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Abstract
We study price formulas suited for empirical research in financial markets in which

put–call parity is satisfied. We find a connection between risk and the bid–ask

spread. We further study the compatibility of the model with market frictions, and

determine market subsets where the Fundamental Theorem of Asset Pricing applies.

Finally, we characterize the price formula.

Keywords Choquet pricing � Fundamental Theorem of Asset Pricing � market

frictions � Neo-additive capacity � Put–call parity

1 Introduction

Cerreia-Vioglio et al. (2015) (CMM for brevity) generalized the Fundamental

Theorem of Asset Pricing (FTAP) (see Ross 1976; Harrison and Kreps 1979) to

financial markets with frictions in which put–call parity is satisfied. They developed

an explicit asset-pricing formula, that states, the price must equal the Choquet

expectation of the asset payoff with respect to a so-called ‘risk-neutral capacity’.

We contribute to this discussion by further studying the relationship between the

Choquet expectation and asset pricing. We study a special case of CMM financial

markets when the set of prices is given by a generalized neo-additive capacity

(GNAC). These capacities were developed by Chateauneuf et al. (2007) and

Eichberger et al. (2012), resulting in streamlined price formulas with only two

parameters and a probability. These limited parameters—the price of an asset is a

weighted sum of the expected value (a frictionless price), and the maximal and

minimal revenues—make the results simpler to understand and easier to calibrate,

and to estimate (see the end of Sect. 3) than a Choquet expectation. The expected
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value parameter measures the effects of friction on pricing. The revenue parameters

permit a natural interpretation when they are between 0 and 1, that is, when prices

are given by a neo-additive capacity (NAC) but this additional requirement is

compelling because it constraints the value of the bid–ask spread (viz. the difference

between the price for an immediate purchase and the price for an immediate sell).

We provide more insights into interpreting these parameters in both frameworks in

Sect. 5.

When prices are given by a GNAC, there is a theoretical connection between

asset prices and risk. We show that the bid–ask spread is proportional to the range of

an asset’s revenues. This is consistent with empirical evidence suggesting that bid–

ask spreads vary linearly with risk (see Benston and Hagerman 1974; Stoll

1978, 1985; Amihud and Mendelson 1986), the range being a simple (albeit

imperfect) measure of risk. Stoll (1978) and Amihud and Mendelson (1986) showed

that this relationship is positive—i.e. the higher the risk, the broader the spread. This

relationship can be understood naturally when prices are given by a GNAC: it

means that there is no arbitrage opportunity in the spread. In terms of pricing, this is

equivalent to placing a higher emphasis on maximal revenues than minimal

revenues. In Sect. 6, we analyze the compatibility of a general-capacity price

formula with a price formula given by a GNAC with frictions. A general capacity

can be represented by the Weber set1 of probabilities. We show that there is no

friction among a subset of assets if, and only if, the Weber set probabilities coincide

for a specific set of events. We conclude that, even when prices are represented by a

general capacity, there might exist subsets of assets without frictions. Put in another

way, the FTAP applies only over specific parts of a financial market when put–call

parity is satisfied. Naturally, the set of prices given by a GNAC is less flexible. We

show that either there is no friction in the market (and the FTAP applies

everywhere) or there does not exist a risky frictionless asset. This apparent

shortcoming is not particularly concerning because, in practice, there is unlikely to

be a risky asset which can be added without friction to any other portfolio.

The price formula remains compatible with the absence of friction among a

subset of assets. We demonstrate, overall, that prices are given by a GNAC if, and

only if, in addition to satisfying put–call parity, there is no friction among assets

which yield extreme revenues in the same states of nature.

Our work relates to asset pricing literature which aims to generalize the FTAP to

markets with frictions. The principal contributions to this field are from Garman and

Ohlson (1981) who proposed a model when prices are linear in the number of shares

traded (positively homogeneous); Jouini and Kallal (1995) who generalized the

FTAP to sublinear prices; and Prisman (1986) who proposed an extension of the

FTAP for markets with convex fees such as taxes and, more recently, to CMM,

whose model appears better suited for empirical research. We build on this literature

by analyzing a special CMM circumstance when the price is given by a GNAC. The

corresponding price formula is simpler and easier to calibrate, and it explicitly

1 Weber sets are very close in nature to rank-dependent probability assignments (see Nehring 1999) and

to Clarke differentials at 0 (see Ghirardato et al. 2004); hence, our results could be translated in these

languages.
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connects price with risk. We provide a characterization of these price formulas, and

we compare them with the price formula given under a general capacity.

This paper is organized as follows. Section 2 presents the framework and Sect. 3

presents the FTAP of Harrison and Kreps (1979) and the theorem of asset pricing of

CMM. In Sect. 4, we present the price formula given by a NAC and the price

formula given by a GNAC, and study how bid–ask spreads relate to risk. In Sect. 5,

we interpret the parameters of a price formula given by a NAC and a price formula

given by a GNAC, and we consider situations where price formulas given by a

GNAC are better suited for asset pricing. In Sect. 6, we discuss the relationship

between pricing formulas, under put–call parity, and the FTAP. Finally, in Sect. 7,

we characterize the GNAC pricing formula. The mathematical proofs are presented

in Appendix.

2 Framework

We consider a two-period t 2 0; 1f g financial market with trading occurring only on

date t ¼ 0. The outcome of the second period is uncertain and is represented by a

finite set X ¼ fx1;x2; . . .;xmg comprising m states of nature. At date 0, agents

access the market without costs or constraints. They assemble a portfolio among a

finite set of primary assets available for trading, that is, they buy (or sell) the right to

receive the payoff X 2 RX (e.g. the right to receive XðxÞ in state of nature x at date

t ¼ 1) and we assume that the market is complete. In particular, put and call options

are available for all assets and agents can compose a portfolio which gives a

frictionless payoff (or cash) xrf 2 RX which corresponds to the constant unit vector.

In our discussion below, ~p : RX ! R is a pricing rule, which is a non-zero map for

which ~pðXÞ ð�~pð�XÞÞ represents the amount of resources an agent should spend (or

receive) at date 0 when buying (or selling) the payoff X.

