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Abstract
Models of choice over menus aim at capturing the effect of some behavioral or non-
standard element of decision-making on the behavior of a single decision-maker. These
models are usually compared with the standard model of choice over menus, in which
the decision-maker chooses a menu whose best item is better than that of all other
available ones. However, in many empirical settings such as experimental studies,
choice data come from a population of decision-makers with possibly heterogeneous
attitudes and tastes. This heterogeneity can make the observed choices over menus
stochastic. This fact calls for a stochastic characterization of models of choice over
menus to be able to better compare and contrast different models empirically. In this
paper, I do this task for the standardmodel, whichwould be an extension of the random
utility model to the realm of choice over menus. In particular, I provide the necessary
and sufficient conditions, i.e., axioms on (stochastic) choice data over menus for it to
be consistent with a population of decision-makers each ofwhombehaves according to
the standard model. The axioms that characterize the model are the axiom of revealed
stochastic preferences over singletons and three rationality axioms.

Keywords Stochastic choice · Random utility · Dynamic choice · Menu

1 Introduction

This paper is an attempt to extend the random utility model (RUM) to the realm of
dynamic choice. The framework that I am going to use is the one introduced by Kreps
(1979). In this framework, the decision is made in two stages. In the first stage, the
decision-maker chooses a menu from a set of available menus, out of which he/she
would choose an individual item in the second stage. For example, he/she might first
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choose a restaurant to then choose a meal from its menu once in the restaurant. In this
framework, menus derive all their values from what they contain. In other words, we
abstract away from situations in which menus have intrinsic values.

Following Kreps (1979), choices over menus have been employed by numerous
papers to model various issues and behavioral biases that are unidentifiable within the
classical framework when we only look at choices from menus, i.e., choices in the
second stage.1 All of thesemodels characterize the behavior of a single decision-maker.
These models are often compared with the standard model where the decision-maker
chooses a menu that offers the best item according to her preferences over individual
items.2 However, in many empirical studies, such as experimental settings, choice data
come in an aggregate form from a population of decision-makers who might differ
in their preferences and attitudes. In such scenario, choice data will appear stochastic
in the sense that different menus might be observed to be chosen from the same set
of available menus. This fact calls for modeling choices over menus in a stochastic
fashion to better test, calibrate, compare, and contrast different models of behavior.

This paper does precisely the above task when the underlying model of individual
behavior is the standard model. To do so, I assume that choices are generated via
random utility maximization. Specifically, I assume that there exists a probability
distribution over the set of all possible preferences over individual items, which in
turn leads to a probability distribution over the set of preferences over menus of items,
according to the standard model. For example, restaurant A is better than B if the
best meal of A is better than the best meal of B, according to the realized preference
relation over meals.3 I provide the necessary and sufficient conditions on stochastic
choices over menus for them to be compatible with the described model.

2 Related literature

On one hand, this paper is related to the literature on stochastic choice and in particular
the random utility model. To understand what the random utility model entails, let
X be the finite universal set of items. Menus, denoted by m,m′,m1, etc. are non-
empty subsets of X . Denote the probability of choosing an item x in a menu m by
ρ(x |m). ρ : X × 2X \ ∅ → [0, 1] is called the random choice rule and satisfies∑

x∈m ρ(x |m) = 1. This condition is a feasibility condition requiring the chosen
option to be available, i.e., to belong to m. Also, let O(X) be the set of all strict
orderings of X and denote a generic element of it by u. According to RUM, there
exists μ ∈ Δ(O(X)), such that

1 Some examples include Gul and Pesendorfer (2001), Ortoleva (2013), Kopylov (2012). These models
are discussed in more detail in Sect. 2.
2 This setting implies that the decision-maker does not perceive any uncertainty regarding future mood,
nor any temptation, cost of thinking, or any other behavioral biases in the second stage and her preferences
are stable over time.
3 Like the standard random utility model, one can attribute the stochasticity of choice alternatively to a
single decision-maker with random preferences or a population of decision-makers who have different
preferences in the first stage.
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ρ(x |m) = μ(u ∈ O(X)|∀y ∈ m, u(x) ≥ u(y)).

In words, ρ(x |m) is equal to the likelihood of having an strict ordering that places
x above all other items in m.4

Not all random choices are consistent with RUM. McFadden and Richter (1990)
provided the condition that characterizes RUM.5 The condition is called the axiom of
revealed stochastic preferences (ARSP), which goes as the following:
Axiom of Revealed Stochastic Preferences: For any list x1 ∈ m1, . . . , xn ∈ mn , the
following is true:

n∑

i=1

ρ(xi |mi ) ≤ max
u∈O(X)

n∑

i=1

1{∀ x j∈mi ,u(xi )≥u(x j )}.

