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Abstract
This paper takes a novel approach to studying the existence and stability of Nash

equilibria in N-firm Cournot–Bertrand oligopolies. First, we show that such games

can be monotonically embedded into a game of strategic heterogeneity, so that each

firm best responds to the choices of all other firms in a monotonic way. We then

show that this monotonicity can be exploited to derive conditions which guarantee

the existence of a unique, dominance solvable Nash equilibrium which is

stable under all adaptive dynamics. These conditions constitute a strict improvement

over existing results in the literature. Finally, we examine the effect on these

conditions resulting from additional firms entering the market.

Keywords Cournot–Bertrand competition � Games of Strategic Heterogeneity �
Stability

1 Introduction

Competition between firms and the stability of market equilibria have been some of

the most extensively studied topics in economics, starting with Cournot (1838), who

considered firms who compete by choosing the amount of product to produce, and

Bertrand (1883), who considered firms who compete by choosing which price to set.

Modern treatments of these issues (see for example, Amir 1996; Amir and

Evstigneev 2018; Vives 2001; Milgrom and Shannon 1994) have focused on the

consequences of the monotonicity present in such games, in the sense that Cournot

competition can be viewed as a game of strategic substitutes (GSS), where firms

best respond to a higher output choice by competitors by choosing a lower quantity,

while Bertrand competition can be viewed as a game of strategic complements
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(GSC), where firms best respond to a higher price set by competitors by choosing to

set a higher price themselves. This paper exploits the fact that through a simple

transformation, markets consisting of both price and quantity setting firms can be

viewed as games of strategic heterogeneity (GSH), where each firm is either a

strategic complements or a strategic substitutes player, and uses this framework to

derive new existence, uniqueness, and stability results in this class of games.

The case of when markets consist both of quantity competitors and price

competitors has received much less attention, despite their prevalence. For example,

following Tremblay et al. (2011, 2013), such situations persist in the market for

small cars, as well as produce markets, where producers compete in quantity while

local stores compete in price. One common theme in the theoretical literature has

been that the existence and stability of equilibria crucially depend on the degree of

product substitutability between firms. Singh and Vives (1984) give conditions

under which firms will choose to compete either entirely as quantity competitors or

entirely as price competitors, depending on whether the goods are complements or

substitutes. Tremblay et al. (2011) study the duopoly setting, and show in the case

of perfectly homogeneous goods, a unique equilibrium exists, which is also the

competitive equilibrium. Concerning the stability of equilibria, recent results have

focused exclusively on the duopoly case, where once again product substitutability

plays a prominent role. Tremblay and Tremblay (2011) and Askar (2014) derive a

bound on product substitutability which guarantees that an equilibrium will be

stable under continuous time dynamics, while Naimzada and Tramontana (2012)

give conditions for stability under discrete time best response dynamics.

The approach of this paper is to first show that N-player Cournot–Bertrand games

can be viewed as GSH. Notice that while the extreme cases of pure Cournot and

pure Bertrand markets are GSH (in specific, a GSS and a GSC, respectively), it is

not clear that N-player Cournot–Bertrand markets satisfy this requirement. To see

this, consider a price setting firm k. Notice that if all other price competitors set a

higher price, firm k will be induced to also set a higher price. However, if quantity

competitors set a higher quantity, firm k will be induced to set a lower price. Thus,

firm k does not best respond in a monotonic way to increases in the strategies of all

opponents, and hence this game fails to be a GSH. Despite this, we show that such

games can be ‘‘monotonically embedded’’ into a GSH, so that firms can be seen as

best responding in a monotonic way. To the best of the authors’ knowledge, this

paper is the first to apply monotonicity analysis to this class of games.

With this observation, the main contributions of this paper are the following: By

applying recent results in the GSH literature which show that many of the existence

and stability properties of equilibria in GSH are preserved under monotonic

embeddings, we are able to derive conditions on the product substitutability

parameter d 2 ð�1; 1Þ which guarantee the existence of a unique, dominance

solvable equilibrium which is stable under all adaptive dynamics. These conditions

offer distinct advantages over many of the results in the existing literature. Firstly,

in the case of a duopoly when goods are substitutes and firms have constant

marginal costs, both our results and those of Naimzada and Tramontana (2012)

guarantee the stability of a unique equilibrium as long as the degree of product
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substutability is such that d\ 2
ffiffi

5
p . However, while Naimzada and Tramontana

(2012) are able to guarantee stability under simple best-reply dynamics, we are able

to guarantee a unique, dominance solvable equilibrium which is stable under all

adaptive dynamics. Recall from Milgrom and Shannon (1994) that a learning

process is adaptive as long as agents eventually begin to respond to past play by

choosing undominated actions. Hence, adaptive dynamics consist of a very general

and broad range of learning rules, which include best-reply dynamics as a simple

case.

Secondly, we allow for non-linear cost structures in the case of two firms, and

show that if costs are sufficiently convex, then uniqueness and stability are always

guaranteed. We further extend the literature on stability in Cournot–Bertrand

markets by offering results for the general N-firm case, as well allow for product

complementarities. Finally, we study how our condition changes as either an

additional quantity or price competitor enters the market. We find that, in general,

the addition of a price competitor promotes stability in the case of substitute

products, while the addition of a quantity competitor has the opposite effect for both

substitutes and complements.

Formulating Cournot–Bertrand markets as monotone games offers several

insights and advantages. As evidenced by Example 3 in Barthel and Hoffmann

(2019), GSH with at least one strategic substitutes player, which we show to include

Cournot–Bertrand markets, may fail to have a stable or a dominance solvable

equilibrium, even if it the equilibrium is unique. Hence, methods such as the

contraction mapping theorem or the conditions of Bramoullé et al. (2014), all of

which guarantee the existence of a unique equilibrium, are not enough to address

stability or dominance solvability. However, the monotonicity inherent in such

markets can be exploited to construct a best-reply sequence which, when

convergent, guarantees the existence of a unique, globally stable equilibrium which

is stable under all adaptive dynamics.