3 The FTAP and the CMM model

The absence-of-friction hypothesis which is at the core of most of the literature on

fundamental asset pricing states that a market is frictionless when buying two

portfolios separately costs the same as buying them together. In other words, the

pricing rule is linear: for all payoffs X; Y 2 RX and all k 2 R,

~pðkX þ YÞ ¼ k~pðXÞ þ ~pðYÞ:

It is well known that this relationship does not ensure price equilibrium. For

example, if ~p is a negative linear function, then it is optimal for an agent (inde-

pendently of her preferences) to buy an infinite quantity of assets with positive

payoffs, resulting in a sub-optimal portfolio. Harrison and Kreps (1979) demon-

strated that no-arbitrage, that is, for all X 2 RX,
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X[ 0)~pðXÞ[ 0;

where X[ 0 implies that XðxÞ� 0 for all x 2 X, with at least one strict inequality,

is an essential property of frictionless financial markets which require equilibrium.

Actually, they show that, if, and only if, the pricing rule is frictionless and has no

arbitrage opportunity, then there exists a unique probability such that the price is the

expected value of the portfolio’s payoffs.

Theorem 3.1 (FTAP, Harrison and Kreps 1979) Let ~p : RX ! R be a non-zero
pricing rule. The following statements are equivalent:

(i) ~p is frictionless and has no arbitrage opportunity;
(ii) there exist a unique risk-neutral probability l and a riskless rate r[ � 1

such that

~pðXÞ ¼ 1

1þ r
ElðXÞ ¼

1

1þ r

Xm

i¼1

XðxiÞlðxiÞ 8X 2 RX:

This theorem is fundamental because it provides an explicit formula for pricing

assets, supported by equilibrium requirements and, in a multiple-period market, it

demonstrates the existence of a connection between martingale theory and asset

pricing. However, the absence of friction is a big assumption. It ignores the roles

played by transaction costs and fees, as well as market impact in financial markets.

Several pricing models have been developed to generalize the FTAP to markets

with frictions. The price formula proposed by CMM incorporates frictions such as

transaction costs, and establishes a new link between asset pricing and non-linear

expectation theory. In a nutshell, a capacity m : P ðXÞ ! ½0; 1�, also informally

referred to as a non-additive probability, satisfies the following properties mð;Þ ¼ 0,

mðXÞ ¼ 1 (normalization) and mðAÞ� mðBÞ whenever A � B � X (monotonicity).

The expected value with respect to a capacity is called the Choquet expected value.

It is defined as follows: consider a vector X 2 RX and a permutation of the states of

nature ðx�
1;x

�
2; . . .;x

�
mÞ such that Xðx�

1Þ�Xðx�
2Þ� . . .�Xðx�

mÞ. Then the Choquet

expected value of X with respect to the capacity m is

CEmðXÞ :¼ Xðx�
1Þmðx�

1Þ þ
Xm

i¼2

Xðx�
i Þ½mðfx�

1; . . .;x
�
i gÞ � mðfx�

1; . . .;x
�
i�1gÞ�:

The CMM model assumes that put–call parity (see Stoll 1973) is satisfied, that is,

for all call options cX;k :¼ maxðX � kxrf ; 0Þ and all put options pX;k :¼ maxðkxrf �
X; 0Þ on the same underlying payoff X 2 RX with strike price k 2 R,

~pðcX;kÞ þ ~pð�pX;kÞ ¼ ~pðXÞ � k~pðxrf Þ;

where maxðX; YÞ 2 RX is the vector such that, 8x 2 X,
maxðX; YÞðxÞ ¼ maxðXðxÞ; YðxÞÞ. In other words, buying a call option and selling

a put option on the same underlying payoff with identical strike price k costs the
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same as buying the underlying payoff and selling k units of the riskless payoff. It is
nominally true that when there is no friction, the two strategies earn the same

revenues; however, if one strategy were more expensive than the other, then the

demand for it would be nil. Thus, at equilibrium, the two strategies must be equally

priced. Furthermore, it is typically assumed that an asset with a higher payoff than

another must cost at least the same price, that is, for all X; Y 2 RX, X� Y implies

that ~pðXÞ� ~pðYÞ. Therefore, the pricing rule is monotonic. As is usual in asset

pricing literature, this model also assumes that risk-free payoff xrf is frictionless,

that is, for all X 2 RX and for all k 2 R, ~pðX þ kxrf Þ :¼ ~pðXÞ þ k~pðxrf Þ. This last

property is labeled, cash-invariance. Their main result is the following characteri-

zation of these pricing rules.

Theorem 3.2 (CMM Theorem, CMM) Let ~p : RX ! R be a non-zero pricing rule.
The following statements are equivalent:

(i) ~p satisfies put–call parity, cash-invariance and monotonicity;
(ii) there exists a unique risk neutral capacity m and a unique riskless rate

r[ � 1 such that

~pðXÞ ¼ 1

1þ r
CEmðXÞ; 8X 2 RX:

CMM showed that the capacity is a probability if, and only if, ~p is frictionless.

This elegantly generalizes the FTAP in a two-period model, and the testability of the

hypotheses makes it more suitable for empirical research. Furthermore, Choquet

expectations and capacities are at the core of innovation in economics theory,

especially in decision theory where the Choquet expected utility model was

developed to generalize the classical expected-utility model and accommodate the

Ellsberg paradox and the Allais paradox. These results have applications in finance

(see Chateauneuf et al. 1996; Waegenaere et al. 2003; Chen and Kulperger 2006;

Kast et al. 2014), insurance (see Castagnoli et al. 2002, 2004), risk measurement

(see Denuit et al. 2006) and investment behavior (see Ludwig and Zimper 2006;

Driouchi et al. 2018). Such applications invite study of connections between the

Choquet expectation and asset pricing. We propose to do this for a particular family

of capacities which is among the most convenient and falls between general

capacities and probabilities, the family of so-called neo-additive capacities (NACs)

or, more precisely, their generalized form, the so-called generalized neo-additive

capacities (GNACs). The NACs were developed by Chateauneuf et al. (2007) to

obtain a model of non-linear expected utility more tractable than the Choquet

expected utility. Indeed, NACs have fewer parameters needed for calibration than a

general capacity, which makes them more suitable for empirical research. They

have applications in asset pricing (see Zimper 2012), investment behavior (see Ford

et al. 2005), risk (see Chakravarty and Kelsey 2017), game theory (see Eichberger

and Kelsey 2011; Jungbauer and Ritzberger 2011; Eichberger and Kelsey 2014),

learning behavior (see Zimper and Ludwig 2009), health and retirement (see
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Groneck et al. 2016) and for extending the common knowledge theorem of Aumann

(see Dominiak and Lefort 2013). In the context of asset pricing, the generalized

form of a NAC developed by Eichberger et al. (2012) appears more suitable because

it creates no relationship between the bid–ask spread and the power of explanation
of a frictionless price. We introduce more formally the NACs and the GNACs and

their associated pricing formulas in the following section. We discuss their

interpretation and the previous argument in favour of GNAC pricing rules in Sect. 5.

