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Abstract
Pricing algorithms are computerized procedures a seller may use to adapt instan-

taneously its price to market conditions, including to prices quoted by its rivals.

These algorithms are related to the extensive use of web-collectors which contribute

in many industries to identifying the best price. In such settings, price competition

operates between algorithms, no longer between executives of brick and mortar

companies. In this context, the question is to know how implicit forms of collusion

may arise between the sellers. This paper is aimed at discussing this conceptual

issue in a price-setting homogeneous product oligopoly with decreasing returns to

scale where algorithms implement matching policies. Using fixed point argument,

we find a family of equilibrium prices encompassing Cournot and Pareto efficient

solutions, if matching is allowed upward and downward. Dynamical stability is

studied in the linear demand constant return case. When matching operates only for

price undercutting, this family is extended up to a bottom value of the market price,

close to the Walrasian price. Pricing algorithms may solve the Bertrand–Edgeworth

paradox.
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1 Introduction

In the digital economy, consumers are better informed on products and prices.

Shopping can be done everywhere on smartphones. Information transparency and

consumer reactivity stimulate fair competition. But on the supply side, Big Data,

search engines, social networks and tutti quanti offer tremendous opportunities to

erect monopoly rents and accumulate subnormal profits. Firms are, by nature, better

organized than the consumers to exploit or process overwhelming flows of data. The

dubious effect on welfare deeply questions competition policies in the digital

economy.

In the line of a growing literature on algorithmic pricing (e.g. Brown & MacKay,

2021; for a survey, see Calvano et al., 2019), the book by Ezrachi & Stucke, (2016)

exemplifies the role of algorithms in sustaining specific forms of tacit collusion

through supra-competitive prices. Pricing algorithms are computerized procedures

that a seller may use to adapt instantaneously its price to market conditions,

particularly to prices quoted by its rivals. Ezrachi and Stucke identify three

collusion scenarios according to the level of AI involved in the pricing bots that

operate as substitute for human day-to-day decision-making. This tends to dampen

the manager’s antitrust liability since no intent of explicit collusion is involved.

Under the third scenario, called ‘‘tacit collusion on steroids’’, each firm unilaterally

adopts its pricing algorithm, which sets its own price. Pricing algorithms act as

predictable agents and continually monitor and adjust to each other’s prices and

market data.

This scenario is motivated, in the real world, by the Martha’s Vineyard case

(White V. R.M. Packer Co., Inc, 2011)1 (see the recension by The Economist, 2017).

Martha’s Vineyard is an island off the coast of Massachusetts, which is deemed to

be a nice place for vacationers. Only 9 gas stations operate on the island. Each

station prominently posts its prices so that all the consumers are perfectly informed;

furthermore, any seller can instantaneously match any deviation of the rivals. The

demand from the residents is highly inelastic because alternative sources of gasoline

are located on the mainland. The residents constitute a captive segment of the

market. In addition, entry of new gasoline sellers is restricted by specific rules and

procedures. As a result, gas prices on the island exceed prices on the mainland by an

average of 56 cents per gallon. Some residents filed a complaint for collusion among

the stations’ owners. The plaintiffs’ antitrust claims failed. The trial and appellate

court found no evidence of explicit collusion. The gasoline market in Martha’s

Vineyard is oligopolistic and the price fixing mechanism at work is the pure result of

a rational, unilateral decision by each competitor, the court said.

1.1 Facts and trends in the digital economy

In the last decades, pricing algorithms have been increasingly used in the digital

economy, from services to online retailing. For example:

1 White v. R.M. Packer Co., 635 F.3d 571, 579, (1st Circuit 2011)
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Since the 2000s, search aggregators such as Kayac, Expedia and Orbitz operate

as pricing support tools for airline companies; these aggregators run as pricing

algorithms since they mechanically make adjustments to the best offer. In 2001, the

four major US airlines decided to team up and create Orbitz which went public in

2003. This has awakened the scrutiny of regulatory authorities (Akca & Rao, 2020):

on a similar basis to the Martha’s vineyard case, the Department of Justice ruled in

2003 that Orbitz was not a cartel and that there was no evidence of price fixing2

although this have led to increases in markups in the airline industry.

Brown and MacKay (2021) present an empirical analysis of hourly prices of

allergy drugs delivered by five online retailers in the United States, in a period of

one and a half years. The pricing strategies of these retailers are governed by

algorithms which operate in real time. These authors show how the prices of the

drugs were consequently boosted in that period.

Third-party software developers of pricing algorithms are now spreading on the

net. ChannelAdvisor boasts its software as ‘‘constantly monitoring top competitors

online.’’ Repricer.com claims to ’’react to changes your competitors make in 90

seconds.’’ Intelligence Node gives the retailers the opportunity to ‘‘have eyes on

competitor movements at all times and...automatically update their prices.’’ Many

other software solutions can be found online and advertised as ’’dynamic pricing’’.

Thus, in various oligopoly situations, prices are likely to be supra-competitive

when pricing algorithms are used; explicit collusion is not necessarily involved, as

ruled by the antitrust authorities in recent years3. In Martha’s Vineyard case, the

court of Appeals based its decision on the analysis of downward (undercutting

prices) and upward price-matching policies (raising prices): if one station drops its

price to attract more business, the others can quickly drop their prices in response.

Conversely, a station acting as a price ‘‘leader’’ risks little by raising its price; if the

competitors do not follow the increase, the leader can quickly drop its price again to

match his rivals.

This argumentation holds more significantly again in the digital economy, with

some specificities:

(i) Digital economy lacks from insularity; demand in most markets is elastic.

Downward matching policy leads to a cut of the market price, which

attracts new consumers. Upward matching policy leads to an increase

which repels current consumers. The equilibrium price level strongly

depends on these marginal consumers.

(ii) Following a leading firm which raises its price never constitutes a rational

and unilateral decision. In classic industries, the ‘‘do nothing’’ option

remains the best one any seller can choose in response to rivals’ raising

prices. Online driving forces fueled by price web aggregators are more

oriented towards price wars than price escalations. It remains, however,

that the digital economy opens avenues for pricing algorithms

2 cf https://www.fool.com/investing/general/2013/11/16/5-thing-you-didnt-know-about-orbitz.aspx.
3 See, for instance, the joint report of the French and German authority, 2019: https://www.

autoritedelaconcurrence.fr/sites/default/files/algorithms-and-competition.pdf.
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computerizing upward matching policies, especially if these algorithms are

opaque to antitrust enforcers.

(iii) Diseconomies of scale play a key role in some sectors of the digital

economy (e.g. in travel industry with online booking) and may interact with

the matching policies. As we know from the oligopoly literature, the cost

structure of the firms strongly matters. According to the well-known

Bertrand–Edgeworth paradox (cf. Tirole, 1988, p. 214), when the firms

face strictly decreasing returns to scale, there is no deterministic oligopoly

equilibrium4; the perfect competitive price is not a pure strategy price

equilibrium as the rivals do not want to attract any consumer flying from a

price raising firm. This phenomenon may limit the effectiveness of upward

matching policies to sustain supra-competitive prices.

In this paper, we want to investigate the theoretical foundations of these issues. Our

objective is to analyze the equilibrium conditions when pricing algorithms operate

in an oligopoly with decreasing returns. We will prove that the use of algorithms

leads to a multiplicity of equilibria with supra-competitive prices.