This paper is organized as follows: Sect. 2 provides the model description as well

as the relevant notions concerning monotone games. Section 3 contains our first

result for the case of a Cournot–Bertrand duopoly, which provides a condition

which contains as a special case the condition found in Naimzada and Tramontana

(2012). Furthermore, we show that this condition not only implies the stability of an

equilibrium under best response dynamics, but that it also implies stability under all

adaptive dynamics, as well as guarantees the dominance solvability of such

equilibria. Section 4 introduces the notion of a monotone embedding which allows

us to extend this methodology to the case of N-firms. Finally, we study how this

condition changes as more firms of each type enter the market. Section 5 concludes.

2 Model and definitions

We will follow the model in Matsumoto and Szidarovszky (2011) by assuming that

there are N firms competing in a market, where the inverse demand function of firm

k is given by

123

On the existence and stability of equilibria. . . 473



pk ¼ ak � qk � d
X

N

i6¼k

qi:

Here, pk and qk denote the price and quantity for each firm, respectively, ak is a

demand intercept, and d 2 ð�1; 1Þ denotes the degree of substitutability/comple-

mentarity between the products of the firms.1 Let m denote the number of quantity

setting firms, and n be the number of price setting firms, so that nþ m ¼ N. We will

assume that each player’s action space is some interval Ak ¼ ½Kk; �Kk� � R. We also

assume that each firm k has some cost of production given by

CkðqkÞ ¼ c1kq
2
k þ c2kqk þ c3k ;

where c1k ; c
2
k ; c

3
k � 0. Also, as allowing for heterogeneous intercept terms ak does not

affect our results, we will assume that ak ¼ a for all firms k to ease notation.

We will analyze this model in the framework of games of strategic heterogeneity.

The next definition follows Barthel and Hoffmann (2019), but has been specifically

adapted for our environment. When not distinguishing whether a firm k is a quantity
or price competitor, we will denote its action as ak, and those of its competitors as

a�k.

Definition 1 A game C is a game of strategic heterogeneityðGSHÞ if the

following requirements are satisfied:

1. There are a finite number of players I ¼ f1; 2; :::Ng. Each player k has a

strategy space Ak ¼ ½Kk; �Kk� � R, with common element ak.
2. Each player k has a continuous profit function pk : A ! R, where A is the

Cartesian product of the Ak, with common element a.
3. For each player k, pk satisfies either increasing differences or decreasing

differences in ðak; a�kÞ.2

The notion of increasing (decreasing) differences captures the intuition that when

all opponents take a higher strategy, it is beneficial for me to take a higher (lower)

strategy. Note that each firm’s profit function can be written as

pk ¼ pkqk � Ck:

As pointed out by Amir et al. (2017), further restrictions need to be imposed on d in

the case of complementary goods to guarantee that the demand system is well-

behaved. Amir et al. (2017) provide such conditions for the case of (pure) Cournot

and Bertrand oligopolies. For the remainder of this paper, we will make the fol-

lowing similar regularity assumption for mixed Cournot–Bertrand oligopolies.

1 If d ¼ 0, the goods are unrelated. The goods are substitutes (complements) for d[ 0 (d\0). If d ¼ 1

(d ¼ �1), the goods are perfect substitutes (complements).

2 Recall that pk satisfies increasing differences in ðak; a�kÞ if o2pk
oakoaj

� 0 for each j 6¼ k, and decreasing

differences in ðak; a�kÞ if o2pk
oakoaj

� 0 for each j 6¼ k.
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Lemma 1 Suppose that d[ � 1
N�m for the linear inverse demand function given

above. Then

1. pk is strictly concave in the strategic variable ak for every firm k.
2. The demand functions in terms of each firm’s strategic variable satisfy the Law

of Demand, and have non-negative intercepts.

Proof See Appendix. h

In the duopoly case, this assumption implies that we can consider the entire

interval ð�1; 1Þ, which coincides with the result in Amir et al. (2017).

Then, in the case of a Cournot–Bertrand duopoly (n ¼ m ¼ 1), by allowing the

quantity competitor to be firm 1 and the price competitor to be firm 2, we have that

profits are continuously differentiable, and

o2p1
oq1op2

¼ d�ð\Þ0

and

o2p2
op2oq1

¼ �dð1þ 2c12Þ� ð[ Þ0;

for d�ð\Þ0 so that the requirements of a GSH are satisfied. One advantage of GSH

is the relationship between various solution concepts, which we now define.

We follow along the lines of Barthel and Hoffmann (2019) in defining the set of

serially undominated strategies, which are those strategies surviving the process of

iteratively deleting strictly dominated strategies. We will say that ak 2 Ak is a

strictly dominated strategy for player k if for for some a0k 6¼ ak, we have that for

each a�k

pkða0k; a�kÞ[ pkðak; a�kÞ:

Then, for some set of actions M�k � A�k, let us define

UkðMÞ ¼ fak 2 Ak j 8a0k 2 Ak; 9a�k 2 M�k; pkðak; a�kÞ� pkða0k; a�kÞg:

as the set of undominated responses to M�k. Then, for M � A, we define

UðMÞ ¼ ðUkðM�kÞÞ8k;

where M�k is the projection ofM onto Ak. The set of serially undominated strategies

is then the result of the following iterative process: Let M0 ¼ A, and for all z� 1, let

Mz ¼ UðMz�1Þ. Then the set

S ¼ \
z� 0

Mz

is defined to be the set of serially undominated strategies. We say that an equi-

librium a� 2 A is dominance solvable if it is the only serially undominated

strategy.
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To study stability, we define what it means for a sequence to be an adaptive

dynamic. To that end, let

PðT ; tÞ ¼ fas j T � s\tg

denote any sequence of play between time periods T and t. Also, for any set S, let

inf S and sup S define the infimum and supremum of S in RN , respectively. Then,

for a given PðT ; tÞ, we have that P̂ðT ; tÞ ¼ ½inf PðT ; tÞ; supPðT ; tÞ� is the smallest

interval containing the sequence of play PðT; tÞ. Then, a sequence of play ðasÞ1s¼0 is

an adaptive dynamic if, for each T � 0, there exists some T 0 � 0, such that for all

t� T 0,

at 2 ½inf Uð½P̂ðT ; tÞÞ; supUðP̂ðT ; tÞÞ�:

Intuitively, a sequence of play is adaptive as long as it eventually falls within the

bounds defined by the highest and lowest undominated responses to previous play.