The intuition for ARSP is the following: For every u ∈ O(X), let T (u) be the
number of items in the list that are ranked above all other items in their respective
menus, according to u. Also, let the right-hand side of the inequality above be equal to
T ∗. Therefore, for any u ∈ O(X), T (u) ≤ T ∗. On the other hand, the left-hand side
of the inequality above is some weighted average of (T (u))u∈O(X) and, therefore, is
less than T ∗, hence the inequality above.

On the other hand, this paper is closely related to the literature that studies choices
over menus.Menus are meant to represent the first stage of a dynamic decision process
that determine the available options in future stages. Apart from their relevance to
everyday decisions, in the theoretical literature, menus have been used to model and
identify some anticipated behavioral aspect or irregularity in decision-making that
cannot be fully identified in the classical static environments.

In the first paper on the subject, Kreps (1979) first characterizes deterministic pref-
erences over menus that are compatible with a single standard decision-maker. It turns
out a single axiom is all that is needed, which requires the union of any twomenus to be
indifferent to the more preferred one. Furthermore, Kreps (1979) studies the effect of
subjective uncertainty regarding future mood (i.e., second-stage preferences) on pref-
erences over menus and contrasts it with preferences of a standard decision-maker,
whodoes not perceive such uncertainty.He shows thatwhile a standard decision-maker
does not find the combination of twomenusmore valuable than both, a decision-maker
who perceives uncertainty regarding his/her future preferences might do so. In other
words, such uncertainty leads to a preference for flexibility.

Gul and Pesendorfer (2001), henceforth GP (2001), models the effect of temptation
and costly self-control in the second stage on preferences over menus. They consider
two scenarios. In one scenario, the decision-maker has temptation, but has the ability
to abstain by exerting costly self-control. In the other scenario, the decision-maker
falls to his/her temptation, no matter how much will they exert their will. The sec-
ond scenario is equivalent to the dual-self-model of intertemporal decision-making

4 RUM only focuses on strict orderings of X , because when we allow for arbitrary indifferences among
items, the model loses its empirical content, and any random choice rule will be rationalizable by the model.
This can be done if we put all the probability mass on the ordering that is indifferent between all items in
X and break the ties in a way that matches our random choice rule.
5 Block and Marschak (1960) also gave an alternative axiomatizations of the random utility model.
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proposed by Strotz (1955). In contrast to Kreps (1979), the decision-makers modeled
in GP (2001) might prefer commitment rather than flexibility. In particular, for these
decision-makers, the combination of any two menus will always be ranked in between
the two.

Ortoleva (2013) studies the effect of costly contemplation of choice or thinking in
the second stage on preferences over menus. In this model, such costly contemplation
might also lead to a preference for commitment.Also,Kopylov (2012) studies the effect
of perfectionism and guilt aversion on choices over menus. In all these models, in the
first stage, the decision-maker anticipates these irregularities and adjusts her choices
over menus accordingly to maximize her own utility. In some cases, the preferences
of the first- and second-stage selves are aligned, such as in Kreps (1979), Ortoleva
(2013) and temptation with self-control model of GP (2001). In some other cases,
there might be a conflict of interest between the two, such as the temptation without
self-control model of GP (2001).

There are a number of papers that incorporate random preferences in modeling
choices over menus. Stovall (2010) models a decision-maker who has temptation with
self-control as defined in GP (2001), but is uncertain about the temptation preference
which he/she would have in the second stage. In other words, the decision-maker
expects to have random temptations in the second stage when he/she is to choose an
item from the menu chosen in the first stage. Stovall (2010) assumes that the random
temptation preferences come from a finite set. The decision-maker anticipates this
randomness in the first stage and attaches an “expected utility” to each available menu
with the expectation being takenwith respect to the probabilities of different temptation
preferences. In contrast to my work, since the randomness is resolved in the second
stage in this model, preferences and choices over menus will be deterministic.