4 NAC and GNAC pricing rules

For the sake of our exposition, we assume that the set of null events, that is, the set

whose events are ‘‘impossible to occur’’ has only one element, the empty set ;.
However, the validity of the following results does not rely on this assumption. A

NAC is a convex combination of a probability and a parameter which takes values

between 0 and 1. More formally, the function m is a NAC if there exists a probability

p : P ðXÞ ! ½0; 1� and two reals a 2 ½0; 1� and d 2 ½0; 1� satisfying

minE 62f;;Xg aþ dpðEÞ½ � � 0 and maxE 62f;;Xg aþ dð1� pðEÞÞ½ � � 1 such that

mðEÞ ¼ adþ ð1� dÞpðEÞ; 8E 62 f;;Xg

Chateauneuf et al. (2007) showed that the Choquet expectation with respect to a

NAC is a convex combination of the expected value with the maximal and minimal

revenues, that is,

~pðXÞ ¼ ð1� dÞEðX j pÞ þ dðamaxðXÞ þ ð1� aÞminðXÞÞ;

where maxðXÞ (or minðXÞ) is the maximum (or, respectively, minimum) of the

coordinates of X. We say that ~p is a NAC pricing rule if it satisfies this equality.

Prices given by a NAC are a combination of a frictionless price and of the maximal

and the minimal revenues. Eichberger et al. (2012) generalized NACs by letting the

parameter a take any real value, and d take any real value less than 1. The resulting

function—which they named a GNAC—is an affine transformation of a probability.

The remaining constraint on the parameters makes the GNAC normalized and

monotone, and thus, a well-defined capacity. For the sake of discussion, (Eichberger

et al. , 2012) substituted two new parameters, a and b for a and d. We have

reproduced their presentation below; note that, except for the constraints on the

values taken by the parameters, the two formulas are equivalent when a ¼ da and

b ¼ 1� d. More formally, the function m is a GNAC if there exists a probability,

p : P ðXÞ ! ½0; 1�, and two reals, a and b[ 0, satisfying minE 62f;;Xg aþ bpðEÞ½ � � 0

and maxE 62f;;Xg aþ bð1� pðEÞÞ½ � � 1 such that

mðEÞ ¼ aþ bpðEÞ; 8E 62 f;;Xg

and mðXÞ ¼ 1 and mð;Þ ¼ 0. The preceding constraints minE 62f;;Xg aþ bpðEÞ½ � � 0

and maxE 62f;;Xg aþ bð1� pðEÞÞ½ � � 1 simply ensure that the values of a and b are

chosen so that the function m is monotone. Eichberger et al. (2012) showed that the
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Choquet expectation with respect to a GNAC is a weighted sum of the expected

value with the maximal and the minimal revenues, that is,

~pðXÞ ¼ bEðX j pÞ þ amaxðXÞ þ ð1� a� bÞminðXÞ:

We discuss the interpretation of the parameters of NAC pricing rules and GNAC

pricing rules in the following section. Overall, GNAC pricing rules require inter-

preting a smaller number of variables. It is necessary to provide (and justify) the

values of mþ 2 parameters—the values taken by the probability p and the values of

a and b—whereas it might be necessary to define as many as 2m � 2 values in the

general case. General capacities may provide better accuracy in the pricing of assets

but that gain in precision may be offset by the additional cost of estimating all the

necessary parameters. It is interesting to note that prices given by a GNAC are

connected with risk through the bid–ask spread—the difference between the price at

which one can immediately buy a payoff and the price at which one can immedi-

ately sell it. More formally, the bid–ask spread B : RX ! R is

BðXÞ ¼ ~pðXÞ þ ~pð�XÞ;

for all X 2 RX. When the price is given by a GNAC, the bid–ask spread is pro-

portional to the range of asset revenues. Indeed, there exists k 2 R such that, for all

X 2 RX,

BðXÞ ¼ k maxðXÞ �minðXÞ½ �

where k ¼ 2aþ b� 1, i.e. k is the difference between the additional weight on the

maximal revenue and the additional weight on the minimal revenue. We say that k
is the coefficient of proportionality of B. This interpretation is consistent with

empirical evidence which suggests that bid–ask spreads are in a direct relationship

with risk (see Benston and Hagerman 1974; Stoll 1978, 1985; Amihud and Men-

delson 1986). Indeed, the range is a simple (albeit imperfect) measure of risk. In

particular, Stoll (1978) and Amihud and Mendelson (1986) evidenced that the

relationship between the spread and the risk is positive: the higher the risk, the

broader the spread. Here, that same relationship is natural as the bid–ask spread is

necessarily positive, for otherwise a clear arbitrage opportunity exists. The posi-

tivity of the spread translates naturally to GNACs. It implies that the coefficient of

proportionality k is positive, i.e. that the additional weight given to the maximal

revenue a is greater than the additional weight given to the minimal revenue

1� a� b. In the case of a NAC pricing rule, this condition is even simpler: there is

no arbitrage opportunity in the spread if, and only if, a� 0:5. In the case of a general
capacity, making sure or verifying that there is no arbitrage opportunity in the bid–

ask spread is slightly more demanding: we present the equivalent property in the

following proposition.

Proposition 4.1 Let ~p : RX ! R be a Choquet pricing rule with respect to the
capacity m : P ðXÞ ! 0; 1½ �. The following statements are equivalent:

(i) ~p does not have an arbitrage opportunity in the bid–ask spread;
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(ii) mðAÞ þ mðAcÞ� 1 for all A 2 P ðXÞ.

