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Abstract
The main purpose of this paper is to compute the theoretical likelihood of some 
electoral outcomes under the impartial anonymous culture in four-candidate elec-
tions by using the last versions of software like LattE or Normaliz. By comparison 
with the three-candidate case, our results allow to analyze the impact of the number 
of candidates on the occurrence of these voting outcomes.

Keywords Voting rules · Voting paradoxes · Condorcet efficiency · Condorcet loser · 
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1 Introduction

A significant part of voting theory is concerned with the computation of the likeli-
hood of various electoral outcomes, including voting paradoxes. The basic motiva-
tion for these studies is of course to determine whether these possible paradoxical 
events might actually pose real threats to election; a good illustration of this line of 
research is the book by Gehrlein (2006), entirely devoted to the famous Condorcet’s 
paradox. Another possible motivation is to measure and compare the ability of alter-
native voting rules to meet some normative criteria, often based on majority princi-
ple (see, e.g., Gehrlein and Lepelley 2011, 2017).

In the literature, the most often used probabilistic model for computing the likeli-
hood of these events is the IAC model, introduced by Gehrlein and Fishburn (1976), 
with IAC standing for Impartial Anonymous Culture. IAC condition assumes that 
every voting situation is equally likely to occur, a voting situation being defined 
as a distribution of the voters on the possible preferences. The IAC computations 
have recently made substantial progress using the connection between IAC, on one 
hand, and Ehrhart’s theory on the other hand (see Huang and Chua 2000; Wilson 
and Pritchard 2007; Lepelley et al. 2008). However, with some notable exceptions 
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(Gehrlein 2001; Schürmann 2013; Brandt et al. 2016; Diss and Doghmi 2016, Bub-
boloni et al. 2018; and very recently, Bruns et al. 2019; Brandt et al. 2019; Diss and 
Mahajne 2019; Diss et al. 2019), the results available in the literature only deal with 
three-candidate elections, not because it is the most interesting case but due to the 
difficulties arising when considering more than three candidates. The first goal of 
this paper is to present some further illustrations of the following observation, first 
suggested by Schürmann 2013, and Bruns et al. 2019: an appropriate use of the last 
versions of software like LattE (De Loera et al. 2004, 2013) or Normaliz (Bruns and 
Söger 2015; Bruns et al. 2019) now allows to obtain exact results for four-candidate 
elections. Our second (and correlated) objective is to study the impact of the num-
ber of candidates on the occurrence of various electoral outcomes by comparing the 
results obtained with four candidates with the ones previously derived for the three-
candidate case.

We first provide a series of results on the likelihood of majority condition viola-
tions by some usual voting rules in four-candidate elections. Interestingly, some of 
these results have been obtained (independently) by Bruns et al. (2019), who use a 
method different from ours. As emphasized by these authors, it is a good test of the 
correctness of the algorithms involved.

The other results which we derive deal with the manipulability of two widely 
used voting procedures (plurality rule and plurality runoff), on one hand, and with 
the concordance of scoring rules to determine the winner on the other.

The remainder of the paper is organized as follows. The basic notions used in our 
study are introduced in Sect. 2. As our technical approach is partly original, Sect. 3 
is devoted to methodological considerations. Sections 4, 5, 6 offer our results and 
Sect. 7 concludes.

2  Voting rules and electoral outcomes

We consider an election with four candidates ( a , b , c and d ) and n voters ( n ≥ 2 ). 
The 24 possible complete preferences that a voter could have on the four candidates 
are numbered as indicated in Fig. 1.

We suppose that voters’ preferences are anonymous and we denote by ni 
( 1 ≤ i ≤ 24 ) the number of voters with preference Ri , so that n1 voters rank a first, b 
second, c third and d fourth. A voting situation (of size n ) reports the value of each 
ni and can be represented by a 24-tuple 

(
n1,… , n24

)
, such that:

and

We denote by V(n) the set of all voting situations with n voters and by V  the set 
of all voting situations. As mentioned above, the IAC model assumes that all pos-
sible voting situations are equally likely to occur. For a voting situation x in V(n) 

(1)
24∑
i=1

ni = n

(2)ni ≥ 0 (1 ≤ i ≤ 24).
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and two different candidates w , w′ , we will denote by Px

(
w,w′

)
 the number of voters 

that prefer w to w′ . For example, the numbers involved in the binary comparisons 
between a and b are:

A Condorcet Winner ( CW ) is a candidate who beats each other candidate in pair-
wise majority comparisons. In the same way, a Condorcet Loser ( CL ) is a candidate 
who loses against every other candidate in pairwise majority contests. To illustrate, 
candidate a is the CW if and only if the following inequalities are satisfied:

We will also make use of the notions of Absolute Condorcet Winner ( ACW ) and 
Absolute Condorcet Loser ( ACL ); a ACW is a candidate who is top ranked by more 
than half of the voters, and, similarly, a ACL is a candidate who is bottom ranked by 
more than half of the voters.

A voting rule is a mapping F associating with every voting situation x in V  a 
(winning) candidate F(x) in W . A “good” voting rule should select the CW when 
such a candidate exists ( CW condition) and should not select the CL when such a 
candidate exists ( CL condition). If a voting rule does not select the CW , it should 
at least select the ACW when such a candidate exists ( ACW condition); similarly, 
a voting rule should not select the ACL when such a candidate exists ( ACL condi-
tion). In this sense, the non-selection of the CW ( ACW ) or the selection of the CL 
( ACL ) can be considered as voting paradoxes. All voting rules studied in this paper 
belong to the class of (simple) scoring rules or to the class of elimination scoring 
rules. We evaluate the conditional probability of electing the CW or the ACW (given 
that such candidates exist) and the conditional probability to select the CL or the 
ACL (given that such candidates exist) for the following voting rules:

• Plurality rule ( PR ): the widely used Plurality Rule selects the candidate with a 
majority of first preferences.

• Negative plurality rule ( NPR ): it selects the candidate who obtains the minimum 
of last place votes.

• Borda rule ( BR ): in a four-candidate election, each candidate gets 0 points for 
each last place vote received, 1 point for each third place vote, 2 points for each 
second place vote, and 3 points for each first place vote. The candidate with the 
largest total point wins the election.

• Plurality elimination rule ( PER ): it is an iterative procedure, in which, at each 
step, the candidate who obtained the minimum number of first place votes is 
eliminated. The last candidate non-eliminated is the winner.

• Negative plurality elimination rule ( NPER ): at each step of this iterative proce-
dure, the candidate with the maximum number of last place votes is eliminated.

• Borda elimination rule ( BER ): at each step of this iterative procedure, the candi-
date with the minimum Borda score is eliminated.

Px(a, b) = n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14 + n17 + n19 + n20 + n23

Px(b, a) = n7 + n8 + n9 + n10 + n11 + n12 + n15 + n16 + n18 + n21 + n22 + n24.