Note that this is a very inclusive definition, and incorporates learning processes such

as best-response dynamics and fictitious play, among many others. We will call an

equilibrium strategy profile aH 2 A globally stable if every non-trivial3 adaptive

dynamic ðasÞ1s¼0 converges to it. That is, starting anywhere in the strategy space, as

long as players behave adaptively, they will come to learn to play the globally

stable equilibrium. Proposition 1 below draws a connection between dominance

solvability and global stability in GSH:

Proposition 1 (Barthel and Hoffmann 2019) Suppose that C is a GSH. Then there
exist lowest and highest serially undominated strategies (y and z, respectively) such
that all other serially undominated strategies are included in the interval [y, z].
Furthermore, C is dominance solvable if and only if there exists a globally

stable Nash equilibrium aH 2 A, in which case aH ¼ y ¼ z.

Proof See Theorem 1 in Barthel and Hoffmann (2019). h

Proposition 1 highlights the advantage of exploiting the monotonicity present in

Cournot–Bertrand oligopolies when evaluating the stability and uniqueness of

equilibria over other traditional methods. For example, while approaches such as the

contraction mapping theorem or the conditions of Bramoullé et al. (2014) guarantee

when a unique equilibrium exists, Example 3 in Barthel and Hoffmann (2019)

shows that in a GSH, a unique equilibrium may exist which is not dominance

solvable, and hence not globally stable by Proposition 1. Hence, the approach of this

paper will be to derive conditions under which C exhibits a unique, dominance

solvable equilibrium. To that end, let IC � I be those firms whose profit function

satisfies increasing differences, and IS � I be those players whose profit function

satisfies decreasing differences, and let BRkða�kÞ be the best response function for

firm k. Finally, let �ak and ak be the largest and smallest elements in firm k’s action
space, respectively. Then, consider the following iterative procedure:

• z0 ¼ ð�akÞk2I , y0 ¼ ðakÞk2I ,
3 ðasÞ1s¼0 is non-trivial as long as it is not a constant sequence.
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• z1 ¼
�

�

BRkða�kÞ
�

k2IS ;
�

BRkð�a�kÞ
�

k2IC

�

;

y1 ¼
�

�

BRkð�a�kÞ
�

k2IS ;
�

BRkða�kÞ
�

k2IC

�

:

• In general, for s� 1,

zs ¼
�

�

BRkðy�kÞ
�

k2IS ;
�

BRkðz�kÞ
�

k2IC

�

;

ys ¼
�

�

BRkðz�kÞ
�

k2IS ;
�

BRkðy�kÞ
�

k2IC

�

:

Lemmas 2 and 4 in Barthel and Hoffmann (2019) then show:

1. ðzsÞ1s¼0 and ðysÞ1s¼0 are decreasing and increasing sequences, respectively.

Furthermore, for each s� 0, zs � ys.
2. zs ! z and ys ! y.

Therefore, as long as we can derive conditions under which zs and ys converge to the
same point, Proposition 1 can be applied. We apply this intuition in Sect. 3 in the

case of a duopoly. Section 4 then extends this analysis to the case of N firms.

3 Cournot–Bertrand duopoly

We now apply our observations above to the case of a Cournot–Bertrand duopoly.

From now on, we will refer to firm 1 as the quantity competing firm, and firm 2 as

the price competitor. After solving demand for each firm’s strategic variable, best

response functions in the case of unconstrained strategy spaces are given by

qH1 ðp2Þ ¼
ð1� dÞa� c21

2ðð1� d2Þ þ c11Þ
þ d

2ðð1� d2Þ þ c11Þ
p2; 8p2 2 R

pH2 ðq1Þ ¼
að1þ 2c12Þ þ c22

2ð1þ c12Þ
� dð1þ 2c12Þ

2ð1þ c12Þ
q1; 8q1 2 R:

To define the strategy spaces, we assume that for each firm k ¼ 1; 2, Ak ¼ ½Kk; �Kk�,
where �Kk and Kk can be taken to be arbitrarily large and small, respectively. Notice

that because the main results of this paper give conditions under which a unique,

stable equilibrium is guaranteed to exist, this is without loss of generality. By

concavity of profit functions, best responses can then be expressed as

BR1ðp2Þ ¼
�K1; qH1 ðp2Þ[ �K1

qH1 ðp2Þ; otherwise,

K1; qH1 ðp2Þ\K1

8

>

<

>

:

8p2 2 A2;

BR2ðq1Þ ¼
�K2; pH2 ðq1Þ[ �K2

pH2 ðq1Þ; otherwise,

K2; pH2 ðq1Þ\K2

8

>

<

>

:

8q2 2 A1:
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With A1 and A2 defined, and recalling from previous discussion that for d�ð\Þ0,
firm 1 is a strategic complements (substitutes) player, while firm 2 is a strategic

substitutes (complements) player, we have now formulated the Cournot–Bertrand

duopoly as a GSH.

Our first result shows that following the iterative procedure described above

allows us to establish bounds on product substitutability which allow us to apply

Proposition 1. We show as an example that our condition subsumes that of

Naimzada and Tramontana (2012) as a special case, and more importantly allows us

to draw much stronger conclusions about the resulting equilibrium. Finally, our

result implies that if the costs of the quantity competitor are sufficiently convex,

then the hypothesis holds regardless of degree of substitutability.

Theorem 1 Let C be the Cournot–Bertrand duopoly described above and let
d 2 ð�1; 1Þ.4 Then, C has a unique, dominance solvable equilibrium which is
globally stable under all adaptive dynamics as long as

 

d2ð1þ 2c12Þ
4ðð1� d2Þ þ c11Þð1þ c12Þ

!