In particular, when ~p is a GNAC pricing rule then there is no arbitrage opportunity
in the bid–ask spread if, and only if, a� 1� a� b.

Bid–ask spreads have also been found to be good indicators of the liquidity of the

asset (see Garbade 1982; Stoll 1985): the narrower the bid–ask spread, the more

liquid the asset. When the pricing rule is Choquet and not necessarily GNAC, the

bid–ask spread of riskless payoff is zero and consistent with the perception that

riskless assets are the most liquid assets. When the pricing rule is given by a GNAC,

it is also the case that payoffs are close to riskless—where their range of revenues is

tight—have a small spread which implies that they are more liquid. When we

consider a general capacity, the bid–ask spread is not necessarily proportional to the

range of revenues: to that end, the following lemma presents the property that a

general capacity should satisfy for proportionality to apply.

Lemma 4.1 Let ~p : RX ! R be a Choquet pricing rule with bid–ask spread

B : RX ! R. Then the following assertions are equivalent:

(i) The bid–ask spread is proportional to the range of revenues;
(ii) 9k 2 R, 8E 62 f;;Xg, Bð1E0Þ ¼ k;
(iii) mðEÞ þ mðEcÞ ¼ k, 8E 62 f;;Xg,

where xEy 2 RX is the vector with coordinates in E 2 P ðXÞ equal to x and
coordinates in Ec equal to y.2

5 Interpretation of GNAC pricing rules

In addition to involving fewer parameters needing calibration, the coefficients of a

NAC and a GNAC pricing rule are also easier to interpret than a general-capacity

pricing rule. In the NAC price formula, the coefficient d can be interpreted as the

power of explanation of frictionless pricing in the market or a measure of how close

the market is to frictionless. It contains information about the importance of

transaction costs and other frictions on asset pricing. The closer d is to 1, the less

significant the role frictions play. The price of an asset given by a NAC is bounded

by the asset revenues. The following inequalities are satisfied for all X 2 RX:

minðXÞ� ~pðXÞ� maxðXÞ:

The parameter a indicates whether the price is close to the maximal bound. When

d ¼ 1 and a ¼ 1, the asset price is maximal; when d ¼ 1 and a ¼ 0, the asset price

is minimal. The first situation captures agents’ extreme confidence that the maximal

revenue will be delivered in the future. The second situation captures agents’

extreme confidence that the minimal revenue will be delivered in the future. As

explained in the previous section, arbitrage opportunities are created when a\0:5;

2 We refer to such vectors as bets.
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hence, this last situation should never arise when the price is given by a NAC. Other

values of a and d mediate between these extremes.

Interpreting the parameters of a GNAC pricing rule requires more prudence. The

coefficient b can still be regarded as providing information on the importance of the

role played by friction in the pricing. However, both b and a can take values greater

than 1; therefore, for the interpretation to be meaningful, it is preferable to analyze

b=ðjaj þ bÞ and jaj=ðjaj þ bÞ. These values can be interpreted similar to d and a.
The closer b=ðjaj þ bÞ to 1, the lesser friction influences the pricing. So, b=ðjaj þ bÞ
is the power of explanation of a frictionless pricing rule. Similarly, the closer

jaj=ðjaj þ bÞ is to 1, the greater the effect of frictions on pricing.

It is important to note that GNAC prices are not bounded by the asset revenues.

GNAC allows a great deal of pricing flexibility. In particular, GNAC allows

calibration of over-confident behavior—when jaj=ðjaj þ bÞ is close to 1 and

a[ 1—and under-confident behavior—when jaj=ðjaj þ bÞ is close to 1 and a\0—

where prices are disconnected from the revenues of the asset, i.e. when prices are

either greater than the maximal revenue or smaller than the minimal revenue. These

two situations cannot be represented in a frictionless environment, nor when prices

are given by a NAC. GNAC pricing rules may be used to represent both boom and

bust scenarios. Moreover, parameters’ calibration for a GNAC is less restrictive

than the calibration of a NAC. Indeed, the bounds imposed by a NAC on the

parameters’ values impose a bound on the value of the coefficient of proportionality

of the spread which has to be smaller than 1. In fact, the bounding is even tighter. It

also requires k to be smaller than d, which creates a strong relationship between the

bid–ask spread and the power of explanation of a frictionless pricing. For example,

it is not possible to have both asset prices explained at 95% by a frictionless pricing

rule and a 10% coefficient of proportionality in the bid–ask spread.

6 Put–call parity and the FTAP

In the previous sections, we argued that GNAC pricing rules are better suited to

asset pricing because they incorporate fewer parameters to calibrate and the

parameters are easier to interpret. From this perspective, a frictionless market is

ideal with only a probability to calibrate. In this section, we ask whether, when put–

call parity is satisfied, we can identify a subset of the market in which there is no

friction, to apply the FTAP. Intuitively, the FTAP applies to a subset of the market if

buying two portfolios of this subset jointly costs the same as buying them

separately. To examine this, we must first define a new object, the risky frictionless

payoff, as a payoff whose revenues are not known with certainty, and which costs

the same to buy whether together with a portfolio or in independent purchases. More

formally, the payoff X 2 RX is frictionless if, for all Y 2 RX and all a 2 R,

~pðaX þ YÞ ¼ a~pðXÞ þ ~pðYÞ:

Likewise, if all bets on a particular event E 2 P ðXÞ are frictionless, then we say

that this event is frictionless, that is, the payoffs 1E0 and 1Ec0 are frictionless. Cash

invariance is a no-friction property: riskless payoffs are frictionless and X is a

123

Put–call parity and generalized... 529



frictionless event. Moreover, a frictionless asset has no bid–ask spread. We won-

dered which properties, satisfied by a Choquet pricing rule, are equivalent to the

existence of a risky frictionless asset. In particular, we are interested in character-

izing the set of payoffs that are frictionless and in determining the form taken by a

Choquet pricing rule on this set.

