the frontal lobes, Gläscher et al. (2012) suggest that it de sense to speak

of a ‘‘cognitive control network’’ in the brain, including primarily the dorsolateral

PFC and ACC.

3.3 Emotional systems

From a neurobiological viewpoint, emotions and affect expression are closely

associated with the autonomous nervous system. The centers coordinating

emotional responses have been historically pooled as the ‘‘limbic system’’.

3.3.1 The limbic system

Analysis of emotional behavior control systems has a long history marked by Papez

and his identification of an emotional circuit that later became known as the ‘‘Papez

circuit’’ (Papez, 1937). Paul MacLean contributed to the well-known three-part

brain architecture (MacLean, 1970): (1) the reptilian brain, the oldest cerebral

17 The anterior cortex (or frontopolar cortex) (BA 10) is the most rostral zone of the frontal lobe. It

performs a function of cognitive control in the most complex situations; it is involved to monitor

completely unknown situations or forcing the subject to think about one’s own thoughts (i.e.,

metacognition). The dorsolateral PFC (BA 8, 9, 46) corresponds to the superior part of the frontal lobe

exterior. It is seen as the most ‘‘rational’’ part of the brain.
18 The cingulate cortex is an internal zone located along the interhemispheric fissure above the corpus

callosum. It is divided into an anterior (ACC) (BA 24, 32, 25) and a posterior (PCC) (BA 23, 31) parts.

The ACC has long been known to play a role in decision-making, especially when subjects made errors in

simple decision-making tasks and detected those errors. It is traditionally known as mainly implicated in

the monitoring of internal conflicts, namely when conflicting signals are sent by several neural areas and

that selection of an action may be tricky. The rostral ACC is known as the paracingulate cortex. The PCC

(BA 7, 40) is typically known as devoted to several high-level cognitive functions, including attention,

working memory, and more broadly, ‘‘external consciousness’’, but its ventral part seems to show a

functional integration with the whole areas belonging to the cerebral ‘‘default mode’’ (i.e., the brain’s

intrinsic activity when it is undertaking no task whatsoever); this network is supposed to accommodate

what some authors called ‘‘internal subjective consciousness’’. The TPJ (BA 22, 40) is a part of the

temporal cortex at the edge of the parietal cortex. It is implicated both in reorienting of attention and

social cognition.
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structure in terms of evolution (i.e., the basal ganglia19), is seen as the seat of

primitive emotions (as fear or aggressiveness); (2) the ‘‘old’’ mammalian brain

(originally called the ‘‘visceral brain’’) broadens the set of emotional responses by

including social emotion (as guilt, shame, or envy) and corresponds to many of the

components of Papez circuit (the thalamus, hypothalamus, hippocampus, and

cingulate cortex) and additional important structures such as the amygdala20; (3) the

‘‘new’’ mammalian brain (i.e., the neocortex) interfaces emotion with cognition and

exerts top–down control over the emotional responses driven by other systems. The

term ‘‘limbic system’’, introduced by MacLean (1952) for the ‘‘visceral brain’’,

survives today as the dominant conceptualization of the ‘‘emotional brain’’, even

though over the years, its configuration has evolved, including some cortical areas in

particular (see Dalgleish 2004).

It is commonly recognized today in affective neuroscience that in addition to the

many subcortical structures involved in emotional responses (the amygdala,

hippocampus, thalamus, hypothalamus, and some structures in the basal ganglia,

such as the caudate and nucleus accumbens in the ventral striatum), several cortical

zones are also viewed as engaged in emotion processing: the orbitofrontal cortex

(OFC), ventromedial PFC,21 and anterior parts of insula,22 cingulate cortex (ACC),

and temporal cortex (ATC). Both these subcortical structures (i.e., the ‘‘classic’’

limbic system) and cortical structures are now thought to be involved in emotion

expression and processing (Dalgleish 2004; LeDoux, 1996; Phelps & LeDoux,

2005; Whalen & Phelps, 2009; Pessoa, 2010; Purves et al. 2011; Lempert & Phelps,

19 All vertebrates (fish, amphibians, reptiles, birds, and mammals) possess such a neural structure, of one

form or another. It consists of a set of functionally diversified nuclei embedded in cerebral hemispheres

depth, behind the frontal lobes and encircling the thalamus, including the striatum. The striatum includes

itself three structures connected to different neural regions: the caudate nucleus, the putamen, and the

nucleus accumbens (NAcc). They receive extensive inputs from the frontal cortex and send almost all of

their outputs to two other nuclei in the basal ganglia (the globus pallidus and the substantia nigra pars

reticula). Today, many researchers simply divide the striatum into two sections: the ventral striatum (the

NAcc and lower parts of the caudate and putamen), interacting with regions engaged mainly in emotion

and motivation, and the dorsal striatum (the upper parts of the caudate and putamen), interacting with

regions implicated in movement and memory.
20 The amygdala corresponds to a group of nuclei in the medial temporal lobe in front of the

hippocampus. This structure plays a central place in emotion and motivational processing, and is implied

both in the emotional component of sensorial stimuli and emotional stimuli memorization. The

hippocampus, with near structures with whom it is closely connected, is related to memory in general and

spatial memory and is crucial for complex spatial representations; it is part of a ‘‘human navigation

network’’.
21 In the wide orbitomedial region of the PFC (the region encompassing all internal and orbital neural

areas), several specific zones are identified, but not all researchers agree on their boundaries. By moving

up from the zone located just above the orbits to the top of the skull, are typically defined the orbitofrontal

cortex (OFC) (whose medial/caudal/lateral parts are differentiated) (BA 11, 14 / 13 / 47/12), ventromedial

PFC (BA 10, 11, 14, 32), and dorsomedial PFC (BA 9, 8, 32) (sometimes named globally medial PFC).

The ventromedial PFC very often is defined as including the medial OFC.
22 The insula (or insular cortex) is a part of the cortex moved in depth of the lateral sulcus, at the junction

between the frontal and temporal lobes. The insula is sometimes called the ‘‘paralimbic structure’’. Its

anterior part is strongly involved in emotion expressing: it is acting as a monitoring system that informs

the brain about high-risk or unpleasant situations that may be a source of danger, harm, or pain. Some

authors call this structure the ‘‘interoceptive’’ cortex, because it is implicated in the processing of internal

representations signals of body states.
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2014; Engelman & Hare 2018; Fox et al., 2018) (Fig. 3 indicates the approximate

locations of several regions involved in cognition or/and emotion processing and

provides a qualitative depiction of the main brain regions of interest to the

neuroscientists as mentioned in the text accordingly).

3.3.2 The cerebral ‘‘geography’’ of emotions

Whether we may identify a specialization of some neural zones in perception,

expression, or experience of certain emotions, or whether all emotions depend on

the same basic brain circuit has long been an open question (Dalgleish 2004).

Today, many argue in favor of specialization based on a litany of clinical studies

dealing with patients suffering from brain damage or pathologies and, more

recently, on brain imaging works (Damasio, 1994, 2003; LeDoux, 1996; Rolls,

2014; Saarimäki et al., 2018). The idea that a link would exist between a body

function and a brain zone dates from the nineteenth century to Franz Joseph Gall.

Phrenology enjoyed popular success but was soon called into question before the

Fig. 3 Main neural regions involved in cognition and/or emotion processing: lateral view (left), medial
view (right), and internal structures (axial plan) (below)
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great biologist Paul Broca proved some truth in Gall’s work; by performing patient

autopsies, he showed the existence of correlations between brain damage and

neurological deficiencies accordingly. Yet, we know to day that even though some

neural zones are devoted to specific functions, networks, circuits, and loops are

engaged most of the time. Although the central principle for understanding

representation in the brain does remain as the notion of ‘‘modularity’’ (Fodor, 1983;

Glimcher, 2014b), interpretation of network connectivity outweighs interpretation

of brain localization, particularly for high-order complex functions (see Fuster,

2009; Fuster & Bressler, 2012; Lindquist & Barrett, 2012; Fehr, 2013; Pessoa,

2017).

Alternatively, there is a longstanding debate about whether measures of emotion

organize themselves into categories or deploy in a more continuous way along

affective dimensions. For some authors, emotion differentiation may arise according

to some distinct and specific categories—fear, anger, disgust, happiness, sadness,

and surprise (i.e., the canonical ‘‘basic’’ or ‘‘primary’’ emotions). Many authors have

enlarged the list of emotions including, but not limited to, shame, compassion, guilt,

envy, contempt, discomfort, amusement, irony, satisfaction, excitation, and pride

(Darwin, 1872; Ekmann, 1982, 2003; Panksepp, 1998; Plutchik, 1980). For others,

subjective experience of emotions formulated by individuals may be described

according to some underlying dimensions, such that the pleasant/unpleasant

dimension (positive/negative dimension) and the awareness/depression dimension,

respectively (low/high activation dimension). According to some authors, it is

critical to distinguish these conscious subjective experiences of emotions, often

called ‘‘feelings’’, from emotions as internal functional states (Adolphs & Anderson,

2018; Adolphs, 2017; Damasio, 2003, 2017; Scherer, 2005).23

By crossing both approaches, one gets a certain image of some neural zones

specialization (Lindquist et al., 2016; Cowen & Keltner, 2017; Clark-Polner 2017;

Barrett, 2017). Clearly, several distinguishable neural structures are associated with

some negative emotions: the amygdala (fear, anxiety, aggressiveness, stress, and

sadness), hypothalamus (anger, fear, and aggressiveness), anterior insula (disgust,

distress, and anger), locus coerulus24 (fear and anxiety), and anterior cingulate

cortex (ACC) (sadness, pain, and anxiety), respectively. However, the amygdala and

the ACC are also activated in perception of some positive emotions. Several areas in

the ventral striatum, including the nucleus accumbens (NAcc), and caudate are

strongly associated with positive emotions. And several neural areas in the wide

orbitomedial region, such as the orbitofrontal cortex (OFC) and ventromedial PFC,

are thought to be generally related to the psychological component of emotions.

Thus, a multitude of various emotions are represented in the brain in a

distinguishable manner, yet in partly overlapping regions: the same region possibly

23 Psychologists distinguish another notion, ‘‘mood’’, considered as an affective state more diffuse, less

intense but more durable than emotion. The term ‘‘affect’’ often is used as a generic term that involves

both emotion and mood (e.g., Scherer 2005).
24 The locus coerulus, located in the cerebral pons, is in close contact with the amygdala. It is associated

with noradrenaline/norepinephrine, a chemical substance related to adrenaline considered as neurotrans-

mitter; it is seen as active in waking, sleeping, and feeding behavior, but it also interplays with cortical

regions for modulating attention.
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plays a different role25 (for recent reviews, see Kragel & Labar, 2016; Saarimäki

et al., 2018).

Some scientists go farther by categorically refusing the modular ideas that

underlie this typology and argue that human emotions result from interaction of

broadly distributed functional networks. For them, there would not be macroscopic

brain structures dedicated specifically to emotions; instead, there would be

specificity at the level of circuits and cell populations (Adolphs & Anderson,

2018; Lindquist & Barrett, 2012; Pessoa, 2013, 2016).

3.4 The interplay of emotion and rationality

It is thus clear from anatomical, physiological, and neuropsychological observations

that emotion processing and complex cognitive processing interact. And this applies

in particular to ‘‘rational’’ decision-making and emotions. A main tenet of

contemporary neuroscience is that, contrary to what has typically been assumed,

emotion and rationality are complementary.26 The image of opposing ‘‘cold’’

regions in the frontoparietal cortex to ‘‘hot’’ regions in the classic limbic system

regarding emotional state processing is no longer accepted (e.g., Kelso & Engstrom,

2006; Lempert & Phelps, 2014; Okon-Singer et al., 2015, 2018; Pessoa, 2013;

Phelps, 2009; Richter et al., 2017).

In the 1990s, several neuropsychology studies (Bechara et al., 1994, 1996, 1997)

go even farther by arguing that emotion processing often would be necessary for

making rational decisions. From an economic viewpoint, the result of these

experiments is important, because it can be interpreted in terms of the emotion of

regret.27 There are numerous neuroeconomic experiments dealing with the role of

regret in decisions that have explored further into this topic. More broadly, a

25 However, several meta-analyses showed that often there are differences in response intensity of a same

structure depending on the emotion: e.g., both fear and happiness active the amygdala, but the activation

level is significantly stronger with fear than with happiness, or both disgust and anger actives insula, but

the activation level is significantly stronger with disgust than with anger. Hemispheric lateral effects also

were observed, e.g., the right amygdala is more involved in negative emotions and the left in positive.
26 Consider Plato’s famous metaphor where the mind is seen as a chariot pulled by two horses. The

rational brain is the charioteer who guides the horses. One of the horses is well bred and well behaved,

while even the best charioteer has difficulty controlling the other horse; this obstinate horse represents

negative, destructive emotions. The charioteer’s task is to keep both horses moving forward. Through that

simple metaphor, the mind was seen as conflicted, torn between reason and emotion. This dual division of

the mind is one of the most enshrined ideas in Western culture. A large set of influential philosophers,

from René Descartes to Sigmund Freud, and including Francis Bacon, Auguste Comte, and Emmanuel

Kant, all embraced various forms of this duality, which continues through to the modern brain–computer

metaphor proposed by cognitive psychology that sees emotions as antagonists of rationality. Aristotle in

The Nicomachean Ethics is seen as an exception by claiming that rationality is not always in conflict with

emotion. Another widely known exception is Spinoza, a contemporary of Descartes, Antonio Damasio

highlights this opposition between Descartes and Spinoza in the titles of two of his books. Descartes’
Error: Emotion, Reason, and the Human Brain (Damasio 1994) and Looking for Spinoza: Joy, Sorrow,
and the Feeling Brain (Damasio 2003).
27 We know that in economics, the experience of regret in decision-making was initially introduced by

Bell (1982) and Loomes & Sugden (1982). In this theory, we suppose that, for each decision, the agent is

taking account her/his utility and the potential degree of regret/satisfaction, i.e., the comparison with what

she/he could have obtained.
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multitude of neuroeconomic experiments prove that, in cerebral regulation of

behaviors, the coordination between emotional and cognitive systems is necessary.

3.4.1 Emotions and rational decisions: the role of regret

The ‘‘Iowa Gambling task’’ experiment. Antonio Damasio was the first neurologist

who established the essential role for emotions in rational decision-making by

taking as subjects several patients with brain damage in the ventromedial PFC (the

cortical region known as mainly specialized in emotional signals processing).28

When they face a task consisting of getting rid of risky lotteries that seem attractive

but harmful in the long run (the famous ‘‘Iowa Gambling task’’ experiment), his

patients were incapable of adapting their behavior to choosing lotteries seemingly

less attractive but profitable in the long term (Bechara et al., 1994). Initially, the

game was intended for assessing the decision abilities of schizophrenics compared

with healthy subjects. In their experiment, the authors recorded that the healthy

subjects were drawing a card originally among the 4 decks proposed, and after 40 or

50 trials, they were drawing only in the ‘‘advantageous’’ decks; conversely,

schizophrenics or patients with damage to the ventromedial PFC continued to draw

from all decks by focusing on immediate gains, seemingly indifferent to the whole

game’s result. Furthermore, measure of subjects’ electrodermal responses showed

that the observed behavioral deficiencies were accompanied by no specific reaction

from the vegetative nervous system before making decisions (Bechara et al.,

1996, 1997). Studies on subjects with damage to the amygdala reached the same

result (Bechara et al. 1999).

What these pioneer experiments prove is that higher cognitive abilities do not

universally govern behavior. Emotions are not always harmful to those which are

feeling them.29 On the contrary, without emotional substrate, a rational choice is

hard if not impossible. The ‘‘somatic marker’’ hypothesis (Bechara & Damasio,

2005; Damasio, 1994, 1996; Reiman & Bechara, 2010), where emotions should be

physiological states before being psychological states for making good decisions

easier, is widely confirmed in the literature.30

28 It was back in 1994 that Damasio depicts for the first time the now famous history of this young

American railway worker named Phineas Gage who, in 1948, was suffering a serious injury in the brain (a

crowbar of 6 kg was going through his brain), an accident whose consequences, against all odds, were not

physical but behavioral (for further detail see Macmillan 2000). Interested in pathological consequences

of patients with frontal lobe lesions, Damasio had the opportunity to observe subjects like Gage: Elliot

history, a patient suffering from a benign brain tumor, is now as famous as Gage history (Damasio 1994).
29 Of course, this is not to say that emotions are only beneficial effects for subjects. Damasio himself

acknowledges that the participation of emotion to reasoning process may be advantageous or detrimental

according to both the decision circumstances and the decision-maker’s past history. There is compelling

evidence that the perception of emotionally salient stimuli and the experience of emotional states can

profoundly alter cognition and promote specific harmful behavioral tendencies (see, e.g., Okon-Singer

et al., 2015; Engelman & Hare 2018).
30 Over the years, several studies have questioned the somatic marker hypothesis (e.g., Dunn et al.,

2006). Nevertheless, this hypothesis has played a central role in affective neuroscience in that it was one

of the first which links emotional responses and brain systems to behavioral decision patterns.
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Interestingly, the finding of these clinical studies can be interpreted in terms of

the emotion of regret. Damasio remarked that his patients, even though they could

not adopt an adaptive behavior, had a certain consciousness of better choices. Yet

lacking any emotional feeling, they did not expect the regret of not choosing the

good decision.