\1:

Proof We proceed by studying the limits of the iterative procedure described above

for the case when d� 0. The case when d\0 follows identically, the only difference

being which player is the strategic complements or substitutes player. Let

z0 ¼ ð �K1; �K2Þ, and y0 ¼ ðK1;K2Þ. When d� 0, firm 1 is the strategic complements

player, and hence it follows by the definition of the iterative procedure and best

responses that

z11 � y11 ¼ BR1ð �K2Þ � BR1ðK2Þ� qH1 ð �K2Þ � qH1 ðK2Þ�
d

2ðð1� d2Þ þ c11Þ
K;

where K ¼ maxf �K1 � K1; �K2 � K2g. Likewise, we have for firm 2 that

z12 � y12 ¼ BR2ðK1Þ � BR2ð �K1Þ� pH2 ðK1Þ � pH2 ð �K1Þ�
dð1þ 2c12Þ
2ð1þ c12Þ

K:

By way of induction, suppose that for s� 1 odd, we have for firm 1 that

zs1 � ys1 �
 

d

2ðð1� d2Þ þ c11Þ

!
sþ1
2
 

dð1þ 2c12Þ
2ð1þ c12Þ

!
s�1
2

K; ð1Þ

and for firm 2,

zs2 � ys2 �
 

d

2ðð1� d2Þ þ c11Þ

!s�1
2
 

dð1þ 2c12Þ
2ð1þ c12Þ

!
sþ1
2

K: ð2Þ

4 Recall from the discussion following Lemma 1 that the regularity assumptions on the profit functions

are satisfied for d 2 ð�1; 1Þ in the duopoly case.
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Then, for firm 1, we have that for such s� 1 odd,

zsþ1
1 � ysþ1

1 ¼ BR1ðzs2Þ�BR1ðys2Þ�qH1 ðzs2Þ� qH1 ðys2Þ ¼
 

d

2ðð1� d2Þþ c11Þ

!

ðzs2 � ys2Þ

�
 

d

2ðð1� d2Þþ c11Þ

! 

d

2ðð1� d2Þþ c11Þ

!
s�1
2
 

dð1þ 2c12Þ
2ð1þ c12Þ

!
sþ1
2

K

¼
 

d2ð1þ 2c12Þ
4ðð1� d2Þþ c11Þð1þ c12Þ

!
sþ1
2

K:

Likewise, for firm 2, we have that for such s�1 odd,

zsþ1
2 � ysþ1

2 ¼ BR2ðys1Þ � BR2ðzs1Þ� pH2 ðys1Þ � pH2 ðzs1Þ ¼
 

dð1þ 2c12Þ
2ð1þ c12Þ

!

ðzs1 � ys1Þ

�
 

dð1þ 2c12Þ
2ð1þ c12Þ

! 

d

2ðð1� d2Þ þ c11Þ

!
sþ1
2
 

dð1þ 2c12Þ
2ð1þ c12Þ

!
s�1
2

K

¼
 

d2ð1þ 2c12Þ
4ðð1� d2Þ þ c11Þð1þ c12Þ

!
sþ1
2

K:

It is readily checked that one more application shows that the next odd terms

satisfies Eqs. (1) and (2), respectively, completing the induction step. Therefore, as

long as

 

d2ð1þ 2c12Þ
4ðð1� d2Þ þ c11Þð1þ c12Þ

!

\1:

we have that the even terms of the sequences ðzsÞ1s¼0 and ðysÞ1s¼0 converge as

s ! 1. Finally, because ðzsÞ1s¼0 and ðysÞ1s¼0 are decreasing and increasing

sequences, respectively, we have that for all s� 1 and j� 1,

zsþj � ysþj � zs � ys;

which implies that the entire sequences ðzsÞ1s¼0 and ðysÞ1s¼0 converge. Because z
s !

z and ys ! y, it follows that z ¼ y, and hence Proposition 1 can be applied. For

d\0, we now have that firm 1 is the strategic substitutes player, while firm 2 is the

strategic complements player. The remainder of the proof follows similarly for this

case. h

We now discuss the strengths of Theorem 1: first, Naimzada and Tramontana

(2012) study the same Cournot–Bertrand duopoly specification, but in the case of

constant marginal costs, so that c1k ¼ 0 for both firms as well as require that d� 0.

They find that the unique equilibrium is globally stable under best-reply dynamics

as long as d\ 2
ffiffi

5
p . Observe that if we set c1k ¼ 0 for both firms, then our condition is

123

On the existence and stability of equilibria. . . 479



exactly equivalent to theirs. Note, however, that we are not only able to conclude

stability under best-reply dynamics, but under all adaptive dynamics, as well as

guarantee that the unique equilibrium is serially undominated. Furthermore, we are

able to account for more general cost structures by allowing for positive c1k terms in

both the substitute and complementary goods case. In particular, notice that if

c11 [
1þ 2c12
4ð1þ c12Þ

;

so that the quantity competitor has sufficiently convex costs, then Theorem 1 holds

for all d 2 ½�1; 1�.5
Section 4 extends the methodology used in Theorem 1 to the case of N-firm

Cournot–Bertrand oligopolies.

4 N-firm Cournot–Bertrand oligopoly

Wenow extend themethodology used in the the duopoly case to study the stability and

dominance solvability of equilibria in N-firm Cournot–Bertrand oligopolies, where

n;m� 1 and nþ m[ 2, as well as study the impact of the addition of both types of

firms to the market. Here, we will assume that firms have constant marginal costs

which, because these will play no role in our results, will be assumed to equal 0 for the

sake of notation. Then, after solving demand for the strategic variable of each firm, we

have that the best responses for each quantity competitor and price competitor 8a�k 2
RN�1 in the case of unconstrained strategy sets are given, respectively, by

qHk ða�kÞ ¼
að1� dÞ þ d

�

PN
i¼mþ1 pi � ð1� dÞ

Pm
i¼1;i 6¼k qi

�

2ð1� dÞð1þ ndÞ ;

pHk ða�kÞ ¼
að1� dÞ þ d

�

PN
i¼mþ1;i 6¼k pi � ð1� dÞ

Pm
i¼1 qi

�

2ð1þ ðn� 2ÞdÞ :

Notice that the denominators of both best response functions are positive under our

regularity assumption from Lemma 1.6 Hence, the slope of the best response

functions with respect to each opponent’s strategic variable solely depends on the

sign of d. As in the duopoly case, we will assume that for each firm k 2 I,

Ak ¼ ½Kk; �Kk�, for some arbitrarily large and small �Kk and Kk, respectively. By

concavity of profit functions, best responses can then be expressed in a manner

similar to the duopoly case.