1.2 Background

The literature on price-matching policies mainly deals with analyzing the price-

matching guarantee, namely the commitment made by the seller to sell its product at

the lowest price on the market upon proof. Price-matching guarantee is considered

an anti-competitive practice as it actually dampens the impact of price undercutting.

Salop (1986) shows that the market price ranges from the monopolistic to the

Bertrand price when the firms have options to price-match. Monopolistic price may

emerge as the dominant strategy (Doyle, 1988). Batsaikhanz and Tumennasan

(2018) study the effects of price-matching in a setting in which each firm selects

both its price and output simultaneously. They show that the availability of a price-

matching option leads to the Cournot outcome (see also Tumennasan, 2013). These

contributions consider price-matching guarantees designed to match any vector of

prices listed by the rivals (and eventually outputs) in the industry. In a game

theoretic setting, this defines specific pricing strategies and equilibrium conditions.

In this literature, the price-matching guarantee is only available to the consumers

who are ready to buy the product before the price rebate. Pricing algorithms under

consideration in this paper make the rebate to apply to all the potential consumers.

This affects the equilibrium conditions especially in the decreasing returns to scale

context in which the analysis is made.

1.3 Overview of the results

This paper considers a price setting oligopoly model with decreasing returns to scale

(cf. Thépot, 1995 for a Bertrand competition analysis). We formalize the pricing

4 Recent contributions to cope with Bertrand–Edgeworth paradox include Chowdhury (2005), Buchheit

and Feltovitch (2011).
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algorithm competition in a static homogeneous product oligopoly as follows: we

start from any current state of the oligopoly defined by (i) the clearing market price;

(ii) the outputs of the firms. It is an equilibrium if no firm is better off when moving

its price (downward and eventually upward) when the rivals systematically use

algorithms to match this move. Equilibrium conditions result from a fixed point

reasoning similar to that used in general equilibrium theory.

The equilibrium price and outputs depend on the firms’ customers response to

market price variation. The original feature of this paper is to distinguish upward

and downward matching. Two cases are considered.

(i) The case where bidirectional matching (upward and downward) is

implemented by the algorithms; we get a family of equilibria; these

equilibria define a set of oligopoly outcomes including Cournot and Pareto

efficient solutions. Dynamical stability in the linear demand constant return

case is studied. In the line of the work by Theocharis (1960), we prove that

Pareto-efficient equilibria are dynamically stable.

(ii) The monodirectional matching case where only downward matching is

allowed. The family of equilibria extends to a set of prices lower than

Cournot but higher than a bottom value (which dominates the competitive

price). This bottom price depends on the cost structure of the firms. It is the

socially best price achievable through pricing algorithms. It deserves

consideration from the antitrust authorities as it deals with a substantial

welfare improvement with respect to alternative solutions (Cournot, among

others). The existence of pure equilibria in a context of decreasing returns to

scale is worth noting: pricing algorithms may solve the Bertrand–Edgeworth

paradox; accordingly, they contribute to the market stability.

The remaining of the paper is divided into three parts: the statement of the model is

presented in Sect. 2. Sections 3 and 4 are, respectively, devoted to the bidirectional

and the monodirectional matching cases; equilibrium analysis are developed and

analytical results are illustrated in the linear-quadratic case. Comments are given in

Sect. 5.

2 The model

Let us consider an oligopoly with n firms. Each firm produces and sells the same

good with a decreasing returns technology. Let Cið:Þ be the continuously twice

differentiable cost function of firm i with Cið0Þ ¼ 0; C0
i [ 0 and C00

i � 0: The
demand D for the good is a function of the market price p with a finite continuous

derivative D0ðpÞ\0 over all the domain where it is positive and such that

limp! �p DðpÞ ¼ 0; for some �p 2 ð0;þ1�: Let qi � 0 the output of firm i: Let us
denote q ¼ ðqiÞi¼1;...;n the vector of quantities. Let Piðp; qiÞ ¼ pqi � CiðqiÞ be the

profit of firm i.
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2.1 Relevant oligopoly states

Let us introduce the firm i’s supply function siðpÞ ¼ C0�1
i ðpÞ if p�C0

ið0Þ; 0 if not,

which defines the maximum quantity firm i is willing to produce at any given price p
(referred to as profitable capacity in Benassy (1989)). Output qi � 0 is said to be

profitable if

qi � siðpÞ; ð1Þ

or equivalently,

p�C0
iðqiÞ: ð2Þ

Definition 1 A feasible oligopoly state is an nþ 1 tuple vector p; qð Þ; such that

1. the supply=demand condition DðpÞ ¼
Pn

i¼1 qi holds.
2. The quantities produced by all the firms are nonnegative and profitable,

0� qi � siðpÞ; i ¼ 1; . . .; n:

Let E be the set of the feasible oligopoly states. It is a subset of an n-dimensional

variety of Rnþ: Standard feasible oligopoly states are usually considered in

economics and defined as follows:

• The competitive (Walrasian) solution pw; qwð Þ;with pw ¼ C0
iðqwi Þ; i ¼ 1; . . .; n;

which is not a pure strategy equilibrium when the firms face strictly decreasing

returns, according to the Bertrand–Edgeworth paradox.

• The Cournot equilibrium pc; qcð Þ; with qci þ ðpc � C0
iðqci ÞÞD0ðpcÞ ¼ 0;

i ¼ 1; . . .; n:
• The Pareto efficient oligopoly states pe; qeð Þ maximizing a positive linear

combination of the profits, namely solving the program:

maxp;qi
Pn

i¼1

aiðpqi � CiðqiÞÞ

Pn

i¼1

qi ¼ DðpÞ;

8
>><

>>:

for any coefficients ai � 0; i ¼ 1; . . .; n:

Using Lagrangian methods, first-order conditions yield the relations:

aiqiPn
j¼1 ajqj

¼ � qi
ðp� C0

iðqiÞÞD0ðpÞ ; i ¼ 1; . . .; n: ð3Þ

The sum of these relations leads to eliminating the a0is :

1þ
Xn

i¼1

qi
ðp� C0

iðqiÞÞD0ðpÞ ¼ 0; ð4Þ

which defines the the Pareto-frontier F� Rn of the oligopoly (with
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Pn
i¼1 qi ¼ DðpÞ). Among the efficient states, the collusive solution pm; qmð Þ is

obtained for ai ¼ 1; i ¼ 1; . . .; n: conditions (3) thus become ðpm � C0
iðqmi ÞÞ ¼

�DðpmÞ=D0ðpmÞ; i ¼ 1; . . .n; which are the standard formulas based on Lerner

indices for monopolistic firms.

Then, under the assumptions made, E is not empty. In this paper, we adopt a more

restrictive point of view than general equilibrium formulations: we focus here on

combinations of prices and quantities where the market is cleared through a single

market price. This is consistent with the digital economy functioning where

arbitrage opportunities are instantaneously eliminated so that the market price is

posted online. Our aim is merely to identify feasible oligopoly states that are robust

to unilateral price deviations in the market cleared context.