Neuroeconomic experiments on regret. Numerous neuroeconomic experiments

have addressed the role of regret. Camille et al. (2004) extended the pioneering

work of Damasio and Bechara and tested their hypotheses. Their study evaluated the

ability to experience regret and disappointment in normal individuals compared

with patients experiencing ventromedial prefrontal cortex (vmPFC) lesions. The

hypothesis tested was that, in particular, the inability to feel regret could lead

patients with vmPFC lesions to the disastrous consequences first identified by these

neurologists and subsequently observed on many occasions. To undertake the test,

the authors designed an experimental protocol based on a succession of choices

between two lotteries with different risk levels that were capable of artificially

generating regret.

The subjects had to choose between two ‘‘wheels of fortune’’ that produced

monetary gains or losses with different pre-determined probabilities that were

unknown to the subjects. This was repeated several times, with the gains or losses

being cumulated accordingly. The subjects had to self-evaluate their level of

satisfaction or disappointment with the outcome using a graduated scale. At the

same time, a device recorded their skin conductance to provide an index of the

intensity of the perceived emotion. Presenting the subjects with the outcome they

would have attained had they had chosen the other wheel was sufficient to cause

regret. In this regard, regret was different from the disappointment that resulted

simply from noting the difference between the actual and expected gains. In normal

subjects, the effect was unequivocal, that is, for a given gain, satisfaction was lower

if the other wheel led to a larger gain and higher if it led to a loss. Furthermore, the

emotion expressed by normal subjects on the graduated scale was more intense once

they knew the other result, and so was their physiological response (i.e. their skin

conductance). On the contrary, knowing the outcome that they would have obtained

with a different choice had no impact on the level of satisfaction or disappointment

in the subjects with vmPFC lesions, as if they were impervious to regret. This result

was confirmed by conductance measurements. These observations, therefore,

highlighted the role of this area of the PFC in regret perception.

The experiment further explored the differences between disappointment and

regret: the authors biased the game, so that, on an average, the bet leading to the

highest gain won less frequently than the alternative choice, resulting in a smaller

win. The hypothesis here was that experiencing a greater sense of regret for the first

time would progressively lead normal subjects to choose the least risky option. This

was indeed the case. At the end of the experiment, they had all accumulated a

positive gain that was, on an average, greater than the highest potential gain from a

single attempt. Conversely, patients with lesions more often made the most

unfavorable bet that resulted in a significant average loss.

This study tends to show that regret generates greater physiological responses

and that normal subjects find it more intense than disappointment. However, this
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was not the case in patients with vmPFC lesions. Two distinct neural processes seem

to generate two negative emotions: regret and disappointment. More precisely, the

two emotions appeared to be cumulative: one may be upset with both the result and

with making the wrong choice. The vmPFC integrates both the cognitive and

emotional components of the entire decision-making process, and its dysfunction

prevents the emergence of specific emotions such as anticipated regret, which plays

an essential role in regulating individual and social behavior as it expresses a sense

of responsibility for one’s own choices. In the wake of clinical studies conducted on

patients with vmPFC lesions, this experiment on regret comparing normal subjects

with patients affected by similar lesions further demonstrated the vital role played

by emotions in ‘‘rational’’ decision-making.

Some fMRI studies have also investigated brain activity involved in regret and

disappointment by manipulating the feedback participants see after deciding to

choose a certain risk (e.g., Coricelli et al., 2005). They also showed that regret

exerts a more substantial influence on choice than disappointment, and the

emotional impact of regret is stronger than that of disappointment. The cortical

differentiation between regret and disappointment helps to better understand their

role in decision-making and how they differ in biasing choice. These fMRI studies

supplement Camille’s initial experiment, but the authors propose a somewhat

different interpretation. While in the clinical study, in accordance with Damasio’s

original thesis, the role of emotions in ‘‘rational’’ decisions is highlighted, in these

experiments, they stress rather on the role of cognitive processes in the

determination of some emotional states (for other fMRI studies involving emotion

of regret in neuroeconomic experiments, see, e.g., Coricelli et al., 2007; Chua et al,

2009; and for a magnetoencephalography (MEG) study, see Giorgetta et al.,

2013).31

3.4.2 The necessary coordination between emotional and cognitive systems
in individual economic decision-making

A multitude of neuroeconomic experiments prove that, in cerebral regulation of

economic behaviors, coordination between emotional and cognitive systems is

necessary. A great number of arguments, in terms of psychology in behavioral

economics for explaining so-called ‘‘biases’’ or ‘‘anomalies’’ in decision-making,

generated a meaningful explanation in more objective terms.

If we distinguish ‘‘external’’ and ‘‘internal’’ assessment of rationality (i.e.,

evaluation of the optimality in achieving certain goals versus evaluation of the

coherence of intentions, actions, and plans), it can be argued that neuroeconomic

studies show how ‘‘externally’’ irrational choices can be ‘‘internally’’ rational. This

teaching follows mainly from brain imaging experiments in very various economic

contexts, such as purchasing consumer goods, financial decisions (i.e., risky and

ambiguous decisions), intertemporal choices (decisions involving trade-offs among

31 A lot of neuroscientific studies show that the emotion of regret also is implicated in several clinical

disorders such as schizophrenia, depression, obsessive–compulsive disorder, and ‘‘chasing’’ behavior in

pathological gambling.
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payoffs available at different points in time), or social decisions (interactive

decisions between several individuals). Yet, considering a more complete expla-

nation of social decisions from a neuroeconomic perspective requires also taking

account social cognition processes such as ‘‘mentalizing’’ and empathy (see

Sect. 4). For an extensive review of this literature, see Reuter & Montage 2016;

Serra, 2016. Let us just consider some examples of neuroeconomic experiments for

concrete individual decision-making.

Consumer purchasing decisions. Various experiments relating to purchasing

decisions, such as buying an item in a retail store or choosing cereals, have shown

that during the decision process, several neural areas are activated for different

reasons, but are led to collaborate accordingly. The brain undertakes an implicit

arbitrage between the anticipation of the ‘‘reward’’ attached to purchasing the good

and of the ‘‘punishment’’ generated by paying for it (as we usually avoid spending

too much money). In the fMRI study of Knutson et al. (2007), for example, subjects’

brains were scanned, while they took part in a three-phase dynamic purchasing

process: first, they saw the product, then its price, and finally, they had to decide

whether to buy it or not. The neural images indicate that the nucleus accumbens

(NAcc) is activated during the first phase,32 which tends to prove that it is this area

of the brain, that is crucial in the ‘‘reward system’’ (refer to Sect. 5), which is

activated first when the subjects become aware of the product. The more intense is

the activation of the zone, the stronger is the desire of the agent to purchase the

product. Thereafter, the reactions to the displayed price activate two other neural

areas. More precisely, inflated prices activate the anterior part of the insula, an area

associated with negative emotions. Thereafter, the dorsolateral PFC, one of the

regions involved in deliberation, is activated, in relation with the subject calculating

whether the purchase is a ‘‘good deal.’’ The activation level is greater if the cost of

the item is considered to be significantly lower than normal. Hence, during the

buying process, distinct parts of the brain are activated with varying degrees of

intensity at different times in response to different positive or negative stimuli. By

measuring the relative level of activity in each neural zone, the authors were able to

precisely predict the subjects’ buying decisions. This result clearly contradicts the

standard choice theory, because it shows that consumers are not always guided

exclusively by price or expected utility.

The fMRI experiment undertaken by McClure et al. (2004b) is another good

illustration of the role that neuroeconomics may play in clarifying the factors

involved in consumer choice mechanisms. This study aimed to comprehend the

mechanisms governing the choice between two brands of fizzy cola drinks, Pepsi

and Coca-Cola, independent of the preferences identified when simply tasting them.

In particular, it showed that the utility felt by consumers did not just depend on the

taste of the fizzy cola drinks (immediate sensorial expression linked to activation of

32 This example indirectly refers to understanding consumer behavior in terms of ‘‘mental accounting’’ as

proposed in behavioral economics (Thaler 1985, 1999). This very general mental process is analyzed by

distinguishing two often simultaneous phases: a ‘‘framing’’ phase, which is concerned with the external

description of events that is given to an agent, and an ‘‘editing’’ phase, which is concerned with the

internal process whereby the agent analyses the information. These neuroeconomic experiments focus on

the editing phase.
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the vmPFC), but that the knowledge of the brand generated a cognitive neural

response (control of actions, recall of memories, and one’s own image associated

with the activation of the lateral PFC and hippocampus), which triggered a declared

preference for a particular brand accordingly.

It has already been mentioned that, alongside brain imaging experiments that

merely establish correlations, an increasing number of researchers are using

transcranial stimulation tools in their experiments (usually TMS) to induce an

exogenous behavioral effect and hence establish genuine causalities. For example,

in the case of consumer purchasing decisions, studies have shown that an

experimentally induced variation of the dorsolateral PFC may modify participants’

willingness to pay to acquire certain goods (Camus et al. 2009).

Financial decisions: Risk, ambiguity, and uncertainty. Numerous neuroeconomic

experiments on financial choices are available. Here, we only mention a few

examples (Taya, 2012 and Tobler & Weber, 2014 provide a fuller review).33

In an fMRI study centered on the portfolio selection strategy, Kuhnen & Knutson

(2005) used an inventive experimental protocol that offers various advantages in

eliciting choice behavior between risky assets (two kinds of shares) and an asset

with a guaranteed return (a bond); it uses monetary incentives within a dynamic

framework to identify both optimal and sub-optimal choices accordingly. The

authors showed that observed deviations from an ‘‘optimal’’ investment strategy for

a risk-neutral agent can be explained by the identification of neural mechanisms

involving two distinct zones: the nucleus accumbens (NAcc) where the activation

preceded risky choices as well as risk-seeking mistakes (‘‘excessive risk-seeking’’

behavior) and the anterior insula where the activation preceded riskless choices as

well as risk-aversion mistakes (‘‘excessive risk-averse’’ behavior) The authors

concluded that financial decision-making appeared to require a delicate balance

between two antagonistic mechanisms: one promoting risk-taking (NAcc activation)

and the other dampening it (anterior insula activation). Both mechanisms were

required to take or avoid risks; however, the over-activation of either could lead to

mistakes. They also noted that when subjects found it difficult to identify the

advantages of choosing between risky assets and guaranteed-return securities, the

anterior cingulate cortex (ACC) was activated; this neural area is particularly

involved in resolving conflicts.

Other experiments have focused on the distinction between behavior in risky

situations (when the probability of possible events occurring can be estimated) and

ambiguous situations (when this probability is vague, doubtful, or uncertain). It has

been known since the famous Ellsberg (1961) experiment that individuals tend to

avoid the unknown and are averse to ambiguity. However, by choosing the

unknown, it may be possible to obtain missing information and improve the overall

long-term performance. This is the classic exploration–exploitation dilemma; it is in

an individual’s interest to ‘‘exploit’’ the known to obtain a reward, but it is also in

his/her interest to ‘‘explore’’ the unknown to improve the choice of future actions

33 Furthermore, the work of the American financial journalist Jason Zweig (Zweig 2007) aimed at the

general public uses a broad range of examples from the history of finance to show the potential of

neuroeconomics to elucidate and guide financial choices.
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and obtain improved returns over time. Loss aversion and ambiguity aversion, two

common emotions frequently observed in financial decisions in particular, are two

very different phenomena: the former refers to a simple trade-off between certain

and random net gains depending on personal taste, whereas the latter concerns

disturbing situations with unclear sources (e.g., Camerer & Weber, 1992; Starmer,

2000) and it is of interest to see if this difference also exists at the brain level. The

comparative study of neural circuits involved in risky or ambiguous situations yields

various interesting results that also reflects the need for collaboration between

certain zones associated with emotions and others specializing in the higher

cognitive processes.

The fMRI study undertaken by Hsu et al. (2005) showed, in particular, that

identical areas—the dorsolateral PFC, the orbitofrontal cortex (OFC) and the

amygdala—are involved in processing both these phenomena. However, these

neural areas do not react in the same way in risky and ambiguous situations; the

activation is much more intense in the case of ambiguity. According to the authors,

this would suggest that these neural areas might intervene to signal the magnitude of

the uncertainty: the greater the uncertainty, the more intense their activation. The

fMRI experiment by Huettel et al. (2006) clarified this result accordingly. First,

decisions made in risky or ambiguous situations might be supported by distinct

neural mechanisms. In their experiment, the activation of a part of the dorsolateral

PFC was found to be correlated mainly with the preference for ambiguity, whereas

the activation of the posterior parietal cortex (PPC), at the back of the brain, was

found to be correlated mainly with the preference for risk. It also suggested that the

dorsolateral PFC might play a specific role in resolving ambiguity (i.e., when

ambiguous situations progressively transform into risky ones). This activity of a

neural zone that is heavily involved in the highest cognitive functions might reflect

actions that attempt to acquire information to reduce ambiguity, a situation that

creates a negative emotional feeling. This is in fact one of the conclusions of the

PET-scan study of Rustichini et al. (2005), who compared four types of lottery:

certain, risky, ambiguous, and uncertain in the sense of Knight (i.e., no objective

quantification of probabilities is possible). Only a context of ambiguity may

significantly activate the PFC neurons; the brain has various pieces of information

for its computation, but this is insufficient for a conclusion to be reached, resulting

in a degree of perplexity at the cognitive level.

It should be noted that the role of the dorsolateral PFC in decisions in which

proper weighting of the risk is involved was also studied in several studies by brain

stimulation. For instance, Knoch et al. (2006a) showed in a TMS study that

participants who underwent a transiently, experimentally induced disruption of their

right (but not the left) dorsolateral PFC displayed significantly riskier decision-

making. Fecteau et al. (2007) established in a tDCS study that upregulation of

activity in the dorsolateral PFC reduced appetite for risk during ambiguous

decision-making. These findings suggest that dorsolateral PFC activity is critical for

adaptive decision-making, possibly by suppressing riskier responses.

Time preference and impulsivity. The neuroeconomic experiments mentioned so

far show results suggesting, on an anatomo-functional basis, that a multitude of

neural circuits interact during the decision-making process. The examples given
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show that decisions are the result of trade-offs between various cognitive and

emotional processes acting jointly. However, some authors suggest that, in

certain situations, the experimental results tend to show a conflict between these

two systems. Introducing temporality, discounting of the future, and impulsivity into

the choice process might provide the best framework to interpret economic

decisions as the outcome of the conflict between reason and emotion.

In the pioneering fMRI experiment of McClure et al. (2004a), the protocol was

directly inspired by classic research on intertemporal choice in experimental

economics, where the subjects had to make trade-offs between two sums of money

available at different dates according to variable deadlines (measured in weeks or

months).34 According to these authors, two distinct neural circuits intervene in the

anticipation of monetary gains: the first concerns the regions of the limbic and

paralimbic systems involved in the ‘‘reward network,’’ such as the ventral striatum

and the ventromedial PFC (see Sect. 5), while the second concerns peripheral

regions such as the dorsolateral PFC and the posterior parietal cortex (PPC). Not

surprisingly, the first system, associated with involuntary emotions, tends to

dominate when deadlines are short, while the second one, mainly involved in

reasoning, may be intensely activated when choices have distant deadlines. The two

systems may evolve in opposite directions; significant involvement of the emotional

system and weak involvement of the cognitive system occurs when the time scale is

very close to the moment of anticipation; thereafter, the temporal profiles may

develop in opposite directions, with the former becoming less intensely involved

and the latter progressively taking over. The temporal proximity of the emotion may

explain the initial impulsion of the emotional system, whereas with time, reflective,

conscious, and controlled processes take over.35 Furthermore, the role of the

dorsolateral PFC in self-control of intertemporal choices was confirmed by several

TMS studies, which showed that experimentally induced disruption of the cortical

zone in the left hemisphere makes the participants more impatient and less able to

resist temptation (Figner et al., 2010; Knoch & Fehr, 2007).

The experiment of McClure et al. (2004a) is significant as it appears to provide an

objective basis for the quasi-hyperbolic (or hyperbolic) discount rate hypothesis,

which tends to replace the standard exponential discounting model in behavioral

economics; in essence, preferences reflect a high discount rate for results expected

in the near future, while implicit discount rates are much lower for results expected

in the distant future (e.g., Laibson, 1997; Loewenstein & Elster, 1992; Loewenstein

& Prelec, 1992).36

34 See Frederick, Loewenstein & O’Donoghue (2002) and Camerer & Loewenstein (2004) who

distinguish this ‘‘choice tasks’’ method from other popular experimental methods such as the ‘‘matching

tasks’’ method.
35 The experiment was repeated with food rewards in McClure et al. (2007) with the consumption of a

fruit juice being either immediate or delayed (offset by 10 min or several minutes more). Unlike financial

rewards, the emotional mechanism was activated only in the immediate consumption option, suggesting

that time scales are perceived differently by the brain according to the nature of the reward.
36 The Laibson model (Laibson 1997) that uses quasi-hyperbolic discounting is however criticized,

because it is incompatible with the notion of self-control. Thus, Ainslie (2012) prefers the original

hyperbolic approach (Ainslie 1975, 1991), but introduces a recursive process of self-prediction by the
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It should be noted that this neural interpretation of quasi-hyperbolic discounting

might seem paradoxical considering the role assigned to emotions in making

rational choices by researchers in the Damasio camp who defend the ‘‘somatic

marker’’ hypothesis. Emotions might be necessary to build anticipation (without

emotions, it is impossible to imagine the future adverse consequences of decisions

made in the present) and, at the same time, they are responsible for a kind of

temporal short-sightedness that leads to favoring the very short time term. It could

be argued, however, that this contradiction is only apparent if the brain circuits

involved in these two types of experiments are different. However, if we leave aside

the issue of locating cerebral activities and instead focus on brain function

mechanisms via the reward system from an evolutionary perspective, an alternative

interpretation of impulsivity in intertemporal choices seems to prevail (see Sect. 5).