(3)Px(a, b) − Px(b, a) > 0, Px(a, c) − Px(c, a) > 0 and Px(a, d) − Px(d, a) > 0.
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For the sake of simplicity, we will consider a truncated version of the three iter-
ative procedures, in which in a first step, the two candidates obtaining the lowest 
scores are eliminated and the second (and final) step is a majority contest between 
the two remaining candidates (in this case, PER coincides with the so-called plural-
ity runoff rule, often used in political elections). The particular versions of these 
elimination rules will be denoted by PRR ( PR Runoff), NPRR ( NPR Runoff), and 
BRR ( BR Runoff). It is worth noticing that BRR is susceptible to elect a candidate 
different from the CW when such a candidate exists, in contrast to BER (the non-
truncated version), which always selects the CW ; BRR can even choose a candidate 
different from the ACW , as shown in the following example: consider an election 
with 4 candidates and 15 voters: 4 voters have preference R1 , 4 voters have prefer-
ence R2, and 7 voters have preference R22 (see Fig. 1); candidate a is ranked first by 
an absolute majority of voters, and the Borda scores of a, b, c, d are (respectively) 
24, 30, 11, and 25; thus, c and a (the ACW ) are eliminated at the first step of the 
procedure.

Hence, the six voting rules that we consider here violate the CW condition. And, 
among these six rules:

 (i) BR , NPR , BRR and NPRR (and only these rules) violate the ACW condition;
 (ii) PR and NPR are the only rules violating the CL condition;
 (iii) and PR is the only rule violating the ACL condition (see, e.g., Lepelley 1989).

The results on the frequency of violation of each of the Condorcet (or majority) 
conditions which we have introduced will be presented in Sect. 4. In Sect. 5, we will 
tackle a completely different problem: we will compute the vulnerability of PR and 
PRR to strategic misrepresentation of preferences by coalitions of voters in four-
alternative elections. Finally, in Sect. 6, we will evaluate the probability that all the 
scoring rules select the same winner when the number of candidates is equal to four.

In the remainder of this study, we will need to compute the scores of the candi-
dates under each of the three scoring rules PR , NPR, and BR . For a scoring rule F , a 
candidate w, and a voting situation x, we will denote by SF(w, x) the score of w under 
F . We only write the scores of candidate a under each of the three rules (the other 
scores are easily obtained in the same way):

Fig. 1  The possible complete preference rankings on four candidates
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Note that the score of candidate a under the Negative Plurality rule can be 
obtained more simply as SNPR(a, x) = n −

(
n10 + n12 + n16 + n18 + n22 + n24

)
 . We 

conclude this section by emphasizing that, as we only consider large electorates, the 
problem of tied elections can be disregarded: under each of the voting rules which 
we study, the probability of ex aequo tends to 0 when n tends to infinity (see, e.g., 
Lepelley 1989).

3  Methodology

Under the IAC assumption, the voting events are often described by a parametric 
system of linear constraints with integer (or rational) coefficients on the variables ni 
and the parameter n. For example, with n voters, the event “ a is the CW ” is charac-
terized by the system formed by equality (1), the 24 sign inequalities in (2) and the 
three strict inequalities in (3). Thus, the frequency of a voting event E can be evalu-
ated by computing the number of integer solutions of the parametric linear system 
describing E . It is now well known in voting theory, since Wilson and Pritchard 
(2007) and Lepelley et al. (2008), that the use of polytopes and quasi-polynomials is 
the most appropriate mathematical tool for such computations.

3.1  Integral points in parametric polytopes

A rational polytope P of dimension d is a bounded subset of ℝd defined by a sys-
tem of integer linear inequalities. P is said to be semi-open when some of these 
inequalities are strict. A parametric polytope of dimension d (with a single param-
eter n ) is a sequence of d-dimensional rational polytopes Pn ( n ∈ ℕ ) of the form 
Pn =

{
x ∈ ℝ

d ∶ Mx ≥ bn + c
}
 , where M is an t × d integer matrix and b and c two 

integer vectors with t components. When the constant term c is equal to the zero 
vector, Pn is denoted nP and corresponds to the dilatation, by the positive integer 
factor n , of the rational polytope P defined by P =

{
x ∈ ℝ

d ∶ Mx ≥ b
}
 . In this case, 

Ehrhart’s theorem (1962) tells us that the number of integer points (lattice points) 
in nP is a quasi-polynomial in n of degree d , i.e., a polynomial expression f (n) in 
the parameter n where the coefficients are not constants, but periodic functions of 
n with integral period. Each coefficient can have its own period, but we can always 
write f (n) in a form where the coefficients have a common period called the period 

SPR(a, x) = (n1 + n2 + n3 + n4 + n5 + n6),

SNPR(a, x) =
(
n1 + n2 + n3 + n4 + n5 + n6

)
+
(
n7 + n8 + n13 + n14 + n19 + n20

)

+
(
n9 + n11 + n15 + n17 + n21 + n23

)
,

SBR(a, x) = 3
(
n1 + n2 + n3 + n4 + n5 + n6

)
+ 2

(
n7 + n8 + n13 + n14 + n19 + n20

)

+
(
n9 + n11 + n15 + n17 + n21 + n23

)
.
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of the quasi-polynomial (or the denominator of P ) and defined as the least common 
multiple (lcm) of the periods of all coefficients. The leading coefficient of the quasi-
polynomial f  is the same for all congruence classes and is equal to the (relative) 
volume of P.

Clauss and Loechner (1998) extended Ehrhart’s result to the general class of para-
metric polytopes Pn , showing that the number of lattice points in Pn can be described 
by a finite set of quasi-polynomials, each valid on a different subset of ℕ . Note that 
this implies that for n large enough, the number of lattice points in Pn is given by a 
single quasi-polynomial. Note also that this generalization makes possible to count 
the number of lattice points inside the dilatation of a semi-open polytope P . It suf-
fices to use the rule “ ∀x ∈ ℤ, x > 0 ⇔ x ≥ 1 ” to transform each strict inequality in 
the system describing nP into a non-strict inequality, and thus obtain a parametric 
polytope having the same number of lattice points than nP.

3.2  Limiting probabilities of voting events

Consider an election with n voters and m candidates. Let E be a voting event for 
which we want to calculate the probability under the IAC hypothesis. Let V(n) be the 
set of all possible voting situations of size n and (E, n) the set of all elements of V(n) 
in which E occurs. The probability of (E, n) is a function of n and is given by:

The expression of |V(n)| is well known: with m candidates, it is given by 

|V(n)| =
(
n + m! − 1

m! − 1

)
 . Hence, |V(n)| is a polynomial of degree m! − 1 and the 

coefficient of the leading term is equal to 1∕(m! − 1) . In general, (E, n) is described 
by a parametric linear system S(n) that defines a dilatation of a semi-open rational 
polytope P of dimension m! − 1 . Thus, |(E, n)| is equal to the number of lattice points 
inside nP and is given by the quasi-polynomial describing this number.

To compute |(E, n)| , we usually resort to (parametrized) Barvinok’s algorithm 
(Barvinok, 1994). The software [Barvinok] (see Verdoolaege and Bruynooghe 
2008) applies to any parametric polytope and can, therefore, deal with the case of 
interest for us, that of a dilated semi-open polytope. [Barvinok] performs very well 
for m = 3 and, since 2008, the use of this program has yielded many results giv-
ing the exact analytical representation for the frequency of various voting events. 
Note that in the case m = 3 , there are only 6 variables and the quasi-polynomials 
describing |(E, n)| are generally of degree 5. Unfortunately, with m = 4 , there are 24 
variables, the quasi-polynomials are of degree 23 and [Barvinok] does not allow to 
obtain the desired results. Other software packages such as LattE with its new ver-
sion Latte integrale (see [latte]) and Normaliz (see [Normaliz]) allow, in some cases, 
to calculate quasi-polynomials corresponding to polytopes of dimension 23. How-
ever, we know that for m = 4 , the periods of the quasi-polynomials can be very large 
and that the exact formulas for Pr(E, n) can be far too heavy for meaningful analysis. 