2.2 Algorithm pricing with homogenous product

At any given feasible oligopoly state, the competitors are assumed to base their

pricing policies on algorithms. These algorithms are given and identical for all the

firms in the industry, they operate in a very simple way in accordance with the

absence of product differentiation. Algorithm pricing is not subject to strategic

choice. The firms are price makers in the sense that any of them may unilaterally

post a price that differs from the market price prevailing at this particular state. This

new post is instantaneously revealed to the rivals and to the consumers (through web

collectors, for instance); it mechanically triggers the immediate matching of the

rivals to this price value. As a result, a new oligopoly state is found through the

adjustment of the quantities. We assume that one firm at most may deviate at any

time t.
As explained in the introduction, the pricing algorithm used by all the firm

combines two mechanisms: (i) the downward matching in case of price cutting; (ii)

the upward matching in case of price boosting. Then equilibrium conditions depend

on whether the competitors activate the upward matching mechanism or not.

Let us consider a feasible oligopoly state p0; q0ð Þ; with q0i � 0 as a reference

point. Let us analyze how stable this oligopoly state is in response to an unilateral

price change—up or down—of some firm i when the algorithms make the rivals k 6¼
i committed to apply both the downward and upward matching policies.

When firm i intends to deviate by charging a price pi 6¼ p0, the rivals are

instantaneously informed of this move; the pricing algorithm of firm k is designed to
detecting this unilateral price move from rival i and matching this move. Formally

this defines a price mapping pik : R
þ ! Rþ; that computes the new price pk ¼

pikðp0; piÞ charged by firm k, as a response to the unilateral move of firm i.
In the homogenous product case, the price mapping is given by

• pikðp0; piÞ ¼ pi; for k 6¼ i ¼ 1; . . .; n; in the bidirectional matching case,

• pikðp0; piÞ ¼
piifpi � p0;
p0ifpi [ p0;

�

in the monodirectional case.
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We assume here that all the firms use the same algorithm, so that pikð:Þ ¼ pið:Þ; and
that only one firm can move its price at date.

3 The bidirectional matching case

In the bidirectional matching case, the price variation induces a total demand

variation DD ¼ Dðpiðp0; piÞÞ � Dðp0Þ ¼ DðpiÞ � Dðp0Þ; which represents the gain

or loss of consumers according to whether pi is lower or higher than the current

price p0: For n� 2; firm i guesses this demand variation is shared with the rivals

according to a weighted distribution cikð Þ; i; k ¼ 1; . . .; n. , with
P

k cik ¼ 1 and

cik � 0: Parameter cik measures the part of the demand variation borne by the firm k

as it is guessed by firm i when price pi deviates from p0: it represents a gain of

consumers if the market price is lowered, a loss if it is raised. Specifically, firm i0s
conjectured own output after deviation (with cii denoted ci for simplicity):

~qi ¼ q0i þ ciðDðpiÞ � Dðp0ÞÞ ð5Þ

provided that condition (2) is satisfied at ~qi.

The output delivered by rival k is ~nik ¼ q0ki þ cikðDðpiÞ � Dðp0ÞÞ
� �

; so that
P

k
~nik þ ~qi ¼ DðpiÞ and the supply=demand condition is still satisfied at the

adjusted state. There is no reason to postulate that cik ¼ ckk since both values are

conjectures made by different actors in different contexts (when firm k acts as the

initiator of the price move or just as a follower). This does not actually matter here:

in quest of equilibrium, the deviating firm does not care about the cik of the rivals

(k 6¼ i ¼ 1; . . .nÞ.
This formulation means that any move in the market price does not provoke a

whole redistribution of all the customers among the sellers. In an online

environment, the adjustment takes place instantaneously and triggers marginal

changes around the current output levels. The price/quantities adjustments result

from the behavior of marginal consumers.

In the following, parameter ci will be termed the marginal consumer respon-

siveness to firm i (hereafter MCR). It measures the conjectured share of the market

demand change that would affect its clientele when it triggers a market price move.

The interpretation of MCR will be discussed below.

The profit of the deviating firm i is

Piðpi; p0; q0i Þ ¼ piðq0i þ ciðDðpiÞ � Dðp0ÞÞ � Ciðq0i þ ciðDðpiÞ � Dðp0ÞÞ: ð6Þ

For n ¼ 1; we necessarily have c ¼ 1:

3.1 Equilibrium conditions

Let us introduce the equilibrium concept associated with the matching policies.
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Definition 2 Let c ¼ ðciÞi¼1;...;n be a vector of MCR. A c-equilibrium is an

oligopoly state ðp�ðcÞ; q�ðcÞÞ; such that no unilateral price deviation maintaining a

positive level of output is beneficial, namely

Piðp�; p�; q�i Þ�Piðpi; p�; q�i Þ; 8 pi st. q
�
i þ ciðDðpiÞ � Dðp�ÞÞ� 0; for i ¼ 1; . . .n:

ð7Þ

Let us characterize the set of c-equilibrium when some firms may remain inactive

in the market. For this purpose, we assume that the firms are ranked by increasing

order of initial marginal costs:

C0
1ð0Þ�C0

2ð0Þ � � � �C0
nð0Þ; ð8Þ

so that the firms are ranked by decreasing order of efficiency. By convention, we

introduce a fictitious nþ 1th firm with C0
nþ1ð0Þ ¼ þ1; that stays ever out of the

market.

Theorem 3 For r ¼ 1; . . .; n; let pr; qrf g 2 Rþ 	Rn be the r þ 1 tuple solution of:

qi þ ciD
0ðpÞ p� C0

iðqiÞ
� �

¼ 0; i ¼ 1; . . .; r; ð9Þ

Xr

i¼1

qi ¼ DðpÞ: ð10Þ

Let r� ¼ max r st. qri � 0; i ¼ 1; . . .; r
� �

. The c-equilibrium ðp�ðcÞ; q�ðcÞÞ is unique
and defined by

q�i ðcÞ ¼ qr
�

i � 0; for i ¼ 1; . . .; r�:

q�i ðcÞ ¼ 0; for i ¼ r� þ 1; . . .; n:

p�ðcÞ ¼ pr� 2 C0
r� ð0Þ;C0

r�þ1ð0Þ
� �

:

8
><

>:

As a result, the c-equilibrium quantities are profitable.

Proof See Appendix 1. h

Hence, the family of c-equilibria is parametrized by the ðciÞ;with
0� ci � 1: Vector c ¼ cið Þi¼1;...;n encompasses the behavior of the consumers

facing a move of the market price, as this behavior is perceived by the firm initiating

the move. The concept of c-equilibrium covers standard equilibrium solutions: when

ci ! 1; the c-equilibrium tends to the Walrasian equilibrium, although values of

ci � 1 are economically irrelevant in our context.

Let us characterize now the standard oligopoly states introduced above.

Proposition 4 Any c-equilibrium with q�ðcÞ[ 0 and
Pn

i¼1

ci ¼ 1 is Pareto-efficient.
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Proof Relations (9), with r� ¼ n; imply ci ¼ � qi
ðp�C0

iðqiÞÞD0ðpÞ so that relation (4) is

satisfied. Hence, q�ðcÞ 2 F: h

Efficient outcomes particularly prevail when the pricing algorithms operate while

preserving the market shares of all the competitors, namely for ci ¼ q0i =
Pn

i¼1 q
0
i .

The collusive solution is a particular efficient c-equilibrium with ci ¼ cmi ¼
qmi =

Pn
i¼1 q

m
i : Note that in this case the conjectures concerning the parameters cik are

consistent, for any Pareto-efficient c-equilibrium since cik can be taken equal to

ck:8i; k: In other words, any individual price deviation generates a distribution of the
variation of demand which does not depend on the initiator of the deviation.