4 The social brain

So far, we have ignored one striking characteristic of human societies from an

evolutionary point of view: societies are based on work division and a large-scale

cooperation between genetically heterogeneous people compared to most animal

species where cooperation is restricted to smaller groups (Bowles & Gintis, 2011;

Tomasello, 2000). Charles Darwin was the first scientist in the nineteenth century to

reinforce the importance of these abilities to explain human dominance over other

species (Darwin, 1859). Human brains have great flexibility and the ability to

interpret complex forms of social interactions based on sophisticated beliefs).

Therefore, we may imagine that there are neural networks devoted to belief

formation and updating. The ‘‘social’’ brain refers to this function and can be

roughly identified with ‘‘social cognition and emotion’’ (Alos-Ferrer 2018). This

issue has been largely studied over the past few decades by researchers in social

neuroscience—a new interdisciplinary field that has emerged from the union of

classical cognitive neuroscience and social psychology.37

At the source of these studies, there is a theory initially built in social psychology

known as ‘‘theory of mind’’ (Premack & Woodruff, 1978) or ‘‘mentalizing’’ (Frith

& Frith, 2003); some authors also refer to this as ‘‘mind-reading’’ or ‘‘cognitive

perspective-taking’’. Nevertheless, today, it is known that, in addition to the

mentalizing system, the mechanism for understanding other people’s minds (i.e.,

social cognition) also involves recently identified nervous cells called ‘‘mirror

neurons’’ and a sensory system linked mainly to emotional character called the

empathic system (some authors also refer to ‘‘emotional perspective taking’’) (for

Footnote 36 continued

subjects themselves at the different expected timeframes, which may imply stronger commitment from

the subjects towards themselves or, on the contrary, a progressive disengagement.
37 In the beginning, much research in social neuroscience has been driven by mental illnesses, because

many of them often involve a breakdown of the ‘‘social’’ brain (in particular, schizophrenia). Remember

that, likewise, the study of brain lesions has been a starting point for much of the early progress in

neuroscience. Yet, in the last 15 years, research in social neuroscience has increasingly focused on the

social behavior of mentally healthy decision-makers, encompassing many social phenomena as social

interactions.
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comprehensive reviews, refer to Cacioppo et al., 2006; Decety & Cacioppo, 2011;

Singer, 2012; Lieberman, 2012; Schutt et al., 2015; Alos-Ferrer 2018).

Even though the field of social neuroscience and the subfield of neuroeconomics

known as ‘‘social neuroeconomics’’ (the term was coined by Fehr & Camerer, 2007)

are still perceived as two distinct fields, we have to agree that the topics they are

concerned overlap substantially both in content and methodology. Researchers in

both fields are interested in understanding the nature of human social interaction and

human decision-making and aim to determine the neural mechanisms underlying

these complex skills. Economic decision-making, for example, frequently takes

place in the context of social interactions and game theory—developed in

economics—has come to provide an effective quantitative framework for studying

how information, incentives, and social knowledge influence optimal strategies for

social interaction (Singer & Tusche, 2014).

4.1 Theory-of-mind in social psychology

Theory-of-mind refers to the human cognitive capacity to distinguish one’s own

mental states of self (beliefs, intentions, and desires) from others’ mental states and,

thus, the ability to use this distinction for anticipating others’ behavior and, in

return, for their one’s own behavior. More precisely, theory of mind addresses the

process by which healthy human adults attribute unobservable mental states to other

people (the ‘‘target’’) and integrate these attributed states into a single coherent

model that can be used for explaining and predicting the target’s behavior. This

ability amounts to perceive the mind as a sort of ‘‘mental representations designer’’.

Of course, these representations are not always necessarily correct. It should be

emphasized that mentalizing amounts to a metacognitive ability—it enables an

individual to represent one’s own psychological representations and that of others,

and implies the ability to simultaneously hold several world representations in the

mind (Frith, 2012).38

The most stringent test for the presence of mentalizing would be to see whether

someone is able to predict someone else’s actions on the basis of that person’s false

belief (‘‘false belief’’ test). Children at age 4 starts to correctly attribute false beliefs

to others and give verbal explanations when asked. At age 5, over 90% of children

understand this task, and all do by at age 7 (Frith & Frith, 2003, 2007; Hyde et al.,

2018).39

Several theories were proposed to explain mentalizing. The ‘‘theory of

simulation’’ seems to account for most results in social neuroscience, proposing

38 It was recognized that ability to mentalize is severely delayed in autism. That could explain observed

failure in communication and social interaction by most autistic children. Today, the autistic brain is at

the heart of social neuroscience, because it helps to clarify the missing links between brain and social

behavior (Frith 2001). Temple Grandin (an American professor in animal science) was one of the first

high-functioning autistic woman (people with Asperger syndrome) whose brain was scanned by fMRI

toward the end of the 1980s. Like Gage and Elliot cases, mentioned by Damasio (1994), Grandin case is

become paradigmatic in cognitive neuroscience (Sacks 1995).
39 The ability to mentalize is absent in monkeys, but is not an exclusively human trait. It is likely to be

present, in varying degrees, in all species of apes (Call & Tomasello 2008; Krupenye et al., 2016).
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that access to other people’s mental states is carried out via a mental simulation

process, by which ‘‘observer’’ individuals are taking the perspective of the

‘‘observed’’ individuals by seeking to imagine oneself in the situation or

circumstances of another person (see Goldman, 2006; Decety & Grèzes, 2006).

In social psychology, social cognition refers to two sorts of inference processes: (1)

inferences based on transitory states (goals, intentions) and (2) inferences based on

individuals’ stable psychological traits (e.g., personality traits). Inferences based on

transitory states relate to observed behaviors is of a perceptive nature, while

inferences based on individuals’ stable psychological traits driven by individuals’

idiosyncratic traits would be more abstract and imply further developed mentalizing

abilities (Van Overwalle, 2009). Most models studied in social psychology agree

with the concept of these two processes. Among them, the ‘‘Identification/

attribution’’ model is undoubtedly one of the most popular (Trope & Gaunt, 2000);

here, the observer individual identifies and categorizes the observed behavior to

then attribute a psychological state to the observed individual. Therefore, the two-

involved socio-cognitive processes are not mutually independent.

4.2 The mirror-neuron system and mentalizing

Recent studies in social neuroscience do not infirm this type of model proposed in

social psychology. The central nervous system would involve two sorts of complex

neurocognitive systems implied in understanding of other people: the ‘‘mirror-

neuron’’ system or ‘‘mirror system’’ (the term was first used by Gallese et al., 1996,

and Rizzolatti et al., 1996a) and the intrinsic mentalizing system. They correspond

to two different levels of ‘‘mentalizing’’. A first level of mentalizing—an automatic,

pre-conceptual, and unconscious phase—would allow the fast identification of

mental states (the mirror system), and a second level—a voluntary and conceptual

phase—would provide the individual the ability to simulate others’ mental states via

one’s own decision-making system (the intrinsic mentalizing system) (Coricelli,

2005).

The literature on the ‘‘mirror system’’ draws on the conceptualization of the

motor system established in non-human primates in the second half of 1980s.

Instead of only being organized into three areas of the frontal cortex (i.e., the

primary motor area, premotor cortex, and supplementary motor area), the motor

cortex actually is formed by a constellation of different regions. It turns out that

some areas in the parietal cortex not only receive outputs from sensorial zones but

also have motor properties similar to that of the frontal cortex (for comprehensive

reviews, see Rizzolatti & Craighero, 2004; Rizzolatti & Sinigaglia, 2006; Rizzolatti,

Fogassi & Galese, 2009).

Mirror neurons, which have visual-motor properties, were originally discovered

in the motor frontoparietal cortex in macaque using electro-physiological studies

(Di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996a) and then

were identified in corresponding human neural structures using non-invasive tools

(fMRI, PET) (Fadiga et al., 1995; Kilner et al., 2009; Mukamel et al., 2010;

Rizzolatti et al., 1996b). These neurons possess a singular property: they are

activated when we are taking a particular goal-directed action as well we observe
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someone else taking the same action directed to a similar goal. Accordingly, one of

the primary functions of mirror neurons is to understand the goals of the actions of

the person being observed; here, a representation of this action is generated by the

observing individual’s premotor cortex to resonate with the observed individual via

an internal simulation process (Rizzolatti et al., 2001). Thus, the mirror system

appears to quickly, almost anticipatory, identify other peoples’ intentions and

affective states enabling an intuitive understanding of what the other is doing

(Iacoboni et al., 2005). Being widely automatic and pre-conceptual, these

phenomena of sensorimotor resonance do not imply the use of costly cognitive

resources (Rizzolatti & Sinigaglia, 2006).

Studies of human mirror neurons have consistently shown the involvement of a

dorsal frontoparietal network that links two large zones: (1) a zone located in front

of the brain including the ventral precentral gyrus and the posterior inferior frontal

gyrus and (2) a zone located at the back of the brain formed by the inferior parietal

lobule. Although it does not possess neurons with strictly speaking mirror property,

a third region, in the posterior superior temporal sulcus (pasts), is often included in

this network; this zone is involved in input for mirror system by providing high-

level visual representations that spread up to the parietal cortex before being passed

to premotor zones in the PFC (Rizzolatti & Sinigaglia, 2006; Mollenberghs et al.

2012).

Recent meta-analyses about theory of mind are also largely based on many fMRI

studies that have identified a set of neural regions involved when subjects are

engaged in a mentalizing task. The network mainly consists of two zones: (1) a zone

located in front of the brain including the dorsomedial PFC and extending up to the

paracingulate cortex (rostral ACC) and (2) a set of neural areas in the temporal

cortex including the anterior temporal cortex (ATC) and posterior superior temporal

sulcus (pSTS), extending up to the temporo-parietal junction (TPJ) (Farrer & Frith,

2002; Gallagher & Frith, 2003; Amodio & Frith, 2006; Frith & Frith, 2006; Young

et al., 2010; Bzdok et al., 2012; Carter et al., 2012; Olson et al., 2013; Mahy et al.,

2014; Mollenberghs et al. 2016). Thus, the current consensus is that the mentalizing

structure is built around frontotemporal pathways connecting frontal executive

regions in the PFC to phylogenetically older regions in and near the temporal lobes.

Several additional results have to be mentioned. First, even though meta-analyses

have identified central systems for mentalizing, great variability in the activation

localization at the individual level has been observed (Singer & Tusche, 2014).

Second, when during childhood mentalizing arises in the brain is still unknown. Yet,

in a recent study using the emerging technique of near-infrared spectroscopy (Hyde

et al., 2018), the TPJ, but no other temporal or prefrontal regions, was shown to

have functional organization that is relevant to high-level social cognition by around

7 months of age. Finally, it must be stressed that the ‘‘core network’’ of mentalizing

is perhaps less broad than generally thought. ln a meta-analysis examining fMRI

data for several mentalizing task classes, Schurz et al. (2014) showed that there is a

minimal active network common for all tasks including only the dorsomedial PFC

and the bilateral TPJ, but that general activation profiles are significantly different

from each other according to the task class with supplementary activation of the

inferior frontal gyrus and temporal poles. Comparable results were obtained by
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Spunt & Adolphs (2014) with a new ‘‘why/how’’ task designed to single out the

basic idea of mentalizing. Indeed, what these recent studies show is that, so far, the

literature on mentalizing has suffered from the lack of a standardized task.

For several years, it was generally thought that the two systems broadly involved

in mentalizing—mirror system and intrinsic mentalizing system—were both

anatomically and functionally completely independent (Van Overwalle & Baetens,

2009). Yet, it turns out that several studies deeply call this hypothesis into question,

because the mirror system and intrinsic mentalizing system keep cooperative

interactions during the accomplishment of social cognition tasks (Zak & Oschner

2012).

These findings have led to the development of new integrative models in social

neuroscience that are similar to models for social psychology. In these models, the

mirror system and the mentalizing system are supposed to interact when subjects are

carrying out a social task while playing distinct roles. The mirror system would be

involved in the mentalizing ‘‘identification’’ component (i.e., decoding of

intentional and affective signals), whereas the intrinsic mentalizing system would

be active in the mentalizing ‘‘attribution’’ component (Sperdutti et al., 2014). The

respective weight of the two systems in social situations’ understanding would

depend both on the context and the task (Lombardo et al., 2010). More generally,

‘‘social flexibility’’—our ability to understand a social situation and to fit it in the

most effective way—would be fulfilled by the creation of transitory meta-systems

expressing a real link between different networks (Cochi et al., 2013).

Of course, these social neuroscience findings about the human capacity to

anticipate other people’s intentions by imagining oneself in the situation or

circumstances of these persons provide an obvious advantage for economists.

Besides, we immediately see the closeness between this ability and the one granted

to players in game theory by economists assuming that players can think about the

game from their own perspective just like the one adopted by their protagonists for

predicting their actions. In game theory, it is necessary to develop a theory

regarding other players’ actions, and mentalizing could fit the bill (see Singer &

Tusche, 2014). However, mentalizing is broader than what is usually assumed in

game theory in which we only refer to a specific probability vector describing

actions likelihood into a set of strategies. In the theory of mind, this is referred to by

individuals’ general ability for mentally simulating other people’s mode of

reasoning (Hsu & Zhu, 2012).40

40 For a systematic confrontation between theory of mind and game theory, see Schmidt & Livet (2014).

It would also be interesting to parallel the mentalizing approach with the various informational

requirements posit by normative economic in which ethical principles are conditioned by the existence of

either interpersonal comparisons of utility (i.e., ability to put yourself in others’ shoes, with their
preferences)—e.g., utilitarianism, welfarist social choice—or only intrapersonal comparisons of utility

(ability to put yourself in others’ place, with our own preferences)—e.g., theories of equity and fairness,

non-welfarist social choice (on this literature on theory of utility and ethics, see, e.g., Roemer 1996;

Mongin & d’Aspremont 1998).
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4.3 The system of empathy

Empathy is usually defined as the ability to share another person’s emotions and

feelings, following the definition given by the German philosopher Theodor Lipps at

the very beginning of the twentieth century (Lipps, 1903). This ability obviously is

not without a relationship with the mentalizing system; the mirror system was

proposed to be used as a neural scaffold for empathy and, from an evolutionary

perspective, as a biological substrate for human evolution of sophisticated

sociability and morality.

As Lipps anticipated, in an fMRI study in which subjects observed or imitated

emotions in facial expressions, Carr et al. (2003) showed that empathy is drawn

from a special form of ‘‘resonance’’ implemented by the mirror system or

specifically on the non-motor side of another mirror system. This experiment proves

that, besides the dorsal frontoparietal network that characterizes the mirror system,

some regions into the limbic system also are activated; in parallel to the neural

region devoted to tactile perception (i.e., the parietal cortex), regions linked to

emotional perception are also involved in empathy.

For example, in experiments where subjects felt pleasure or received a reward

while viewing images of people expressing disgust or suffering indicated activation

of neural structures involved in disgust or suffering perception (the anterior insula),

pleasure perception (the medial PFC), or the brain’s ‘‘reward network’’ (the ventral

striatum) (see Sect. 5 for further detail). In parallel, somatic symptoms typically

associated with these emotions (sweating, feeling of pressure, increased heart rate,

and so on) were observed in these people. In empathic situations, several regions

involved in behavioral and sensorial perception regulation—the secondary

somatosensory cortex and the medial anterior cingulate cortex (ACC)—were also

activated (Singer & Tusche, 2014).

Since empathy engages the motivational and emotional brain, empathic

motivation is a better predictor for engagement in other-regarding behavior than

mentalizing. The psychopath exemplifies this; they may lack empathy but not

cognitive perspective-taking, explaining why they can engage in antisocial behavior

while being very good at manipulating and fooling other people—an ability that

requires an understanding of other people’s beliefs and intentions (Blair,

2005, 2008; Singer & Tusche, 2014). Notice, however, that empathy is not always

a direct avenue to moral behavior. Morality includes ideas such as justice, fairness,

and rights, and comprises norms regarding how humans should treat one another. At

times, empathy can interfere with morality by introducing partiality, for instance by

favoring in-group members (Decety & Cowel, 2014).

In summary, in a somewhat reductive manner, we can acknowledge that the

human brain has three partially distinct neural systems which provide the following

abilities: (1) to understand others’ motor intentions and actions (what other people

do) (the mirror system), (2) to understand others’ beliefs and thoughts (what other

people think) (the mentalizing system), and (3) to understand and share others’

feelings (what other people feel) (the system of empathy) (Frith & Singer, 2008;

Singer & Tusche, 2014). Some authors, founding their analysis on empirical

evidence, are making more explicit relationships between empathy, mentalizing,
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and the mirror system, suggesting to separate empathy into two distinct dimensions

(Cox et al., 2011; Zak & Ochsner, 2012): (1) ‘‘cognitive’’ empathy (understanding
of other people’s feelings) specifically in relation to the mentalizing system

(Shamay-Tsoory, 2011a, 2011b) and (2) ‘‘affective’’ empathy (sharing of other

people’s feelings) specifically related to the mirror system (Schnell et al., 2011).