(4)Pr (E, n) = |(E, n)|∕|V(n)|.
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Therefore, in what follows, attention will be focused on the limiting case where the 
number of voters, n, tends to infinity.

We set the number of candidates to m = 4 and we denote by Pr(E,∞) the limit 
of Pr(E, n) when n tends to infinity. From the above, Pr(E, n) is the quotient of the 
quasi-polynomial |(E, n)| by the polynomial |V(n)| . For |V(n)| , the coefficient of the 
leading term is equal to 1∕23! . For |(E, n)| , this coefficient is independent of n and 
is equal to the volume of the semi-open polytope P obtained by taking n = 1 in the 
linear system S(n) . Going to the limit in (4), we get:

It is obvious that the same reasoning can be applied for conditional probabilities. 
In this case, Pr(E, n) is of the form Pr(E, n) = |||

(
E1, n

)|||∕
|||
(
E2, n

)|||, where (E1, n) and (
E2, n

)
 are two voting events characterized by some linear systems S(n) and T(n) that 

define two dilated semi-open polytopes, nP and nQ . If P and Q are of the same 
dimension, we can write:

In general, algorithms that compute the volume of polytopes are not always effi-
cient when, as in this paper, the number of variables is equal to 24. However, recent 
improvements in algorithms such as LattE, Normaliz or Convex (see [Convex]) have 
made it possible to obtain some results describing the probability of voting events 
with four candidates, requiring the calculation of the volumes of certain polytopes 
of dimension 23 (see Schürmann 2013; Bruns and Söger 2015; Brandt et al. 2016; 
Bruns et al. 2019). To compute the volumes involved in the calculations developed 
in the remainder of this paper, we will not use any algorithm of direct volume com-
putation (with, however, some exceptions1). Instead, we will apply a (new) method 
based on Ehrhart theory and on the combined use of two software, LattE integrale 
and lrs (see [lrs]). The command (count-ehrhart-polynomial) in the first program 
allows to calculate in a reasonable time (from a few seconds to a few hours) the 
quasi-polynomial associated with a dilated polytope nP . With LattE integrale, this 
computation is possible only when P is an integral polytope (i.e. when all its ver-
tices have integer coordinates). In this case, the quasi-polynomial has period equal 
to 1 and, hence, is simply a polynomial. The second program, lrs, allows to obtain 
(usually within seconds) the coordinates of all vertices of a rational polytope. Since 
in our calculations, P is in general a non-integral polytope, we proceed as follows 
to calculate Vol(P) . We start by dilating P by a positive integer factor k, such that 
the obtained polytope kP is integral; for this, k must be a multiple of the period of 
P . Now, we know by Ehrhart theorem that the period of P is a divisor of the lcm of 
the denominators of the vertices of P . It suffices then to take k equal to this num-
ber that we can easily obtain by applying the lrs program. After this step, we apply 
LattE integrale to the integral polytope kP and we obtain the polynomial associ-
ated with the dilated polytope nkP . It is obvious that if A is the coefficient of the 

(5)Pr(E,∞) = 23!Vol(P).

(6)Pr(E,∞) = Vol(P)∕Vol(Q).

1 See Sect. 6 and the “Appendix” where we make use of the last version of Normaliz to deal with some 
particularly complicated computations.
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leading term of this polynomial, then: A = Vol(kP) = k24Vol(P) . Finally, we have: 
Vol(P) = A∕k24.

4  Results on Condorcet conditions

For a total number of voters equal to n , let (X − F, n) be the event “ X is elected 
under F , given that X exists”, with X in {CW,CL,ACW,ACL} and F a vot-
ing rule in {PR,NPR, BR, PRR,NPRR,BRR} . We denote by Pr(X − F, n) and 
Pr(X − F,∞) the IAC probability of (X − F, n) and the limit of this probability when 
n tends to infinity. We know that Pr(CL − F, n) = 0 (and thus Pr(CL − F,∞) = 0 ) 
for F in {BR, PRR,NPRR,BRR}, Pr(ACW − F, n) = 1 for F in {PR, PRR} and 
Pr(ACL − F, n) = 0 for F in {BR,NPR, PRR,NPRR,BRR} . We derive the other 
probabilities in the following subsections.

4.1  Condorcet winner election

We assume without loss of generality that a is the CW . We denote by (CWa, n) the 
event “ a is the CW ” and by 

(
CWa

F
, n
)
 the event “ a is the CW and a is selected under 

F ”. It is easy to see that under IAC:

The voting situations x associated with the event (CWa, n) are characterized by 
the following parametric linear system:

Let Q1 be the (semi-open) polytope defined by the system T(1) . Applying the 
method described in Sect. 3, we obtain:

(7)Pr(CW − F, n) =

|||
(
CWa

F
, n
)|||

|(CWa, n)| .

T(n)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

n1 +⋯ + n24 = n

n
i
≥ 0, i = 1,… , 24

P
x
(a, b) − P

x
(b, a) > 0

P
x
(a, c) − P

x
(c, a) > 0

P
x
(a, d) − P

x
(d, a) > 0

Vol
(
Q1

)
=

101 × 23!

12457630654408572272640000
.
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4.1.1  Voting rules PR , NPR, and BR

For a voting rule F in {PR,NPR, BR} , the voting situations x associated with the 
event 

(
CWa

F
, n
)
 are characterized by the parametric linear system, SF(n) , consisting 

of the constraints in T(n) and the following three inequalities:

Let PF
1
 be the (semi-open) polytope defined by the system SF(1) . Taking the limit 

in (7) and using formula (6), we obtain the limit of the probability Pr(CW − F, n) as:

We have already calculated Vol
(
Q1

)
 . To calculate Vol

(
PF
1

)
 for PR , NPR and BR , 

we replace successively, in system SF(1) , the voting rule F by PR , NPR, and BR (by 
referring to the scores defined in Sect. 2), and then, we use the calculation method 
based on the LattE and lrs algorithms. Finally, we obtain:

Our result for Pr(CW − PR,∞) is in accordance with the value obtained by Schür-
mann (2013) and (more recently) by Bruns et al. (2019).

4.1.2  Runoff voting rules

Let F be a voting rule in {PR,NPR, BR} and FR be the runoff voting rule using F , so 
that FR belongs to {PRR,NPRR,BRR} . Let 

(
CW1a

F
, n
)
 and 

(
CW2a

F
, n
)
 be the events 

defined, respectively, by “ a is the CW and is ranked first under F ” and “ a is the CW and 
obtains the second score under F ”. As the CW always wins the second round, these two 
events describe the two possible configurations for the occurrence of the event (
CWa

FR
, n
)
 and we can then write: 

(
CWa

FR
, n
)
=
(
CW1a

F
, n
)
∪
(
CW2a

F
, n
)
 . The voting 

situations associated with 
(
CW1a

F
, n
)
 are the same as those associated with 

(
CWa

F
, n
)
 , 

and are, therefore, characterized by the system SF(n) . To characterize 
(
CW2a

F
, n
)
 , we 

must distinguish three cases according to the identity of the candidate ranked first under 
F ( b , c or d ). Since these three cases are symmetrical, we have |||

(
CW2a

F
, n
)||| = 3|(E, n)| , 

where (E, n) is the set of voting situations belonging to 
(
CW2a

F
, n
)
 and satisfying the 

additional condition that b is ranked first by the scoring rule F . This set is characterized 
by the parametric linear system, ZF(n) , formed by the five constraints in T(n) and the 
three additional inequalities SF(b, x) − SF(a, x) > 0 , SF(a, x) − SF(c, x) > 0, and 

SF(a, x) − SF(b, x) > 0, SF(a, x) − SF(c, x) > 0, SF(a, x) − SF(d, x) > 0.