Many other combinations for c 2 0; 1½ �n are allowed since the consumers can

differently appreciate the intentions of the deviating firms. Experimental economics

investigations may be useful to evaluate the MCR in real life situations

Proposition 5 For ci ¼ 1 ; i ¼ 1; . . .; n; the c-equilibrium duplicates the Cournot
equilibrium.

Proof immediate. h

Cournot equilibrium outcomes prevail when any deviating firm bears the whole

demand variation. The consumers recognize the prominent role played by the

deviating firm: it gains or looses all the consumers who are the more sensitive to a

price cut or boost even though the rivals instantaneously match the price move. This

is close to the genuine formulation made by Cournot himself:

In 1838, Cournot introduced the quantity-setting equilibrium which carries his

name. The reasoning he used is implicitly based on price matching policies so that

the Cournot quantity-setting equilibrium can be interpreted in a price-setting context

as a c-equilibrium for ci ¼ 1; 8i. In the duopoly case, Cournot formulates this as

follows: ‘‘Firm 1 can have no direct influence on the determination of q2 : all that he
can do, when q2 has been determined by firm 2, is to choose for q1 the value which
is best for him. This he will be able to accomplish by properly adjusting his price,

except as firm 2, who, seeing himself forced to accept this price and this value of q1,
may adopt a new value for q2 more favorable to his interests than the preceding

one’’ (Cournot, 1838, p. 80, rewritten here with the standard terminology).

Cournot characterizes here the best response function q1ðq2Þ; as it will be called
later. For this purpose, he considers that choosing q1 does not affect q2 while

assuming that the market is cleared. These conditions are met (i) ‘‘by properly

adjusting his price’’ (ii) by knowing that the opponent is ‘‘forced to accept this

price’’. This is exactly the price matching mechanism we introduce in this paper.

3.2 Interpretation and evaluation of the MCR c0is

The assumptions on matching prices and demand change sharing rule are together

reminiscent of conjectural variations which are extensively considered in the

literature on quantity-setting competition (see Perry, 1986, among many others). In

our price-setting world, the algorithms are incarnations of conjectural variations that
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map any price move into rivals’ reaction. It is then not surprising to get a wide range

of equilibrium prices.

In our model, the rivals’ reactions are written in the code of the algorithms; they

are not subjective expectations. Beside this operational feature, the novelty of our

approach lies in the interpretation of the MCR parameters that generate the solution

set. These parameters characterize the expected behavior of a fringe of consumers—

those switching between buying and not buying when the market price moves.

Assessing the values of ci amounts firm i to make the following reasoning in petto :

‘‘If I lower the price by d € and if all my rivals match this move, what proportion of

new consumers may I attract ? The more I guess, rightly or wrongly, some

consumers will recognize (and award) me as the first mover, the closer of 1 is my

ci’’. Of course, this guess is related to the visibility of the firm on the market and its

reputation/positioning as a hard discounter for instance. MCR may also adjust in

time through learning processes incorporating historical data in more sophisticated

algorithms. But what is going on the supply-side among the rivals does not really

matter.

3.2.1 MCR and visibility

Let us consider a market of N one-unit consumers. The consumers are classified in

terms of reservation prices. There are M different reservation prices vs;ranked in

decreasing order, i.e. vs [ vsþ1; for s ¼ 1; . . .;M: Consumer s; kð Þ is the kth

consumer with reservation price vs; for k ¼ 1; . . .;N. with
PM

s¼1 Ns ¼ N: Let As ¼
ðs; kÞ; k ¼ 1; :; ;Nsf g the class of the consumers with reservation price vs: The

current state of the oligopoly is defined by the market price p0 equal to some vs0 ; so

that the current industry output is q0 ¼
Ps0

s¼1 Ns since the consumers with

reservation price higher than vs0 buy the product. This output is shared among the

oligopolists. If firm i plans to lower its price down to vs0þu; with u� 1; it expects an

immediate matching from his rivals and a potential gain in output cið
Ps0þu

s¼s0 NsÞ:
It is convenient to consider that each firm has specific connections on the web

with the consumers through social networks, smartphones app, etc. which contribute

to the visibility of each firm. Let ni 2 0; 1½ � the visibility rate of firm i, namely the

proportion of consumers in the whole market that are connected to firm i: Assuming

that ni is independent of the reservation prices, nið
Ps0þu

s¼s0 NsÞ is the number of new

buyers that can recognize firm i as the instigator of the drop in market price. It is

then reasonable to estimate the MCR ci as a fraction of the visibility rate ni. In the

model, ci is assumed to be independent of u.

3.2.2 MCR and elasticity

Let us consider a small price decrease dp triggered by firm i. Relation (5) becomes

dqi ¼ cidD; namely dqi
dp ¼ ciD

0: Multiplying both sides by p/D yields the relations:
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siei ¼ cie; i ¼ 1; . . .; n; ð11Þ

where ei ¼
pdqi
qidp

stands for the individual elasticity of firm i; e ¼ pdq

qdp
for the market

elasticity and si ¼ qi=D denotes the market share of firm i. Relation (11) captures

the key argument of the model: each firm makes a guess on its own elasticity on the

basis on the market elasticity, the market share and the MCR. The equilibrium

prevails when these guesses make no unilateral move beneficial to any firm. When

the equilibrium is Pareto efficient, summing relations (11) yields:

Xn

i¼1

siei ¼ e;

so that the weighted sum of the individual elasticities equal the market elasticity.

This relation could be used in empirical studies to build a test to detect collusive

practices.

3.2.3 MCR and competitive toughness

Demand-side interpretation of MCR connects with supply-side considerations.

d’Aspremont and Dos Santos Ferreira (2009) introduce a parameter hi 2 0; 1½ � to
measure the competitive toughness displayed by firm i in the industry, namely the

capacity of firm i to bite the rivals’ clientele. A wide range class of equilibrium

solutions are characterized according to the value of these parameters (Cournot

equilibrium, for hi ¼ 0 and Walrasian equilibrium for hi ¼ 1; i ¼ 1; . . .; n, as polar
cases). Confronting their Eq. (12) p. 68 with Eq. (9) indicates that the competitive

toughness parameter hi is positively related to ci through the relation

ci ¼ 1=ð1� hiÞ. When index hi is extended to take negative values, so that ci 2
0; 1½ �; it can be interpreted as the ‘‘competitive kindness’’ of firm i measuring its

capacity to spare or accommodate the rivals’ clientele. Accordingly, MCR can be

viewed as extending the competitive toughness index to generate oligopoly

solutions including efficient outcomes and collusion.

3.3 No limit pricing

Theorem (3) yields a characterization of entry strategies. Equilibrium conditions

state that price pr
�
belongs to interval C0

r� ð0Þ;C0
r�þ1ð0Þ

� �
: Assume that inactive firm

r� þ 1 drops its initial marginal cost up to ~C
0
r�þ1ð0Þ 2 C0

r� ð0Þ; pr
�� �
: The prospect of

entering sounds profitable since the new initial marginal cost is lower than the

current market price, although the entrant is less efficient than the incumbents in

terms marginal cost. Theorem (3) implies that price pr
�
is no longer the post-entry

equilibrium price, which is now pr
�þ1; with ~C

0
r�þ1ð0Þ� pr

�þ1: Hence, equilibrium

conditions never hold with the incumbent firms charging exactly p� ¼ ~C
0
r�þ1ð0Þ so

as to prevent the entry of firm r� þ 1: At this particular price p� ¼ ~C
0
r�þ1ð0Þ; any
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incumbent firm would be better off by increasing its price up to pr
�þ1; knowing that

the rivals imitate her according to the algorithmic pricing rule. Entry strategy

reduces to a simple rule: compare the current market price and the initial marginal

cost. Note that the MCR to the entrant does not matter.

