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Abstract
While the philosophical literature has extensively studied how decisions relate to
arguments, reasons and justifications, decision theory almost entirely ignores the latter
notions. In this article, we elaborate a formal framework to introduce in decision theory
the stance that decision-makers take towards arguments and counter-arguments. We
start from a decision situation, where an individual requests decision support. We
formally define, as a commendable basis for decision-aid, this individual’s deliberated
judgment, a notion inspired by Rawls’ contributions to the philosophical literature,
and embodying the requirement that the decision-maker should carefully examine
arguments and counter-arguments. We explain how models of deliberated judgment
can be validated empirically. We then identify conditions upon which the existence
of a valid model can be taken for granted, and analyze how these conditions can be
relaxed.We then explore the significance of our framework for the practice of decision
analysis. Our framework opens avenues for future research involving both philosophy
and decision theory, as well as empirical implementations.

Keywords Decision analysis · Justification · Empirical validation · Methodology

1 Introduction

Introducing their “reason-based theory of choice”, Dietrich and List (2013) noticed
that although the philosophical literature has largely illustrated the usefulness of the
concepts of reasons and arguments to think through action and decisions, decision
theory strives to account for the latter exclusively in terms of preferences and beliefs.
Despite Dietrich and List’s (2013, 2016) efforts, the gap remains large between philo-
sophical and choice theoretic approaches.

This gap echoes a classical dichotomy in “moral sciences” between, on the one hand,
first-person justifications of one’s acts in terms of reasons and arguments structuring
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these reasons, and on the other hand, third-person representations in terms of beliefs
and preferences (Hausman 2011). By neglecting reason-based and other argumentative
accounts, decision theory tends to devalue decision-makers’ understanding of their
own actions.

This gap has tended to insulate decision theory from important philosophical
debates in the past 30–40 years. Among the most influential approaches in these
debates, Scanlon (2000) highlighted the links between reasons, justification and moral
notions such as fairness and responsibility, Habermas’ (1981) “theory of communica-
tive action” articulated the importance of justification and argumentation as distinctive
features of rational action, and Rawls (2005) launched the debates on the “acceptabil-
ity” (Estlund 2009) of reasons and arguments for public justification.

This gap also has important practical implications for decision analysis, by compli-
cating the task for analysts to explain the recommendations they give to their clients.
This, in turn, casts doubts on these recommendations, which appear to be imposed to
rather than endorsed by decision-makers.

In this article, we aim to participate in unlocking this situation, by elaborating
a framework designed to allow decision analysts to provide recommendations that
decision-makers truly endorse, in empirical reality.

For that purpose, we introduce, as a commendable basis for recommendation, the
“deliberated judgments” of the decision-maker. Roughly stated, these “deliberated
judgments” represent the propositions that the decision-maker will consider to be well
grounded, if he duly takes into account all the relevant arguments. This concept is
inspired by Goodman’s (1983) and Rawls’ (1999) notion of reflective equilibrium. It
also owes much to Roy’s (1996) view that an important part of the decision support
interaction consists, for the analyst, in ensuring that the aided individual understands
and accepts the reasoning on which the prescription is based.

This article is organized as follows. InSect. 2,wedefineour core concepts, including
the central concept of deliberated judgments. In Sect. 3, we then explore the issue of
how empirical data come into play and are involved in the validation of models.
This illustrates the empirical aspect of our framework, which distinguishes it from
standard prescriptive approaches. Obviously enough, at this stage, the pivotal issue is
to determine how one can say anything about “deliberated judgments”, given that, for
any non-trivial decision, the potentially relevant arguments are infinitely numerous.
Lastly, Sect. 4 discusses the significance of our approach for the practice of decision
analysis and outlines future empirical applications.

2 Core concepts and notations

In this section, we start by presenting the general setting of our approach, including
our understanding of arguments and of the topic on which the individual aims to take
a stance. We then introduce our formalization of argumentative disposition, capturing
an individual’s attitude towards arguments. This eventually allows us to present our
notion of “deliberated judgment”.
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A formal framework for deliberated judgment 271

2.1 General setting

Our approach starts from and is largely structured by the point of view of decision
analysis.We accordingly assume that a decision situation has been identified: we admit
that there is an individual i who requests decision support to answer questions such
as: “is action a better than action b?”, or “which beliefs should I have about such or
such matter?”.We consider that a topic T—a set of propositions on which the decision
analysis process aims to lead the decision-maker to take a stance—is defined.1 We
do not formally define propositions and simply understand the notion in its ordinary
sense. For example, a proposition can be a claim spelled out in a text in a natural
language, such as the claim that action a is the most appropriate action for i in a given
decision situation.

We also consider arguments that can be used by i to make up her mind about
propositions in T . Herewe understand the notion of argument in a large sense: anything
that can be used to support a proposition, or undermine the effectiveness of such a
support, is an argument. In the latter case,we talk about a counter-argument.Arguments
as we understand them can encompass a huge diversity, ranging from very basic
arguments that can be stated in a couple of words, to intricate arguments embedding
numerous sub-arguments associated to one another in complex ways.