Pr(CW − F,∞) =
Vol

(
PF
1

)

Vol
(
Q1

) .

Pr(CW − PR,∞) =
10658098255011916449318509

14352135440302080000000000
≈ 74.26%

Pr(CW − NPR,∞) =
2431999845589783615

4408976007260798976
≈ 55.16%

Pr(CW − BR,∞) =
828894710496058365982223276647

952076453898607919942860800000
≈ 87.06%.
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SF(a, x) − SF(d, x) > 0. Let KF
1
 be the (semi-open) polytope defined by the system 

ZF(1) . Using formula (6), we obtain the limit of the probability Pr(CW − FR, n) as:

We substitute successively, in system ZF(1) , the voting rule F by PR , NPR, and BR, 
and we use the calculation method based on LattE and lrs algorithms. We obtain:

Note that our result for PRR is in accordance with Bruns et al. (2019), who have 
obtained this probability (91.16%) using Normaliz.

4.2  Condorcet Loser election

As already mentioned, among the six rules studied, only PR and NPR are suscepti-
ble to elect the CL , when such a candidate exists. We assume without loss of gen-
erality that candidate a is the CL and we denote by (CLa, n) the event “ a is the CL ” 
and by 

(
CLa

F
, n
)
 , for F in {PR,NPR} , the event “ a is the CL and a is selected under 

F ”. It is easy to show that:

The voting situations x associated with the event (CLa, n) are characterized by the 
following parametric linear system:

Pr(CW − FR,∞) =
Vol

(
PF
1

)
+ 3Vol

(
KF
1

)

Vol
(
Q1

) .

Pr(CW − PRR,∞) =
19627224002877404784030049

21528203160453120000000000
≈ 91.16%

Pr(CW − NPRR,∞) =
18192354603646054002780049

21528203160453120000000000
≈ 84.50%

Pr(CW − BRR,∞) =
55789461223667462820836026969

56004497288153407055462400000
≈ 99.66%.

Pr(CL − F, n) =

|||
(
CLa

F
, n
)|||

|(CLa, n)| .

L(n)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

n1 +⋯ + n24 = n

n
i
≥ 0, i = 1,… , 24

P
x
(b, a) − P

x
(a, b) > 0

P
x
(c, a) − P

x
(a, c) > 0

P
x
(d, a) − P

x
(a, d) > 0
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The voting situations x associated with the event 
(
CLa

F
, n
)
 are characterized by the 

parametric linear system, MF(n) , consisting of the constraints in L(n) and the follow-
ing three inequalities:

To get the limit values of Pr(CL − F, n) , it is enough to compute the volume of 
the semi-open polytope defined by L(1) and the volume of the semi-open polytope 
defined by MF(1) for F in {PR,NPR} . After calculation, we obtain:

The same results have been obtained by Bruns et al. (2019) via Normaliz.

4.3  Absolute Condorcet winner election and Absolute Condorcet loser election

We assume without loss of generality that candidate a is the ACW and we denote 
by (ACWa, n) the event “ a is the ACW ”. The voting situations associated with 
this event are characterized by the parametric linear system obtained from T(n) 
when the three inequalities in (3) are replaced by the following single condition: 
n1 + n2 + n3 + n4 + n5 + n6 > n∕2 . Let Q′

1
 be the polytope associated with this new 

system. Computing Vol
(
Q

′

1

)
 and applying (5), we get:

This implies that the probability of having a ACW is equal to 
4 × Pr((ACWa,∞) =

5569

262144
≈ 2.12% . We know from Lepelley (1989) that the cor-

responding probability for the three-candidate case is 9

16
≈ 56.25% : consequently, 

moving from three to four candidates dramatically decreases the percentage of vot-
ing situations with a ACW.

Suppose, however, that such a candidate exists. What is the probability for this 
candidate to be selected? Proceeding as in Sect. 4.1, but replacing, everywhere in 
the calculations concerning NPR , BR , NPRR, and BRR , the inequalities describing 
the event (CWa, n) with the one describing the event (ACWa, n) , we obtain:

SF(a, x) − SF(b, x) > 0, SF(a, x) − SF(c, x) > 0, SF(a, x) − SF(d, x) > 0.

Pr(CL − PR,∞) =
325451674835828550681491

14352135440302080000000000
≈ 2.27%

Pr(CL − NPR,∞) =
104898234852130241

4408976007260798976
≈ 2.38%.

Pr((ACWa,∞) =
5569

1048576
.

Pr(ACW − NPR,∞) =
6712690981925

10775556292608
≈ 62.30%

Pr(ACW − BR,∞) =
36216780125610009500388529

36278317087318348922880000
≈ 99.83%



216 A. El Ouafdi et al.

1 3

Consider now the election of the ACL . Let (ACLa, n) be the event “ a is the ACL ”. 
The voting situations associated with this event are characterized by the system 
obtained from L(n) when the last three inequalities are replaced with the single con-
dition n10 + n12 + n16 + n18 + n22 + n24 > n∕2.

By a symmetry argument, the volume associated with this new system is equal to 
Vol

(
Q

′

1

)
 , so we have Pr(ACLa,∞) = Pr((ACWa,∞) . When an Absolute Condorcet 

Loser exists, the only voting rule (among the six rules that we consider) susceptible 
to elect such a candidate is the Plurality Rule. Proceeding as in subsection 4.2, but 
replacing everywhere in the calculations concerning PR the inequalities describing 
(CLa, n) with the one describing (ACLa, n) , we obtain:

4.4  Summary of the results on Condorcet conditions

Table  1 summarizes our four-candidate results on the ability of various voting 
rules to fulfill Condorcet conditions and compares these results to known results 
obtained in the literature for the three-candidate case (see Lepelley 1989; Gehr-
lein and Lepelley 2011 and Diss et al. 2018). The four-candidate results with an 

Pr(ACW − NPRR,∞) =
396415547534699

436410029850624
≈ 90.84%

Pr(ACW − BRR,∞) =
181391544872125635660776587

181391585436591744614400000
≈ 99.99%.

Pr(ACL − PR,∞) =
3950740911499

872820059701248
≈ 0.45%.

Table 1  CW election, CL 
election, ACW election, and 
ACL election

Events 3 candidates (%) 4 candidates (%)

CW − PR 88.15 74.26*
CW − NPR 62.96 55.16
CW − BR 91.11 87.06
CW − PRR 96.85 91.16*
CW − NPRR 97.04 84.50
CW − BRR 100 99.61
CL − PR 2.96 2.27*
CL − NPR 3.15 2.38*
ACW − NPR 60.76 62.30
ACW − BR 96.32 99.83
ACW − NPRR 97.53 90.84
ACW − BRR 100 99.99
ACL − PR 2.47 0.45
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asterix* have been independently obtained by Schürmann (2013) and Bruns et al. 
(2019) (Table 1).