It is well known that Choquet expectations are positively homogeneous, that is,

8X 2 RX, 8k� 0, ~pðkXÞ ¼ k~pðXÞ, and additive with respect to comonotone vectors

(vectors X; Y 2 RX such that for all x;x0 2 X, x 6¼ x0,

ðXðxÞ � Xðx0ÞÞðYðxÞ � Yðx0ÞÞ � 0). We can associate with a vector X 2 RX a

ranking of the states of nature q (that is a bijection between X and f1; . . .;mg) which
associates 1 with the state x such that XðxÞ is the highest payoff of X, 2 to the

second highest and so on. This is useful because the Choquet expectation of X 2 RX

can be regarded as the expectation value of the vector with respect to a probability

lq : P ðXÞ ! ½0; 1� given by

lqðEÞ ¼
X

x2E
½mðPqðxÞ [ xf gÞ � mðPqðxÞÞ�;

for all E 2 P ðXÞ where PqðxÞ :¼ x0 2 X j qðx0Þ\qðxÞf g is the set of prede-

cessors of x. This representation is particularly helpful when attempting to

understand why the Choquet expectation is additive with respect to comonotone

vectors. The set of probabilities, lq, is called the Weber set of m (Weber 1988); we

denote it WðmÞ. There exists a connection between the absence of friction and

Weber sets. Our first results are valid for general capacities and the corresponding

Choquet pricing rules. We show that an event is frictionless if, and only if, the

associated capacity is additive with respect to this event and it is equivalent to all

probabilities’ values for this event in the Weber set being equal to the capacity’s

value.

Proposition 6.1 Let ~p : RX ! R be a Choquet pricing rule with respect to the
capacity m : P ðXÞ ! ½0; 1�. Let E be an event in P ðXÞ. The following statements
are equivalent:

(i) E is frictionless;
(ii) mðAÞ ¼ mðA \ EÞ þ mðA \ EcÞ for all A in P ðXÞ;
(iii) lðEÞ ¼ mðEÞ for all l 2 WðmÞ.

Furthermore, a payoff is frictionless if, and only if, it can be decomposed as a

sum of bets on frictionless events.

Proposition 6.2 Let X ¼
Pn

i¼1 xi1Ei
2 RX, where for all i xi [ xiþ1, xi 2 R and

Ei 2 P ðXÞ. Let ~p : RX ! R be a Choquet pricing rule. The following statements
are equivalent:

(i) X is frictionless;
(ii) for all i 2 1; . . .; nf g, Ei is a frictionless event.
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We deduce from Proposition 6.2 that the set of frictionless events forms a linear

space. We denote it U. On U, the FTAP applies and any probability of the Weber set

of m can be used to price payoffs: for all X 2 U,

~pðXÞ ¼ ElðXÞ where l 2 WðmÞ:

If we can determine that a risky payoff is frictionless, then it is possible to price a

large set of payoffs using the FTAP and any probability within the Weber set of the

capacity, and at the same time to price payoffs which are not frictionless with the

capacity. From another perspective, we can easily incorporate the existence of

frictionless payoffs when calibrating a capacity by letting the corresponding values

of the probabilities of the Weber set coincide.

It is not possible to have both risky frictionless payoffs and payoffs with friction

when prices are given by a GNAC: GNAC pricing rules require that either the

market is frictionless or that there exists no risky frictionless payoff on the market.

However, this loss of generality will turn out not to be an argument against GNAC

pricing rules. Indeed, it is very unlikely in practice that a risky frictionless payoff

will be encountered. Our first result is slightly more compelling: it demonstrates that

the absence of a bid–ask spread for a risky bet is necessary and sufficient for the

absence of bid–ask spreads on the whole market.

Lemma 6.1 Let ~p : RX ! R be a GNAC pricing rule with respect to the GNAC

m : P ðXÞ ! 0; 1½ � with bid–ask spread B : RX ! R. The following assertions are
equivalent:

(i) 9A 2 P ðXÞ such that A 62 f;;Xg and mðAÞ þ mðAcÞ ¼ 1;

(ii) BðXÞ ¼ 0 for all X 2 RX.

To account for the presence of a bid–ask spread on a risky payoff, it is necessary

to assume that all other risky payoffs present in the market have a bid–ask spread. In

practice, this condition does not seem unrealistically demanding because bid–ask

spreads are the most common type of frictions present in financial markets. Our

second result shows that a GNAC pricing rule is frictionless if, and only if, there

exists a frictionless event.

Proposition 6.3 Let ~p : RX ! R be a GNAC pricing rule and let E 62 f;;Xg be an
event. The following assertions are equivalent:

(i) E is a frictionless event;
(ii) ~p is frictionless.

We deduce from Propositions 6.2 and 6.3 that if there exists a frictionless risky

payoff, then the market is frictionless. Theoretically, this may seem a demanding

restriction but, in practice, it is unrealistic to assume that a risky payoff is

frictionless when the market is complete since it implies that this payoff may be

added to any other portfolio without friction. In conclusion, for practical valuation

matters, the loss of flexibility incurred by a GNAC pricing rule is not problematic
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when all risky payoffs have a bid–ask spread. Moreover, as we show in the next

section, GNAC pricing rules are compatible with the existence of a frictionless

subset of payoffs, namely those with matching extreme revenues. GNAC pricing

requires the reasonable assumption that any payoff of this subset can be added to a

portfolio composed of other payoffs of the subset without additional costs.

7 Characterization of GNAC pricing rules

From the definition of a Choquet expectation, when prices are given by a general

capacity, there is no friction among comonotone payoffs. This is a necessary

characteristic of Choquet pricing rules along with monotonicity and an additional

trait called constant modularity, viz. 8k 2 R, 8X 2 RX,

~pðmaxðX; kxrf ÞÞ þ ~pðminðX; kxrf ÞÞ ¼ ~pðXÞ þ k~pðxrf Þ. This result was demonstrated

by Greco (1982). In this section, we show that GNAC pricing rules can be

characterized by put–call parity, monotonicity, cash invariance and the absence of

friction among payoffs which yield extreme revenues in the same states of nature.