3.4 The linear quadratic symmetric case

Let us consider the case where the firms are identical, with a linear market demand

DðpÞ ¼ 1� p and a quadratic cost function CiðqiÞ ¼ cqi þ uq2i ; with c� 0; u� 0

and c� 1: We assume that ci ¼ c 2 0; 1½ �; i ¼ 1; . . .; n: Equation (9) become qi �
cð1� nqi � ðcþ 2uqiÞÞ ¼ 0: Hence, the following values of price and quantities:

p�ðcÞ ¼ 2ucþ cncþ 1ð Þ
ncþ 2ucþ 1

; ð12Þ

q�i ðcÞ ¼
c 1� cð Þ

c nþ 2uð Þ þ 1
: ð13Þ

The profit of any firm is Pi ¼ c ucþ 1ð Þ 1�cð Þ2

ncþ2ucþ1ð Þ2 : The social welfare is W ¼
1
2
nc 1�cð Þ2 ncþ2ucþ2ð Þ

ncþ2ucþ1ð Þ2 : Clearly the equilibrium price (as well as the profit) is a

decreasing function of the responsiveness. Among all the feasible c-equilibria,
Cournot equilibrium corresponds to the greatest social welfare value.

3.5 Dynamical stability in the linear demand/constant returns case

The dynamical stability of the Cournot solution has been analyzed from the seminal

work by Theocharis (1960). In the linear demand and constant return case, this

author proves that Cournot oligopoly solution is dynamically unstable when the

number of firms exceeds 3. Canovas et al. (2008) reconsider the problem when

positivity conditions on quantities and profits are introduced; under similar linearity

assumptions, they establish that the oligopoly dynamics goes to a monopoly, a

duopoly or else to an endless oscillation. These results questions the Cournot-type

solutions which do not necessarily ensure the external stability of the industry. This

is more crucial as to our c-equilibrium concept which derives from a real adjustment

process generated by algorithms.

Pricing algorithms are implemented through a dynamical process defined as

follows. At time t� 0; the oligopoly state is determined by market price p(t) and
quantities qiðtÞ[ 0;with DðpðtÞÞ ¼

Pn
i¼1 qiðtÞ: Each firm computes the best price

piðt þ 1Þ it wishes to post at time t þ 1 when the matching mechanism of the

algorithms operates. With constant marginal costs, the best price piðt þ 1Þ is given
by the first order condition (cf. relations (29) of Appendix 1):
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ðqiðtÞ þ ciðDðpiðt þ 1ÞÞ � DðpðtÞÞÞ þ ciD
0ðpiðt þ 1ÞÞ piðt þ 1Þ � ciÞ½ �:

In the linear demand case, this provides the value of the best price piðt þ 1Þ ¼
1
2ci

qiðtÞ þ cici þ cipðtÞð ÞÞ as function of the oligopoly state at time t, which

determines in turn the quantity qiðt þ 1Þ ¼ qiðtÞ þ ciðpðtÞ � piðt þ 1ÞÞ:
At any time t, all the algorithms simultaneously compute such best price

expectations.5 The process generating all the quantities together is then governed by

the linear dynamics:

qiðt þ 1Þ ¼ 1� ci
2

qiðtÞ �
ci
2

X

j 6¼i

qjðtÞ þ ci
ð1� ciÞ

2
;

qið0Þ ¼ q0i ; i ¼ 1; . . .; n:

The Jacobian J of the dynamical system is

J ¼

1� c1
2

�c1
2

:
�c1
2

: : : :
�ci
2

1� ci
2

:
�ci
2

: : : :
�cn
2

�cn
2

:
1� cn

2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

There are n� 1 eigenvalues kj ¼ 1=2; j ¼ 1; . . .; n� 1 and one last kn ¼

�
Pn

i¼1
cið Þ�1

2
: Following standard techniques in dynamical systems, the equilibrium

is stable when the eigenvalues are less than unity in absolute value. Accordingly the

equilibrium is stable for
Pn

i¼1 ci
� �

\3; for a great number of firms, the equilibrium

may be stable only if the c0is are small. With ci ¼ 1; namely in the Cournot case, this

is the result of Theocharis (1960) (cf. also Canovas et al., 2008).

Proposition 6 In the linear demand and constant return case, any Pareto-efficient
c-equilibrium is dynamically stable.

Proof By Corollary (4), efficiency holds with
Pn

i¼1 ci ¼ 1 and kn ¼ 0: h

Oligopoly with collusive firms may be viable when pricing algorithms operate in

the industry. Although this result is probably strongly dependent on the linearity

assumptions, it questions the conventional view about collusion which is

strategically unstable in game-theoretical approaches of oligopoly. In our pricing

algorithm context, the firms merely adapt to the main actor in the industry which is

the group of marginal consumers: Pareto efficiency and stability prevail, for

instance, when the marginal consumers behave in a conservative way, by preserving

the current market shares in response to any market price shift.

5 An alternative option is to have the firms fixing their price sequentially in some predetermined order.

This may lead to different results.
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3.6 Extension to other matching mechanisms

Pricing algorithms considered here operate as an intermediary aimed at building a

market price from unilateral price deviations of any competitor, with the nice

property that this is made instantaneously. The algorithms used in retailing (Brown

& MacKay, 2021) update the prices with a frequency that differs from one firm to

another, so that the algorithms operate in a sluggish way with some memory of the

past prices. A way to cope with this issue is to distinguish the market price p and the

prices wi posted by the firms. In any feasible oligopoly state, the posted prices are

assumed to coincide with the market price, wi ¼ p; i ¼ 1; . . .; n: Starting from a

feasible state p0; q0ð Þ, if firm i posts a different price wi 6¼ p0; the pricing algorithms

generates a new market price p̂ðwi; p
0Þ which differs from wi according to the time

lag and inertia of reaction of the system. Function p̂ð:; :Þ is assumed to be well

behaved, with
op̂ðwi;pÞ

wi
[ 0; op̂ðwi;pÞ

p � 0 and p̂ðp; pÞ ¼ p; 8p: For instance p̂ðsi; p0Þ ¼
ðwi þ ðn� 1Þp0Þ=n; when the new market price is equal to the average posted price.

Function p̂ is a particular case of the pricing schemes introduced by d’Aspremont

et al. (1991) in a general oligopoly setting where the market price is built from

signals emitted by the firms. Here the posted prices play the role of signals and

pricing scheme p̂ merely applies for unilateral deviations around current oligopoly

states. The profit of the deviating firm i becomes

Piðwi; p
0; q0i Þ ¼ p̂ðwi; p

0Þðq0i þ ciðDðp̂ðwi; p
0Þ � Dðp0ÞÞ ð14Þ

� Ciðq0i þ ciðDðp̂ðwi; p
0Þ � Dðp0ÞÞ: ð15Þ

Equilibrium conditions6 are

op̂ðwi; pÞ
wi

qi þ ciD
0ðpÞðp� C0

iðqiÞÞ
� �

¼ 0; ð16Þ

wi ¼ p; i ¼ 1; . . .; n: ð17Þ

Xn

i¼1

qi ¼ DðpÞ: ð18Þ

Since the derivative
op̂ðwi;pÞ

wi
is strictly positive, these relations coincide with the c-

equilibrium conditions which may then hold for a wider class of matching mech-

anisms. This could be generalized to the case of price discrimination.