Some interesting conclusions emerge from this comparison. First, it turns out 
that the probability of electing the CW , given that such a candidate exists, decreases 
when the number of candidates moves from three to four for each of the voting rules 
which we have considered. Note, however, that the decreasing rate is lower for BR 
(4.4%) than for PR (16%), NPR (12.4%), PRR (5.9%), and NPRR (12.9%). The abil-
ity to electing the CW (or Condorcet efficiency) of BR is now closer to the two-stage 
PRR value, and it is higher than the NPRR value. These results reinforce the conclu-
sion recently obtained by Gehrlein et al. (2018) that the expected benefit that would 
be gained from using two-stage voting rules like PRR or NPRR instead of BR is 
quite small.

Second, we find that the probability of electing the CL (the so-called Strong 
Borda Paradox) decreases from three to four candidates for PR and NPR, as well, 
thus (slightly) increasing the ability of these two voting rules to fulfill the CL 
condition.

Third, our results show that the impact of the number of candidates on the Abso-
lute Condorcet Winner election depends on the voting rule under consideration: 
when moving from three to four candidates, the probability of electing the ACW 
increases for NPR and BR, but decreases for NPRR (and, of course, for BRR , which 
satisfies the ACW condition in the three-candidate case). It is worth noticing that, in 
the four-candidate case, the BR probability is close to 100%: in this case, the pos-
sible non- election of the ACW should not be considered as a significant flaw of the 
Borda rule. In addition, it turns out that the truncated version of the Borda Elimina-
tion Rule which we consider here has only a very marginal impact on the ability of 
this rule to elect the ACW.

Finally, we obtain that the likelihood of the ACL election under PR is divided by 
5.5 when we move from three to four candidates: such an event becomes very unlikely 
when four candidates are in contention.

5  Results on coalitional manipulability

5.1  Coalitional manipulability of plurality rule

A strategic manipulation of a voting rule occurs in an election when some voters 
express insincere preferences to obtain a final winner that they prefer to the candidate 
that would have been elected if they had voted in a sincere way. To illustrate, consider 
the following voting situation (with 30 voters and 4 candidates), supposed to corre-
spond to the sincere preferences: n1 = 12, n7 = 10, n15 = 8, ni = 0 for all i ∉ {1, 7, 15} 
(the numbering of the preferences is the one given in Fig. 1). Under PR and sincere 
voting, a is the winner (with 12 votes for a , 10 votes for b , 8 votes for c, and 0 votes for 
d . If (at least) three of the eight electors who rank c in the first position vote for their 
second choice ( b ), then b is elected, and the voters who vote in an insincere way are 
better off, since they prefer b to a (the “sincere” winner). Such a voting situation is said 
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to be instable: a coalition of voters, by misrepresenting their preferences, may secure an 
outcome that they all prefer to the result of sincere voting.

It makes sense to evaluate the coalitional manipulability of a voting rule by calcu-
lating the proportion of instable voting situations when the voting rule under consid-
eration is used. We consider first the plurality rule. Let x be a voting situation where 
candidate a is elected under PR:

According to Lepelley and Mbih (1987), PR is not vulnerable to strategic manipula-
tion by a coalition of voters at this voting situation if, in addition, SPR(a, x) is higher 
than the number of voters preferring b to a , the number of voters preferring c to a, and 
the number of voters preferring d to a , that is:

Let Pn be the (semi-open) parametric polytope defined by the system formed 
by equality (1), the 24 sign inequalities in (2), the three inequalities in (8), and the 
three inequalities in (9). Applying formula (5) and multiplying by 4 (the number of 
candidates), we obtain that the probability for PR to be vulnerable to misrepresenta-
tion of preferences by coalitions of voters, denoted by Pr(Manip − PR,∞) , is given 
as: Pr(Manip − PR,∞) = 1 − 4 × 23!Vol

(
P1

)
 . Evaluating Vol

(
P1

)
 by the method 

described in Sect. 3, we obtain for the four-candidate case:

Lepelley and Mbih (1987) have shown that, in the three-candidate case, the vul-
nerability of PR to strategic manipulation by coalitions of voters for large elector-
ates is equal to 7∕24, i.e., 29.17%. We conclude that moving from three candidates 
to four candidates very significantly increases the PR vulnerability to strategic 
manipulation

5.2  Coalitional manipulability of plurality rule with runoff

Do we obtain a similar conclusion for PRR ? We know from Lepelley (1989) that 
the vulnerability of PRR to strategic manipulation for large electorate in three-can-
didate elections is equal to 1∕9, i.e., 11.11%. The aim of the current subsection is to 
investigate what happens when a further candidate is added.

Our computations will be based on the two following propositions.

(8)SPR(a, x) − SPR(b, x) > 0, SPR(a, x) − SPR(c, x) > 0, SPR(a, x) − SPR(d, x) > 0.

(9)
SPR(a, x) − Px(b, a) > 0, SPR(a, x) − Px(c, a) > 0 and SPR(a, x) − Px(d, a) > 0.

Pr(Manip − PR,∞) = 1 −
1938509031230593

15116544000000000
≈ 87.28%.
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Proposition 1 (Lepelley 1989) If a voting situation is such that either there is no 
CW or a CW exists and is not the PRR winner, then this voting situation is instable 
for PRR.

This first proposition is valid regardless of the number of candidates. The sec-
ond one only deals with four-candidate elections and needs some additional nota-
tion: Fx(a)  is the number of voters in x who rank a in first position (this is simply 
SPR(a, x) ), Fab

x
(c) is the number of voters in x who rank c in first position and prefer 

a to b , Fab
x
(d) is the number of voters in x who rank d in first position and prefer a 

to b , and y will denote the voting situation obtained from x after manipulation by a 
coalition of voters.

Proposition 2 Consider a four-candidate election and a voting situation x in V(n) 
in which candidate a is both the CW and the PRR winner. Then, x is instable under 
PRR if and only if there are two candidates, say b and c , different from a , such that

(i) Px(b, a) > Fx(a) , (ii) Px(b, a) > Fab
x
(d) , (iii) Px(b, a) + Fab

x
(c) > 2Fx(a) , (iv) 

Px(b, a) + Fab
x
(c) > 2Fab

x
(d) , (v) Px(b, c) > n∕2.

Proof2
Necessity Suppose that x is instable for PRR . It means that there exists a candidate 
different from a , say b , and a voting situation y derived from x , such that PRR(y) = b , 
and in which the manipulating voters belong to the set of voters preferring b to a in x . 
This implies that the scores of a and b in y are such that: ( � ) SPR(a, y) = Fx(a) and ( � ) 
SPR(b, y) ≤ Px(b, a) . As a is the Condorcet Winner in x , ( � ) implies that b cannot win 
in the first stage in y . Thus, there exists a candidate different from a and b , say c , who 
goes to the second stage with b in y and is beaten by b in this second stage. The only 
possible strategies for the manipulating voters being to rank b or c in the first position; it 
follows that: ( � ) SPR(b, y) + SPRR(c, y) ≤ Px(b, a) + Fab

x
(c) and ( � ) SPR(d, y) ≥ Fab

x
(d).

Condition (i) is necessary, because, if it does not hold, by ( � ) and ( � ), we would 
have SPR(b, y) < SPR(a, y) and this implies that b is either eliminated in the first stage 
or confronted to a in the second stage; in both cases, it contradicts the fact that b and c 
are together in the second stage in y . Similarly, (ii) has to hold: if not, by ( � ) and ( � ), we 
would have SPR(b, y) < SPR(d, y) , which would imply that b is either eliminated in the 
first round or confronted to d in the second stage, contradicting the presence of b and c 
in the second stage in y.