5 This can be seen by setting d ¼ 1 (d ¼ �1) and noting that
d2ð1þ2c1

2
Þ

4ðð1�d2Þþc1
1
Þð1þc1

2
Þ is increasing (decreasing) in

d for d� 0 (d\0).

6 This observation follows immediately for the quantity players when d[ � 1
N�m ¼ � 1

n. For the price

competitors, notice that the term 1þ ðn� 2Þd is equal to 1� d[ 0 for all d 2 ð�1; 1Þ for n ¼ 1 and 1

for n ¼ 2. For all n[ 2, we have that � 1
n�2

\� 1
n and hence 1þ ðn� 2Þd[ 0 for all d[ � 1

N�m in this

case as well.
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One crucial observation is that this game is not a GSH, and therefore, Proposition 1
cannot be applied as in the duopoly case. To see this, notice that both price and quantity

competitors best respond in amonotone decreasing way to other quantity competitors,

but in a monotone increasing way to other price competitors. That is, firms do not

respond in amonotonic way to an increase in the decisions of all other firms, and hence

the definition of a GSH is not satisfied. Our next result shows that Cournot–Bertrand

oligopolies can be ‘‘monotonically embedded’’ into a GSH so that Proposition 1 can

still be applied.We adapt to our setting the definition of amonotonic embedding given

in Barthel and Hoffmann (2019):

Definition 2 Let C ¼ fI; ðAk; pkÞk2Ig be any game, where each Ak � R is a closed

interval. We call eC ¼ fI; ð eAk; epk; fkÞk2Ig a monotonic embedding of C if the

following conditions hold for each firm k 2 I:

1. eAk is a set of actions for firm k, which is a closed interval in R.

2. epk : eA ! R is continuous, and satisfies either increasing or decreasing

differences in ðeak; ea�kÞ.
3. fk : Ak ! eAk is a homeomorphism, and either strictly increasing or strictly

decreasing.

4. For each a 2 A, we have that epkðf ðaÞÞ ¼ pkðaÞ (where f ðaÞ 	 ðfkðakÞk2IÞÞ.

To understand this definition, notice that (1) and (2) above first establish that the

game eC is a GSH. The last two requirements then define what it means for some

game C to be embedded monotonically into eC.
Proposition 2 below shows that Cournot–Bertrand oligopolies C can be

monotonically embedded into a GSH eC. The importance of this embedding is

that Proposition 1 can then be applied to C by studying eC.

Proposition 2 Let C be the N-firm Cournot–Bertrand oligopoly described above.

Then there exists a monotonic embedding eC of C. Furthermore, C is dominance

solvable if and only if eC is dominance solvable. Also, if a 2 A is the dominance
solvable strategy of C, it is also globally stable under every adaptive dynamic in C.

Proof See Appendix. h

Thus, we see that the Cournot–Bertrand oligopoly C can be evaluated as a GSH,

where each price competitor is a ‘‘strategic complements (substitutes)’’ player, and

each quantity competitor is a ‘‘strategic substitutes (complements)’’ player for

d�ð\Þ0. Then, conditions which imply dominance solvability in the transformed

game eC will also guarantee dominance solvability in C, where the resulting

dominance solvable equilibrium is guaranteed to be stable under adaptive dynamics.

To analyze the transformation described in Proposition 2, let IP � I and IQ � I
denote the price and quantity competing firms, respectively. Solving for

unconstrained optimal responses gives, for each price competitor k:
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~pHk ð~a�kÞ ¼
að1� dÞ þ d

�

P

i2IP;i6¼k ~pi þ ð1� dÞ
P

i2IQ ~qi

�

2ð1þ ðn� 2ÞdÞ ; 8~a�k 2 RN�1;

and for each quantity competitor k,

~qHk ð~a�kÞ ¼
�að1� dÞ � d

�

P

i2IP ~pi þ ð1� dÞ
P

i2IQ;i6¼k ~qi

�

2ð1� dÞð1þ ndÞ ; 8~a�k 2 RN�1:

Note that in the embedding eC of the Cournot–Bertrand oligopoly C, we have for

price competitors that eAk ¼ Ak ¼ ½Kk; �Kk�, while for quantity competitors,

eAk ¼ �Ak ¼ ½� �Kk;�Kk�. Thus, in eC, best responses for quantity competitors and

price competitors can be written, respectively, as

BRkð~a�kÞ ¼
�Kk; ~qHk ð~a�kÞ[ � Kk

~qHk ð~a�kÞ; otherwise,

� �Kk; ~pHk ð~a�kÞ\� �Kk

8

>

<

>

:

8~a�k 2 ~A�k:

BRkð~a�kÞ ¼
�Kk; ~pHk ð~a�kÞ[ �Kk

~pHk ð~a�kÞ; otherwise,

Kk; ~pHk ð~a�kÞ\Kk

8

>

<

>

:

8~a�k 2 ~A�k:

We now come to our second main result, which extends the methodology used in

the duopoly case to the oligopoly case.

Theorem 2 Let C be the N-firm Cournot–Bertrand oligopoly described above, and

suppose that d 2 ð� 1
N�m ; 1Þ. Then C has a unique, dominance solvable equilibrium

which is globally stable under all adaptive dynamics as long as7

� c1ðn;m; dÞ
2c2ðn;m; dÞ

�

\1;

where

1. c1ðn;m; dÞ ¼ maxfdðnþ ð1� dÞðm� 1ÞÞ;�dððn� 1Þ þ ð1� dÞmÞg,
2. c2ðn;m; dÞ ¼ minfð1� dÞð1þ ndÞ; 1þ ðn� 2Þdg.