In a similar model, Dekel and Lipman (2012), henceforth DL (2012), characterize a
Strotzian decision-maker—one who suffers from temptation but without self-control
as defined in GP (2001) 6—who has a single normative preference over individual
items, but is uncertain about which temptation preference which he/she is going to
have in the second stage. They call such decision-maker random Strotzian. In this
paper, as in Stovall (2010), since the randomness is resolved in the second stage,
it will lead to deterministic preferences and choices in the first stage. DL (2012)
show that preferences that are modeled in Stovall (2010)—what they call random GP
preferences—have also a random Strotzian representation, assuming that the proba-
bility measure over the set of temptation preferences that the decision-maker considers
is nontrivial. They define a measure as nontrivial if it assigns zero measure to the set
of utility functions (preferences) that are indifferent between all individual items.

Chatterjee and Krishna (2009) consider a decision-maker that has two selves, a
long run self and a virtual self who have deterministic but different preferences over
the individual items. At stage one, the decision-maker—possessed by his/her long
run self—anticipates that his/her virtual self will take over in the second stage with
some privately known probability. Responding to this anticipation, the decision-maker
evaluates each menu by the expected utility of the chosen item in the second stage
evaluated by the long run self’s utility function and the expectation being taken with

6 The Strotzian model is inspired by Strotz (1955).
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respect to the probability that the virtual self will take over. Once again, this model
leads to deterministic preferences and choices in the first stage.

Another close paper to mine is a more recent work by Fudenberg and Strzalecki
(2015), henceforth FS (2015). This paper also aims at importing stochastic properties
of choice to a dynamic environment. In some aspects, FS (2015) Fudenberg and
Strzalecki (2015) is more general than my approach. In particular, this paper allows
for environments with an arbitrary finite number of stages, rather than only two stages.
Moreover, at each stage, they allow themenus to not only determine the future available
options, but also to have intrinsic values of their own. In contrast to my approach, FS
(2015) assumes that we observe choices in all stages. Moreover, it focuses on specific
stochastic choice models, such as logit, and does not characterize the general effect of
having random utilities on choices over menus.

In the next section, I introduce the stochastic version of the standard model and
provide a characterization of it.

3 Standardmodel

3.1 Preliminaries

X is the universal set of items and is finite. Menus are subsets of X and are denoted
by m,m′,m1 and so on.7 M ⊆ 2X \ {{∅}} denotes a generic collection of menus that
contain more than just the empty menu. SM denotes the union of all menus in M . For
every M and m, let M − m = {m′ − m|m′ ∈ M}. Call m a singleton if |m| = 1. The
set of all strict orderings of X is denoted by O(X), and the set of weak orderings of
X is denoted by WO(X). Without loss of generality, we can represent each ordering
of X , weak or strict, by an ordinal utility function. For the sake of simplicity, I use
orderings and utility functions interchangeably.

I assume that observable data consist of the probability of choosing an arbitrary
menu m in an arbitrary collection of menus M that contains m. Such probabilities are
represented via a function called the random menu choice rule, (RMCR), denoted by
ρ : 2X × 22

X \ {{∅}} → [0, 1], such that ∑m∈M ρ(m|M) = 1. Also, for all menus m
and collection of menus M , ρ satisfies ρ(m|M ∪ {∅}) = ρ(m|M). The latter means
that empty menus do not affect the choice probability of other available menus.

3.2 Representation

Before the first stage, u ∈ O(X) is realized according to a probability distribution
that is denoted by μ ∈ Δ(O(X)). In the first stage, one of the available menus in M
whose best item is better than that of all others according to u is chosen. In this model,
indifferences can arise whenever the intersection of m with some other menu in M
is not empty. To be more precise, whenever the best item according to the realized
utility function u lies in the intersection of m and some other menu in M , and then,

7 This treatment is a bit different from the standard treatment of menus in the literature such as the one
introduced in the previous section. Here, for the ease of exposition, I allow menus to be empty as well.
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the decision-maker becomes indifferent between m and those menus containing that
best item. This model stays silent about how these ties are broken. In other words,
conditional on a realized utility function, u, I only assume that the chosen menu is one
of the best available ones according to Vu .8 Formally, this translates to the following:
every u ∈ O(X) induces a weak ordering Vu ∈ WO(2X \ {∅}) of menus in the
following way:

Vu(m) = max
x∈m u(x).

As such, the standard model is equivalent to:

μ[u|∀m′ ∈ M, Vu(m) > Vu(m
′)] ≤ ρ(m|{m} ∪ M) (1)

≤ μ[u|∀m′ ∈ M, Vu(m) ≥ Vu(m
′)].