Let us then define the set S∗ that contains all the arguments that one uses when
trying to make up one’s mind about T . S∗ can be understood in a “pragmatic” sense,
as the set of all the arguments available around the temporal window of the decision
process. It can also be understood in an “idealistic” sense, as the set of all the arguments
that can possibly be raised, including those that humankind has not yet discovered.2

Observe that under both interpretations, in all decision situations but themost trivial,
it will be untenable to assume that the analyst knows all of S∗: the analyst will only
know a strict subset S ⊂ S∗, containing the arguments that she has been able to gather.3

An important part of our work in this article will be to identify conditions allowing to
draw conclusions relating to S∗ despite the fact that no one ever knows more than a
strict subset of S∗.

Example 1 (Ranking) Let us simply illustrate the content of the concepts introduced
so far. LetA be a set of alternatives that i is interested in ranking. For all a1 �= a2 ∈ A,
define ta1�a2 as the sentence: “a1 ought to be ranked above a2”, and ta1∼a2 as “a1 ought
to be ranked ex-æquo with a2”. Define T = ⋃

a1 �=a2∈A{ta1>a2 , ta1∼a2} as the set of
all such sentences. The topic T represents the propositions on which i is interested
to make up her mind. Define S∗ as the set of all strings corresponding to sentences

1 We remain at a fairly abstract level in our conceptualization of the topic. We accordingly set aside all the
issues concerning the construction of problems and the evolution of their meaning as the decision process
unfolds in concrete decision situations (Rosenhead and Mingers 2001).
2 Since no one has a concrete access to such an idealistic set of all the arguments, we expect that this concept
will be mainly useful for philosophical explorations, and that the pragmatic interpretation will prevail in
practical applications.
3 Even under the pragmatic interpretation, claiming that S = S∗ would mean that there is no relevant
knowledge beyond what the analyst can find by studying the literature and consulting experts and stake-
holders, but also that the list of arguments she has found captures all the semantic and linguistic subtleties
that could distinguish alternative formulations of arguments.
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in English. This set contains formulations of all the arguments that people can think
about and use to make up their mind about the topic, and much more. An example of
an argument is s = “Alternative a1 ought to be ranked above a2 because a1 is better
than a2 on every criterion relevant to this problem”. �

Our aim in the remainder of this section is to define formally i’s perspective towards
the topic after he has considered all the arguments that are possibly relevant to the
situation. We term this: i’s Deliberated Judgment (DJ).

2.2 Argumentative disposition

To define i’s DJ, we need to capture i’s attitude towards arguments. Importantly, we
also need to capture the fact that i may change her opinion about arguments and
their relative strengths. She can change her mind because of reasons independent
of her endeavor to tackle the problem she addresses, for example depending on her
mood. More interestingly, i will possibly change her mind when confronted with new
arguments. For example, imagine that i has heard about two arguments, s1 and s2, and
she thinks that s2 turns s1 into an ineffective argument. But then she comes to realize
that s2 is in turn rendered ineffective by a third argument, s3. After having thought
about s3, it might be that i no longer considers that s2 undermines s1.

Note that for simplicity’s sake, we say that an argument becomes ineffective
(because of another argument) to mean that it becomes ineffective in its ability to
support some proposition or to render other arguments ineffective.

Le us introduce our formalism to account for such a situation.4

4 Our approach to formalize this concept is inspired by formal argumentation theory in artificial intelli-
gence (Dung 1995; Rahwan and Simari 2009). However, the latter approach is not sufficient to empirically
investigate i’s attitude towards arguments, because it neglects two crucial tasks. First, this literature does
not investigate the role that the decision analyst plays when she interacts with a decision-maker: should she
remain a neutral observer, or should she interact more tightly with the decision-maker by providing him
with arguments and counter-arguments liable to lead him to change his mind? Second, this literature does
not put emphasis on the specific challenges involved in interacting with a decision-maker to identify empir-
ically the arguments he endorses. Most of the time, this literature considers situations where the relation
between arguments can be computed from a given logical representation of the arguments (Besnard and
Hunter 2008) or is given a priori (Baroni and Giacomin 2009), possibly integrating uncertainties (Hunter
2014) and dynamics (Rotstein et al. 2010; Marcos et al. 2011; Dimopoulos et al. 2018).
Its most common use assumes that it is possible to establish the objective relations between arguments.
In our example, s3 would be considered to objectively attack s2 and s2 to objectively attack s1. However,
in some cases, it might be difficult, or perhaps even impossible, to determine such objective relations. In
any case, this distinction is superfluous if the goal is to inquire about i’s opinion about these relations
between arguments. Other proposals in formal argumentation theory (Amgoud and Cayrol 2002; Bench-
Capon 2003; Amgoud et al. 2008; Amgoud and Prade 2009; Bench-Capon and Atkinson 2009; Ferretti
et al. 2017) supplement an objective attack relation with information representing i’s subjectivity, such as
his values or his preference over arguments. Such approaches seem closer to our aim, but they also use
an objective attack relation, in addition to the subjective information. Furthermore, this approach assumes
that it is possible to distinguish between, on the one hand, cases where s3 attacks s2 but i does not deem
this attack important, and on the other hand situations where s3 does not attack s2. This assumption is also
unnecessary for our purpose. Because our aim is mainly empirical, we propose to use another formalism,
more adapted to our specific purpose, and leave aside here the task of more fully exploring the relations
with proposals in formal argumentation theory such as dynamic argumentation.