Proof By Proposition 2, it is enough to show that this condition implies that the

monotonic embedding eC is dominance solvable. To do this, we will follow the same

iterative procedure described in Sect. 3.Wewill first show the d� 0 case. The proof for

d\0 follows similarly by simply adjusting for the fact that in this case, price (quantity)

competitors assume the role of the strategic substitutes (complements) players.

To that end, define K ¼ maxk2If �Kk � Kkg. Then, for each k 2 IP, we have

7 It is straightforward to show that for d\0, c1ðn;m; dÞ ¼ �dðn� 1Þ � dð1� dÞm and

c2ðn;m; dÞ ¼ ð1� dÞð1þ ndÞ, and for d� 0, c1ðn;m; dÞ ¼ dnþ dð1� dÞðm� 1Þ.

123

482 A.-C. Barthel, E. Hoffmann



z1k � y1k ¼ BRkðð �KiÞi 6¼kÞ � BRkððKiÞi 6¼kÞ� qHk ðð �KiÞi 6¼kÞ � qHk ððKiÞi 6¼kÞ

¼ d

2ð1þ ðn� 2ÞdÞ
X

i2IP;i6¼k

ð �Ki � KiÞ þ
dð1� dÞ

2ð1þ ðn� 2ÞdÞ
X

i2IQ
ð �Ki � KiÞ

� dðn� 1Þ þ dð1� dÞm
2ð1þ ðn� 2ÞdÞ K:

Notice that c2ðn;m; dÞ� 1þ ðn� 2Þd by definition, and that for d� 0,

dðn� 1Þ þ dð1� dÞm� dnþ dð1� dÞðm� 1Þ� c1ðn;m; dÞ. Hence,

z1k � y1k �
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!

K:

We can likewise show that for all k 2 IQ,

z1k � y1k �
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!

K:

Suppose by way of induction that for each k 2 I, and some s� 1,

zsk � ysk �
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!s

K:

Then, for each k 2 IP, we have

zsþ1
k � ysþ1

k ¼ BRkððzsþ1
i Þi 6¼kÞ � BRkððysþ1

i Þi 6¼kÞ� qHk ððzsþ1
i Þi 6¼kÞ � qHk ððysþ1

i Þj 6¼kÞ

¼ d

2ð1þ ðn� 2ÞdÞ
X

i2IP;i 6¼k

ðzsi � ysi Þ þ
dð1� dÞ

2ð1þ ðn� 2ÞdÞ
X

i2IQ
ðzsi � ysi Þ

� dðn� 1Þ
2ð1þ ðn� 2ÞdÞ

 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!s

K þ dð1� dÞm
2ð1þ ðn� 2ÞdÞ

 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!s

K

¼
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!s 

c2ðn;m; dÞ
2c1ðn;m; dÞ

!

K ¼
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!sþ1

K;

where the first inequality follows from the induction hypothesis, and the second to

last equality once again follows from the fact that c2ðn;m; dÞ� 1þ ðn� 2Þd by

definition, and that for d� 0, dðn� 1Þ þ dð1� dÞm� dnþ dð1� dÞðm� 1Þ�
c1ðn;m; dÞ. Because a similar argument holds for all k 2 IQ, we then have that for all
k 2 I, and s� 1,

zsk � ysk �
 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!s

K:

Hence, as long as

123

On the existence and stability of equilibria. . . 483



 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!

\1;

we have that the iterative procedure converges, giving the result. h

This theorem shows that existence and stability can be addressed simply from the

underlying parameters of the game: n, m, and d. To the best of the authors’

knowledge, this is the first condition to address the general N-firm Cournot–

Bertrand oligopoly. As an example of an application of Theorem 2, note that in the

case of n ¼ 2 and m ¼ 1 and d� 0, we have that c2ðn;m; dÞ ¼ 1 for all d\ 1
2
, so that

Theorem 2 is satisfied as long as d\1, which is of course true for all d\ 1
2
. For

d� 1
2
, we have that c2ðn;m; dÞ ¼ ð1� dÞð1þ 2dÞ, and hence Theorem 2 is satisfied

as long as

d

ð1� dÞð1þ 2dÞ\1;

which is true for all d\ 1
ffiffi

2
p . Hence, we can conclude that in the case of n ¼ 2 and

m ¼ 1, existence and stability can be guaranteed for all d 2 ½0; 1
ffiffi

2
p Þ. In fact, is is

straightforward to verify that for m ¼ 1 and arbitrary n� 1, Theorem 2 is satisfied

for all d\ 1
2
. Notice, however, that Theorem 2 does not generalize Theorem 1 in the

case when m ¼ n ¼ 1.

Our last result allows us to address how stability is affected by the entrance of

either a quantity or price competing firm. For each n;m� 1, we let P(n, m) denote
those ‘‘permissible’’ degrees of product substitutability d such that the condition in

Theorem 1 is satisfied in the duopoly case, or the condition in Theorem 2 is satisfied

for the general oligopoly case.

We now show that with the addition of a quantity competitor, the set P(n, m)
becomes smaller, and that the opposite is true after the addition of a price

competitor for d� 1
2
when the products are substitutes, while the addition of either

type of players negatively affects the size of P(n, m) in the case of when goods are

complements. To make comparisons involving the duopoly case, when referring to

the condition in Theorem 1, we will assume that each firm has constant marginal

costs, so that the c1k ¼ 0 for each firm, k ¼ 1; 2. When considering cases of d\0, we

will also assume the regularity condition stated in Lemma 1.

Theorem 3 Let C be an N�firm Cournot–Bertrand oligopoly, and let n;m� 1 be
given. Then,

1. P(n, m) is an interval containing 0.

2. Pðn;mþ 1Þ � Pðn;mÞ.
3. (a) For d 2 ½0; 1

2
Þ, Pðn;mÞ � Pðnþ 1;mÞ.

(b) For d 2 ð� 1
N�m ; 0Þ, Pðnþ 1;mÞ � Pðn;mÞ.