The inequality on the left requires that the probability of choosing m against the
menus in M to be weakly greater than the probability of having a utility function
u, such that Vu ranks m strictly above all menus in M . The inequality on the right
requires the probability of choosing m against the menus in M not to be greater than
the probability of having a utility function u, such that Vu ranks m weakly above all
menus M .

3.3 Axioms

In this section, I provide the axioms that characterize the standard model. Notice that
in this model, the restriction of observed choices to the collection of singletons is
similar to choices that are generated by a random utility maximizer in the realm of
static choice. Thus, the restriction of ρ to the set of singletons must satisfy ARSP. This
is stated formally in the following axiom.

1. ARSP Over Singletons Let n be a an arbitrary natural number. Also, for every
i ∈ {1, 2, . . . , N }, let Mi be a collection of singletons and {xi } ∈ Mi . Then, the
following holds:

n∑

i=1

ρ({xi }|Mi ) ≤ max
u∈O(X)

n∑

i=1

1{∀{x j }∈Mi ,u(xi )≥u(x j )}.

Now, consider three available restaurantswithmutually exclusivemenusm,m′,m′′.
Suppose that after a while, m and m′ merge into a single restaurant that serves the
menu m ∪ m′. After this change, the probability of choosing the new restaurant,
m ∪ m′ would be the same as the probability of choosing either m or m′, before
the merging took place. This observation leads us to the next merging additivity
axiom.

8 This is because it is not clear how such ties should be broken. Moreover, any tie breaking rule will only
make the model more complicated, without adding much to its content.
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2. Merging Additivity For all mutually exclusive menus m, m′, and m′′, we have:

ρ(m ∪ m′|{m ∪ m′,m′′}) = ρ(m|{m,m′,m′′}) + ρ(m′|{m,m′,m′′}).

To see how the next axiom works, consider a set of available restaurants M whose
menus do not overlap with restaurantm. The probability of choosingm against the
restaurants in M is only sensitive to the union of the items offered by restaurants
in M and not to how these items are distributed across different restaurants. This
property is formalized in the following reorganization invariance axiom.

3. Reorganization invariance For every menum and sets of menus M and M ′, SM =
SM ′ and m ∩ SM = ∅ imply:

ρ(m|{m} ∪ M) = ρ(m|{m} ∪ M ′).

Thenext axiom, disjointing inequalities, consists of two inequalities. Tounderstand
the axiom, consider an arbitrary set of available restaurants. If one of the restaurants
discards all the items on theirmenu that are found on themenu of the other available
restaurants, its choice probability would weakly decrease. Moreover, the level of
decrease in its choice probability is not greater than its choice probability when it
offers only the discarded items, and those items are removed from the menus of
all other available restaurants. These inequalities are formally stated below.

4. Disjointing inequalities For every menu m and set of menus M , we have:

(a)

ρ(m − SM |{m − SM } ∪ M}) ≤ ρ(m|{m} ∪ M).

(b)

ρ(m|{m} ∪ M) − ρ(m − SM |{m − SM } ∪ M})
≤ ρ(m ∩ SM |{m ∩ SM } ∪ (M − m)).

Now, we are ready to state the theorem.

Theorem An RMCR ρ satisfies axioms 1–4 if and only if there is a probability distri-
bution over O(X). such that the ρ satisfies (1), i.e.. ρ is rationalizable by the standard
model.

Proof The formal proof is in the appendix. Here, I provide an informal sketch for the
“only if” part. First, by ARSP over singletons and the fact that ARSP characterizes
RUM, it is guaranteed that a probability measure μ over preferences exists, such
that the restriction of ρ to singletons can be represented by (1). Next, using merging
additivity and reorganization invariance, for any such μ, I prove the validity of (1)
for bigger menus and when the menu in consideration is disjoint with other available
menus. Finally, using the disjointing inequalities, I prove the validity of (1) for cases
where the available menus might overlap. �

123



264 P. Heydari

Identification Note that when we confine ourselves to menus of deterministic out-
comes in X , the inferred probability measure μ ∈ O(X) above may not be unique.9

However, in an alternative framework, we can allow menus to contain lotteries over
X and assume that the decision-maker has a random cardinal utility function that
evaluates lotteries in Δ(X). In this framework, if we require the decision-maker to
be an expected utility maximizer in the realm of lotteries, then we can replace the
axioms of random expected utility model of Gul and Pesendorfer (2006) with our
ARSP axiom over singletons. Since the random expected utility model of Gul and
Pesendorfer (2006) uniquely identifies the probability distribution of the cardinal util-
ity function, our model would do so, as well. Other than that, the rest of our axioms
remain unchanged.