Condition (iii) is also necessary: if not, using ( � ) and ( � ), we would have 
SPR(b, y) < SPR(a, y) or SPR(c, y) < SPRR(a, y) . This would imply that either b or c (or 
both of them) would be eliminated in the first stage in y (contradicting the presence of 
b et c in the second stage). A similar argument using ( � ) and ( � ) instead of ( � ) and ( � ) 
shows that (iv) is necessary, as well.

2 Recall that we only consider large electorates; consequently, we ignore here the cases where two can-
didates obtain the same score: for instance, if the score of a is not strictly higher than the score of b, it 
means that the score of c is strictly lower than the score of c.
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Finally, condition (v) is necessary, because, to be the winner in y , b has to beat c in 
the second stage by a majority of votes.

Sufficiency Assume there exist two candidates, say b and c , different from a , such 
that conditions (i)-(v) hold. Let r = max

{
Fx(a),F

ab
x
(d)

}
+ 1 and s = Px(b, a) − r ; by 

(iii) and (iv), we have s ≥ 0 . Let y be the voting situation resulting from x where vot-
ers preferring b to a (all or part of them) strategically vote to have b ranked first exactly 
r times and c ranked first exactly s times (it is possible by (i) and (ii)). Thus, we have: 
SPR(a, y) = Fx(a) , SPR(b, y) = r , SPR(c, y) = s + Fab

x
(c) , and SPR(d, y) = Fab

x
(d) . It is 

then easy to see that SPR(b, y) > SPR(a, y) and SPR(b, y) > SPR(d, y) (by definition of 
r ), and SPR(c, y) > SPR(a, y) and SPR(c, y) > SPR(d, y) [by definition of r and s, and by 
(iii) and (iv)]. Consequently, b and c are selected for the second stage in y and b beats c 
in the second stage, by (v). Hence, PRR(y) = b , showing that x is instable for PRR . ◻

Let E1 denote the event “there is no CW “, E2 the event “ a is the CW and is not 
selected under PRR “, and E3 the event “ a is the CW , is selected under PRR and the vot-
ing situation is instable for PRR “. It follows from Proposition 1 that the probability for 
PRR to be vulnerable to misrepresentation of preferences by coalitions of voters can be 
written as (we assume large electorates):

We know from Gehrlein (2001) that, in four-candidate elections:

We easily deduce from the above-computed Condorcet Efficiency of PRR for four 
candidates (see Sect. 4.1.2) that:

and we have used Proposition 2 to obtain the following fraction for Pr
(
E3,∞

)
:

The computations are tedious and are detailed in “Appendix”. Using (10), we 
finally obtain the following result for Pr(Manip − PRR,∞):

i.e., Pr(Manip − PRR,∞) ≈ 38.63% . Consequently, the vulnerability of PRR to coa-
litional manipulation is multiplied by a factor higher than 3.4 when a fourth candi-
date is introduced! The manipulability of PRR remains, however, significantly lower 
than the one of PR.

(10)Pr(Manip − PRR,∞) = Pr
(
E1,∞

)
+ 4(Pr

(
E2,∞

)
+ Pr

(
E3,∞

)
.

Pr
(
E1,∞

)
=

331

2048
.

Pr
(
E2,∞

)
=

1717

8192

(
1 −

19627224002877404784030049

21528203160453120000000000

)

=
1900979157575715215969951

102713477163909120000000000
,

1087728064806496337719968633307455328929405251956556660146836615246691931

28884683852842846824715253851562078123198903658479616000000000000000000000
.

2789407566080353053037581459785742662134938536492206505121233415246691931

7221170963210711706178813462890519530799725914619904000000000000000000000
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6  Concordance of all scoring rules

In four-candidate elections, a scoring rule can be defined by a 4-tuple (1, �,�, 0) , 
with 1 ≥ � ≥ � ≥ 0 . Candidates get 1 point for each first position in voters’ rank-
ings, � points for each second position, � points for each third position, and 0 points 
for each last position. We obtain PR by taking � = � = 0 , NPR by taking � = � = 1, 
and BR by taking � = 2∕3 and � = 1∕3 . We wish to compute the probability that all 
the scoring rules agree, i.e., select the same winner, in four-candidate elections. This 
calculation is of interest, since it allows to know, a contrario, the proportion of vot-
ing situations for which the choice of a specific scoring rule is susceptible to impact 
the determination of the winner. In three-candidate elections, the result is known: 
Gehrlein (2002) shows that, in this case, the probability that all scoring rules give 
the same winner is equal to 113∕216 = 0.5231 ; thus, the proportion of voting situ-
ations where the choice of a particular voting rule really matters is about 48%. We 
would like to know how these figures are modified when we consider four-candidate 
elections. We know from Moulin (1988) that, in four-candidate elections, all the 
scoring rules will select the same winner if and only if the three “elementary” scor-
ing rules (1, 0, 0, 0), (1, 1, 0, 0), and (1, 1, 1, 0) lead to the choice of the same winner. 
The first and the third elementary scoring rules are simply PR and NPR ; we denote 
the second elementary rule by IR (the “intermediate” rule). The voting situations x 
(of size n ) at which the event “All the scoring rules select candidate a ” occurs are 
characterized by the system formed by (1), (2), and the following nine inequalities:

Let Pn be the (semi-open) parametric polytope defined by this system. Our 
method failed to compute the volume of P1 ; but we have been able to obtain the 
desired result using the latest version of Normaliz, based on a new computation 
technique called “Descent” (see Bruns and Ichim 2018). The numerator and the 
denominator of the fraction which we obtain are very high:

Using formula (5), multiplying by 4 (the number of candidates), and evaluating 
this fraction, we obtain the following probability for the event SW : “All the scoring 
rules give the same winner”:

We conclude that the probability that the choice of the voting rule impacts the 
winner determination increases from 48% to about 74% when the number of can-
didates moves from three to four. We note also that our result is consistent with the 
probability obtained by Bruns and Ichim (2018) for the concordance of the follow-
ing four voting rules: PR,NPR, BR, and MR (Majority Rule): they found that the 
probability that these voting rules select the same winner is about 31%.

SPR(a, x) − SPR(b, x) > 0, SPR(a, x) − SPR(c, x) > 0, SPR(a, x) − SPR(d, x) > 0

SIR(a, x) − SIR(b, x) > 0, SIR(a, x) − SIR(c, x) > 0, SIR(a, x) − SIR(d, x) > 0

SNPR(a, x) − SNPR(b, x) > 0, SNPR(a, x) − SNPR(c, x) > 0, SNPR(a, x) − SNPR(d, x) > 0.

9349139401127690533566796418557025794950223592401117880473766953518003491604967

3686714233060324324252649132772264674310716738771957491852880834872585173144239303735377920000000000000
.

Pr(SW,∞) = 0.2622325388.
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Another interesting result given in Gehrlein (2002) for three-candidate elec-
tions is the probability that all the scoring rules select the CW . Gehrlein obtains 
3437∕6912 = 0.4973 . Let SW = CW denote this event. Adding (3) to (1), (2) and 
the above inequalities, we obtain via Normaliz and using (5) that the probability of 
having candidate a as both the CW and the winner of all the scoring rules is given 
as:

Multiplying by 4, we have:

Hence, as in the case of three-candidate elections, the addition of the restriction 
that the common winner of the scoring rules is also a CW has little impact on the 
probability that all the scoring rules select the same winner.