4 The monodirectional matching case

Let us examine now the more realistic case where the pricing algorithms are only

used as a response to cutting the price. When the deviating firm charges a higher

price, the rivals stick to the current market price. Starting from a feasible state

6 written here for simplicity when all the firms are active.
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p0; q0ð Þ; any deviating firm charging a price pi [ p0 will lose all or part of its

customers in favor of the rivals. Let us assume for simplicity that all the firms are

active under the various oligopoly states considered.

Let ~qiðpi; p0Þ� 0 be the output level, if any, the deviating firm i keeps once the

whole profitable capacity of the rivals is fully used. ~qiðpi; p0Þ is computed as the

difference between the potential demand for firm i at price pi; DðpiÞ �
P

j6¼i q
0
j

	 


and what is recovered by the rivals and sold at price p0,
P

j 6¼i sjðp0Þ � q0j

	 

;

provided this difference is nonnegative. This gives

~qiðpi; p0Þ ¼ DðpiÞ �
X

j 6¼i

sjðp0Þ
" #þ

:

Since pi � p0; we have DðpiÞ�Dðp0Þ and siðp0Þ� siðp1Þ: As a result,

~qiðpi; p0Þ� Dðp0Þ �
X

j 6¼i

sjðp0Þ
" #þ

: ð19Þ

Since Dðp0Þ�
P

j6¼i

sjðp0Þ þ siðp0Þ; then

~qiðpi; p0Þ� siðp0Þ� siðpiÞ; ð20Þ

so that the adjusted output of firm i remains profitable at price pi. Inequality (19)

implies ~qiðpi; p0Þ� q0i �
P

j 6¼iðsjðp0Þ � q0j Þ� q0i : Accordingly, raising the price

always reduces the output of the deviating firm. Note that its rivals are better off

since they all use their full profitable capacities.

Clearly if Dðp0Þ �
P

j 6¼i

sjðp0Þ� 0; we have q0i �
P

j 6¼i sjðp0Þ � q0j : The current

output of the deviating firm is entirely absorbed by the available capacity of the

opponents. Dropping even slightly the price exposes the seller to losing all its

customers. Accordingly, the profit of the deviating firm is written as :

Piðpi; p0; q0i Þ ¼
P�

i ðpi; p0; q0i Þ if pi � p0;

Pþ
i ðpi; p0Þ if pi [ p0;

(

ð21Þ

with P�
i ðpi; p0; q0i Þ ¼ piðq0i þ ciðDðpiÞ � Dðp0ÞÞ � Ciðq0i þ ciðDðpiÞ � Dðp0ÞÞ and

Pþ
i ðpi; p0Þ ¼ pi DðpiÞ �

P
j 6¼i sjðp0Þ

h iþ
�Ci DðpiÞ �

P
j6¼i sjðp0Þ

h iþ
: Clearly, we

have P�
i ðp0; p0; q0i Þ ¼ p0q0i � Ciðq0i Þ: For p0 ¼ pw; under strictly decreasing returns

to scale conditions, we have sjðpwÞ ¼ qwj and DðpwÞ �
P

j 6¼i sjðpwÞ ¼ qwi : Hence

Pþ
i ðpw; pwÞ ¼ P�

i ðpw; pw; qwi Þ: At the competitive solution, the profit Pi is a con-

tinuous function of the deviating price. It is not in other cases, particularly in the

constant returns case, where sjðpÞ ¼ þ1; so that Pþ
i ðpw; pwÞ ¼ �1. Let us

examine successively how the profit is maximized by down and up price moves.

Establishing the conditions that makes unilateral deviations in both senses
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unprofitable defines the family of c�-equilibria associated with the MCR vector

c 2 0; 1½ �n:

4.1 Downward maximization

Let us analyze the stability of a current feasible oligopoly state (p0; q0Þ with respect

to an unilateral cut of price pi: This comes from the following optimization program

(note that P�
i is right-differentiable at point p0Þ; with ci 2 0; 1½ � :

maxpi piðq0i þ ciðDðpiÞ � Dðp0ÞÞ � Ciðq0i þ ciðDðpiÞ � Dðp0ÞÞ
� �

;

pi � p0;

�

ð22Þ

whose first order conditions are

ðq0i þ ciðDðpiÞ � Dðp0ÞÞ þ ciD
0ðpiÞ pi � C0

iðq0i þ ciðDðpiÞ � Dðp0ÞÞ
� �

� ai ¼ 0;

aiðp0 � piÞ ¼ 0; ai � 0;

ð23Þ

where ai stand for Kuhn–Tucker multiplier of the price constraint. Equilibrium

conditions are met when the first order conditions hold for pi ¼ p� ¼ p0; 8i: As a

result equilibrium ðp�; q�Þ is characterized by:

qi þ ciD
0ðpÞ p� C0

iðqiÞ
� �

¼ ai; i ¼ 1; . . .; n:

ai � 0:
ð24Þ

Let us define bi ¼ �aiciD
0ðpÞ p� C0

iðqiÞ
� �

� 0. Relations (24) may be rewritten as

qi þ giD
0ðpÞ p� C0

iðqiÞ
� �

¼ 0; i ¼ 1; . . .; n;

gi � ci;

�

ð25Þ

with gi ¼ ci þ bi: Together with the supply=demand condition DðpÞ ¼
Pn

i¼1 qi;
they give the equilibrium conditions of a g-equilibrium, extended here for values of

gi � 0: It can easily be checked that this reasoning still holds when adding positivity

condition to program (24) q0i þ ciðDðpiÞ � Dðp0ÞÞ� 0: Clearly the economic

interpretation of gi in terms of MCR does not really works when gi � 1. Parameters

gi are useful only to compute the price and the quantities associated with any

equilibrium. As a result, for any given responsiveness vector ci 2 0; 1½ �n; there exists
a family of solutions of program (22) of the form ðp�ðgÞ; q�ðgÞÞ parametrized by the

gi, with gi � ci.

4.2 Upward optimization

Let us compute the best response price ~piðp0Þ firm i would charge with a positive

output when the rivals use their full profitable capacities at price p0. This results

from the program:
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maxpi; ~qi pi ~qi � Ci ~qið Þ
~qi þ

P

j6¼i

sjðp0Þ ¼ DðpiÞ;

~qi � 0:

8
>><

>>:
ð26Þ

Let riðp0Þ the unique solution of the program (26), if any. The best response price of

firm i is ~piðp0Þ ¼ maxðriðp0Þ; p0Þ: Any upward unilateral move of price starting

from oligopoly state (p0; q0Þ is not profitable for firm i if

Pið~piðp0Þ; p0Þ; q0i ÞÞ�Piðp0; p0; q0i Þ: Note that this condition always holds for

riðp0Þ� p0 as an equality.

4.3 Equilibrium conditions

These developments lead to define the family of c�-equilibria which prevail for any

given MCR vector c 2 0; 1½ �n; as follows:

Definition 7 Let p�ðgÞ; q�ðgÞð Þ a g-equilibrium .Oligopoly state p�ðgÞ; q�ðgÞð Þ is a
c�-equilibrium if

1. gi � ci; 8i;
2. Pþ

i ð~piðp0Þ; p�ðgÞÞ�Piðp�ðgÞÞ; p�ðgÞ; q�i ðgÞÞ; 8i ¼ 1; . . .n:

Proposition 8 In the constant returns case, any g-equilibrium is a c�-equilibrium,
for gi � ci � 0: In particular the competitive solution is a c�-equilibrium.