One important feature of the model is that adding an item x to a menum will always
increase the chance of choosing that menu against any collection of menus M that are
disjoint with m ∪ {x}. This is because all the preferences that rank m above all menus
in M still do so form∪{x}. However, there are extra new preferences that rankm∪{x}
above all menus in M , those that place x above all items that are found in m and the
menus in M . Therefore, all such preferences also choose m ∪ {x} over all menus in
M . One can think of this property as a form of stochastic monotonicity.

4 Conclusion

This paper is an attempt to characterize the implications of random preferences over
a set of items, when the actual choice objects are menus of such items. I assumed that
menus are not intrinsically valuable, and they draw all their values from what they
contain. I studied choices over menus generated by a population of decision-makers,
each of whom behaves according to the standard model. I showed that such choices
are characterized by four axioms, namely ARSP over singletons, merging additivity,
reorganization invariance, and disjointing inequalities.

One natural step forward is to investigate stochastic choices of a population of
Strotzian decision-makers who have different pairs of time-inconsistent preferences
over the set of individual items. Another natural future step is to incorporate the
stochasticity of choice in other famous models of choice over menus, such as the
temptation with self-control model of GP (2001) and the model of preference for
flexibility in Kreps (1979), among others.

A Proof of the Theorem

To prove the theorem, the following lemma is useful.

Lemma 1 For all disjoint m and m′, the following is true:

μ[u|Vu(m − m′) > Vu(m
′)] + μ[u|Vu(m ∩ m′) > Vu(m

′ − m)]
9 It is awell-known property of RUM that the inferred probabilitymeasure is not always uniquely identified.
For an example of the multiplicity of the probability measure, see McFadden (1978).
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= μ[u|Vu(m) ≥ Vu(m
′)].

Proof Consider a utility function u for which Vu(m) ≥ Vu(m′) and let x∗
u =

argmax
x∈m∪m′

u(x). Therefore

x∗
u ∈ m.

This implies that x∗
u ∈ m−m′ or x∗

u ∈ m∩m′. If the former is true, then Vu(m−m′) >

Vu(m′), and if the latter is true, then Vu(m ∩ m′) > Vu(m′ − m). Therefore

μ[u|Vu(m − m′) > Vu(m
′)] + μ[u|Vu(m ∩ m′) > Vu(m

′ − m)] (*)

≥ μ[u|Vu(m) ≥ Vu(m
′)].

Similarly, we can show that if for a utility function u if Vu(m − m′) > Vu(m′) or
Vu(m ∩ m′) > Vu(m′ − m), then Vu(m) ≥ Vu(m′). This implies that

μ[u|Vu(m − m′) > Vu(m
′)] + μ[u|Vu(m ∩ m′) > Vu(m

′ − m)] (∗∗)
≥ μ[u|Vu(m) ≤ Vu(m

′)].

(∗) and (∗∗) together will prove the lemma. �
Now, we are ready to state the proof of the theorem.
If part It is easy to check that if ρ satisfies (1), that is:

μ[u|∀m′ ∈ M, Vu(m) > Vu(m
′)] ≤ ρ(m|{m} ∪ M)

≤ μ[u|∀m′ ∈ M, Vu(m) ≥ Vu(m
′)], (1)

then it satisfiesARSP over singletons,merging additivity, and reorganization invari-
ance. It is also easy to check that if ρ satisfies (1) and m ∩ SM = ∅, then ρ

satisfies the disjointing inequalities. Therefore, we only need to show the disjoint-
ing inequalities follow by assuming (1) and m ∩ SM �= ∅. Since (m − SM ) ∩ SM =
(SM − m) ∩ (m ∩ SM ) = ∅, we have the following:

ρ(m − SM |{m − SM } ∪ M}) = ρ(m − SM |{m − SM , SM }),
= μ[u|Vu(m − SM ) > Vu(SM )] (2)

ρ(m ∩ SM |{m ∩ SM } ∪ (M − m)) = ρ(m ∩ SM |{m ∩ SM , SM − m})
= μ[u|Vu(m ∩ SM ) > Vu(SM − m)]. (3)

The first equalities in both lines above follow from merging additivity, which is a
consequence of (1). The second equalities follow directly from (1). Now, (2) and (3)
imply the following:

ρ(m − SM |{m − SM , SM }) + ρ(m ∩ SM |{m ∩ SM , SM − m})
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= μ[u|Vu(m − SM ) > Vu(SM )] + μ[u|Vu(m ∩ SM ) > Vu(SM − m)]
= μ[u|Vu(m) ≥ Vu(SM )], (4)

where the last equality follows from lemma 1. On the other hand, it is easy to see
that

μ[u|Vu(m) ≥ Vu(SM )] = μ[u|∀m′ ∈ M, Vu(m) ≥ Vu(m
′)].