123



A formal framework for deliberated judgment 273

Let us start by defining a set of possible perspectives P that i can have towards
the topic T . A perspective p ∈ P captures all the elements determining how i would
react to arguments in S∗. In p, i has a specific set of arguments in mind, which can
partly determine his reaction to other arguments in S∗. But other elements can come
into play, such as (to come back to our example above) his mood.

If the decision analyst provides i with a new argument s, this might lead i to switch
from p to another perspective p′ integrating both s and the arguments that i had in
mind in p, and possibly other arguments that i might have been led to construct when
trying tomake up his mind about s and its implications. i’s perspective can also change
over time, because he forgets some arguments.

We forcefully emphasize that we do not claim to be able to provide a complete
account of all the elements encapsulated in this notion of perspective. In fact, our
approach does not even require to believe that it is possible for anyone to capture
the content of perspectives, or more generally to directly measure details about i’s
internal states of mind. The notion of perspective merely serves as an abstract device
allowing to ground the idea that i may have changing attitudes towards some pairs of
arguments.

Basedon these notions, givenT and S∗, define i’s argumentative disposition towards
T as (↝,�∃, �∃). These three relations, described here below, constitute the formal
primitives of our concept of argumentative disposition.

↝ is a relation from S∗ to T . An argument s supports a proposition t , denoted by s↝t ,
iff i considers that s is an argument in favor of t . We emphasize that this definition
should be understood in a conditional sense: s↝ t means that i considers that, if s
holds in her eyes, then she should endorse t , but this does not say anything about
whether she thinks that s holds. An argument s may support several propositions
in i’s view, or none.

�∃ is a binary relation over S∗ representing whether i considers that a given argument
trumps another one in some perspective. Let s1, s2 ∈ S∗ be two arguments. We
note s2 �∃ s1 (s2 trumps s1) iff there is at least one perspective within which i
considers that s2 turns s1 into an ineffective argument.5 Let us emphasize that we
are concernedwith how i sees s2 and s1, not about whether s2 should be considered
to be a good argument to trump s1 by any independent standard.

�∃ is a binary relation over S∗ defined in a similar way: s2�∃ s1 iff there is at least one
perspective within which i does not consider that s2 turns s1 into an ineffective
argument.

We assume that ∀s2, s1 ∈ S∗ : ¬(s2 �∃ s1) ⇒ s2 �∃ s1.

5 Note that, contrary to the usual assumption in formal argumentation theory, we do not consider it possible
that both s2 trumps s1 and s1 trumps s2 in a given perspective. This is a choice of modelization, and not an
hypothesis about the way i thinks: for s2 �∃ s1 to hold, by definition of our “trump” relation, s2 must be a
sufficiently strong argument to turn s1 into an ineffective argument. If, on the contrary, i considers that s2
is a plausible argument defending some claim incompatible with s1, but not sufficiently strong to defeat s1,
then we model it by s2 �∃ s1 and s1 �∃ s2. Our choice permits to reduce our informational requirements,
as there are fewer cases to be distinguished (our framework treats in the same way situations where two
arguments trump each other and situations where none trumps the other). Note, however, that we do allow
for the possibility that s2 �∃ s1 and s1 �∃ s2: this can happen by i adopting each of those two attitudes in
two different perspectives. Hence, our choice of modelization does not translate in any formal restriction.
This note only serves to make the semantics of the notion encapsulated by our “trump” relation clear.
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We consider that it is possible to query i about the trump relation between two
arguments, and thus obtain information about �∃, to the following limited extent: i
may be presented with two arguments, s1 and s2, and asked whether he thinks that s2
trumps s1, or s1 trumps s2, or neither. In any case, we consider that i answers from
the perspective he is currently in (to which we have no other access than through this
query). Thus, if i answers that s2 trumps s1, we know that s2 �∃ s1. Indeed, in such
a case we know that there is at least one perspective within which he thinks that s2
trumps s1: namely, the perspective that he currently has. Conversely, if i answers that
s2 does not trump s1, we know that s2 �∃ s1.6