Yet, during an empathic process, generally, the two systems are likely to maintain

cooperative interactions (Oliver et al., 2018; Schnell et al., 2011; Zak & Ochsner,

2012)41 (see Fig. 4 for a schematic representation of the brain areas typically

involved in cognitive and affective empathy).

Typically, this system of empathy is regarded as providing human’s ability to

adopt cooperative behaviors on a larger scale and explains the evolutionary success

of the human species.42 However, in economics, the strategic anticipation of others’

intentions has been included in game theory’s conceptual background since the very

beginning, and only recently has the emotional nature of interactive decisions been

introduced by behavioral economists. Today, social neuroeconomics parallels social

neuroscience studies by looking for neural foundations of other-regarding behaviors

in studies employing well-established paradigms of experimental games in

behavioral economics (i.e., what is known today as ‘‘behavioral game theory’’)

(for an overview of these paradigms, see, e.g., Camerer 2003; Montet & Serra 2003;

Houser & McCabe, 2009, 2014; Cartwright, 2016).

4.4 Neuroeconomics and social decisions

Many neuroeconomic experiments have shown that mutual cooperation in humans

involves social cognition networks. More broadly, a lot of neuroeconomic

experiments confirm an objective basis of the ‘‘rational’’ character of several

‘‘prosocial’’ behaviors that are assumed in behavioral game theory from a

psychological viewpoint. In addition, to date, social neuroeconomics is the domain

in which were conducted the largest number of experiments with brain stimulation

or pharmacological intervention.

41 Some authors introduce additional distinctions. For example, Blomm (2017) adds to cognitive and

affective empathy two other senses of empathy: ‘‘emotional contagion’’, understood as sharing the

feelings of those in your immediate vicinity while for affective empathy others does not have to be

present or even exist, and ‘‘compassion’’, ‘‘kindness’’, or ‘‘sympathy’’, that would replace affective

empathy as a moral motivation. When one empathizes with another person, there does not have to be a

prosocial motivation attached to it; when one sympathizes or shows compassion for another person, there

is. However, in general, empathy is viewed as a first necessary step in the process that begins with affect

sharing, which motivates other-related concern and finally engagement in helping behavior. Empathy and

prosocial behavior are closely linked (Singer & Tusche, 2014).
42 Although the unique features of human social cognition are often emphasized, there is now evidence

that they may depend on more basic social cognitive processes present in other primates and sometimes

even in other mammals, including monitoring the actions of others, assigning importance to others, and

orienting behavior toward or away from others (for a survey, see Rushworth, Mars, & Sallet 2013).
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4.4.1 Mutual cooperation and social cognition

Many fMRI experiments show that when subjects are interacting with human

partners rather than a computer partner, the brain functions differently by activating

regions involved in the mentalizing network. For instance, one of the first

neuroeconomic studies (McCabe et al., 2001), in which economic ‘‘Nobel Prize’’

winner Vernon Smith participated, confirmed that trusting in the trust game43

implies anticipating others’ behavior and activating neural areas of the mentalizing

network; the authors showed that a stronger activation of the dorsomedial PFC is

observed in the brains of cooperative players when interacting with players

localized in the lab rather than against a computer. It is further observed that for the

most-cooperating subjects, the thalamus (an area often involved in emotions) is also

activated (see also King-Casas et al., 2005; Delgado, Franck & Phelps, 2005). On

their side, Rilling et al. (2004) examined subjects playing another well-defined

paradigm, the prisoner’s dilemma games,44 with both human and computer partners

and observed stronger activation for human partners in typical mentalizing areas.

43 Two participants are randomly and anonymously matched, one as investor (player I) and one as trustee
(player T), and play a one-shot game. Both participants are endowed with an amount of money. Player I

can send some, all or none of her endowment to player T. Every amount sent by player I is tripled. Player

T observed the tripled amount send, and can send some, all or none of the tripled amount back to player I.

The amount send by the investor is view as a measure of trust; the amount returned by the trustee is view

as a measure of trustworthiness.
44 As is well known, Prisoner’s Dilemma (PD) games are used to study ‘‘social dilemmas’’ that arise

when the welfare of a group conflicts with the narrow self-interest of each individual group member. In a

typical two-player PD, each player can choose either to cooperate or defect. Payoffs are symmetric, and

chosen, so that the sum of the payoffs is greatest when both choose to defect. However, each player earns

the most if she chooses to defect when the other cooperate.

Fig. 4 Main neural regions involved in social cognition
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A similar finding was found in the P-beauty contest game (or guessing game)
(Coricelli & Nagel, 2009),45 which examined the subject’s strategic reasoning

‘‘depth’’ in a framework in which a psychological problem of coordination arose,

but that did not refer to any social or moral motivation (like previously mentioned

games) This study showed that activation of the paracingulate cortex (rostral ACC)

and superior temporal sulcus (STS) was strengthened when subjects were playing

against human partners rather than against a computer.46

Not surprisingly, thus, the regions of interest in neuroeconomic studies using

classical game-theoretic paradigms coincide partly with the social cognition

network.47

4.4.2 Neural foundation of ‘‘social’’ preference

Prosocial behaviors. Building on a large body of evidence that many people exhibit

‘‘social’’ preference (say, roughly, other-regarding preference), behavioral game

theory proposed several models to explain observed behaviors inconsistent with

standard game theory (voluntary participation in collective actions, help given to

perfectible foreign people, costly punishment of defectors in social exchanges…) by

referring to psychological factors including trust, altruism, reciprocity or inequity

aversion (for a review, see Fehr & Schmidt, 2006; Serra, 2017). A lot of

neuroeconomic experiments provide insights into the different neural pathways that

lead to prosocial decisions and reveal explanatory mechanisms for why humans

deviate from the canonical self-interest model.

45 In the simplest variant of the game, each player simultaneously chooses a number P between 0 and

100. The person whose number is closest to 2/3 times the average of all chosen numbers wins a fixed

amount of money; others receive noting; ties are broken randomly.
46 This game, originally discussed as ‘‘guessing game’’ by Moulin (1986), is an ideal tool for assessing

where the chain of iterated dominance reasoning breaks down in a strategic-form game. It was studied

experimentally by Nagel (1995). This game is also called a ‘‘beauty contest’’ (Camerer 1997), because it

captures the importance of iterated reasoning that John Maynard Keynes (1936) described in his famous

analogy for stock market investment. Keynes speaks about a newspaper contest in which people guess

what faces others will guess are most beautiful, and compares that contest with the stock market

investment. Like people selecting the prettiest picture, each subject in the beauty contest game must guess

what average number other subjects will prefer, then pick the fraction P of that average, knowing that

everybody is doing the same as her/him. The P-beauty contest game is a workhorse example for the

cognitive hierarchy approach in strategic thinking, such that developed by several models of bounded

rationality in behavioral game theory, including rationalizability, level-K, or cognitive hierarchy models

(Camerer, Ho, & Chong 2004a, 2004b). In these models, players use various levels of strategic thinking,

and high-level thinkers distinguish themselves by correctly anticipating what players using fewer levels of

thinking will do. It seems that limits of strategic thinking arise in particular from limits on working

memory. For an overview of these models, see Cartwright (2016); Serra (2017).
47 Other games with very different logical structures are also concerned by this specificity of subjects’

behavior when they know (or believe to know) that they are interacting with humans and not with

computers. For instance, in one of the first PET experiments, Gallagher et al. (2002) showed that in the

well-known rock-paper-scissors game, the paracingulate cortex (rostral ACC) was strongly more

activated when subjects thought they were playing against another human player rather than against a

computer (in reality, they always were faced with random choices). For a review of neuroeconomic works

dealing with strategic thinking, see Camerer & Hare (2014).
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Behaviors, such as altruism in charitable donations game (e.g., Moll et al., 2006;

Harbaugh et al., 2007; Mary et al. 2009; Hare et al., 2010) and mutual cooperation in

prisoner dilemma or public good games48(e.g., McCabe et al., 2001; Rilling et al.,

2002, 2004, 2008), would be viewed as rational when accounting for the ‘‘emotional’’

utility that these behaviors incite and elicit neural traces observed in brain regions

involved in the ‘‘reward network’’ or in positive emotion processing, including the

thalamus and NAcc or caudate (in the striatum). However, ‘‘altruistic’’ punishment is

another form of prosocial behavior also widely studied in neuroeconomic experiments.

‘‘Altruist’’ punishment behavior. We know that social punition is a pervasive

feature of human society and it strongly shapes the enforcement of social norms.

‘‘Altruist’’ punishment behavior against ‘‘defectors’’ in classical games of cooper-

ation or bargaining is one of the strong results of behavioral economics, whether it is

direct punishment in public good or trust games (when the game rule allows, it is

possible to punish subjects breaking the social norm of cooperation or reciprocity)

or indirect punishment in ultimatum games (in which responders can take revenge

by refusing an offer they consider inequitable). From a strict logical viewpoint, this

behavior seems ‘‘irrational’’ in the two cases, because it is costly for each player:

monetary cost in one case and opportunity cost in the other, because subjects could

have won some money. A lot of neuroeconomic experiments focus on the neural

representation of these punishments, whether on direct punishment of ‘‘defectors’’

in public good with punishment49 or trust game (e.g., de Quervain et al., 2004;

Joffily et al., 2014; Singer et al., 2006) or indirect punishment in ultimatum games50

48 The structure of public good (PG) games is similar to that of prisoner’s dilemma (PD) games, but they

are typically played in larger groups. In a typical PG game, each member of a group of four people is

allocated an amount of money, say 10 dollars. Group members simultaneously decide how to allocate

their endowment between two ‘‘accounts’’, one private and one public. The private account returns one

dollar to the subject for each dollar allocated to that account. In contrast, every dollar invested in the

public account doubles, but is then split equally among the four group members (0.50 dollar each). Thus,

like the PD game, group earnings are maximized at 80 dollars if everybody cooperates and contributes

everything to the public account, in which case each of the four participants will earn 20 dollars.

However, if three subjects contribute 10 dollars each, and the fourth free-rides and contribute nothing,

then the free-rider will earn 25 dollars. Like the PD game, each group member has the private incentive to

contribute nothing (free-riding). In on another side, we know that the funding of public goods is a

balancing act, both voluntary and involuntary mechanisms. In general, modern societies rely much more

on taxation than on voluntary giving to provide public goods. However, for specific goods (e.g., the arts or

some kinds of medical research), voluntary giving can be quite important. The goal of charitable do-
nations games is to experimentally study altruistic giving in a PG framework.
49 PG games with punishment are sequential PG games where players have the option to punish non-

contributors and to reward the highest contributors after a round of the game.
50 Two participants are randomly and anonymously matched, one as proposer (player P) and one as

responder (player R), and told that they will play a one-shot game. Player P is endowed with an amount of

money, and suggests a division of that amount between herself and player R. Player R observes the

suggestion and then decides whether to accept or reject. If the division is accepted, then both earn the

amount implied by the player P’s suggestion. If rejected, then both players earn nothing for the

experiment. It is a simple take-it-or-leave-it bargaining environment. Remark that in ultimatum games,

the act of rejection of the Proposer’s offer by the Responder represents an act of costly punishment,

because both players suffer a cost.
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(e.g., Sanfey et al., 2003; Knoch et al., 2006b, 2008; Baumgartner et al., 2011, 2012)

(for a recent meta-analysis, see Belluci et al., 2020).51

Let us consider two neuroeconomic experiments of direct punishment as an

illustration of these ‘‘altruist’’ punishments. In de Quervain et al. (2004), a PET

experiment using a variant of the trust game, investors were confronted with

subjects who did not follow the reciprocity norm and had the opportunity to punish

them. Such punishment could be symbolic (the other player’s gain is not reduced) or

effective (the other player’s gain is reduced). The authors scanned the investors’

brains at the moment they found out that the other player did not return any money

on the investment. Compared with symbolic punishment, effective punishment

activated the lower part of the caudate nucleus (an area known to be heavily

involved in positive emotions) in the cheated investor. Furthermore, the greater the

activation in the subjects, the more they were prepared to accept higher costs to

inflict their penalty. This result supported the hypothesis that players obtained

‘‘emotional’’ utility from the punishment they inflicted on deviants, i.e., those who

betrayed their trust. This ‘‘altruistic’’ punishment gave individuals the gratifying

feeling of having done their social duty; a psychological experience that could be

traced at the neural level.

The second example concerns an experiment that tends to show that punishment

behavior does not activate the same neural areas in men and women. In Singer

et al.’s study (2006), subjects of both genders first a sequential Prisoner’s Dilemma

game with partners whose role was actually played by the experimenter’s

accomplices. This first phase aimed to establish a reputation of ‘‘cooperative’’ or

‘‘uncooperative’’ players in these partners, given that it became rational to cooperate

in return only with the former. The brains of the tested subjects were then scanned

by fMRI when a slight electric shock was administered either to the subjects

themselves or to their partners (the accomplices) considered cooperative or not.

When the cooperative partners received an electric shock, the anterior cingulate

cortex (ACC) and the anterior insula were activated—two areas associated with

certain positive emotions, such as empathy, or negative ones, such as sorrow or

disgust. All the subjects, both men and women, appeared to be able to withstand an

‘‘emotional’’ disutility. However, curiously with uncooperative partners, only men’s

brains showed activation of the nucleus accumbens (NAcc) and the orbitofrontal

cortex (OFC)—two areas heavily involved in positive emotions. Therefore, only

men seemed to find some ‘‘emotional’’ utility in the punishment inflicted on

uncooperative partners in this context, a behavior interpreted by the authors as the

display of a feeling of revenge.

51 Several forms of social punishment are identified, including second-party or third-party punishment.

‘‘Parochial ‘‘altruism, namely a preference for altruistic behavior towards in-group members and mistrust

or even hostility towards out-group members (e.g., one’s ethnic, racial, or any other social group), is a

pervasive feature in human society. Parochial altruism involves a third-party punishment behavior.

Recent evidence from fMRI studies suggested that areas involved in social cognition (including

dorsomedial PFC and bilateral TPJ) must play a role in differentiating in-group and out-group members in

behavior (Baumgartner et al., 2012), while Baumgartner et al. (2014) showed that the transient disruption

of the right (but not the left) TPJ reduces parochial punishment with real social group.
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Social neuroeconomics, brain stimulation, and pharmacological intervention. So
far, social neuroeconomics is the domain in which were conducted the largest

number of experiments with tools that generate significant causal effects. It was

shown in particular that a transiently experimentally induced variation in the

activity of the dorsolateral PFC by rTMS or tDCS52 may make the participants more

or less receptive to fairness concerns (Baumgartner et al., 2011; Knoch et al.,

2006b, 2008), more or less inclined to disregard certain social norms (Ruff et al.,

2013) or to build up a favorable reputation (Knoch et al., 2009) and may even

influence their spontaneous propensity to be honest or to lie accordingly (Karton &

Bachmann, 2011; Baumgartner et al. 2013).53

Let us take as an example of the important social mechanism of reputation

formation. Knoch et al. (2009) showed that disrupting the right dorsolateral PFC

diminishes subjects’ ability to build a favorable reputation.54 This effect occurs even

though the subjects’ ability to behave altruistically in the absence of reputation

incentives remains intact, and even though they are still able to recognize both the

fairness standard necessary for acquiring and the future benefits of a good

reputation. Thus, this result suggests an important dissociation between knowledge

about one’s own best interests and the ability to act accordingly in social contexts.

This may help explain why reputation formation remains less prominent in most

other species with less developed prefrontal cortices.

Concerning pharmacological interventions, to date, oxytocin is by far the

chemical substance subject to most experimental inquiries. This neuropeptide,

mainly produced in the hypothalamus, is often considered to be a ‘‘female

hormone.’’ It plays a role in promoting mother–child bonding and directly affects

breastfeeding. However, it also has a broader socializing function.

Using the trust game as a behavioral paradigm to test the trust of investors

following intranasal administration of oxytocin, Kosfeld et al. (2005) showed that

oxytocin increases the willingness to trust by raising individuals’ readiness to take

‘‘social’’ risks (see also Baumgartner et al., 2008; Mikolajczak et al., 2010). One of

the properties of oxytocin is the inhibition of amygdala activation, a zone known to

play a role in processing the negative emotions caused by fear and anxiety.55

Several experiments have also studied the effects of nasal inhalation of oxytocin

on generosity, betrayal aversion, empathy, positive and negative reciprocity, and

inequality aversion with various classical behavioral paradigms (ultimatum game,

repeated prisoner’s dilemma game, charitable donations game, etc.).

52 For a brief presentation of these tools, refer to paragraph 2.1.1.
53 These studies complete the rare experiments that study in a game-theoretic framework the social

behavior of patients with prefrontal damage. Krajbich et al. (2009), in particular, found that patients with

damage to the ventromedial PFC show a specific insensibility to guilt.
54 We know that reputation was broadly studied in repeated game theory with private information.