7  Conclusion

We have derived in this paper some exact results for the likelihood of various elec-
toral outcomes and voting paradoxes under the IAC assumption in four-candidate 
elections. These computations have made possible a first investigation (based on 
exact results rather than on estimates obtained from simulations) of the impact of 
the number of candidates on the occurrence of these voting outcomes. Among other 
results, we showed that the non-election of the Absolute Condorcet Winner under 
the Borda rule and the election of the Absolute Condorcet Loser under the plurality 
rule are not a big concern when the number of candidates is equal to four. By con-
trast, the introduction of a fourth candidate significantly increases (1) the manipu-
lability of the plurality and plurality with runoff rules, and (2) the significance of 
voting rule selection.

From a technical point of view, the major part of our calculations have been done 
thanks to an original method, based on a combination of the software packages LattE 
and lrs. It seems, however, that the latest version of Normaliz is, at the present time, 
the most efficient software tool to obtain the IAC probabilities of electoral outcomes 
when more than three alternatives are in contention, as suggested by the recent paper of 
Bruns and Ichim (2018) and illustrated by the computations which we have conducted 
in Sect. 6 and in “Appendix”.

Appendix: Computation of Pr
(
E3,∞

)

Let 
(
E3, n

)
 be the set of all voting situations, of size n , in which E3 occurs. Since a must 

be first or second in the first stage of the sincere vote, by symmetry, we can write:

568055338354786205174773927167883538897629861665210587445140156808948928563283325950753

9219118392323556988436828144234260785430969385541058230555718020539119514419200000000000
.

Pr(SW = CW,∞) = 0.2464683993.

(11)
|||
(
E3, n

)||| = 3(|(G, n)| + |(H, n)|),
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where (G, n) is the set of the voting situations in 
(
E3, n

)
 for which a is first and b 

is second in the first stage, and (H, n) the set of the voting situations in 
(
E3, n

)
 for 

which a is second and b is first in the first stage. Considering all possibilities for the 
choice of the candidate who wins after manipulation and the candidate who goes 
with him to the second stage, we obtain:

Here, for � , � in {b, c, d} and � ≠ � , the notation 
(
G�� , n

)
 (resp. 

(
H�� , n

)
 ) denotes 

the subset of (G, n) (resp. (H, n) ) of voting situations where � and � go to the second 
stage after manipulation (in favor of � ) and � beats � by a majority of votes. For sim-
plicity, in what follows, these subsets will be denoted by G�� (resp. H��).

Using Proposition 2 and deleting the redundant inequalities, it follows that the vot-
ing situations x in Gbc , Gcb, and Gcd are characterized by the following parametric linear 
systems:

(12)(G, n) =
(
Gbc, n

)
∪
(
Gcb, n

)
∪
(
Gbd, n

)
∪
(
Gdb, n

)
∪
(
Gcd, n

)
∪
(
Gdc, n

)

(13)(H, n) =
(
Hbc, n

)
∪
(
Hcb, n

)
∪
(
Hbd, n

)
∪
(
Hdb, n

)
∪
(
Hcd, n

)
∪
(
Hdc, n

)
.

(Sbc
n
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 +…+ n24 = n

n1 +⋯ + n24 = n

P
x
(a, b) − P

x
(b, a) > 0

P
x
(a, c) − P

x
(c, a) > 0

P
x
(a, d) − P

x
(d, a) > 0

F
x
(a) − F

x
(b) > 0

F
x
(b) − F

x
(c) > 0

F
x
(b) − F

x
(d) > 0

P
x
(b, a) − F

x
(a) > 0

P
x
(b, a) + F

ab

x
(c) − 2F

x
(a) > 0

P
x
(b, c) − P

x
(c, b) > 0

(Scb
n
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 +⋯ + n24 = n

n
i
≥ 0, i = 1,… , 24

P
x
(a, b) − P

x
(b, a) > 0

P
x
(a, c) − P

x
(c, a) > 0

P
x
(a, d) − P

x
(d, a) > 0

F
x
(a) − F

x
(b) > 0

F
x
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By symmetry between candidates c and d , the systems characterizing Gbd , Gdb, 
and Gdc are obtained by permuting c and d in Sbc

n
, Scb

n
and Scd

n
, respectively; therefore, 

we have ||Gbd|| = ||Gbc|| , ||Gdb|| = ||Gcb||, and ||Gdc|| = ||Gcd||.
Now, we use (12) and we apply the inclusion–exclusion principle to calculate 

|(G, n)| . For the 15 pairwise intersections, it is obvious that Gbc ∩ Gcb , Gbd ∩ Gdb, 
and Gcd ∩ Gdc are empty, and that by symmetry, we have ||Gcb ∩ Gbd|| = ||Gbc ∩ Gdb|| , ||Gbd ∩ Gdc|| = ||Gbc ∩ Gcd|| , ||Gbd ∩ Gcd|| = ||Gbc ∩ Gdc|| , ||Gdb ∩ Gdc|| = ||Gcb ∩ Gcd|| , and ||Gdb ∩ Gcd|| = ||Gcb ∩ Gdc|| . Of the 20 triple intersections, the only ones that are (pos-
sibly) non-empty are the 8 that are obtained by choosing one and only one element 
in each of the three sets 

{
Gbc,Gcb

}
 , 
{
Gbd,Gdb

}
 and 

{
Gcd,Gdc

}
 ; and by symmetry we 

have ||Gbc ∩ Gbd ∩ Gcd|| = ||Gbc ∩ Gbd ∩ Gdc|| , ||Gbc ∩ Gdb ∩ Gcd|| = ||Gcb ∩ Gbd ∩ Gdc|| , ||Gcb ∩ Gbd ∩ Gcd|| = ||Gbc ∩ Gdb ∩ Gdc||, and ||Gcb ∩ Gdb ∩ Gcd|| = ||Gcb ∩ Gdb ∩ Gdc|| . 
Finally, all intersections of 4, 5, or 6 subsets G�� ( � , � in {b, c, d} and � ≠ � ) are 
empty, because each of them is included in (at least) one of the three empty inter-
sections, Gbc ∩ Gcb , Gbd ∩ Gdb, and Gcd ∩ Gdc (to form an intersection of 4, 5 or 6 
subsets G�� , it is necessary to choose the two elements of at least one of the sets {
Gbc,Gcb

}
 , 
{
Gbd,Gdb

}
 and 

{
Gcd,Gdc

}
).