Remark 1 Whereas the two relations (�∃, �∃) allow to capture i’s changes of mind
about whether a given argument can undermine another argument, the simple support
relation ↝ adopted here does not permit to capture changes of mind about whether
a given argument supports a given proposition. We assume that, in practice, when
implementing our approach, propositions will be sufficiently simple and clear, so as to
make it safe to assume that i will not change her mind concerning support during the
decision process. This is a point to which the analyst will have to pay attention when
applying our approach. If it appears, in real-life implementations, that this assumption
is ill-advised, the framework will have to be extended by applying the approach used
for �∃ to the support relation (this would not raise any specific difficulty). For the
time being, in the absence of empirical reasons to believe that the added generality is
needed, we choose to use a single↝ relation for simplicity. �
Example 2 (Ranking (cont.)) Consider a set of criteria J . Consider the argument sb =
“Alternative a1 ought to be ranked above a2 because a1 is better than a2 on three
criteria while a2 is better than a1 on only one criterion”, and sc = “It does not make
sense to treat all criteria equally in this problem”. Then (depending on i’s disposition),
it might hold that sc �∃ sb, and it might hold that sb↝ ta1�a2 . Note that both may very
well hold together. �
Definition 1 (Decision situation) We denote a decision situation by the tuple
(T , S∗,↝,�∃, �∃), with T , S∗,↝,�∃, �∃ defined as above.

The part of i’s argumentative disposition that remains stable as i changes perspec-
tives is of distinctive interest for decision analysis purposes. Indeed, recall that the
emergence of new arguments may lead i to switch perspective. The stable part of her
argumentative disposition is, therefore, a stance that proves resistant to the emergence
of new arguments and is, in this sense, argumentatively well grounded from i’s point
of view.

Let us, therefore, define the corresponding stable relations: �∀ is defined as s2 �∀
s1 ⇔ ¬(s2 �∃ s1). In plain words, s2 �∀ s1 if and only if there is no perspective within
which s2 does not trump s1, or equivalently, s2 �∀ s1 if and only if s2 trumps s1 in all

6 Another way of viewing the relations �∃ and �∃ goes as follows. Given a perspective p, define �p
as a binary relation over S∗: s2 �p s1 iff, when i is in the perspective p, s2 turns s1 into an invalid
argument. Define P as the set of all possible perspectives. Then, define �∃ = ⋃

p∈P �p , and s2 �∃ s1 iff
∃p ∈ P | ¬(s2 �p s1). We favor another presentation because it emphasizes that we consider that we have
direct access to �∃ and �∃, rather than to �p .
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perspectives. Relatedly, s2�∀ s1 is defined as: s2�∀ s1 ⇔ ¬(s2�∃ s1). Hence, s2�∀ s1
indicates that s2 never trumps s1. This implies, but is not equivalent to, ¬(s2 �∀ s1).

Example 3 (Ranking (cont.)) Consider alternatives a1 and a2 such that a1 Pareto-
dominates a2 on criteria J . Define sd as an argument that states that a1 ought to be
ranked above a2 because of the Pareto-dominance situation considering criteria in J .
Then, it might hold that sd↝ta1>a2 . Define sf as “this is an incorrect reasoning because
an important aspect to be considered in the problem is fairness and a1 is worse than
a2 in this respect”. Then it might be that sf �∃ sd (assuming that i indeed considers
fairness as important and that J does not include fairness). If i later changes her mind
about the importance of fairness, then it will not hold that sf �∀ sd . �

This enables us to define a decisive argument as one that is never trumped by any
argument in S∗.

Definition 2 (Decisive argument) Given a decision situation (T , S∗,↝,�∃, �∃), we
say that an argument s ∈ S∗ is decisive iff ∀s′ ∈ S∗: s′ �∀ s.

Notice that decisive arguments can be of very different sorts. Some decisive argu-
mentswill be very simple and straightforward arguments, which are so simple that they
will be accepted by i whatever the perspective. By contrast, some decisive arguments
will be very elaborate ones, taking many aspects of the topic into account and antic-
ipating all sorts of arguments that could trump them, and accordingly never trumped
by any other argument.

Example 4 (Weather forecast) Assume that individual i holds that t = “it will rain
tomorrow” is supported by the argument s1 = “one can expect that it will rain tomorrow
because weather forecast predicts so”. (See Fig. 1.) But imagine that i also holds, at
least from some perspective, that s2 = “weather forecast is unreliable to infer what the
weather will be like tomorrow because weather forecast is often wrong” is a counter-
argument that trumps s1. Imagine further that i would accept that an argument s3
= “although it is often wrong, weather forecast is reliable because it is more often
right than wrong” trumps s2. Imagine, finally, that no argument trumps s3 from any
perspective.

In such a case, for i , s1 is not a decisive argument. However, one can elaborate a
more complex argument s = “weather forecast predicts that it will rain tomorrow. This
may be an incorrect prediction, but weather forecast is more often right than wrong,
thus its predictions constitute a sufficient basis to think that it will rain tomorrow”.
Notice that s includes the reasonings given by s1 and s3. Since s anticipates that s2
could be envisaged to trump it, s could be decisive in supporting t (as assumed in
Fig. 1). �

2.3 Deliberated judgment

Given a decision situation, we are now in a position to characterize i’s stance towards
the propositions in T once he has considered all the relevant arguments. We say that
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Fig. 1 Illustration for Examples 4 and 5. The symbol under s3 and s indicates a decisive argument

a proposition is justifiable if it is supported by a decisive argument. A proposition is
said to be untenable when each argument supporting it is always trumped by a decisive
argument.