Proof See Appendix. h
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5 Conclusion

This paper studies the existence and stability of Nash equilibria in N-firm Cournot–

Bertrand oligopolies. Our approach differs from those in the existing literature in

that we first show that such games can be viewed as GSH, where each firm

monotonically responds to opponents’ actions. By framing this problem in a

monotone framework, we derive conditions on product substitutability d 2 ð�1; 1Þ
which guarantees the existence of a unique, dominance solvable equilibrium under

all adaptive dynamics. In the duopoly case, our condition coincides with the bounds

in Naimzada and Tramontana (2012), who study stability of Nash equilibrium under

best response dynamics. However, our condition implies stability not only under

best response dynamics, but under all adaptive dynamics. Moreover, contrary to

other studies in the literature that focus exclusively on substitutes, our result allows

for both complementary and substitute goods. We then generalize these results to

the N-firm mixed oligopoly case. Finally, we explore how our stability condition

changes as additional price or quantity competitors enter the market.

Appendix

Proof of Lemma 1

Proof To prove (1.), we will first express demand in terms of each firm’s strategic

variable. Let IQ � I denote the set of all quantity competitors and IP � I be the set
of all price competitors. Then, for each quantity competitor k 2 IQ,

pk ¼ A� bqk � c
X

j2IQ;j6¼k

qj þ f
X

j2IP
pj;

where

A ¼ ð1� dÞa
1þ ðN � m� 1Þd ; b ¼ ð1� dÞð1þ ðN � mÞdÞ

1þ ðN � m� 1Þd ;

c ¼ dð1� dÞ
1þ ðN � m� 1Þd ; f ¼ d

1þ ðN � m� 1Þd ;

and for each k 2 IP,

qk ¼ Â� b̂pk � ĉ
X

j2IQ
qj þ f̂

X

j2IP;j 6¼k

pj

where

Â ¼ ð1� dÞa
1þ ðN � m� 1Þd ; b̂ ¼ 1þ ðN � m� 2Þd

ð1� dÞð1þ ðN � m� 1ÞdÞ ;

ĉ ¼ dð1� dÞ
ð1� dÞð1þ ðN � m� 1ÞdÞ ; f̂ ¼ d

ð1� dÞð1þ ðN � m� 1ÞdÞ :
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Then each quantity competitor k’s profit function is given by

pk ¼ pk � qk ¼ A� bqk � c
X

j2IQ;j6¼k

qj þ f
X

j2IP
pj

0

@

1

Aqk; ð3Þ

while each price competitor k has the profit function

pk ¼ pk � qk ¼ pk Â� b̂pk � ĉ
X

j2IQ
qj þ f̂

X

j2IP;j 6¼k

pj

 !

: ð4Þ

Hence, for all k 2 IQ

o2pk
oq2k

¼ �2b ¼ �2
ð1� dÞð1þ ðN � mÞdÞ

1þ ðN � m� 1Þd ;

while for all k 2 IP

o2pk
op2k

¼ �2b̂ ¼ �2
1þ ðN � m� 2Þd

ð1� dÞð1þ ðN � m� 1ÞdÞ :

Notice that for N � m ¼ 1, the terms 1þ ðN � mÞd, 1þ ðN � m� 1Þd and 1þ
ðN � m� 2Þd are all positive for d 2 ð�1; 1Þ. For N � m ¼ 2, 1þ ðN � mÞd[ 0

for d[ � 0:5 ¼ � 1
N�m, while the other two terms are positive for all d 2 ð�1; 1Þ.

Finally, since for N � m[ 2 we have that � 1
N�m [ � 1

N�m�1
[ � 1

N�m�2
, we can

conclude that o2pk
oq2

k

\0 for all quantity competitors k and o2pk
op2

k

\0 for all price com-

petitors k for d[ � 1
N�m for all N� 2 and m� 1.

To show Part (2.), notice that the demand functions satisfy the Law of Demand

with a positive intercept when A; Â; b; b̂[ 0, which by the same argument as above

holds for � 1
N�m\d\1.

h

Proof of Proposition 2

Proof We first show the existence of a monotone embedding. Define eC in the

following way: For each price competitor k, let eAk ¼ Ak, and let fk : Ak ! eAk be

defined as fkðakÞ ¼ ak. For each quantity competitor k, let eAk ¼ �Ak, and let fk :

Ak ! eAk be defined as fkðakÞ ¼ �ak. It follows immediately that each each fk is a

homeomorphism and either strictly increasing or decreasing. Thus, because f : A !
eA is a bijection, we can describe each ea 2 eA as ea ¼ f ðaÞ for the appropriate a 2 A.

To define the epk : eA ! R, let us make the convention that for each a 2 RN ,

a ¼ ðp; qÞ, where p 2 Rn are those strategies from price competitors, and q 2 Rm

are those strategies from quantity competitors. Then, for each firm k define for each

a ¼ ðp; qÞ 2 RN ,
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epkðaÞ ¼ pkðp;�qÞ:

It then follows that for all a ¼ ðp; qÞ 2 A,

epkðf ðp; qÞÞ ¼ pkðf ðpÞ;�f ðqÞÞ ¼ pkðp; qÞ;

and that the epk are continuous on eA. Specifically, for the profit functions pk given in

equations (4) and (5) above, we have that for each price competitor k

epk ¼ epk Â� b̂epk þ ĉ
X

j2IQ
eqj þ f̂

X

j2IP;j6¼k

epj

 !

and for each quantity competitor k

epk ¼ �A� beqk � c
X

j2IQ;j 6¼k

eqj � f
X

j2IP
epj

0

@

1

A

eqk:

Then, for price competitors k and each j 6¼ k

o2epk

oepkoeqj
¼ ĉ ¼ dð1� dÞ

ð1� dÞð1þ ðN � m� 1ÞdÞ and

o2epk

oepkoepj
¼ f̂ ¼ d

ð1� dÞð1þ ðN � m� 1ÞdÞ ;

while for each quantity competitor k and each j 6¼ k

o2epk

oeqkoeqj
¼ �c ¼ �dð1� dÞ

1þ ðN � m� 1Þd and

o2epk

oeqkoepj
¼ �f ¼ �d

1þ ðN � m� 1Þd :

Then, for each ea 2 eA, we have that for each price competitor k, and each j 6¼ k,

o2epk

oeajoeak
�ð� Þ0;

so that increasing (decreasing) differences is satisfied for d�ð� Þ0. For each

quantity competitor k, and each j 6¼ k, we have

o2epk

oeajoeak
�ð� Þ0;

so that decreasing (increasing) differences is satisfied for d�ð� Þ0, completing the

proof.