Several fMRI experiments directly or indirectly tap into aspects of reputation (e.g., Delgado, Franck &

Phelps, 2005; Singer et al., 2004).
55 However, it turns out that oxytocin inhalation does not affect the loyalty of the trustees. To explain this

asymmetry between investors and trustees, the authors highlight the difference between ‘‘pure’’ trust

found in investors (that can only be generated by a certain empathy) and the ‘‘calculated’’ trust of trustees

(as it is a function of their experience during the game).
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First surveys on the role of oxytocin on behavior suggest that this neuroactive

hormone is closely related with social interactions and essential for prosocial

behavior, in particular for trust (see, e.g., MacDonald & MacDonald, 2010; Zak,

2011; Riedl & Javor, 2012). Yet, recent literature on this issue has generally

produced rather contrasted results. Even though oxytocin treatment has been

suggested to have implications for at least patients suffering from disturbed social

behavior (e.g., autism or social anxiety disorder), the relationship between oxytocin

and human trust behavior is still an open question. Evidence that oxytocin directly

influences trust behavior remains unclear. If there is an effect, it is likely to be

moderated by a variety of factors (Koppel et al., 2017; Nave et al., 2015). For a

recent overview of some results about the effects on social behaviors of various

chemical substances, including oxytocin, vasopressin, testosterone, and serotonin,

see Reuter & Montag, 2016)56 confirms this accordingly.

In summary, in view of the evidence accumulated in recent decades by social

neuroeconomists, it is now clear that neural networks dedicated to social

cognition—both affective and cognitive empathy—are consistently recruited when

people face social dilemmas and economic exchanges in cooperative and bargaining

environments.57 These neural networks act together or in competition with those

dedicated to cognitive control (see above Sect. 2) and reward processing (for

reviews on social neuroeconomics, see Fehr, 2009; Sanfey & Rilling, 2011; Rilling

& Sanfey, 2011; Fehr & Krajbich, 2014; Declerck & Boone, 2016; Serra, 2016;

Engelmann & Fehr 2017; Dreher & Tremblay, 2017; Alos-Ferrer, 2018).

5 The computational brain

Since the first cognitive science studies in the early 1950s, the brain has popularly

been compared to a computer. Warren McCullogh, one of the founders of

computational neuroscience, was the first to propose this comparison (McCullogh &

Pitts, 1943; see also McCullogh, 1965). This comparison, although appropriate in

many ways, disregards one critical functional constraint of the brain—it is a

computer specially designed for making survival and reproduction easier (Glimcher,

2003; Montague, 2007). In this respect, the brain must value information

subjectively received in the context of that final goal. This is the function of the

‘‘reward cerebral system’’ in all mammals. From an evolutionary perspective, this

explains the interest in experiments with animals (e.g., non-human primates or

rodents) for understanding the function of the human brain (see Santos & Platt,

2014).

56 A more complete panorama of this neuropharmacology literature, that also includes the effects of

chemical substances on time and risk preference, can be found in Crockett & Fehr (2014).
57 It should be noted that social neuroscience literature covers a much broader thematic domain than

questions of social cognition. A lot of studies concern in particular what is called ‘‘moral dilemmas’’,

which differ from ‘‘social dilemmas’’ by the fact that all solutions of a given problem generate a not

morally desirable outcome (e.g., the famous ‘‘trolley problem’’) (Christensen & Gomila 2012).
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5.1 A new paradigm for neuroscience: from the ‘‘stimulus-reflex’’ framework
to the ‘‘reward learning’’ framework

The cerebral reward system is crucial for survival, providing the motivation

necessary for making adapted behaviors (search for food, reproduction, and danger

avoidance) to enable preservation of the individual and the species. Contemporary

neuroscience research showed that this system is involved in three specific

psychological components: (1) an emotional component, pleasure or pain caused by

positive or negative reinforcements (‘‘appetitive’’ or ‘‘aversive’’ stimuli respec-

tively); (2) a motivational component, the motivation for getting reward or avoiding

punishment (perception of the reinforcing by the sensorial organs or mental

representation of this reinforcing, which trigger the motivation for getting reward or

avoiding punishment); (3) a cognitive component, learning that combines

reinforcement with emotional or behavioral responses. In the animal kingdom,

survival and reproduction determine most rewards. In modern humans, the

physiological model of threat to the species is secondary; threat happens when

humans face a subjective constraining situation, such as complex decision-making

(Rolls, 2014).

The understanding of the reward system demonstrates a radical change in a

neuroscience paradigm: actions are no longer supposed to be only governed by

reflexes but also and mainly by motivations and intentions (Glimcher, 2003).

Reflexes are fixed, stereotyped behaviors automatically elicited by specific types of

stimuli (Sherrington, 1906). Such stimuli do not require learning over the lifetime of

the organism to come to elicit such responses but rather have innate activity

tendencies. These reflexes are behaviors that have been shaped over the course of

evolutionary history, because they provide an adaptive solution to environmental

challenges. According to the ‘‘theory of reflex’’, the function of the nervous system

consists of directly connecting a muscular response to a sensory stimulus, so that a

complex behavior can be broken down into a set of simpler behaviors.

Neurophysiology sets the challenge describing the way the nervous system

logically decomposes sensory signals and encodes motor commands. The theory

of reflex is still present in neuroscience as a reference framework; however, it is

acknowledged today that this theory is not relevant for explaining all behaviors

(Glimcher, 2003).

To date, three distinct learning systems have been identified and are dissociable

by psychologic, neural, and computational terms. There are three different routes

that enable organisms to draw on previous experience to make predictions about the

world and to select behaviors appropriate to those predictions. Since these different

sorts of predictions ultimately concern events relevant to biological fitness, such as

rewards or punishments, they can also be thought of as different forms of value.

These systems are: (1) Pavlovian systems, which learn to predict biologically

significant events to trigger appropriate responses; (2) habitual systems, which

value a great number of actions by a simple trial-and-error process, repeating

previously successful actions; (3) goal-directed systems, which value actions on the

basis of their anticipated impacts (Niv & Montague, 2009; Balleine et al., 2009;
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Balleine & O’Doherty, 2010; Daw & Tobler, 2014). This is one of the main findings

of modern neuroscience that will be briefly outlined later in the section.

Although this theoretical turn in neuroscience was clear by the 1990s with the

birth of electrophysiology and experimental study of neural activity in non-human

primates, it turns out that experimental works with rats and pigeons by some ‘‘neo-

behavioral’’ psychologists carried the seeds for this revolution since the 1960s

(Herrnstein, 1961; see also Herrnstein & Prelec, 1991). These biologically and

evolutionary inspired works—going further into classic research of Skinner on

conditioning (Skinner, 1953)—tested the hypothesis whereby reward frequency or

amount is quantitatively changing learning and behavior. Hence, we observe the

early stages of the convergence between reward expectation and expected utility of

standard microeconomic theory, which were explicitly suggested several decades

later by Paul Glimcher. These studies, sometimes named the ‘‘quantitative approach

of behavior’’ (Richard Herrnstein, then Howard Rachlin, Georges Ainslie, Drazen

Prelec), were among the first to shed light on impulsivity and intertemporal choice

(see Commons, 2001). The theoretical debt of neuroeconomics to these neo-

behavioral psychologists is hence fully recognized (Glimcher, 2003). Importantly,

there are significant differences between this branch of psychology, which is heir to

the ‘‘behavioral school’’ born in the early twentieth century in opposition to

introspective psychology (Watson, 1913), and modern behavioral economics born in

the 1980s fueled by studies in cognitive psychology, primarily by Daniel Kahneman

and Amos Tversky’s works (Heukelom, 2014).

In the quest for rewards and to avoid punishments, how is the nervous system

organized for representing and valuing stimuli, making predictions about when and

where they will be felt and using them to guide behaviors? Can these different

aspects of the system impute by component or does the system have to work

together as a whole? Are different sections of the system preferably activated when

a subject is expecting reinforcement or when feeling it? Do rewards and

punishments activate distinct components of the system or is it a question of

activation intensity in the same areas? These are crucial questions that the modern

neuroscience literature has begun to address and neuroeconomists are taking

advantage of the first answers for improving predictions from economic choice

models. Before outlining the main components of the standard neuroeconomics

model, we focus on a major discovery of contemporary neurobiology, namely the

leading role of ‘‘dopamine’’ in the reward system and regulation of neural activity.

5.2 Dopamine and the reinforcement learning system

For several years, most neuroscientists suspected that dopamine—one of the main

neuromodulators—as well as the neurons using it (i.e., ‘‘dopaminergic’’ neurons)

played a decisive role in the reward system. Since the 1920s, it has been widely

known that vertebrate neurons communicate with one another chemically—that

neurons employ neurotransmitters to send signals across the synapses. Prior to

1950s, however, it was widely assumed that all neurons employed a single

neurochemical to achieve this communication, the neurotransmitter acetylcholine.

In the late 1950s and early 1960s, several neurochemistry researchers showed that
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this was incorrect; their studies revealed that highly localized clusters of cell bodies

synthesized compounds including dopamine and serotonin, that these cells sent

those compounds down their axons, and that these cells released those compounds

from their terminals in response to depolarization (Doya, 2008). Dopaminergic

neurons (DNs) are sometimes considered as ‘‘the retina of reward system’’, alluding

to the central role played by this internal nervous membrane in the visual system

(Schultz, 2009; Tobler & Weber, 2014).

5.2.1 Reward prediction error (RPE)

In the 1980s, the most frequent hypothesis was that DNs were the ‘‘pleasure center of

the brain.’’ Dopamine was supposed to play a crucial role in behavior by mediating

reward and acting in the service of primary motivational characteristics (Wise, 1982).

In the 1990s, this hypothesis was challenged by a set of experiments revealing the role

that expectations were playing in modulation of dopamine activity too. While DNs are

specialized in information transmission within the reward system, they are active if

the reward is unexpected—these neurons do not respond to reward predicted by

anterior stimuli. Thus, dopaminergic function rests not only on reward but also on

beliefs. DNs do not react to reward per se; they implement a learning based on the

difference between prediction (expected reward in relation to anterior reward) and

valuation (reward really perceived). Learning is driven by a ‘‘reward prediction

error’’. That error—the difference between expected reward and perceived reward—is

used to continuously update value that the brain is attaching to stimuli (Houk, Adam,

& Barto 1995; Montague et al., 1996; Schultz, Dayan & Montague, 1997) (this last

experiment is by far the most well-known in this literature). For a more formal

presentation of the reinforcement learning system, refer to Daw &Tobler (2014).58

These pioneering studies on the role of dopamine in reward learning date from

the 1990s before the paper written by Platt & Glimcher (1999) that generally is

accepted as the first neuroeconomic study. Therefore, we may consider them as a

kind of ‘‘theoretical prehistory’’ of neuroeconomics.

The research of Platt and Glimcher is the first work using single-unit recording

that actually put forward the hypothesis for a neural signal dealing with the

anticipation of a reward (in that case a food reward) that was neither of sensorial

origin nor linked to a motor command. So as to drawing an analogy between reward

expectation in neurobiology and expected utility in economics, Glimcher coined

later the term ‘‘physiological’’ expected utility (Glimcher et al., 2005). With the new

experimental tool of microelectrodes, which allows recording of an individual

neuron’s activity in conscious animals, experiments are no longer drawing on

behavioral observations only but also on neural data. It is a considerable progress

compared to experiments made by neo-behaviorists. Observation of neural activity,

to the extent that it gets before decision, makes possible the understanding of the

58 These experiments revealing the role of dopamine in reward system were carried out in non-human

primates. However, a similar mechanism was shown to also exist in honeybees, which employ a close

chemical homologue of dopamine called octopamine (Real 1991; Montague et al., 1995). As Glimcher points

out, ‘‘the fact that the same basic system occurs in species separated by something like 500 million years of

evolution suggests how strongly evolution has conserved this mechanism’’ (Glimcher 2011a, p. 302).
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involved mechanism: we can understand how the monkey, conditioned to make eye

movements, is constructing and assigning ‘‘subjective value’’ to each option offered.

Yet, we must emphasize the strong specificity of this pioneering experiment:

results exclusively concern modeling of brain functioning in non-human primates
undertaking an ‘‘action’’, namely an eye-tracking task. For a neurobiologist, such an

experimental context may be relevant. For an economist, it must be expanded to

human experiments with choices in a ‘‘good-based framework’’ (i.e., abstract

decisions independent of the sensorimotor contingencies of choice), so that the

neurons do not just encode movements. Theoretical models of decision-making,

indeed, establish the advantages of separating processes related to selecting the

good to acquire (i.e., ‘‘economic choice’’) from those responsible for selecting the

action necessary to acquire that good (Padoa-Schioppa, 2011). This is an important

point on which we will come back to later in the manuscript.

5.2.2 The dopamine circuit and the centralized regulation of neural activity

For a long time, there were very few human studies on the role of dopamine in

reward learning as it is technically difficult to scan target areas of dopamine in the

mesencephalon using an fMRI (see, however, McClure et al., 2003, and O’Doherty

et al., 2003). The first experiments on humans date from the end of 2000s with the

work of Ardenne et al. (2008), an experiment that adopts an original protocol

mixing electroencephalogram (EEG) data and fMRI images. Zaghloul et al. (2009)

performed the first electrophysiology study on humans during deep brain

stimulation therapy in patients with Parkinson’s disease, and Pessiglione et al.

(2006) carried out the first study of pharmacological manipulation that established

the causal role of dopamine. Ultimately, even if some cytoarchitectonic differences

between the monkey brain and the human brain are observed, it appears that the

cerebral processes are similar.

Today, there is a vast literature, referring to neurophysiological experiments in

animals alongside neuropharmacological and neuroimaging research in human,

dealing with the role of dopamine in the reinforcement learning process related to

reward prediction error (RPE) and neural activity regulation (Niv & Montague,

2009; Schultz, 2010, 2013, 2016; Cools, 2011; Glimcher, 2011a, 2011b; Daw &

Tobler, 2014; Daw, 2014; Doya & Kimura, 2014; Rutledge et al., 2015; Martin,

Mehta, & Prata 2017).

It should be remarked however that the role of this neuromodulator does not stop

there; in addition to its central function in motor functions (as already mentioned),

dopamine also acts as a powerful regulator in other aspects of cognitive cerebral

functions, such as attention and working memory (e.g., Arnsten et al., 2012).59 In

59 Attention allows for the voluntary processing of relevant over irrelevant inputs in line with the current

behavioral goal of the organism. Working memory can be conceived as an active process whereby

stimulus or internal representations are stored ‘‘on-line’’ to prevent temporal decay or intrusion from

competing or distracting stimuli that are outside the current focus of attention. Therefore, dissociating

effects of attention from those of working memory is difficult, and in practice, the two processes are

interactive (Awh & Jonides 2001). The dopaminergic system is a primary pharmacological target for

psychiatric disorders which are associated with attention deficits such as attention deficit, hyperactivity
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fact, even if it appears that a consensus exists in neuroscience about the

multifunctional nature of dopamine and its major contribution in terms of motor

performance, some disagreements persist with its role in learning and motivation.60

Whether it be with the human or monkey brain, neurobiologists identified the

‘‘dopamine circuit’’—the brain zones in which neural information circulates mostly

due to this neuromodulator. Dopamine is synthesized in over a dozen locations in

the brain, but only a few clusters of dopaminergic neurons sent axons along a long-

distance trajectory that can influence brain activity in many areas. These long-

distance projections have their origin in two zones lying within the midbrain and the

high part of the brain stem, namely the ventral tegmental area (VTA) and the

substantia nigra pars compacta (SNpc) (Bjorklund & Dunnett, 2007). DNs irradiate

in the brain by following two main networks: (1) from the VTA clusters up to the

ventral striatum (the Nacc and lower parts of caudate nucleus and putamen) and the

PFC, and (2) from the SNpc cluster up to the dorsal striatum (upper parts of caudate

nucleus and putamen). Functional experiments support the preferential link of VTA

DNs to reward (the ‘‘reward network’’) and SNpc DNs to motor action, respectively

(Howe & Dombeck, 2016). Some internal structures, such as the NAcc (in the

ventral striatum), appear to be playing an important role in the reward network, but

many other cortical and subcortical regions forming a cortico-striato-thalamic

network also are involved (Chase et al., 2015; Glimcher, 2011a, for a meta-analysis)

(see below a schematic representation of the dopamine circuit in Fig. 5).

Two additional results also should be reported. First, it should be noted that all

regions targeted by dopamine in the reward network do not verify the encoding

conditions of RPE that might be stated (Caplin & Dean, 2008, 2009). Learning from

the axiomatic method commonly employed by economists in modern theoretical

economics, these authors wondered whether it was possible to identify a small

number of axioms that might characterize all classes of RPE algorithms. They prove

that three axioms are enough. In Caplin et al. (2010), these axioms were empirically

tested with fMRI neural data from all zones targeted by dopamine; it turns out that

only the nucleus accumbens (NAcc) verifies the three axioms. Interestingly, Caplin

& Glimcher (2014) suggested a generalization of this approach in the field of

neuroeconomics for building an ‘‘axiomatic’’ neuroeconomics, which may have the

Footnote 59 continued

disorder, schizophrenia, and Parkinson’s disease (e.g., Arnsten & Rubia 2012). Note that dopamine is not

the only neuromodulator implicated in attention; acetylcholine, noradrenaline, and serotonin also play a

role in top–down attentional control (for a recent review, see Thiele & Bellgrove 2018).
60 Rolls (2014), particularly, agrees that there is evidence for DNs action in encoding of RPE signals and

that this could present a problem; according to Rolls, the alternative hypothesis that DNs reflect the

effects of many stimuli salience (i.e., a property less dependent to reward) is more consistent with

experimental data. This is also explicit in the survey written by Berridge & O’Doherty (2014), in which

each co-author has a slightly different point of view: for O’Doherty, dopamine is a prediction-error

mechanism of reward learning, while for Berridge, dopamine mediates incentive salience. Indeed, there

has been considerable debate over the role of dopamine activity in processing non-rewarding events (i.e.,

signals related to salient, surprising, and novel events). A lot of studies provide evidence that DNs are

more diverse than previously thought. Rather than encoding a single homogeneous motivational signal,

they come in multiple types that encode both reward and non-reward events in different manners. Thus,

these results pose a problem for general theories that identify dopamine with a single neural signal or

motivational mechanism.
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advantage of solving some disagreements revealed by the literature (see also Dean,

2013).