Definition 3 (Justifiable and untenable propositions) Given a decision situation
(T , S∗,↝,�∃, �∃), a proposition t is:

– justifiable iff ∃s ∈ S∗ | s ↝ t and ∀s′ : s′ �∀ s;
– untenable iff ∀s ∈ S∗ | s ↝ t : ∃sc | sc �∀ s and ∀scc : scc �∀ sc.

Three important aspects of this definition are worth emphasizing.
First, we use modal terms to name these notions: we talk about “justifiable” rather

than “justified” propositions. This is because, at a given point of time, individual i
might well fail to accept, as a matter of brute empirical fact, a proposition supported by
a decisive argument, for example, because she does not know this argument. Similarly,
she might accept an untenable proposition. All this is despite the fact that the decisive
arguments referred to in the definitions of justifiable and untenable propositions are
decisive according to i’s argumentative disposition—that is, by i’s own standards.

Second, notice that, according to our definition, a proposition cannot be both jus-
tifiable and untenable, but it may be neither justifiable nor untenable. This may be
the case if all the arguments supporting t have counter-arguments, but at least one
argument supporting t has no decisive counter-argument.

Lastly, according to our definition, it is possible for a proposition t to be justifiable
and for not-t , or more generally for any proposition t ′ in logical contradiction with t or
having empirical incompatibilities with t , to be justifiable too. This specific definition
allows to encompass situations in which there are intrinsically no more reason to
accept t than t ′. This can happen even when it is clear and evident for i that t and
t ′ are incompatible, and even in situations where this incompatibility between t and
t ′ is highlighted in some argument examined during the decision process.7 This is a
consequence of our definition of the trump relation, and it reflects the important idea
that, as a matter of fact, in some decision situations, even if one takes all the relevant
arguments into account, it can happen that several, mutually incompatible propositions

7 Relatedly, notice that there is an important asymmetry between the notions of justifiable and untenable.
Since t and some incompatible t ′ can both be justifiable, the fact that t is justifiable does not necessarily
imply that the fate of t in i’s view is entirely settled by its justifiability. By contrast, there is no way an
untenable proposition could come back into the scene.
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are equally supported. It is part of the very aim of decision-aid, in such situations, to
unveil the fact that mutually incompatible propositions are equally supported.8

Decision situations allowing to classify unambiguously all propositions in the
agenda into justifiable or untenable propositions are of distinctive interest. Let us
term such decision situations “clear-cut”.

Definition 4 (Clear-cut situation) A decision situation (T , S∗,↝,�∃, �∃) is clear-cut
iff each proposition in T is either justifiable or untenable.

Given a decision situation, we can now define i’s DJ as those propositions t ∈ T
that are justifiable.

Definition 5 (DJ of i) TheDeliberated Judgment corresponding to a decision situation
(T , S∗,↝,�∃, �∃) is:

Ti = { t ∈ T | t is justifiable } .

This notion of DJ, as we define it, captures what we take to be an important idea
underlying Goodman’s (1983) and Rawls’ (1999) concept of “reflective equilibrium”.
This idea is that, if i manages, through an iterative process of revision of her opinion
through the integration of new elements or arguments, to reach an “equilibrium”which
is stable with respect to the integration of new elements, then the opinion reached at
“equilibrium” is of distinctive interest—it captures i’s “well-considered” or “true”
opinion in some sense.9

Notice that the meaning of this definition depends on the interpretation given to
S∗ (see the beginning of Sect. 2). In the idealistic interpretation, i’s DJ is unique and
fixed once and for all. In the pragmatic interpretation, i’s DJ may evolve over time, as
new arguments emerge.

Example 5 (Weather forecast (cont.)) To explain clearly this definition, it is useful to
come back to our previous example (Fig. 1) of individual i who holds that “weather
forecast is often wrong” (s2) is a counter-argument that trumps “it will rain tomor-
row because weather forecast predicts so” (s1). We have seen that a more complex
argument (s), including both “weather forecast predicts that it will rain tomorrow”
and an additional sub-argument that trumps s2, can turn out to be a decisive argument
to support “it will rain tomorrow” (t). In such a case, t belongs to i’s Deliberated
Judgment, despite the fact that he might claim otherwise if not confronted with the
complex argument above. �
Example 6 (Weather forecast (variant)) In this example T contains two propositions:
t1 is the proposition according to which it will rain tomorrow, and t2 is the contrary