We can now write the formula giving the cardinality of (G, n)∶

To obtain Pr(G,∞) , we replace each cardinality that appears in the second mem-
ber of (14) by the volume of the associated polytope (for example, the polytope 
associated with Gbc is the one described by the system Sbc

1
 ), and then, we divide 

by the volume associated with the total number of voting situations (i.e., by 1∕23! ). 
Using the method based on LattE and Lrs (and Normaliz for the triple intersections), 
we get the following results:

Volume of the associated polytope

G
bc 215799651022148336618223418954725782642961476613018207489968576368915

34517195601│1696627485451304216801706693769459989090225696942760631
389397188608000000000000000

G
cb 557328725615816454482227910067415486390657165825493267957282636323213

5917│53816333726441589162182814736360712092861708547806732820152320
00000000000000

G
cd 690763588675926208892200201275635242424317217116771810711456400097168

422586192409│108584159068883469875309228401245439301774444604336680
4089214200709120000000000000000

(14)

|(G, n)| = 2

(|||G
bc||| +

|||G
cb||| +

|||G
cd|||

)
−
(|||G

bc ∩ G
bd||| +

|||G
cb ∩ G

db|||
)

+ 2
|||G

bc ∩ G
db||| + 2

|||G
bc ∩ G

cd||| + 2
|||G

cb ∩ G
cd|||

+ 2
|||G

cb ∩ G
dc|||) + 2

|||G
bc ∩ G

dc|||
+ 2(

|||G
bc ∩ G

bd ∩ G
cd||| +

|||G
bc ∩ G

db ∩ G
dc|||

+
|||G

cb ∩ G
db ∩ G

dc||| +
|||G

cb ∩ G
bd ∩ G

dc|||

.
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Volume of the associated polytope

G
bc ∩ G

bd 437495870930736649855127528255082994516834134015800580312416390677735
5886621592418407│15783821593121799418221188750549477369596125747406
423643972960256000000000000000000000000

G
cb ∩ G

db 371668307604755922004052912809417026311491652333420360381433590516107
912320558408681833214907876615097308537557287│149865786232755160714
60371349256714458889547296595518795179705199098832012821943562641233
5975849000960000000000000000

G
bc ∩ G

db 737287950976919106080326758029796495041775821126099995591553611069010
59950083499782664269443828800493654344962886188347693│3197695068270
21125451226886147064465003853770355663104931071786212847273139053736
326218431673677463018274816000000000000000000

G
bc ∩ G

cd 112867869763858840602083748038141897630087342186785541038697068472975
3714450967582951899081133195953970779591091254147647624909│57302695
62340218568085985799755395212869059564773482840364806408934223134651
842954965834295592300137287484702720000000000000000000

G
bc ∩ G

dc 179120884374630246903781735660307774495056889927342505569670205616577
9778059081619821156647740788159470371527351823357│71965550548969028
17515270321913074283158760611825168125445294436607259132557097298780
320373560269026099200000000000000000

G
cb ∩ G

cd 156090914075338229952814649806280933859900502452413621807273601730707
932075993177383819│104173222514603876160259845753626550639334429932
882396050221537689600000000000000000000000

G
cb ∩ G

dc 169871965226875995373638321448221960851557358072284253875160535563392
94374740663419980423405997963504376939242487320875885987│1169442767
82453440165020118362355004344266521730071078374791967529269859890853
937856445597869230615046683361280000000000000000000

G
bc ∩ G

bd ∩ G
cd 67432403342333223948957072434548621923518296263405275132154792491929

7782590615439333218137279830648518311866993975500318502409742149903
│80033785283242194731712979559404601797220728230484228649869686152
6387919674178698272333760160140951092350184062976000000000000000000
000000

G
bc ∩ G

db ∩ G
dc 66224084947732991948095057625409755209795263748146831963545633222617

962161248153298557211890052296338881958196326711071188575733861237│
1026074170297976855534781789224877694611821446449338754679320110452
1010153428434228554274051487360193708141261619200000000000000000000
00000

G
cb ∩ G

db ∩ G
dc 172499040886591309105147664280974842140465399609634373368829431585429

271796091241844107326681316968683271609632632217239661825101449│337
46747041340105722597815634820568468427252834815492859245643706891499
07098236927927278529330469282801631887360000000000000000000000000

G
cb ∩ G

bd ∩ G
dc 643392533957704692205634948961666959707134893736156487067300619621472

3723│14770885442042769376198830238432027684092123485420931514368000
0000000000000000

After calculation, we obtain:

Pr(G,∞) =
52683297709949532142119507583496364663740732115091118336072352908066132417

13487448260227442240858216769041163302467817484765364224000000000000000000000
.
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To compute Pr(H,∞) , we use (13) and we proceed in exactly the same way as for 
Pr(G,∞) . Using Proposition 2 and deleting the redundant inequalities, we obtain the 
systems characterizing the voting situations x in Hbc , Hcb, and Hcd:

Here again, c and d being symmetrical, we obtain the same symmetries as before. 
Therefore, the formula describing the cardinality of (H, n) is exactly the same as 
(14), except that |(G, n)| is replaced with |(H, n)| and each G�� ( � , � in {b, c, d} and 
� ≠ � ) is replaced with H�� . By applying the method based on LattE and Lrs (and 
Normaliz for the triple intersections), we calculate the volumes of all the polytopes 
associated with the cardinalities involved in the second member of this formula. We 
then get:
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Volume of the associated polytope

H
bc 1122570228285484416840414329038859444597│220325176691251353873285120

00000000000000
H

cb 4815102613831086008681845331774767357│275406470864064192341606400000
0000000000

H
cd 485981497735338293476827865696676545853128182907903765949550544757009

6549131│26361525336980472814619866779884456112144324544588460703979
92960000000000000000

H
bc ∩ H

bd 6833482604299574922319228350257359109218343485126709565221│228793803
992037731981659487629131907072000000000000000000000

H
cb ∩ H

db 5049881685008345434475345496190114508046016393│104085197425154650591
76289612595200000000000000000

H
bc ∩ H

db 675827524940449071804022414564519275245666212472817163│8319774690619
55389811512540956047966208000000000000000000

H
bc ∩ H

cd 54527549003500598877896693999359561653981068895014160097048506522520
901040183861295097633826231569261│46107870190868020671174591850139
263031166900356375104588254062448121512540343640260608000000000000
00000

H
bc ∩ H

dc 830809118833755462394408493229532872140792805292163739032749293982961
6693208962854674889│62537875865694344280024099356736948368558083515
67447350530718940594490572800000000000000000

H
cb ∩ H

cd 536467444833359046580624594631977457827077563033371231007512557540128
954421668859753948816150778793│112943048674475849184731020600968212
4024272495502035679704440095241071735752097792000000000000000000000

H
cb ∩ H

dc 882980281781565946156111498159634243951438971711197622809467523797590
3263366333445667│24510239414342286607887164160978619779956136984391
328044408069530058752000000000000000000

H
bc ∩ H

bd ∩ H
cd 652636046867866986103758905203447012685777924133131483982623004161756

6152568440550895761885023785390756518058117863413│72165997365031664
0800632499178794169161379433659176148759480038830006753463537146339
3316550373015552000000000000000000000

H
bc ∩ H

db ∩ H
dc 987760979695491729713131336886222849186173537468343019201090980213224

186369431218746360706439232516885140014895617│329977125583135180978
7985821576562273257336230723256281479103972702362841625684253952133
767888896000000000000000000000

H
cb ∩ H

db ∩ H
dc 540439807752805447252150446083538533286573675570475751453358522271869

8855027095804933932537271634529787736605385657│38183067388905642370
4038359353859348762634620983691083999724888269844843102400606528746
90742714368000000000000000000000

H
cb ∩ H

bd ∩ H
dc 141767031443658485490372638618892830741501772123401878931601845278076

851988166862281062607360239016458736050692837│763661347778112847408
0767187077186975252692419673821679994497765396896862048012130574938
14854287360000000000000000000

After calculation, we obtain:

Pr(H,∞) =
86196191235167272312652407600525591350591906553065213523273899326331417319

9968983496689848612808247177117381571389256401783095296000000000000000000000
.



228 A. El Ouafdi et al.

1 3

Finally, going to the limit in (11), we have:
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