Proof Under constant returns, marginal cost functions C0
i are not invertible and

siðpÞ ¼ þ1; for all i, Condition 2 is thus not fulfilled: as a result, program (26) has

no bounded solution; no upward move of the price is therefore allowed. Equilibrium

conditions reduces to condition 1 of definition (7). The competitive solution is

achieved for g ¼ þ1: h

Lemma 9 The collusive solution ðpm; qmÞ is c�- equilibrium, with ci ¼ cmi :

Proof Condition 2 of definition (7) is necessarily satisfied for pm ¼ p�ðcmÞ; as a

strict inequality. Let us prove it by contradiction. Assume there exists i such that

Pþ
i ð~piðpmÞ; pmÞÞ[Piðpm; pm; qmi Þ:For the rivals, j 6¼ i; we have the following

inequalities: Pjð~piðpmÞ; ~piðpmÞ; sjðpmÞ[Pjðpm; pm; sjðpmÞÞ �Pjðpm; pm; qmj Þ; since
~piðpmÞ� pm and sjðpmÞ� qmj : Hence, the n?1 tuple ~piðpmÞ; �qj

� �
with �qi ¼

Dð~piðpmÞ �
P

j 6¼i

siðpmÞ and �qj ¼ sjðpmÞÞ; j 6¼ i is an oligopoly state holding at price

~piðpmÞ and demand Dð~piðpmÞÞ; which strictly dominates the collusive solution for all

the firms. Hence, the contradiction. h

Lemma 10 Under strictly decreasing returns, the competitive solution is never a
c�-equilibrium.
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Proof As noted above, the profit function is continuous at pw. We have
oPiðpi;pcÞ

opi

�
�
�
pi¼pwþ

¼ qwi � 0 (with a strict inequality for at least one firm). Increasing

even slightly price pi yields profit improving. This is a fortiori true at the best

response price ~piðpwÞ[ pw: Hence, condition 2 of proposition (7) never holds. h

Theorem 11 There exists �gi [ cmi ; such that p�ðgÞ; q�ðgÞð Þ is a c�-equilibrium for
any vector g such that �gi � gi � ci: It is not for gi � �gi:

Proof Let us consider the family of functions di : R
n ! R defined by: diðgÞ ¼

Pþ
i ð~piðp�ðgÞÞ; p�ðgÞÞ �Piðp�ðgÞÞ; p�ðgÞ; q�i ðgÞÞ

� �
; for gi 2 ci;þ1� ½: Under the

regularity assumptions made, functions di are continuous. Lemma 9 implies that

diðcmÞ\0 and lemma (10) that limgi!1 diðgÞ[ 0: By continuity, there is a vector �g
2 Pi½cmi ;þ1½ such that all functions di are simultaneously lower or equal to 0 in

hypercube Pi½cmi ; �gi½. Hence the result. h

Theorem (11) is the key result of this section. To summarize, in the

monodirectional matching case, there exists a multiplicity of equilibrium prices

located in the range pb; p�ðcÞ
� �

, where pb ¼ p�ð�gÞ is the lowest price where c�-
equilibrium may exist.

4.4 The linear-quadratic symmetric case (cont’d)

Let us illustrate these results in the linear-quadratic symmetric case. Following

subsection (3.4), the g-equilibrium is defined by

p�ðgÞ ¼ 2ugþcngþ1ð Þ
ngþ2ugþ1

; q�i ðgÞ ¼
g 1�cð Þ

g nþ2uð Þþ1
; i ¼ 1; n: let us compute the best response

pricing ~p1ð:Þ at this point for a price increase of firm 1. Clearly, we have siðp0Þ ¼
ðp0 � cÞ=2u and ~q1ðp1; p0Þ ¼ Dðp1Þ � ðn� 1Þðp0 � cÞ=2u; so that

~p1ðp0Þ ¼ argmaxpðp~q1ðp1; p0Þ � C1ð~q1ðp1; p0ÞÞÞ.

Standard computations yield: ~p1ðp0Þ ¼ 1
4

2u�n�2nuþ1ð Þp0þ 2u�cþcnþ4u2þ2cnuð Þ
u uþ1ð Þ and

~q1 p0ð Þ ¼ ~q1 ~p1ðp0Þ; p0ð Þ ¼ 1
4

ðn�1Þðc�p0Þþ2uð1�cÞ
u uþ1ð Þ : Computing these values for p0 ¼

p�ðgÞ gives

~p1ðp�ðgÞÞ ¼
1

4

�c� nþ 4uþ 2ugþ 8u2gþ 8u3gþ cn� 2nuþ 4u2 � 2cugþ 2cnuþ 4cnugþ 4cnu2gþ 1

u uþ 1ð Þ ngþ 2ugþ 1ð Þ ;

~q1ððp�ðgÞÞÞ ¼
1� cð Þ 2uþ 2ugþ 4u2g� ðn� 1Þð Þ

4u uþ 1ð Þ ngþ 2ugþ 1ð Þ ;

~P1ðp�ðgÞÞ ¼
1

16
1� cð Þ2 n� 2u� 2ug� 4u2g� 1ð Þ2

u2 uþ 1ð Þ ngþ 2ugþ 1ð Þ2
:

8
>>>>>>>><

>>>>>>>>:

Firm 1 is better off when increasing price up to ~p1ðp�ðgÞÞ if
~P1ðp�ðgÞÞ[P1ð p�ðgÞ; q�ðgÞð Þ; namely for
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g[ �g ¼
2ðn� 1Þuþþ4nu2 þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 n� 1ð Þ nþ 1ð Þ uþ 1ð Þ

p	 


4u2
:

ð27Þ

For the values of g satisfying inequality (27), we also have ~pðp�ðgÞÞ� p�ðgÞ and

~q1ððp�ðgÞÞÞ� 0: Let us define pb ¼ p�ð�gÞ� pw: We have pb � pC: At least in the

linear-quadratic symmetric case, Cournot is an equilibrium.

Any oligopoly state p;DðpÞ=nð Þ is a c�-equilibrium when price p 2 pb; p�ðcÞ
� �

and p�ðcÞ 2 pC; pm½ �. In this context, price pb can be viewed as the bottom price,

namely the lowest (deterministic) equilibrium price under decreasing returns. Under

constant returns (u ¼ 0Þ, the bottom price coincides with the perfect competition

price pw ¼ c: In the decreasing returns case, this is asymptotically true for u ! 1:
This is illustrated in Fig. 1 where the various prices are expressed in terms of the

quadratic cost factor u.
Hence the Bertrand–Edgeworth paradox holds only for market prices between the

bottom and the competitive price.

5 Concluding remarks

Pricing algorithms generate a family of equilibria associated with the MCR

parameters ci; namely a characteristic of the marginal customers behavior. For

significant values of MCR parameters, pricing algorithms ensure the existence of

pure strategy equilibria in oligopoly with strictly decreasing returns to scale, while

collusion

c

�(γ)

u

p

M

C

W

Cournot

Bo�om price

Compe��ve price

Fig. 1 Equilibrium prices in the linear-quadratic case
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bypassing the Bertrand–Edgeworth paradox. This way pricing algorithms may

contribute to the internal stability of the markets.