The fact that if eC is a monotone embedding of C implies that eC is dominance

solvable if and only if C is, and a 2 A is the dominance solvable strategy of C
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implies that it is globally stable under every adaptive dynamic in C, is proven in

Barthel and Hoffmann (2019). h

Proof of Theorem 3

Proof For the case of a duopoly, when n ¼ m ¼ 1, it is immediate that the condition

d2

4ð1� d2Þ\1 ð5Þ

from Theorem 1 is satisfied at d ¼ 0, and because this term is monotone in d, it
follows that P(1, 1) is an interval. For the case of more than two firms, first note that

in the case of d\0,

 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!

¼
 

�dððn� 1Þ þ ð1� dÞmÞ
2ð1� dÞð1þ ndÞ

!

;

which is equal to 0 at d ¼ 0. It is straightforward to check that the first derivative of

this expression with respect to d is negative as long as the regularity condition

d[ � 1
N�m of Lemma 1 is satisfied, and hence part 1 is satisfied for d\0.

For d� 0, notice that

c1ðn;m; dÞ ¼ dðnþ ð1� dÞðm� 1ÞÞ:

It follows that

 

c1ðn;m; dÞ
2c2ðn;m; dÞ

!

¼
 

dðnþ ð1� dÞðm� 1ÞÞ
2c2ðn;m; dÞ

!

is equal to 0 at d ¼ 0. Observe that c2ðn;m; dÞ is equal to 1þ ðn� 2Þd whenever

nd\1, and equal to ð1� dÞð1þ ndÞ otherwise. To complete the proof of part 1, it is

then sufficient to show that
c1ðn;m;dÞ
2c2ðn;m;dÞ is monotone increasing in d on [0, 1] in both

cases. First, it is straightforward to check that the first derivative of

dðnþ ð1� dÞðm� 1ÞÞ
2ð1� dÞð1þ ndÞ

with respect to d is non-negative for all n and d. It, therefore, only remains to show

that

dðnþ ð1� dÞðm� 1ÞÞ
2ð1þ ðn� 2ÞdÞ

is increasing whenever nd\1. Notice that the numerator of the first derivative of

this expression with respect to d can be written as

2ðnþ ðm� 1Þð1� 2d � d2ðn� 2ÞÞ;

and hence the derivative is non-negative as long as
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1� 2d � d2ðn� 2Þ� 0:

If n ¼ 1, this expression reduces to ðd � 1Þ2, which is always non-negative. Now

suppose that n� 2. Then nd\1 implies that

1� 2d � d2ðn� 2Þ� 2d2 � 3d þ 1;

where the right hand side is non-negative for d\ 1
2
. However, this is true, since

nd\1 and n� 2 implies d\ 1
2
, proving part 1.

For part 2, we first show Pð1; 2Þ � Pð1; 1Þ. Notice that for d� 0, we have that

d 2 Pð1; 1Þ � Pð1; 2Þ if

d2

4ð1� d2Þ �
d þ dð1� dÞ
2ð1� dÞ ;

which is readily verified. For d\0, we have that d 2 Pð1; 1Þ � Pð1; 2Þ if

d2

4ð1� d2Þ �
�d

1þ d
;

which is once again readily verified. The general oligopoly case for part 2 follows

immediately, as c2ðn;m; dÞ does not depend on m, and c1ðn;m; dÞ is increasing in m
for all d 2 ½�1; 1�.

For part 3, consider first the case when d� 0. First, it is straightforward to verify

that we first show ½0; 1
2
Þ � Pð1; 1Þ and ½0; 1

2
Þ � Pð2; 1Þ, and hence it is trivially true

that Pð1; 1Þ � Pð2; 1Þ for d\ 1
2
. For the general oligopoly case, first notice that

dnþ dð1� dÞðm� 1Þ
2ð1� dÞð1þ ndÞ \1

holds if and only if

dð1� dÞðm� 1Þ\2ð1� dÞ þ ndð1� 2dÞ:

Thus, when d\ 1
2
, if this inequality holds for n, it continues to hold for nþ 1. Also,

dnþ dð1� dÞðm� 1Þ
2ð1þ ðn� 2ÞdÞ \1;

holds if and only if

dð1� dÞðm� 1Þ\2þ dðn� 4Þ:

Hence, if this expression holds for n, it continues to hold for nþ 1.

To complete the argument, notice that because c2ðn;m; dÞ is the minimum of

ð1� dÞð1þ ndÞ and 1þ ðn� 2Þd, then if

dnþ dð1� dÞðm� 1Þ
2c2ðn;m; dÞ

\1
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holds, it continues to hold if we replace c2ðn;m; dÞ with either ð1� dÞð1þ ndÞ or
1þ ðn� 2Þd. By the above arguments, it follows that the inequality still holds for

both ð1� dÞð1þ ndÞ and 1þ ðn� 2Þd as we increase n, and hence for c2ðn;m; dÞ
as well.

Now consider the case when d\0. Once again, we have that d 2 Pð1; 1Þ as long
as equation 3 is satisfied, while d 2 Pð2; 1Þ if and only if

�2d þ d2

2ð1� dÞð1þ 2dÞ\1

It is straightforward to verify that for d\0,

d2

4ð1� d2Þ �
�2d þ d2

2ð1� dÞð1þ 2dÞ

Hence, we have that Pð2; 1Þ � Pð1; 1Þ. For the general oligopoly case, it is readily

checked that the expression

�dðn� 1Þ � dð1� dÞm
2ð1� dÞð1þ ndÞ

is increasing in n, and hence it follows that Pðnþ 1;mÞ � Pðn;mÞ. h
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