It should also be noted that some areas belonging to the reward network are

actually targeted by other ‘‘afferents’’—specifically serotonin. Several scholars

suggest that serotonin, producing feelings of satiety and inhibitions, is active in the

field of negative RPE (e.g., Daw et al., 2002; Niv & Montague, 2009).61 This

hypothesis is rather attractive, because it could resolve the contradiction that exists

between some experimental observations of the RPE model in the case of negative

errors and many robust experimental economic results that prove existence of an

asymmetry between losses and gains in terms of expectation. Schultz, Dayan &

Montague (1997) showed that negative prediction errors are less valued than

positive ones by non-human primates, whereas a lot of experiments showed that

both human and non-human primates are more sensitive to losses than to gains with

respect to their expectations (e.g., Kahneman & Tversky, 1979; Tversky &

Kahneman, 1992, for humans,62 and Chen et al., 2006, for non-human primates).

Therefore, when dopamine is shown to no longer be the only transmitter that

intervenes for negative errors, these results will no longer be conflicting. In any

event, yet, it is acknowledged that understanding is still rudimentary and contested

concerning encoding of negative RPE (Daw, 2014; Glimcher, 2011a).

Neuroeconomics has integrated these neurobiological discoveries on the brain

function of both humans and non-human primates into the conceptual framework of

standard economic theory and developed a set of major theoretical innovations

toward understanding the decision-making process with preliminary innovative

implications in the interpretation of economic behavior.

61 Broadly, serotonin is implicated in a variety of motor, cognitive, and affective functions, such as

locomotion, sleep–wake cycles, and mood disorders. It was argued that this neurotransmitter would play a

role in impulsive behaviors: reduced levels of serotonin would promote impulsive actions (i.e., the failure

to suppress inappropriate actions) and choices (i.e., the choice of small immediate rewards over larger

delayed rewards) (Dalley et al., 2011).
62 The fact that the subjective impact of a loss is greater than that of an equivalent gain is one of the

general principles underlying the famous prospect theory. This theory has been tested in recent years by

numerous neuroeconomic experiments that have corroborated its main hypotheses such as loss aversion

and the non-linearity of the probability-weighting function, but reference-dependence in decision-making

and framing effects remain unclear (refer to Fox & Poldrack 2014; Louie & De Martino 2014). Glimcher

(2011a, 2011b) established a parallel between the idea of reference point introduced by Kahneman and

Tversky and a similar concept in neurobiology. It is interesting to note that Kahneman himself was

involved in one of the first experiments in neuroeconomics (Breiter et al., 2001). However, the status of

the neural data in this experiment is ambiguous. As with all pioneering experiments in the early 2000s, it

is claimed that the experiment is set within reward learning theory, yet it is clear that the prospect theory

also plays the role of experimental paradigm. Neural data are alternately considered as parameters of the

Kahneman–Tversky model (exogenous variables that must be estimated to ‘‘calibrate’’ the model) or

explanatory variables (endogenous variables that are progressively corrected by the neural-learning

process). This experiment shows clearly the difficulty that must be faced when transposing the

‘‘anomalies’’, namely the disparities between ‘‘ideal’’ economic rational and observed behavior, into the

theoretical framework of reward learning. In neurobiology, irrational behavior is appraised against

learning dynamics (Fox & Poldrack 2014).
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5.2.3 Major neuroeconomic theoretical innovations and their implications
for the interpretation of economic behavior

As has already been said, unicity is viewed as a prominent property of the choice

mechanism in neural terms. Acknowledging that uncertainty is a fundamental

element to understand how the brain functions is also a major component of

neuroeconomics. These two fundamental properties shed a new light on economic

decisions proposed by neural economics.

Unicity of the choice mechanism: the ‘‘common currency’’ hypothesis. The

discoveries of modern neurosciences tend to support the existence of a unique
reward enhancement mechanism, i.e., a mechanism that departs a priori from the

dualist view traditionally adopted by cognitive psychologists, behavioral econo-

mists, and the neuro-economists who follow in their footsteps. A central message of

neural economics refers to the existence of a ‘‘common currency’’ within the neural

system that can be used to compare the valuation of diverse behavioral acts or

sensory stimuli. For these scholars, who draw a parallel between economic systems

and biological systems, ‘‘a currency is an abstract way to represent the value of a

good or service… it provides a common scale to value fundamentally incommen-

surable stimuli and behavioral acts. Without internal currencies in the nervous

system, an organism would be unable to assess the relative value of different events

like drinking water, smelling food, scanning for predators, sitting quietly in the sun,

and so forth’’ (Montague & Berns, 2002, p. 276). For choosing an appropriate

behavior, the nervous system must estimate the value of each potential actions, and

it must convert them in a common scale and use this scale to determine a course of

action; that common scale may be requested to value reward predictions as well as

rewards themselves. It follows that to value a predictor, a neural system must have a

way to compute the predicted value before the reward that it promises actually

arrives. And within this neural mechanism able to resolve in a centralized way the

comparability problem among a priori non-comparable stimuli, it turns out that the

Fig. 5 The dopamine circuit
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dopamine production might be one of the essential components (Montague &

Berns, 2002; Landreh & Bickle, 2008; Schultz, 2009; Balleine, Daw &

O’Doherty, 2009; Niv & Montague, 2009; Rangel, 2009; Chib et al., 2009;

Levy & Glimcher, 2012).63

Neuroeconomics is now anchored in a new theoretical framework that posits the

existence of a centralized neural mechanism that enables the a priori incomparable

subjective values of multiple stimuli to be compared using a single scale, within

which the production of dopamine appears to be one of the major components. In so

doing, neuroeconomics is distancing itself from behavioral economics.

New discussion of intertemporal choice in economics. The economic issue of

intertemporal choice and impulsivity provides a good example of the divergence,

which must be stressed, between this new theoretical substructure and that originally

adopted by behavioral economics in the scanner. According to the classic

interpretation suggested by McClure et al. (2004a), intertemporal trade-offs reveal

the rivalry between an ‘‘impulsive’’ limbic system and a more ‘‘farsighted’’ PFC,

and this temporal inconsistency is interpreted as a reasoning bias (refer to the

passage relating to this experiment in Sect. 3). In the reinforcement learning

paradigm, it is no longer simply a logical consequence of the behavior of an

individual adapted to his/her environment.64 In an evolutionary perspective,

impulsivity resists a simple interpretation in terms of ‘‘anomaly.’’ For the heirs of

the 1960s neo-behaviorism psychology, a rational agent is not characterized by the

adoption of a constant discount rate, but rather by the ability to maintain a

sufficiently stable balance between the various time scales. The dualist interpre-

tation of intertemporal choice, originally proposed by McClure et al. (2004a), may

thus be called into question. Kable and Glimcher (2007) conducted an experiment

using a protocol similar to that of McClure et al. (2004a), but kept the amount of the

immediate reward constant and only adjusted the amount and/or the date of the

delayed reward. In showing that the activity of the ventral striatum, medial PFC, and

orbitofrontal cortex (OFC) was positively correlated with the variable amount of the

reward and negatively with its delay, the results of this experiment ran counter to the

interpretation of McClure et al. (2004a), because some of these regions were

precisely the ones identified by the latter as the components of an impulsive

evaluation system, devoted to the evaluation of immediate rewards. Is it possible to

reconcile these two interpretations of intertemporal choices? This was attempted by

63 Today, the ‘‘common currency’’ hypothesis is widely accepted in the neuroscientific community. Yet,

there are some rare researchers who do not fully agree with it. They argue that different specific rewards

must be represented ‘‘on the same scale’’ but not necessarily converted into a ‘‘common currency’’. The

key difference between the two concepts of common scaling and common currency lies in the specificity

with which rewards are represented at the level of single neurons. While a common currency view implies

convergence of different types of reward onto the same neurons, a common scaling view implies that

different rewards are represented by different neurons with the activity of the different neurons scaled to

be in the same value range. Due to the limited resolution of the tool, fMRI studies cannot answer whether

the same or different neurons are encoding the value of different rewards; only single neuron recording

studies may provide such evidence (Grabenhorst & Rolls 2011; Rolls 2014).
64 Of course, this evolutionary advantage may become a disadvantage in some environments where the

structure emphasizes likely utilities and rewards in the very short term. However, the flaw lies in the

environment and not in the individual (Ainslie 1992).

123

Decision-making: from neuroscience to neuroeconomics—an… 47



Hare, Camerer, & Rangel (2009), who dissociated the specific functional role of

different regions within the reward network and introduced self-control as an

additional variable in the choice mechanism.

The key feature of this interesting experiment lies in the behavioral discrimi-

nation between two groups of subjects—obese subjects regarded as impulsive and

‘‘healthy’’ subjects regarded as self-controlled. An original element of the study was

to use a symbolic delay in granting a food reward: the positive long-term effect on

health (dietary quality of the food chosen). The results showed that the ventromedial

PFC was active in all the subjects when the food item was selected, reflecting the

value given to it by the brain. However, while the vmPFC activity was correlated

with both taste and dietary quality in self-controlled subjects, it was only correlated

with taste in impulsive subjects. Furthermore, the dorsolateral PFC was also

activated when the choice implied self-control (i.e., choosing to reject an appetizing

but unhealthy food item). In addition, although the neurons in this region were

activated in all subjects, the activity was relatively more intense in those with self-

control. Modulation by the dorsolateral PFC of the signal of the value encoded in

the vmPFC may thus help to incorporate long-term objectives in the evaluation of

stimuli.

Where is the fundamental difference between this analysis and that initially

suggested by McClure et al. (2004a)? It lies mainly in the interpretation of the

executive function fulfilled by the dorsolateral PFC, which is more of a

‘‘modulation’’ than an ‘‘inhibition.’’ The opposition between an ‘‘impulsive’’

system (located in the limbic and paralimbic regions) and a ‘‘patient’’ system (in the

PFC) gives way to an interpretation that is consistent with the evolutionary

hypothesis: the executive function of the dorsolateral PFC is not seen as competing

with the evaluation of immediate responses by the limbic system (i.e., an inhibitory

function that might counteract the reward system) but rather as its evolutionary
extension. This justifies the continuity between the evaluation of primary rewards

and more complex, specifically human forms of reward (monetary or symbolic/so-

cial) in line with the ‘‘neuronal recycling’’ hypothesis of Dehaene & Cohen (2007)

(refer to Bourgeois-Gironde, 2010).

Stochasticity of choice mechanism. According to modern neuroscience findings,

stochasticity is also a prominent choice mechanism in neural terms. Owing to the

uncertainty that affects the period of time between making a decision and obtaining

the reward, it is never possible to exactly estimate a future reward. Such uncertainty

must be managed, because future reward predictions incur real costs for the

organism (Montague & Berns, 2002). Fundamentally, the random nature of neural

signals stems from the need for the brain to develop reward learning strategies.

Reward prediction is designed to be applied to choices between options where gain

probabilities are unknown at the start but are learned progressively. The main

property is that the neural signal does not concern isolated choices, but rather the

sequences of repeated choices. It can, therefore, take different values during the

repetitions, even if the choice remains exactly the same (Glimcher, 2003).

For economists, the stochastic property of the neural choice mechanism is just as

fundamental as the ‘‘common currency’’ hypothesis. In particular, it shows that

there is a significant difference between the way the brain processes uncertainty and
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the way economists generally address the issue of risk. Nearly all economic models,

in risky situations, separate the occurrence probabilities of various potential states

and the expected utilities in these states. These probabilities and preferences are

assumed to be given. In neurobiology, this separation no longer stands: the brain

functions in a way that suggests a separation between the encoding of anticipated
reinforcements and the risk that inevitably affects the choice process, as the nature

of the reinforcements is necessarily stochastic. The learning process relates to both

the amount of reward and its probability of occurrence, two inseparable dimensions

in the choice process (e.g., Bossaerts, Preuschoff, & Hsu 2009). Uncertainty is

present during the entire decision-making process, a finding that is a major

contribution of neurosciences to the understanding of decision-making mechanisms

(Fehr & Rangel, 2011; Glimcher, 2011a; Rolls, 2014). Incidentally, this implies that

the reinforcements identified in neurosciences should not be confused with expected

utilities traditionally calculated by economists—a confusion that may have been

nurtured by Glimcher who, for a while, used the term ‘‘physiological expected

utility’’ (Glimcher et al., 2005), especially because some reinforcements are not

under the control of higher cognitive functions, but are generated mostly by the

involuntary emotional system. The brain function in terms of rewards/punishments

eclipses the distinction between ‘‘rational’’ and ‘‘emotional’’ systems accordingly.

New discussion of financial choices in economics. Some neuroeconomic

experiments relating to financial choices illustrate the division of the brain between

rewards/punishments and risk. They also show that it is worth addressing the issue

of ‘‘when’’ and not just ‘‘where’’ the neural signal intervenes. This work also

clarifies how risk is encoded by the brain and it distinguishes clearly between

anticipated return (gain anticipation) and risk perception (gain variance). On the

contrary, although the same area, the NAcc (within the ventral striatum), is

involved, neurons react to return without delay, whereas they take some time to

respond to risk, although more intensely (Knutson et al. 2003, as regards the

correlation between this area and return; Preuschoff et al., 2006 and Preuschoff,

Quartz, & Bossaerts 2008a, as regards the correlation between return and risk). This

result suggests that, rather than addressing risk through a unidimensional indicator

(i.e., expected utility or a modified version of expected utility) as in the standard

decision theory, the brain uses the alternative approach instead, developed

traditionally in behavioral finance, which involves breaking down this subjective

measurement using a Taylor series to clarify the different facets of risk

(mathematical expectation, variance, skewness, kurtosis, etc.) and focusing on the

first two statistical moments following the Markowitz theory(1952).

Should we therefore accept, as do some authors (Quartz, 2008; Schultz et al.,

2008), the neural ‘‘validation’’ of the mean–variance model rather than the expected

utility model with regard to financial choices? This interpretation, although

interesting, seems premature. In particular, these two models are representative of

two quite different approaches, and we know that this is not the case because of their

conceptual affinity: the two models actually coincide in the case of a quadratic

utility function (Schmidt, 2008).

‘‘Actions’’ versus ‘‘economic choices’’. In the standard neuroscientific approach

and typically in neural economics, choices are fundamentally choices between
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‘‘actions’’. Intuitively, it is a less than satisfactory hypothesis; we have a strong

intuition that, for example, when consumers choose durable household goods such

as refrigerators or cars, they do not rely on action-based decision-making. Some

authors have proposed an alternative to this standard approach called the ‘‘goods-

based model’’ which suggests that economic choice occurs within the space of

goods and is computationally removed from sensory and motor representations. The

key feature of this model is that economic choice fully takes place in the space of

goods (Padoa-Schioppa & Assad, 2006, 2008; Padoa-Schioppa, 2011).

In any case yet both classes of models, suppose that representations of value

based on ‘‘actions’’ and ‘‘economic choices’’ are closely linked. A serial process is

generally postulated: the organism first values the potential ‘‘goods’’ in the

environment and then recalculates those values based on the ‘‘actions’’ necessary to

acquire them (Kable & Glimcher, 2009; Rangel & Hare, 2010). But importantly,

these models differ on one critical point—according to the goods-based model,

choice should be completely processed within an abstract representation of goods.

Knowing how goods-based valuation, which unarguably occurs, and action-based

valuation interact in decision though, making remains in fact a controversial issue

(see Glimcher, 2014a; Platt & Plassmann 2014; Padoa-Schioppa & Conen, 2017).

5.3 Learning and valuation

To overcome this uncertainty, the brain develops learning mechanisms. As

mentioned above, there is agreement in neuroscience literature that several distinct

learning processes coexist in the brain—at least three systems. On the other hand,

behavioral game theory has developed several learning models, and it is interesting

to know whether they match these neural algorithms.

5.3.1 The three learning system

Psychologists and neuroscientists nowadays agree that the brain employs at least

three different systems (see Bouton, 2007; Rangel et al., 2008; Balleine, Daw &

O’Doherty, 2009; Balleine & O’Doherty, 2010; Dolan & Dayan, 2013; Daw &

O’Doherty, 2014; Rolls, 2014):

(1) Pavlovian systems are a category of learning mechanisms that only value a

small number of behaviors soundly anchored in terms of evolution, acquired

as responses to some positive or negative stimuli.65 With this mechanism, an

organism can learn to make predictions about when biologically significant

events are likely to occur and to learn the stimuli that tend to precede them

(Pavlov, 1927/1960). Pavlovian behaviors are more flexible than simple

65 For example, where reward is concerned, eat any food within reach in a buffet regardless of how

hungry you are; where punishment is concerned, cross the road at the sight of a suspicious-looking

individual to avoid a possible attack.
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reflexes to emit behaviors shaped by predictive learning, but they also are

inflexible since the responses themselves are stereotyped.66

(2) Habitual systems can learn to value many actions with a simple trial-and-error

process. Such a learning mechanism works simply by repeating actions that

were previously successful. However, it has an odd and sometimes

maladaptive inflexibility owing to its foundation in the stimuli–response

reflex. Habitual systems are relevant only for stable enough environments,

without sudden change, and at slow rates.67

(3) Goal-directed systems value actions on the base of their anticipated impact.