8 Somewhat similar distinctions are discussed in formal argumentation theory about skeptical versus cred-
ulous justification (Prakken 2006). Delving into the details of a comparative analysis falls beyond the scope
of the present article.
9 That said, our notion of DJ does not claim to reflect faithfully all the aspects of the notion of “reflective
equilibrium” as used by the authors mentioned above. A thorough exploration of the links between our
formal framework and these philosophical theories falls beyond the scope of the present article.
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proposition. Two corresponding arguments are s1 and s2—two weather forecasts from
different sources that predict, respectively, that itwill rain and that itwill not.Assuming
that i attributes equal credibility to both sources and considers no other argument to
be relevant, he might end up with both t1 and t2 in his deliberated judgment. This
should not be interpreted as meaning that i is incoherent, but simply as a situation
where different propositions are equally justified for lack of means to tell them apart.
Similarly, scientists can consider two contradictory hypotheses plausible, for lack
of current knowledge; or someone may hold that two incompatible acts are equally
(im)moral. �

3 Issues of empirical validation

The former section clarified definitions and explained the articulations between the
key concepts of our framework, at a rather abstract level. Now we want to investigate
how this framework can be confronted with empirical reality. For that purpose, we
will examine how one can test a model of the support and trump relations built by a
decision analyst trying to capture the deliberated judgment of a decision-maker.

Let us define a model η of a decision situation as a pair of relations ↝η ⊆ S∗ × T
and �η ⊆ S∗ × S∗. These relations are not necessarily an approximation of the real
↝,�∃ relations characterizing i . Indeed, the chief aim of the model is to know i’s DJ,
not to reflect in detail what i thinks about all arguments, which would arguably not be
achievable (we will come back to this important point below).

Define Tη as the set of propositions that the model η claims are supported:

Tη = ↝η(S∗) = { t ∈ T | ∃s ∈ S∗ | s ↝η t } .

Example 7 (Ranking (cont.)) We have already defined a set of alternativesA, proposi-
tions T representing possible comparisons of the alternatives, and criteria J . Consider
further a set of criteria functions (g j ) j∈J evaluating all the alternatives a ∈ A using
real numbers: g j : A → R.

Imagine that i’s problem is to decide which kind of vegetable to grow in his back-
yard. Assume an analyst providing decision-aid to i considers that the problem can be
reduced to a ranking between three candidates: carrots, lettuce and pumpkins, denoted
by c, l, p ∈ A. The analyst believes that i is ready to rank vegetables according to
exactly two criteria. The analyst has obtained six real numbers g j (a), representing
the performances of each alternative on each criteria, and believes that i is ready
to rank vegetables according to the sum of their performances on the two criteria,
v(a) = g1(a) + g2(a).

The analyst can now try to represent i’s attitude using a model η = (
↝η,�η

)
by

producing sentences that explain to i the “reasoning” underlying the definition of v.
Assume the values given by v position carrots as winners. The analyst could define an
argument s(c,l) “carrots are a better choice than lettuce because carrots score g1(c) on
criterion one, and g2(c) on criterion two, which gives it a value v(c), whereas lettuce
scores g1(l) on criterion one, and g2(l) on criterion two, which gives it an inferior value
v(l)”. In the model of the analyst, this argument supports the proposition that carrots
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are ranked higher than lettuce: s(c,l)↝η tc�l . The model contains similar arguments in
favor of other propositions t ∈ T that are in agreement with the values given by v. In
our example, the analyst furthermore believes that no counter-arguments are necessary
and thus defines �η = ∅. �

3.1 Validity and the problem of observability

Since the point of carving out η is to capture i’s Deliberated Judgment Ti , we can
define a valid model as one that correctly captures Ti .

Definition 6 (Validity) A model η is valid iff Tη = Ti .

How can the analyst determine if a given model η is a valid one?
Let us assume that the only information that he can use for that purpose is the one

he can get by querying i – and is, in that sense, “observable” for him. DJs are not
observable in that sense. Indeed, i’s DJ are defined in terms of �∀. But observing
�∀ would require that i takes successively all the possible perspectives she can have,
which is unrealistic.10

In the remainder of this section, we explain how we handle this conundrum in two
steps. First, Sect. 3.2 introduces a provisional solution, by identifying conditions that
guarantee the existence of a model allowing to identify i’s DJ on the basis of what we
will call an “operational” validity criterion—that is, a criterion based on observable
data. Then, Sect. 3.3 explores how these conditions can be weakened.

3.2 Existence of a valid model and its conditions

In this subsection, we introduce apparently reasonable conditions about the way i
reasons and about the decision situation. Our theoremwill then guarantee that a model
exists and captures correctly i’s DJ if those conditions are satisfied on S∗ and if the
model satisfies a validity criterion that, as opposed to validity itself, can be directly
checked on the basis of observable data (an “operational validity” criterion).

3.2.1 Conditions

A first condition about �∃ mandates a certain form of stability. It assumes that i
possibly changes her mind about whether an argument s′ trumps another one only
when there exists another argument that trumps s′.

Condition 1 (Answerability)A decision situation (T , S∗,↝,�∃, �∃) satisfiesAnswer-
ability iff, for all pairs of arguments (s, s′):

s′ �∃ s and s′ �∃ s ⇒ ∃sc | sc �∃ s′.