Since GNACs are a subset of capacities, we only have to demonstrate that a

Choquet pricing rule is GNAC if, and only if, there is no friction among payoffs

which yield extreme revenues in the same states of nature. The rest of the proof

results from the main theorem of CMM that we recalled in Sect. 3. We denote

argmaxX 2 P ðxÞ (or, argminX 2 P ðXÞ) the arguments of the maxima of X, that
is, the set of states of nature E where the coordinates of X are maximal (or,

respectively, minimal). We say that two payoffs X; Y 2 RX have matching extreme

revenues if their maximal and minimal revenues occur in the same states of nature,

that is, if

argmaxX \ argmax Y 6¼ ;; and

argminX \ argmin Y 6¼ ;:

We also expand the definition of frictionless payoffs, to absence of friction among

payoffs with matching extreme revenues in the following way. Let X; Y 2 RX be

two payoffs with matching extreme revenues, in this instance, there is no friction

among payoffs with matching extreme revenues if

~pðX þ YÞ ¼ ~pðXÞ þ ~pðYÞ:

We show that a Choquet pricing rule is a GNAC if, and only if, there is no friction

among matching extreme payoffs.

Proposition 7.1 Let ~p : RX ! R be a Choquet pricing rule. The following
assertions are equivalent:

(i) ~p satisfies no friction among payoffs with matching extreme revenues;
(ii) ~p satisfies no friction among bets with matching extreme revenues;
(iii) ~p is a GNAC pricing rule.
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GNAC pricing rules are compatible with markets in which put–call parity is

satisfied and there is no friction between matching extreme payoffs. NAC pricing

rules are slightly more restrictive. When the prices are given by a NAC, the events

in which the payoff yields its maximal revenue and its minimal revenue are both

overweighted. This adds constraints on the prices of non-matching extreme payoffs.

Indeed, Chateauneuf et al. (2007) showed that NACs imply that there exist

E;F;G;H 6¼ ; with E [ F 6¼ X, G [ H 6¼ X and E \ F ¼ ; ¼ G \ H such that

~pð1E[F0Þ� ~pð1E0Þ þ ~pð1F0Þ;
~pð1G[H0Þ� ~pð1G0Þ þ ~pð1H0Þ:

Thus, the set of prices given by a NAC is not compatible with financial markets in

which it is always more expensive to buy assets separately due to frictions. It is also

not compatible with a financial market in which buying assets separately is always

less expensive.
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Appendix

Proof of Lemma 4.1 We first assume that the bid–ask spread is proportional to a

constant. It follows immediately that the bid–ask spread of bets which yield 1 if

some event occurs, and 0 if the complementary event occurs, is constant.

Now, we assume that the bid–ask spread of bets of the form 1E0, where E is an

event of X, is equal to a constant k 2 R. We are going to show that the capacity

values of complementary events sum to a constant. For all E 62 f;;Xg, we have

Bð1E0Þ ¼ mðEÞ þ mðEcÞ � 1:

Thus,

mðEÞ þ mðEcÞ ¼ kþ 1 for all E 62 f;;Xg:

Finally, we assume that the capacity values of complementary events sum to a

constant k 2 R. We are going to show that the bid–ask spread is proportional to the

range of revenues. We let X 2 RX. We denote x1; . . .; xn the n coordinates of X such
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that x1 � x2 � . . .� xn. Up to reindexing the states of nature, we assume that the

payoff X yields xi in xi for all i 2 1; . . .; nf g. By definition, the bid–ask spread of X
equals

Xm

i¼1

xi½mð xj 2 X j j� i
� �

Þ � m xj 2 X j j\i
� �� �

� m xj 2 X j j� i
� �� �

þ m xj 2 X j j[ i
� �� �

�

which simplifies to

x1½mðfx1gÞ þ mðfx2; . . .;xmgÞ � 1� � xm½mðfx1; . . .;xm�1gÞ þ mðfxmgÞ � 1�:

By applying the above assumption and by substituting k ¼ k � 1, we obtain the

desired result

BðXÞ ¼ kðx1 � xmÞ:

Proof of Proposition 4.1 We first assume that there is no arbitrage in the bid–ask

spread. We are going to show that the capacity values of complementary events sum

to a real greater than 1. By assumption, we have

~pðXÞ� � ~pð�XÞ; for all X 2 RX:

In particular, we have

~pð1A0Þ� � ~pð�1A0Þ; for all A 2 P ðXÞ

which implies

mðAÞ þ mðAcÞ� 1; for all A 2 P ðXÞ:

Now, we assume that the capacity values of complementary events sum to a real

greater than 1. We are going to show that there is no arbitrage in the bid–ask spread.

We let X 2 RX be a payoff. We denote x1; . . .; xn the n coordinates of X such that

x1 � x2 � . . .� xn. Up to reindexing the states of nature, we assume that the payoff X
yields xi in xi for all i 2 1; . . .; nf g. Then by definition of a Choquet expectation, we
have

~pðXÞ ¼
Xm

i¼1

xi½m xj 2 X j j� i
� �� �

� m xj 2 X j j\i
� �� �

�

which, by assumption, is greater than

Xm

i¼1

xi½1� m xj 2 X j j[ i
� �� �

� ð1� m xj 2 X j j� i
� �� �

�:

This sum simplifies to
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Xm

i¼1

xi½m xj 2 X j j� i
� �� �

� m xj 2 X j j[ i
� �� �

�

which is equal to �~pð�XÞ. We hence obtain the desired result, for all X 2 RX,

~pðXÞ� � ~pð�XÞ:

Proof of Proposition 6.1 We are going to show that an event E is frictionless if, and

only if, the capacity is additive with respect to this event. We first assume that E is a

frictionless event. We are going to show that the capacity is additive with respect to

E. By assumption, we have

~pð1E0Þ þ ~pð�1E0Þ ¼ ~pð1E0þ ð�1E0ÞÞ

which implies

mðEÞ þ mðEcÞ ¼ 1:

Now, we let A 2 P ðXÞ such that A \ E 6¼ ; and A \ Ec 6¼ ;. Then by assumptions,

we have

~pð1E0þ 1A0Þ ¼ ~pð1E0Þ þ ~pð1A0Þ

and

~pð1Ec0þ 1A0Þ ¼ ~pð1Ec0Þ þ ~pð1A0Þ:

It implies

mðA \ EÞ þ mðE [ A \ EcÞ ¼ mðEÞ þ mðAÞ ð1Þ

and

mðA \ EcÞ þ mðEc [ A \ EÞ ¼ mðEcÞ þ mðAÞ: ð2Þ

We replace mðEcÞ by 1� mðEÞ, and we combine Eqs. 1 and 2 to get

mðA \ EcÞ þ mðA \ EÞ þ mðEc [ A \ EÞ þ mðE [ A \ EcÞ ¼ 1þ 2mðAÞ:

We now substitute mðEc [ A \ EÞ with ~pð1Ec[A\E0Þ and mðE [ A \ EcÞ with

~pð1E[A\Ec0Þ. By assumption, we get

mðA \ EcÞ þ mðA \ EÞ þ ~pð1Ec0Þ þ ~pð1A\E0Þ þ ~pð1E0Þ þ ~pð1A\Ec0Þ ¼ 1þ 2mðAÞ:

Then, again by assumption, we get the desired result

mðAÞ ¼ mðA \ EÞ þ mðA \ EcÞ:

Now we assume that the capacity is additive with respect to an event E. We are
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going to show that E is frictionless: we are going to show that for all a 2 R and all

X 2 RX,

~pðX þ aE0Þ ¼ ~pðXÞ þ a~pð1E0Þ: ð3Þ

We fix X 2 RX and we denote x1; . . .; xn its n coordinates such that

x1 � x2 � . . .� xn. We denote A2i�1 [ A2i the event in which the payoff yields xi
with ðA2i�1 [ A2iÞ \ E ¼ A2i�1, as in the following table

x1 x2 ... xn

E A1 A3 ... A2n�1

Ec A2 A4 ... A2n

so that all events in E have an odd subscript and all events in Ec have an even

subscript. Events Ai can be empty. We denote E the set of even integers in f1; . . .; ng
and O the set of odd integers in f1; . . .; ng and we fix i 2 O. We first show that Eq. 3

is satisfied for a[ 0. We denote q the ranking associated with X, and l the

corresponding probability in the Weber set. We consider another payoff,

Y ¼ X þ aE0, denoting qH the ranking associated with this payoff, and lH the

corresponding probability in the Weber set. We can now show that

lðAi [ Aiþ1Þ ¼ lHðAi [ Aiþ1Þ. By assumption, we can decompose mðfAj j
YðAjÞ� YðAiÞgÞ with respect to E, that is with respect to its odd and even events.

In other words, we have mðfAj j YðAjÞ� YðAiÞgÞ equal to

mðfAj j YðAjÞ� YðAiÞ; j 2 OgÞ þ mðfAj j YðAjÞ� YðAiÞ; j 2 EgÞ: ð4Þ

Similarly, we can decompose mðfAj j YðAjÞ[ YðAiÞgÞ with respect to E. It is equal
to

mðfAj j YðAjÞ[ YðAiÞ; j 2 OgÞ þ mðfAj j YðAjÞ[ YðAiÞ; j 2 EgÞ: ð5Þ

Since i is odd, we have

mðfAj j YðAjÞ� YðAiÞ; j 2 EgÞ ¼ mðfAj j YðAjÞ[ YðAiÞ; j 2 EgÞ: ð6Þ

By definition, the probability lHðAi [ Aiþ1Þ is equal to

mðfAj j YðAjÞ� YðAiÞgÞ � mðfAj j YðAjÞ[ YðAiÞgÞ

which, by Eq. 4, 5 and 6, is equal to

mðfAj j YðAjÞ� YðAiÞ; j 2 OgÞ
�mðfAj j YðAjÞ[ YðAiÞ; j 2 OgÞ:

By construction, the equalities
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mðfAj j YðAjÞ� YðAiÞ; j 2 OgÞ ¼ mðfAj j XðAjÞ�XðAiÞ; j 2 OgÞ

and

mðfAj j YðAjÞ[ YðAiÞ; j 2 OgÞ ¼ mðfAj j XðAjÞ[XðAiÞ; j 2 OgÞ

are satisfied. Thus, the probability lHðAi [ Aiþ1Þ is equal to

mðfAj j XðAjÞ�XðAiÞ; j 2 OgÞ � mðfAj j XðAjÞ[XðAiÞ; j 2 OgÞ

which, in turn, by assumption, is equal to lðAi [ Aiþ1Þ, yielding

~pðYÞ ¼ ~pðXÞ þ a~pð1E0Þ:

We also have

~pðX þ aEc0Þ ¼ ~pðXÞ þ a~pð1Ec0Þ:

We replace aEc0 by að1X � 1E0Þ and we use the assumption to replace ~pð1Ec0Þ by
1� ~pð1E0Þ to get

~pðX þ að1X � 1E0ÞÞ ¼ ~pðXÞ þ að1� ~pð1E0ÞÞ:

Hence,

~pðX � aE0Þ ¼ ~pðXÞ � a~pð1E0Þ:

It follows that, for all a 2 R and all X 2 RX,

~pðYÞ ¼ ~pðXÞ þ a~pð1E0Þ;

that is, E is a frictionless event.

Now, we can show that the capacity is additive with respect to an event E if, and

only if, all probability values in the Weber set coincide with the value of the

capacity for this event. We first assume that the capacity is additive with respect to

an event E. We are going to show that all the probabilities in the Weber set coincide

with the value taken by the capacity on E. We fix a probability l in the Weber set.

We consider a vector X associated with this probability, that is, there exists a

ranking q such that q is associated with X and l is associated with X. We denote

x1; x2; . . .; xn the coordinates of X such that x1 � x2 � . . .� xn. As shown in the

following table, we denote A2i�1 [ A2i the event in which the payoff yields xi such
that ðA2i�1 [ A2iÞ \ E ¼ A2i�1, so that all events in E have an odd subscript.

x1 x2 ... xn

E A1 A3 ... A2n�1

Ec A2 A4 ... A2n
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The relationship

mðfAj j XðAjÞ�XðAiÞgÞ � mðfAj j XðAjÞ[XðAiÞgÞ

simplifies to

mðfAj j XðAjÞ�XðAiÞ; j 2 OgÞ � mðfAj j XðAjÞ[XðAiÞ; j 2 OgÞ

when i is odd and lðEÞ is equal to

X2n

i ¼ 1

i 2 O

½mðfAj j XðAjÞ�XðAiÞ; j 2 OgÞ � mðfAj j XðAjÞ[XðAiÞ; j 2 OgÞ�

and simplifies to mðEÞ.
Now, we assume that all probabilities in the Weber set coincide with the capacity

value for an event E, and we will show that the capacity is additive with respect to