This learning mechanism evaluates actions more prospectively, as with a

cognitive map. It depends on a representation of the action–outcome

contingency and on the outcome as a desired goal or incentive. For these

reasons, goal-directed systems can calculate the value of an action in wholly

new situations and in quickly changing environments, but they are generally

associated with high informational cost.68

Each system evaluates decisions and behaviors in a specific way: they correspond

with values of specific nature. The main criterion for distinguishing between these

various learning processes refers to the intentional nature of actions (Balleine, Daw
& O’Doherty, 2009). The test rests both on contingency and on control of actions by

knowledge of their relationship to consequences. Goal-directed decisions pass both

factors, while habitual decisions pass none of them. In habitual systems, the only

previously ‘‘reinforced’’ behaviors are valued. Concerning Pavlovian decisions, they

pass no factor, learning is merely passive—behaviors are independent of their

outcomes. The same is not true of behaviors acquired in other conditioning

preparations, notably instrumental conditioning (Thorndike, 1911). However, there

is now considerable evidence confirming that goal values and instrumentally

conditioned reflex values are mediated by distinct neural processes (Balleine, Daw

& O’Doherty, 2009).

Broadly, we may consider that Pavlovian and habitual systems correspond to two

distinct classes of automatic (or quasi-automatic) behaviors for which learning is

fast, whereas goal-directed systems are associated with the class of controlled

behaviors for which learning is slower.

It turns out, in fact, that reinforcement learning has been primarily developed

within the field of artificial intelligence and machine learning. Two waste classes of

algorithms were defined to identify optimal decisions in formal abstract tasks known

as model-free and model-based reinforcement learning (RL) (Dayan, 2008; Sutton

& Barto, 1998). Importantly, this implies correspondence between these two classes

66 Pavlovian learning is known to be present in vertebrates, including humans, as well as many

invertebrates, including insects such as drosophila.
67 For example, where reward is concerned, drink a cup of coffee every morning as a stimulant regardless

of the specific need felt on that particular day; where punishment is concerned, select the same route

every day to drive to work regardless of any foreseeable traffic jam on that particular day.
68 For example, where reward is concerned, select the film at the cinema according to your taste to make

it the most pleasurable experience possible; where punishment is concerned, decide to jog regularly to

minimize the risk of obesity.
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of algorithms and some aspects of real-word decisions by biological organisms.

More precisely, there is a proposed link for habitual values to model-free RL and

goal-directed values to model-based RL. The ‘‘temporal difference’’ algorithm,

which supposes that reward predictions are continuously improved by comparing

them with current rewards, is an often-quoted example of model-free RL in

computer science (the most known variant is the ‘‘actor-critic’’ model). Although

model-free RL has received the majority of attention, there has been more recently

an increasing understanding for how the brain uses model-based methods (Daw

et al., 2005; Balleine, Daw & O’Doherty, 2009; Dolan & Dayan, 2013; Daw &

O’Doherty, 2014).

Nowadays, concerning learning many questions persist. First, we do not know

whether only three kinds of learning systems exist or whether there exist multiple

Pavlovian, habitual, and goal-directed systems, each one specialized in a class of

actions or outcomes (Rangel, Camerer & Montague, 2008).69 Second, the question

of status assigned to each system in terms of state of consciousness is still open.

Although Rolls (2014) suggests linking only goal-directed systems to conscious-

ness, which he calls ‘‘explicit’’ systems in contrast to the other systems called

‘‘implicit’’ systems, some cognitive neuroscientists do not exclude that habitual

systems should be compatible with some aspects of consciousness (Dehaene &

Changeux, 2011; Dehaene et al., 2006). Finally, knowing why the brain needs these

different regulatory mechanisms and how the trade-off is conducted when the

systems come into conflict has always been a matter of debate. Some elements of

response have been proposed for explaining complementarity and not conflict

between habitual and goal-directed systems depending on the circumstances each

one is able to efficiently perform the same function, i.e., to minimize error risks. It is

typically observed that the brain mobilizes a mixture of algorithms, though the

weights of model-free or model-based strategy vary across individuals and contexts

(Daw & O’Doherty, 2014; Daw et al., 2005; Gläscher et al., 2010; Rolls, 2014).70 In

this respect, from the study of neural mechanisms involved in the treatment of

uncertainty, we find a general qualitative conclusion that converges to the one we

highlighted in the anatomical–functional identification of neural regions specialized

in emotional and cognitive treatments (see Sect. 3). Like emotional and cognitive

systems that interfere in decision-making, automatic and controlled processes

cooperate to regulate behaviors ‘‘for the best’’ according to the circumstances.

69 Lengyel & Dayan (2007) advance the hypothesis of a fourth ‘‘episodic’’ system managed by the

hippocampus. More recently, O’Doherty et al (2017) review evidence that an additional system would

guide inference concerning the hidden states of other agents, such as their beliefs, preference, and

intentions, in a social context.
70 For Pavlovian systems, Dayan et al. (2006) have proposed some hypothesis. More recently, Clark et al.

(2012) review first evidence of the existence of multiple parallel Pavlovian valuation systems. Interaction

between habitual and goal-directed systems, and particularly the situation when habits come to dominate

behavior, has become a topic of great interest in neuropsychology of addiction and others psychiatric

disorders involving compulsive behaviors, such as obsessive compulsive disorder (Daw & O’Doherty

2014).
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5.3.2 Learning economic models and neural algorithms

Economic models are organized around two forms of learning: reinforcement-based

learning and belief-based learning.

Originally, reinforcement learning models are derived from behavioral psychol-

ogy: people are assumed to select strategies based on what worked in the past, i.e.,

their decisions that were reinforced by their experience. This principle, originally

applied to individual decision-making, illustrates the influence of routine on

behavior (Bush & Mosteller, 1955), and through the imitation game can also be

extended to game situations (e.g., Roth & Erev, 1995).
Belief learning models are more sophisticated and seem to be more efficient in

keeping with the usual mode of reasoning of economists: individuals are assumed to

establish beliefs about what other people will do based on past choices and they tend

to adopt the best response based on these beliefs, i.e., they choose a strategy that

maximizes their expected utility given their beliefs. Various models are possible

depending on the rules of belief formation. In the simplest model, it is assumed that

players select the best response based on the behavior of their competitors during

the most recent period only (Cournot, 1838); in theories of fictitious play, players
are assumed to form their beliefs from the frequency of observed decisions made by

their competitors in the past rather than just during the previous period (Brown,

1951); in weighted fictitious play, importance is given to beliefs acquired in the

recent rather than remote past (Cheung & Friedman, 1997). The latter model has the

advantage of including as special cases both the Cournot model and the traditional

fictitious play model, where past observations are equally weighted (refer to

Fudenberg & Levine, 1998 for a presentation of the different belief-based learning

models).

These two approaches have long been considered irreducible. However, it has

since been shown that it is possible to combine them by developing hybrid models,

of which the experience-weighted attraction model (EWA) developed by Camerer

& Ho (1999) is the best known (see also Camerer, Ho, & Chong 2008). The strong

advantage of the EWA model is that it combines both reinforcement- and belief-

based learning (for surveys of economic learning models refer to, e.g., Camerer &

Hare 2014; Serra, 2016).

The question arises as to whether there is any correspondence between these

various economic models of learning and the main classes of neural-learning

algorithms identified in neuroscience. From the outset, it should be stressed that the

expression ‘‘reinforcement-based learning’’ does not have exactly the same meaning

in artificial intelligence and neuroscience on one hand and in economics on the

other. In the former disciplines, as mentioned previously, it refers broadly to any

learning process within a decision-making context, including both the model-free

approach (habitual decisions) and the model-based approach (goal-directed

decisions), whereas in economics, it only relates to the model-free approach

(Daw, 2014, p. 302). However, some concepts from the theory of behavioral games,

incorporated as specific cases by the EWA model, are similar to the two main

classes of neural-learning algorithms. Some neuroeconomic fMRI experiments have

studied this model without drawing firm conclusions on the neural areas involved
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accordingly. Thus, Zhu et al. (2012) observed an activation of the paracingulate

cortex (rostral ACC)—which is frequently involved in strategic decision-making

and social cognition issues (refer to Sect. 4)—in belief-based learning and an

activation of the ventral striatum in reinforcement-based learning. However, for

their part, Lohrenz et al. (2007) concluded that there are neural correlates in the

striatum in belief-based learning (for a more thorough discussion on this topic, refer

to Camerer & Hare 2014).

5.4 Towards a computational model of choice

Driven by the theory of revealed preference, economics traditionally has not been

interested in the neural processes underlying human choice. As a result, standard

economic models are ‘‘as if’’ as opposed to ‘‘as is’’ descriptions of decision-making.

In contrast, neuroeconomists are interested in the actual computational and

neurobiological processes behind human behavior. Neuroeconomics aims for

‘‘structural’’ models of decision-making (Fehr & Rangel, 2011; Glimcher, 2011a).

The contours of such a model emerge today in neuroeconomic literature. They arise

from the theoretical/computational neuroscience teachings coupled with the various

experimental findings of the past 20 years.

This model applies to goal-directed decisions71 and deals mainly with ‘‘simple’’

choices, namely choices between a small number of familiar goods, with no

informational asymmetries, strategic consideration, self-control problems, and

financial, temporal, or social dimensions. Of course, researchers hope that insights

learnt in this simple case will also be applied to more complicated and interesting

problems. As suggested by the first experimental results dealing with risky decisions

and intertemporal choices, this hypothesis appears to be reasonable (for risky

decisions, see Levy et al., 2010; for intertemporal decisions, see Hare et al., 2009;

Fehr & Rangel, 2011; Kable, 2014). Social decision-making is more complicated,

which relies on neural representation of oneself and others (Hare et al., 2010). Yet,

recent findings suggest that there is likely a unified mechanism for motivational

control of behavior that may incorporate both social and non-social factors, even

though some aspects of these findings suggest that there are also differences

between social and non-social neural valuation (Hutcherson et al., 2015; Krajbich

et al., 2015; Ruff & Fehr, 2014; Wake & Izuma, 2017).

Schematically, the key components of the model—which can be described as

‘‘standard’’ in that it covers the various variants proposed in the literature—are

based on two mechanisms that are supposed to proceed sequentially: (1) a valuation
mechanism that learns, stores, and retrieves the values of options offered to the

choice; (2) a choice mechanism that selects one of these options by comparing

values. The process of choice implementation in the brain is better understood as

functionally separate from the encoding of values. Moreover, both computation and

comparison of decision values are modulated by attention—the brain’s capacity to

vary the computational resources that are used in different circumstances in so far as

71 Glimcher’s model is more widely dealing with VBD (i.e., it is supposed to also include habitual

decisions), but the switch among the two neural systems is not explicitly mentioned.
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these resources are scarce and costly in terms of consuming energy (Fehr & Rangel,

2011; Glimcher, 2014a; Kable & Glimcher, 2009).

5.4.1 The valuation mechanism

The concept of ‘‘subjective value’’ (SV) of a decision is at the heart of this device

(see Sect. 2) and is linked with the notion of ‘‘experienced utility’’. The SV of a

decision corresponds to a neural signal computed ‘‘online’’ at the time of choice by

forecasting the eventual hedonic impact of taking the differing options, whether

chosen or not chosen, while the experienced utility represents a neural signal

computed at the time where the organism is effectively experiencing the hedonic

impact of the chosen option (Kable & Glimcher, 2009; Rangel & Hare, 2010;

Berridge & O’Doherty, 2014; Fehr & Rangel, 2011; Padoa-Schioppa, 2011; Padoa-

Schioppa & Conen, 2017). Of course, it is difficult not to draw a parallel with the

current distinction made in behavioral economics between ‘‘decision’’ utility, which

corresponds to utility concept of standard economic theory, and ‘‘experienced’’

utility, which symbolizes subjective welfare (Kahneman, 2003, 2011; Kahneman

et al., 1997).72

It should be noted that some authors do not explicitly refer to this notion of

‘‘experienced utility’’. Rangel & Clithero (2014) are talking about the ‘‘stimulus

value’’ and the ‘‘outcome value’’. Glimcher (2011a, 2014a) presents the matter

differently; he discriminates between neural regions where an expected subjective

value is ‘‘represented’’—he no longer uses the confusing expression of ‘‘physio-

logical’’ expected utility proposed earlier in Glimcher, Dorris & Mayer, (2005)—

and neural regions where this value is ‘‘learnt and stocked’’ (i.e., where it is

‘‘constructed’’). We will follow this way of presenting the valuation mechanism.

The ‘‘phase’’ of decision subjective value. A lot of fMRI experiments with human

subjects suggest that the same neural region, the ventromedial PFC (including the

medial OFC), is activated for valuing decisions at the time of choice. This general

finding is corroborated by clinical studies examining patients with damage in this

brain zone (see above Sect. 2). Furthermore, experiments using manipulation

techniques (i.e., experiments able to prove causality and not just correlation), such

as brain stimulation, ended up with similar results. Brain activity in the

ventromedial PFC clearly reveals the idiosyncratic values people place on goods,

actions, or rewards, whether one is talking about food rewards, fluid rewards,

monetary rewards, gains, losses, social rewards, or abstract rewards (e.g., viewing

beautiful faces). Finally, the evidence available in single-cell recordings show that

this neural region is the final common path for valuation in the human and monkey

brain (for qualitative reviews of these many studies, see Fehr & Rangel, 2011;

Rushworth et al., 2011; Wallis 2012; Levy & Glimcher, 2012; Platt & Plassmann

2014; and Clithero & Rangel, 2014).

72 Other distinctions are developed in the neuroeconomic literature. Bossaerts, Preuschoff & Hsu, (2009),

in particular, mention ‘‘true’’ preferences (what individuals want) and ‘‘revealed’’ preferences (what

individuals do), while Berridge & O’Doherty (2014) separate what is ‘‘wanting’’ and ‘‘liking’’ for an

outcome: ‘‘it is possible to want what is not expected to be liked, not remembered to be liked, as well as

what is not actually liked when obtained’’ (Berridge & O’Doherty 2014, p. 242).
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It turns out that several authors add the ventral striatum (the NAcc and lower

parts of the caudate nucleus and putamen) to the ventromedial PFC as contributing

to SV (e.g., Glimcher, 2011a; Knutson et al., 2009; Levy & Glimcher, 2012).

However, it has been argued that signals in the ventral striatum could be simply

RPE signals and not subjective value signals per se (Hare et al., 2008). In response

to this criticism, Glimcher (2011a) admits that it is very difficult to discriminate SV

and RPEs in many experimental designs and that the dense dopaminergic

projections to the ventral striatum from the ventral tegmental area (VTA) make it

nearly certain that activity in this area should track RPEs. Yet, Glimcher has argued

that this view is not well aligned with either evolutionary data or single-unit monkey

physiology data. He adds that we know that animals without frontal cortices (e.g.,

reptiles) can learn and represent SVs, a finding that clearly would suggest a role for

the striatum in SV representation throughout the vertebrate line. In any event, this is

still a controversial hypothesis, at least as how it pertains to good-based values in

humans (Padoa-Schioppa, 2011).

Moreover, in meta-analyses of several hundred fMRI studies, Bartra et al. (2013)

and Clithero & Rangel (2014) found evidence that the posterior cingulate cortex

(PCC) also correlates with SV in different studies with human subjects. However,

Kanayet et al. (2014) have argued that these correlations are likely due to the role of

PCC in processing magnitude rather than SV per se.73

In this encoding mechanism of an SV by the brain, some additional aspects

occur. First, the position on a value scale is not absolute in that SV is relative to the

decision-making context and other options offered to the choice (Elliot et al., 2008;

Padoa-Schioppa, 2009). Second, in some circumstances, the brain also takes into

account the ‘‘action cost’’ that measures effort or unpleasant character associated to

decision-making independently of its expected benefits. This is the case when the

action cost associated with acquiring the option is not negligible relative to the

benefits from consuming them or when the action costs of the options under

consideration are very different. For Wallis & Rushworth (2014), in the supposed

serial process between good-based choices and action choices, if one does not

initially act costs into account, then the potential goods space is vast. Thus, actions

costs can help constrain this abstract space from the outset. If action costs arise,

then, net decision value is supposedly given by the decision value minus the cost

value (Basten et al., 2010; Rangel & Hare, 2010; Rangel & Clithero 2014).74

The ‘‘constructing’’ phase of decision subjective value. This phase refers to

processes by which the brain is using experienced utility signals supposed to be

computed at the time of reward or punishment ‘‘consumptions’’, i.e., when the

organism is experiencing the actual consequences of chosen options. How these

signals are used to update future decision values is still an exploratory issue.