10 Thiswould amount to assume that i already knows all the arguments and can aggregate them successfully.
If this were possible, i would probably not need help from an analyst.
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Let us now turn to the second condition. It has to do with the way i reasons. Imagine
that i finds himself in the following uneasy situation. He declares that s1 is trumped
by s2. However, i is also ready to declare that s2 is in turn trumped by s3, a decisive
argument. In such a situation, it seems natural enough to assume that, if we carve
out an argument s, playing the same argumentative role as s1, but anticipating and
defeating attempts to trump it using s2, i will endorse s.

This assumption is formalized by the condition Closed under reinstatement below.
To write it down, we first need to formalize, thanks to the following notion of replace-
ment, the idea that a set of arguments is at least as powerful as another argument, from
the point of view of its argumentative role. We say a set of arguments S ⊆ S∗ replaces
an argument s ∈ S∗ whenever all the arguments trumped by s are also trumped by
some argument s′ ∈ S, and all the propositions supported by s are also supported by
some argument s′ ∈ S.11

Definition 7 (Replacing arguments) A set of arguments S ⊆ S∗ replaces s ∈ S∗ iff
�∃(s) ⊆ �∃(S) and↝(s) ⊆ ↝(S). We say that s′ replaces s, with s, s′ ∈ S∗, to mean
that {s′} replaces s.

Condition 2 (Closed under reinstatement) A decision situation (T , S∗,↝,�∃, �∃) is
closed under reinstatement iff, ∀s1 �= s2 �= s3 �= s1 ∈ S∗ such that s3 �∀ s2 �∃ s1,
with s3 decisive:

∃s | s replaces s1 and �−1
∃ (s) ⊆ �−1

∃ (s1)\{s2}.
The condition mandates that, whenever some decisive argument always trumps s2,
which in turn trumps s1, it is possible to replace s1 by an argument that is no longer
trumped by s2 and is not trumped by any other argument than those trumping s1.12

Finally, we introduce two conditions on the size of the relation �∃.
Let us call a chain of length k in �∃ a finite sequence si of arguments in S∗,

1 ≤ i ≤ k, such that si �∃ si+1 for 1 ≤ i ≤ k − 1. An infinite chain is an infinite
sequence si such that si �∃ si+1 for all i ∈ N.

Condition 3 (Bounded width) A decision situation (T , S∗,↝,�∃, �∃) has a bounded
width iff there is no argument that is trumped by an infinite number of counter-
arguments.

Condition 4 (Bounded length)A decision situation (T , S∗,↝,�∃, �∃) has a bounded
length iff there is no infinite chain in �∃. (Cycles in �∃ are, therefore, excluded as
well.)

3.2.2 Operational validity criterion

Let us now define the following “operational” validity criterion for a model η intended
to capture i’s DJ. We term it “operational” to emphasize that, as opposed to the

11 Note that the replacer may be more powerful than the argument it replaces, in the sense that it may trump
arguments or support propositions that the replaced argument did not trump or support.
12 Such a configuration of arguments, where s3 trumps s2 which in turns trumps s1, recalls the notion of
“strong defense” in argumentation theory (Baroni and Giacomin 2007). A further discussion of this issue
falls beyond the scope of this paper.
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definition of validity (definition 6), it can be checked on the sole basis of observable
data.

Definition 8 (Operational validity criterion) A model η of a decision situation is
operationally valid iff, whenever (s ↝η t), it holds that [s ↝ t] and [∀sc ∈ S∗ :
(sc �∃ s) ∨ (∃scc �η sc ∧ scc �∃ sc)], and whenever t is not supported by η,
∀s ↝ t : ∃sc �η s ∧ sc �∃ s.

This criterion amounts to partially comparing, on the one hand, i’s argumentative
disposition towards propositions and arguments and, on the other hand, η’s repre-
sentations of i’s argumentative disposition.13 More precisely, a model satisfies the
operational validity criterion (for short: is operationally valid) iff:

(i) arguments that, according to the model, support a proposition t are indeed con-
sidered by i to support t ;

(ii) whenever a model uses an argument s to support a proposition, and that argument
is trumped by a counter-argument sc, the model can answer with a counter-
counter-argument, using a counter-counter-argument that i confirms indeed
trumps the counter-argument sc;

(iii) whenever an argument s supports a proposition that themodel does not consider to
be supported, themodel is able to counter that argument using a counter-argument
that i confirms indeed trumps s.

As required, this criterion is uniquely based on observable data. Indeed, recall that
the only observable data that the analyst can use are the ones obtained by querying i
by asking her if a given argument s2 trumps another argument s1. If she replies that
it does, this is enough to conclude that, according to her, s2 �∃ s1. Indeed, in such a
case, we know that there is at least one perspective within which she thinks that s2
trumps s1: namely, the perspective that she currently has. Querying i can thus provide
the information needed to check if a model is operationally valid.