The latter together with (1) and (4) imply

ρ(m|{m} ∪ M) ≤ ρ(m − SM |{m − SM } ∪ M) + ρ(m ∩ SM |{m ∩ SM } ∪ (M − m)).

Also, (1) and (2) imply:

ρ(m − SM |{m − SM } ∪ M) ≤ ρ(m|{m} ∪ M).

The last two inequalities establish the disjointing inequalities. �
Only if part Assume that ρ satisfies axioms ARSP, merging additivity, reorganiza-

tion invariance, and the disjointing inequalities. ARSP over singletons guarantees that
there exists a probability measure, μ over the set of strict orderings of singletons or
equivalently X , such that for any set of singletons {x1}, {x2}, . . . , {xn}, we have:

ρ({x1}|{{x1}, {x2}, . . . , {xn}}) = μ[u|∀i �= 1, u(x1) > u(xi )]. (5)

Now, we show that ρ together with μ satisfies (1). We break down the proof into two
separate, exhausting cases:

1. ρ(m|{m} ∪ M) where m is disjoint with all menus in M .
2. ρ(m|{m} ∪ M) where m is allowed to overlap with menus in M .

– Case 1
For any menu m, denote the set of all its subsets of cardinality one, i.e.. the finest
partition of it by FPm . Since m is disjoint with all menus in M , and it is the union
of all singletons created by its elements, merging additivity through induction
implies:

ρ(m|{m} ∪ M) =
∑

x∈m
ρ({x}|FPm ∪ M).

By reorganization invariance, we have:

ρ({x}|FPm ∪ M) = ρ({x}|FPm ∪ FPSM ) = ρ({x}|FPSM∪m).

Now, since all menus in FPSM are singletons, (5) implies:

ρ({x}|FPSM∪m) = μ[u|∀x ′ ∈ FPSM∪m − {x}, u(x) > u(x ′)].
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Therefore

∑

x∈m
ρ(x |FPm ∪ M) =

∑

x∈m
μ[u|∀x ′ ∈ FPSM∪m − {x}, u(x) > u(x ′)].

And finally

∑

x∈m
μ[u|∀x ′ ∈ FPSM∪m − {x}, u(x) > u(x ′)] = μ[u|∀m′ ∈ M, Vu(m) > Vu(m

′)].

Therefore

ρ(m|{m} ∪ M) = μ[u|∀m′ ∈ M, Vu(m) > Vu(m
′)],

which is equivalent to (1), when m does not intersect with any of the menus in M .
– Case 2
In this case, m is allowed to have a non-empty intersection with SM . According to
the disjointing inequalities and reorganization invariance, we have:

0≤ρ(m|{m} ∪ M) − ρ(m − SM |{m − SM , SM })≤ρ(m ∩ SM |{m ∩ SM , SM − m}).

Now, since (m − SM ) ∩ SM = (m ∩ SM ) ∩ (SM − m) = ∅, according to case 1:

ρ(m − SM |{m − SM , SM }) = μ[u|Vu(m − SM ) > Vu(SM )]
ρ(m ∩ SM |{m ∩ SM , SM − m}) = μ[u|Vu(m ∩ SM ) > Vu(SM − m)].

Therefore

ρ(m − SM |{m − SM , SM }) + ρ(m ∩ SM |{m ∩ SM , SM − m})
= μ[u|Vu(m − SM ) > Vu(SM )] + μ[u|Vu(m ∩ SM ) > Vu(SM − m)]
= μ[u|∀m′ ∈ M, Vu(m) ≥ Vu(m

′)],

where the last equality follows from Lemma 1. On the other hand, the following
is true:

ρ(m − SM |{m − SM , SM }) = μ[u|∀m′ ∈ M, Vu(m) > Vu(m
′)].

The last two equations together with the disjointing inequalities imply

μ[u|Vu(m) > Vu(m
′) ∀m′ ∈ M] ≤ ρ(m|{m} ∪ M) ≤ μ[u|Vu(m)

≥ Vu(m
′) ∀m′ ∈ M].

�
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