However, authors agree that the reward system and RL processes are likely taking a

73 For instance, the PCC is more active in response to a reward of 100 cents than 1 dollar, while the

ventromedial PFC and striatal responses to these rewards are indistinguishable.
74 The costs’ nature issue in encoding of decision is addressed somewhat differently by Grabenhorst &

Rolls (2011) (see also Rolls 2014). These authors draw a distinction between ‘‘extrinsic’’ costs (such as

action costs, time delay, and risk in getting reward) and ‘‘intrinsic’’ costs (such as motivation state,

impulsiveness, risk, and ambiguity attitude of the subject).
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central place in decision value construction by favoring the building of a stimuli

valuation common scale and by feeding the memorization system that keeps track of

relevant environmental information collected and continuously updated (see above

in this section).

Abundant evidence suggests that a wide neural network takes part in the

computation of experienced utility signals, including: (1) the orbitofrontal cortex

(OFC) for the valuation of many sorts of primary rewards (various consumer goods:

food, drinks, music, works of art, etc.) and secondary rewards (monetary gains)

during rather short time courses; (2) the NAcc (in the ventral striatum) for the

valuation of several sorts of primary and secondary rewards too; (3) the dorsolateral

PFC, which provides a complementary function to the OFC in value building, for

the valuation over generally much longer time courses and in more abstract terms

and the valuation of social/symbolic rewards or consumer goods requiring or

referring to self-control, particularly in humans; (4) the amygdala, in emotional

regulation of reward/punishment value (in particular, effects of fear and stress on

value), such as risky or ambiguous decisions; (5) the anterior insula, which is

traditionally associated to visceral sensation of disgust and to some classes of events

generating punishments, such as ambiguous decisions; (6) the anterior cingulate

cortex (ACC), which usually plays a role in conflict resolution, in particular when

subjects are nearly indifferent among largely disparate options or when the

valuation subsystems are providing contradictory outputs; (7) the posterior cingulate

cortex (PCC) for the valuation of preferred risky options in a choice task or of

delayed options in an intertemporal choice task; (8) the hypothalamus for the

valuation of risk aversion for primary rewards; (9) the hippocampus and near

structures with which it is closely connected in the median temporal lobe for value

storing and modulation as well as its critical role in working memory processes.

Thus, what emerges is a fairly complex network of brain areas that constructs a

subjective value (SV) signal that guides choices. These findings are thoroughly

documented in some meta-analyses of several hundred fMRI studies (Bartra et al.,

2013; Chase et al., 2015; Clithero & Rangel, 2014) and many qualitative reviews

(Glimcher, 2011a, 2014a; Wallis & Rushworth, 2014; Fehr & Krajbich, 2014; Platt

& Plassmann 2014; Rangel & Clithero 2014; Lempert & Phelps, 2014; Jung et al.,

2016; Padoa-Schioppa & Conen, 2017).

Some scholars (Glimcher, 2011a; Rolls, 2014) stress on the more absolute nature

of this learned and stored value in these various neural structures, in comparison to

the relative nature of value taking place in the representing phase. It was found that

the responses of some OFC neurons encoding the value of a specific stimulus did

not depend on which other stimuli were simultaneously available (Padoa-Schioppa

& Assad, 2008); this has been referred to as menu invariance, a property that could

provide a neurobiological foundation for transitivity—a fundamental trait of

economic choice.

It should be note that a particular region, the orbitofrontal cortex (OFC), is

playing a central role in the representing phase of decision SV, essentially in its

medial part (often included in the ventromedial PFC by researchers), but this region

also would be active in the constructing phase, if only for primary and secondary
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rewards (Padoa-Schioppa & Assad, 2006; Padoa-Schioppa & Conen, 2017;

Plassman et al., 2007; Rolls, 2014; Rushworth et al., 2011).

5.4.2 The choice mechanism

The last phase taking place in a VBD corresponds to the selection of one particular

option among those offered a choice. Once SV has been computed for each option,

the ‘‘best’’ one has to be selected by comparing them. This raises two questions:

what are the neural structures taking part in this process of choice implementation,

and what kind of choice mechanism is likely to be implemented?

The neural substrates involved in the choice implementation. The topic of which
neural substrates are mobilized in the final phase of decision-making remains

unclear. Some neuroscientists suggest, however, that a frontoparietal network is

involved. Their argument is essentially based on non-human primate experiments

using behavioral paradigms that include decisions leading to actions (i.e., involving
motor circuits) (see Glimcher, 2011a, 2014a).75 Knowing if these results may be

transposed from ‘‘actions’’ to ‘‘economic choices’’ (i.e., decisions that a priori do not

necessary imply a movement) is still an open question. Yet, some cerebral imaging

studies suggest that human’s neural zones involved in comparison of VBD would

correspond to a specific network including the dorsomedial PFC, the posterior

parietal cortex (PPC), and the nearby intraparietal sulcus (Kable & Glimcher, 2009;

Hare et al., 2011; Glimcher, 2011a, 2014a). It is argued that these areas implement a

comparison process, and that the output of these so-called ‘‘comparator regions’’

modulates activity in motor cortex to implement the choice.

The choice implementation mechanism. Concerning the mechanism of choice

implementation, two basic models of brain functioning are commonly developed in

theoretical neuroscience: (1) the ‘‘winner-take-all’’ (WTA), and (2) the ‘‘drift–

diffusion’’ (DD) models (e.g., Deco et al., 2013; Glimcher, 2011a; Rolls, 2014). The

DD model belongs to the class of sequential sampling models which have been

employed for over 50 years in cognitive psychology in domain such that perception

and memory. It was introduced by the psychologist Roger Ratcliff in a study on

memory for explaining accuracy and response times in any task involving binary

responses that can be elicited in a handful of seconds (Ratcliff, 1978).

In the first model, the brain is supposed to compare all feasible options according

to their respective SV assessed on the common scale of internal valuation, and then

to choose the one with the highest value. Basically, the brain would behave like it is

assumed in the standard economic model. In the second model, it is supposed there

is a fixed threshold of expected reward that is considered satisfactory by the

75 The most obvious evidence provides from a decision system with which neurophysiologists are

familiar, the monkey visio-saccadic system, which for widely technic reasons was above all studied since

the 1980s for understanding the sensorimotor control in general. The core of this frontoparietal network,

that is playing a critical role for oculomotor tasks, involves areas known as the lateral intraparietal area

(LIP) (in the intraparietal sulcus), the frontal eye field (FEF) (in the PFC), and the superior colliculus (in

the midbrain). These findings were generalized later to body movements; it has been shown that the

primary motor cortex, some anterior areas of the parietal cortex, and supplementary motor area, are

playing an equivalent role.
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organism, options are assessed one after another, and as soon as an option exceeds

this threshold, it is chosen. How is fixed this threshold? It would depend on

decisions’ complexity. The brain would undertake a trade-off between speed and

accuracy: if the threshold is low, the choice is highly simplified, at the risk possibly

of not choosing the best option, while if it is high, the choice is more difficult and

longer, but the error risk is decreasing (Palmer et al., 2005; Ratcliff et al., 2016;

Roitman & Shadlen, 2002, for a survey).

We could think a priori that perceptual decisions should be rather ruled by the

DD model whereas value-based decisions (VBD) should result from the mechanism

described by the WTA model, i.e., the natural neural counterpart of the ‘‘arg max’’

operation in the standard economic model (Kable & Glimcher, 2009; Glimcher,

2014a; Wang, 2014). However, if the DD model is widely accepted today for

perceptual decisions (Palmer et al., 2005; Gold & Shadlen, 2007; Glimcher, 2011a),

the relevance of the WTA model for VBD is more controversial. Actually, it appears

that anatomically, the same frontoparietal network is involved in the choice

mechanism, irrespective of the nature of decisions (Glimcher, 2014a). Thus, the

question is whether we have to conclude that neural structures of this network fulfill

these two different functions (perceptual decisions and VBD) or whether there is

one integrate decision-making model (Glimcher, 2014a).

Soltani & Wang (2008) were the first to suggest that there would be a unique
neural system, using the same computational properties, which would generate the

two kinds of behaviors. In the recent literature, there is evidence that the integrate

model would not only be possible but perhaps necessary (see Wang, 2014, for a

survey). It should be remarked that, if this finding was to be confirmed, then the

specificity of neuroeconomics in relation to decision neuroscience would tend to

lose a part of its specificity.

What are the contours of this integrate decision-making model? An increasing

consensus in the neuroeconomic literature favors a slightly more sophisticated

variant of the DD model’s basic version. We briefly mention here the attentional DD

model (e.g., Fehr & Rangel, 2011; Padoa-Schioppa & Conen, 2017). In case of a

binary choice, for instance a choice between decisions x or y, the model provides a

representation of the dynamic computing that the brain is supposedly making. The

brain computes a relative SV signal, denoted by R, which measures the value

difference of x versus y. This signal starts at zero and at every instant t evolves
according to the following equation:

Rtþ1 ¼ Rt þ h½bv xð Þ �v yð Þ� þ et;

where Rt denotes the level of the signal at time t (measured from the start of the

choice process), v(x) and v(y) denotes the SV assigned to the two options, h being a

parameter that affects the speed of the process (drift rate), b being a parameter that

measures the ‘‘attentional bias’’ towards the attended option (b[ or = 1), and et

being an independent and identically distributed error term with variance s2. The
process continues until one of the predefined thresholds (upper or lower) is crossed:

x is chosen if the upper threshold is crossed first, and y is chosen if the lower

threshold is crossed first.
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Notably, Glimcher (2011a) suggests a parallel between this notion of ‘‘threshold’’

in terms of neuronal and the usual notion of reservation price in economics (i.e., the

minimal price at which choosing an option is subjectively profitable) by referring to

familiar idea of ‘‘bounded rationality’’ and ‘‘satisficing’’ introduced by Herbert

Simon (Simon, 1955, 1979). However, it was just an illustration and, by the way,

misleading. Because this notion of a threshold in neuronal terms is fully compatible

regarding an optimizing behavior once the information processing cost is integrated

(i.e., the trade-off between speed and accuracy). Maybe, one can interpret it as the

required level of trust, so that the corresponding option is chosen (Krajbich et al.,

2014) (see Fig. 6).

This model has an important feature: since the relative SV signal evolves

stochastically, choices are inherently noisy. Of course, the stochastic nature of R is a

direct result of the inherent stochasticity of neural activity, as stated above.

Furthermore, interestingly, this model makes quantitative predictions about the

correlation between attention, choices, and reaction times (when b[ 1), and these

correlations can be tested using eye-tracking testing methods. Another important

prediction of this model is that exogenous increases in the amount of relative

attention paid to an appetitive item (for instance, through experimental or marketing

manipulations) should bias choices in its favor by increasing the probability that it is

chosen. Several studies have confirmed this prediction through manipulations of

visual attention (see O’Doherty et al., 2008; Fehr & Rangel, 2011).

The components of this DD model have empirically been tested using both

behavioral and neural data with food choice, temporal discount decision, and social

decision (Krajbich et al., 2010, 2012, 2015). This has been generalized to the case of

three-way choice, and these findings suggest that the underlying processes might be

robust for small numbers of items (Krajbich & Rangel, 2011). However, scholars

agree that additional research is necessary for precisely delimiting the field in which

the DD model can be useful (Krajbich et al., 2014).

Fig. 6 The attentional drift–diffusion model (binary choice)
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6 Conclusions

Neuroeconomics is a recent scientific field, but it has been very active for the past 2

decades. The annual output of neuroeconomic papers has roughly doubled since

2005, and there have been numerous surveys carried out in this new field at the

crossroads of the economics, psychology, and neuroscience domains. The original-

ity of this additional survey lies in its focus on neuroscientific foundations of

neuroeconomics. Without the great progress made by various branches of modern

neuroscience over the past few decades, neuroeconomics would not have been

possible. This paper seeks to make these advances in modern neuroscience

accessible to economists.

These neuroscientific advances have been reviewed by grouping them together

into three non-independent topics referred to as the ‘‘emo-rational’’ brain, the

‘‘social’’ brain, and the ‘‘computational’’ brain. For each topic, we have emphasized

findings that we consider critical to the birth and development of neuroeconomics

while highlighting some of the key questions that need to be addressed through

future research. We have also shown that the boundaries between neuroeconomics

and several recent branches of cognitive neuroscience, such as affective, social, and,

more generally, decision neurocience, are particularly porous.

In conclusion, we wish to broaden our thinking and discuss where neuroeco-

nomics now stands with regard to its various goals, the usefulness of the available

results to economists, and what can be expected from recent developments in the

field. Without going so far as some enthusiastic economists, who perhaps a little

hastily in its early days gave neuroeconomics a ‘‘revolutionary’’ potential (Camerer,

Loewenstein & Prelec, 2005),76 it must be recognized that many results have

already been proven about how the human brain makes choices, and that these

findings have provided new insights into the understanding of economic behavior in

many domains.

It will be recalled that, in essence, two complementary goals can be identified for

neuroeconomics. In one way, neuroeconomics tries simply to complement the

behavioral economics approach by looking closely at the biological origin of

behavior. It searches for links between biological markers and behavioral outcomes

in human decision-making. However, more ambitiously, neuroeconomics investi-

gates the neural mechanisms underlying behavior and seeks to uncover the

computations being carried out in the brain. It attempts to identify what particular

brain regions and neural networks do and how they interact to produce behavior.

To what extent have these objectives been achieved? It is clear that the first

objective has been largely fulfilled over the past two decades. Neuroeconomic

experiments have confirmed in biological terms the explanations proposed by

behavioral economics concerning mental states and processes in various contexts.

For instance, several central hypotheses posited by the prospect theory, including

loss aversion and non-linearity of the probability-weighting function, have been

76 It is only fair to recognize that the declared ambition of the researchers in the ‘‘behavioral economics

in the scanner’’ program was quickly limited to ‘‘simply improving the understanding of the decision-

making process’’ (see in particular the review by Sanfey et al., 2006, only a year after the survey of

Camerer, Loewenstein, & Prelec 2005).

123

Decision-making: from neuroscience to neuroeconomics—an… 61



confirmed. Likewise, by revealing the neural bases of specific choice elements in

areas as varied as desire, regret, anticipation, risk, ambiguity, or time-attitude, the

works carried out within the framework of the behavioral-in-the-scanner program

have contributed to improving the understanding of the motivations specific to

individual decisions. Additionally, many psychological explanations put forward in

behavioral economics of the so-called ‘‘irrationalities’’ observed in contexts of

social interactions were also confirmed by neuroeconomic experiments. In

particular, social neuroeconomics has helped to define the emotional content of

‘‘other-regarding’’ preferences as an explanatory factor. In so doing, it has clarified

the neural bases of the motivations that behavioral economics generally attributes to

people to explain their observed prosocial behavior, including trust, altruism,

reciprocity, empathy, generosity, or concern for equity. Importantly, these

neuroeconomic experiments do not just corroborate these psychological hypotheses;

they provide them with a stronger objective justification. It must be acknowledged

that these achievements are far from negligible, especially because, owing to the

progress in recent years on statistical problems encountered in brain imaging (in

particular, the use of multivariate machine learning techniques) and to the

increasing use of brain stimulation techniques and pharmacological manipulations

in experiments today, neuroeconomics studies have shifted from correlational issues

to predictions accordingly. Thus, the results acquire stronger validity by proving

genuine causality. Moreover, many studies are beginning to shed new light on

interesting issues for economists in areas such as willingness to pay, risk aversion,

impulsivity, selfishness, reputation building, guilt, honesty, and so on.

However, it is through studies that aim to discover the precise mechanisms

linking biological markers to behavior, that neuroeconomics has the greatest

potential to improve the economic theory and perhaps even transform economics

completely in the future. Unfortunately, in the early years, the neural economics

program, which pursued this broad goal, did not appear to be very useful for

economists, because it was too brain-centric. It should be recognized that, initially,

neuroeconomics incorporated ideas, concepts, and methods from the economic

theory without genuine reciprocation. The evolutionist framework has elucidated

major properties of brain functioning, in particular by providing answers to the

question of how ‘‘values’’ (i.e., what guides preferences and choices) are learnt and

represented in the brain. These results provide new insights into familiar economic

questions, such as time preference and risky choices. We began to understand how

to articulate neural-learning algorithms and economic learning models. However,

the direct application of these findings to questions of interest in economics remains

limited.

In contrast, we hope that the recent direction taken by neuroeconomics via the

neural-and-behavioral program should validate the ability of neuroeconomics to

improve economic models and address questions of interest to economics. By

integrating into economic models, the biological constraints imposed by the way the

brain works, as we are beginning to understand it (in particular, established

properties such as unicity, stochasticity, and sequentiality in the brain’s choice

mechanism, the limited capacity of the brain to process information, and the role of

non-conventional observable variables in the choice process, such as the response
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time or the visual attention of individuals), neuroeconomics might improve the

predictive capacity of models. It is already apparent that the outline of the

‘‘standard’’ neuroeconomic choice model, as we are able to draft it, already shows

the limits of mainstream economic models. In particular, the expected utility model

is only relevant as a choice model in specific situations. Sequential sampling models

of decision-making, such as the drift–diffusion model (the most popular one), where

preferences are ‘‘revealed’’ from choices and response times, may be applied

broadly in many economic areas.

Finally, even though the strongly brain-centered nature of many neuroeconomic

works has undoubtedly hampered the influence of neuroeconomics on classical

themes of microeconomics, developments in this field over the last decade are likely

to strengthen its impact on economic decision-making in the future. However, if

neuroeconomics seeks to exert a deeper influence on economics, it is probably

necessary to extend its scope and, as with behavioral economics recently, address

policy-oriented concerns, because economics is ultimately a discipline aimed at

designing and developing policies.
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