E. We let E1;E2 be two distinct subsets of X such that E ¼ E1 [ E2 and we consider

two events A and B such that A ¼ B [ E1 and B \ E ¼ ;. We let q be a ranking such

that qðE1Þ[ qðBÞ[ qðE2Þ[ qðXnðE1 [ B [ E2ÞÞ with the convention that

qðAÞ[ qðBÞ if qðxiÞ[ qðxjÞ for all xi 2 A and all xj 2 B. We let l be the

probability associated with q. We have lðEÞ equal to

mðE1Þ þ mðE1 [ B [ E2Þ � mðE1 [ BÞ

which is, in turn, equal to

mðA \ EÞ þ mðA [ EÞ � mðAÞ:

We let qH be a ranking such that

qHðBÞ[ qHðE1Þ[ qHðE2Þ[ qHðXnðE1 [ B [ E2Þ

and we let lH be the associated probability. We have lHðEÞ equal to

mðB [ E1 [ E2Þ � mðBÞ which is equal to mðA [ EÞ � mðA \ EcÞ

and we get the desired result:

mðAÞ ¼ mðA \ EÞ þ mðA \ EcÞ, for all A 2 P ðXÞ:

Proof of Proposition 6.2 We assume that X is a frictionless payoff. We are, therefore,

going to show that we can decompose it as a sum of frictionless events, in part, by

contradiction. We write X with the following form:
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X ¼
Xn

i¼1

xiEi
0:

We are going to prove that the Ei are frictionless. We assume that there exist some

Ai i 2 1; . . .; nf g that are not frictionless. Up to reindexing, we decompose X into

two sums. The left sum groups all xi’s on frictionless events and the right one groups
xi’s on events with frictions:

X ¼
Xk

i¼1

xiEi
0þ

Xn

i¼kþ1

xiEi
0:

We have ~pðX þ YÞ equal to

~p X �
Xk

i¼1

xiEi
0þ

Xk

i¼1

xiEi
0þ Y

 !
:

By assumption, this is not equal to

~p
Xn

i¼kþ1

xiEi
0

 !
þ ~p

Xk

i¼1

xiEi
0þ Y

 !
:

By additivity, the preceding equation is equal to

~p
Xn

i¼kþ1

xiEi
0þ

Xk

i¼1

xiEi
0

 !
þ ~pðYÞ:

We can now recognize ~pðXÞ þ ~pðYÞ, a contradiction.

Now, we assume that X can be decomposed as a sum of frictionless events. We

are going to show that X is frictionless. We have

X ¼
Xn

i¼1

xiEi
0;

where for all i 2 1; . . .; nf g xi 2 R, the events Ei are frictionless and

Xn

i¼1

1Ei
0 ¼ 1X:

If we let Y 2 RX, we have ~pðX þ YÞ equal to

~p
Xn

i¼1

xiEi
0þ Y

 !
:

This is, by assumption, equal to
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Xn

i¼1

~pðxiEi
0Þ þ ~pðYÞ

We get the desired result: ~pðXÞ þ ~pðYÞ for all Y 2 RX.

Proof of Lemma 6.1 We assume that there exists an event A 62 f;;Xg such that

mðAÞ þ mðAcÞ ¼ 1. We are going to show that the bid–ask spread is nil. From

Lemma 4.1, we have k ¼ mðAÞ þ mðAcÞ � 1. Thus, k ¼ 0 which entails BðXÞ ¼ 0 for

all X 2 RX.

Now, we assume that the bid–ask spread is null. By definition, the bid–ask

spread, Bð1A0Þ ¼ 0 implies k ¼ 0 with k ¼ mðAÞ þ mðAcÞ � 1.

Proof of Proposition 6.3 We assume that E is a frictionless event; we can show that ~p
is frictionless. We consider an event A 2 P ðXÞ, we have

mðAÞ ¼ mðA \ EÞ þ mðA \ EcÞ:

This implies

aþ bpðAÞ ¼ 2aþ bpðAÞ:

Hence, a ¼ 0. Moreover,

mðEÞ þ mðEcÞ ¼ b ¼ 1:

Thus a ¼ 0 and b ¼ 1. Therefore, for all A 2 P ðXÞ,

mðAÞ ¼ pðAÞ:

Now, if we assume that ~p is frictionless, then m is additive.

Proof of Proposition 7.1 First, we assume that the capacity is pairwise additive for

payoffs with matching extreme revenues. Then it is, in particular, additive for bets

with matching extreme revenues. We will now show that the capacity is a GNAC.

To do so, we consider the following property, which we call Property A.

Definition 8.1 (Property A, Eichberger et al. 2012) mðE [ FÞ � mðFÞ ¼ mðE [ GÞ �
mðGÞ is satisfied for all events E;F;G 2 P ðXÞ such that E [ F 6¼ X, E [ G 6¼ X,
E \ F ¼ ; ¼ E \ G, F 6¼ ;, G 6¼ ;.

Eichberger et al. (2012) showed in Lemma 3 that Property A is satisfied if, and

only if, the capacity is a GNAC. We will show that Property A is satisfied. We let

A;B 2 P ðXÞ, such that A \ B 6¼ ; and A [ B 6¼ X. The bets 1A0; 1B0 2 RX have

matching extreme revenues. Hence, by assumption

~pð1A0þ 1B0Þ ¼ mðA \ BÞ þ mðA [ BÞ

which is equal to mðAÞ þ mðBÞ. Hence, the result is
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mðA [ BÞ � mðBÞ ¼ mðAÞ � mðA \ BÞ:

We denote E ¼ AnA \ B, F ¼ A \ B and G ¼ B. We get Property A with F 	 G:

mðE [ GÞ � mðGÞ ¼ mðE [ FÞ � mðFÞ:

Moreover, if we let F1;F2 	 G then

mðE [ F1Þ � mðF1Þ ¼ mðE [ F2Þ � mðF2Þ:

Now, we assume that the capacity is a GNAC then by the definition of a GNAC

pricing rule, it is immediate that it is additive among payoffs with matching extreme

revenues. h
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