Furthermore, pricing algorithms work as a market clearing tool that fixes the

price equating supply and demand. No auctioneer is needed. Pricing algorithms

substitute for intermediaries in charge of crossing demand and supply in standard

markets. As such, they mitigate the intermediation cost borne by the economy as a

whole. On this point, pricing algorithms are welfare-improving if the costs in terms

of coding are not too high.

At least in the symmetric case, the equilibrium price is located in the range

pC; pm½ �. The lower bound of equilibrium values is the bottom price which is a c�-
equilibrium for any c. It provides the best social welfare that the pricing algorithms

can achieve. The loss of consumer surplus involved at equilibrium price p� is due to

the overcharge (p� � pwÞ ¼ ðp� � pbÞ þ ðpb � pwÞ. The overcharge between the

bottom and the competitive price, (pb � pwÞ; is incompressible as it is due to

technology conditions underpinning the cost structure of the industry. As a result,

public policy should focus towards reducing ðp� � pbÞ; in the perspective of

selecting an equilibrium price as close as possible to the bottom price pb. Some

actions are working in this sense:

• Promote the bottom price as the basis of market power measurement in the

digital economy.

• Set up special monitoring and alert systems that block pricing algorithms

incorporating bidirectional matching mechanisms.

• Enhance the consumers’ confidence in pioneering price discounters, since they

are more likely to be associated with the highest MCR c.
• Give emphasis on antitrust policies designed to lower barriers to entry. The

pressure of potential entrants remains the best way to dissipate the residual

deadweight loss due to overcharge ðp� � pbÞ.

An important related issue deals with the dynamical stability of the process

underlying the pricing algorithms. Our results in the linear demand and constant

returns case indicate how these algorithms may enhance the external stability of the

system. More research is needed to extend this result to decreasing returns and non

linear demand situations.

This suggests there could be some economic advantages to let pricing algorithms

be implemented in oligopolistic industries: they convey more information in the

market and—last but not least—they may contribute to the internal and external

stability of the industry.

Appendix
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Proof of theorem 3 Let us consider an oligopoly state ðp0; q0Þ with
Pn

k¼1 q
0
k ¼ Dðp0Þ and

q0k [ 0: Starting from this particular point, the price pi that maximizes firm i ’s profit solves the

following program:

maxpi piðq0i þ ciðDðpiÞ � Dðp0ÞÞ � Ciðq0i þ ciðDðpiÞ � Dðp0ÞÞÞ
� �

q0i þ ciðDðpiÞ � Dðp0ÞÞ� 0;

(

ð28Þ

The Lagrangian of this program is
Li ¼ piðq0iþ ciðDðpiÞ � Dðp0ÞÞÞ � Ciðq0i þ ciðDðpiÞ � Dðp0ÞÞÞ þ ki½q0i þ ciðDðpiÞ � Dðp0ÞÞ�; where ki is
the Kuhn and Tucker multiplier associated with the positivity constraint; the first-order conditions are

ðq0i þ ciðDðpiÞ � Dðp0ÞÞ þ ciD
0ðpiÞ pi � C0

iðq0i þ ciðDðpiÞ � Dðp0ÞÞ
� �

þkiciD
0ðpiÞ ¼ 0;

ki½q0i þ ciðDðpiÞ � Dðp0ÞÞ� ¼ 0; pi � 0:

ð29Þ

The oligopoly equilibrium is defined by a vector p�; q�i ; k
�
i ;

� �
satisfying conditions

(29) with p0 ¼ p� and for any i ¼ 1; . . .; n; namely

qi þ ciD
0ðpÞ p� C0

iðqiÞ
� �

þ kiciD
0ðpÞ ¼ 0: ð30Þ

kiqi ¼ 0; ki � 0: ð31Þ

Then the equilibrium price and quantities are characterized by the conditions:

qi þ ciD
0ðpÞ p� C0

iðqiÞ
� �

¼ 0; if qi [ 0; ð32Þ

p� C0
ið0Þ� 0; if qi ¼ 0: ð33Þ

DðpÞ ¼
Xn

i¼1

qi: ð34Þ

Let A=n ¼ r st.:qri � 0; i ¼ 1; . . .; r
� �

; with r� n: Clearly, An 6¼ ;; as 1 2 An: Then

qr
�
always exists. Since qr

�
r� � 0; we have pr� �C0

r� ð0Þ: Let us prove by contradiction

that pr
� �C0

r�þ1ð0Þ. Assume that it is not true, namely

pr
�
[C0

r�þ1ð0Þ: ð35Þ

Let qi ¼ hiðpÞ solution of relation (9). Clearly, h0iðpÞ ¼ �ð1� cD0C00
i Þ=ðcD

00 ðp�

CiÞ þ cD0Þ � 0: Let us define f ðpÞ ¼ DðpÞ �
Pr

i¼1

hiðpÞ and uðpÞ ¼ f ðpÞ þ

cr�þ1D
0ðpÞ p� C0

r�þ1ðf ðpÞ
� �

: We have f ðpr� Þ ¼ 0 and hiðpr
� Þ � 0; i ¼ 1; . . .; r: We

have uðpr� Þ ¼ cr�þ1D
0ðpr� Þ pr

� � C0
r�þ1ð0

� �
� 0; thanks to assumption (35). Clearly,

we have f 0\0 and then f ðC0
r�þ1ð0ÞÞ� f ðpr� Þ ¼ 0: Consequently, uðC0

r�þ1ð0ÞÞ ¼
f ðC0

r�þ1ð0ÞÞ� 0: In addition u0ðpÞ ¼ f 0ðpÞ þ cr�þ1D
00ðpÞ p� C0

r�þ1ðf ðpÞ
� �

þ
cr�þ1D

0ðpÞ 1� C00
r�þ1ðf ðpÞf 0ðpÞ

� �
� 0: Thanks to the intermediate value theorem,

there exists a value pa 2 C0
r�þ1ð0Þ; pr

�� �
such that uðpaÞ ¼ 0: By definition, pa ¼
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pr
�þ1 2 C0

r�þ1ð0Þ; pr
�� �
: Let us prove by contradiction that hiðpr

�þ1Þ� 0; i ¼ 1; . . .r�.

If hiðpr
�þ1Þ\0; as hiðpr

� Þ � 0; applying again the intermediate value theorem

exhibits a value ~p 2 pr
�þ1; pr

�� �
; such that hið~pÞ ¼ 0; i.e. ~p ¼ C0

ið0Þ: Hence,

C0
r�þ1ð0Þ� pr

�þ1 �C0
ið0Þ; which is impossible according to (8). To summarize, we

have qr
�þ1
i ¼ hiðpr

�þ1Þ� 0; i ¼ 1; . . .; r� and qr
�þ1
r�þ1 ¼ f ðpr�þ1Þ� 0: This contradicts

that r� is defined as the maximum of r st. qri � 0; i ¼ 1; . . .; r:
� �

:
Finally, we have pr

� �C0
r�þ1ð0Þ�C0

ið0Þ; i ¼ r� þ 1; . . .; n: Then according to (33), we state q�i ¼ 0; for

i ¼ r� þ 1; . . .; n: Putting q�i ¼ qr
�

i � 0; for i ¼ 1; . . .; r� completes the full characterization of the c-
equilibrium.
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