3.2.3 Theorem

Since querying i will not give enough information to know that s2 �∀ s1 (if indeed
s2 �∀ s1), querying i will never allow to directly claim that a model satisfies the
definition of validity (Definition 6). What we need, therefore, is a means to ensure that
an operationally valid model is a valid one. This is provided by the following theorem.

Theorem 1 Assume a decision situation (T , S∗,↝,�∃, �∃) is Closed under reinstate-
ment, Answerable and has Bounded length and width. Then: i) the decision situation
is clear-cut; ii) there exists an operationally valid model of that decision situation; iii)
any operationally valid model η satisfies Ti = Tη.

Theorem 2 (in Sect. 3.3) generalizes this theorem. It is proven in section A.

Example 8 (Budget reform) Let us take a non-trivial example that will be used to
illustrate how Theorem 1 can be used and whywe need to go beyond this first theorem.

13 This procedure could be considered as a persuasion dialogue (Prakken 2009).
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Fig. 2 Illustration for Example 8. (Only the arguments used by the model η are displayed.)

Imagine that i is a political decision-maker. She wants to run for an election, and is
elaborating her policy agenda. She has heard about Meinard et al.’s (2017) (thereafter
referred to as “M”) argument that, according to a popular survey, biodiversity should
be ranked after retirement schemes and public transportation, but before relations with
foreign countries, order and security, and culture and leisure in the expenses of the
State. Assume that i wants to make up her mind about the single proposition t =
“I should include in my agenda a reform to increase public spending on biodiversity
conservation so as to rank biodiversity higher than relations with foreign countries in
the State budget”.

She requests the help of a decision analyst. The latter starts by reviewing the lit-
erature to identify a set of arguments with which he will work. (The arguments are
illustrated in Fig. 2.) He thereby identifies that proposition t can be considered to be
supported by s = “M’s finding (stated above) is based on a large scale survey and quan-
titative statistical analysis, and their protocol was designed to track the preferences
that citizens express in popular votes. There are, therefore, scientific reasons to think
that a policy package including the corresponding reform will gather support among
voters.” Pursuing his exploration of the recent economic literature on environmental
valuation methods, the analyst could identify only two counter-arguments to s:

– sc1 = “M’s measure is extremely rough as compared to more classical economic
valuations, such as contingent valuations and the like (Kontoleon et al. 2007),
which makes it non credible as a guide for policy”;

– sc2 = “M claim to value biodiversity per se. The verymeaning of such an endeavor
is questionable because it is too abstract. More classical economic valuations are
focused on concrete objects and projects, which is more promising”.

But he also found a counter-counter-argument to each of these counter-arguments:

– sc1c = “Biodiversity is not the kind of thing about which people make decisions in
their everyday life. Their preferences about it are accordingly likely to be rough.
The exceedingly precise measurements provided by contingent valuations and the
like are therefore more a weakness than a strength”;

– sc2c = “Abstract notions such as biodiversity are an important determining fac-
tor for many people when they make decisions. Eschewing to value them is
ill-founded”.

Imagine further that the analyst has not found any argument liable to trump either
sc1c or sc2c.
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Define s1,reinstated as: “[content of s]; this is a rough measure but [content of sc1c]”;
similarly, define s2,reinstated as “[content of s]; the very meaning could be questioned
because it is highly abstract, but [content of sc2c]”; and define sreinstated as “[content of
s]; this is a rough measure but [content of sc1c]; the very meaning could be questioned
because it is highly abstract, but [content of sc2c]”. Define S ⊆ S∗ as the set of
argument comprising s, sc1, sc2, sc1c, sc2c, s1,reinstated, s2,reinstated and sreinstated.

Assume that the analyst is justified to think that i’s reasoning is such that S∗ satis-
fies Closed under reinstatement, Answerability, Bounded length and Bounded width.
Recall now that, to identify the propositions lying in Ti , the analyst must identify
arguments supporting propositions in Ti , such that these arguments can resist counter-
arguments from the whole of S∗. In other words, the analyst must test the claims of
the model not only against the counter-arguments in S, but against the whole of S∗,
which the analyst ignores.

Imagine now that the analyst assumes that, even though S is a strict subset of S∗, S
is a good enough approximation of S∗, in the sense that there is no argument in S∗\S
that trumps any argument in S or that supports t . Thanks to Theorem 1, the analyst
can then deduce that the situation is clear-cut and that there exists a valid model of the
decision situation.

The next step for him is to carve out a model η reproducing the relations between
arguments that he found in the literature, and then to test whether his model is oper-
ationally valid using Definition 8. To validate η, he would first ask i whether she
agrees that s supports t . If so, he then would check whether i considers that sc1 is a
counter-argument to s, in which case the analyst would check that the counter-counter-
argument that he envisaged, sc1c, is considered by i to trump sc1. The analyst would
then proceed in a similar way with the second chain of counter-arguments (sc2 and
sc2c), and verify that, as η hypothesizes, i does not take any other argument in S to
trump s. This would, eventually, allow him to conclude on the validity of the model
η. Should it prove operationally valid, the analyst could then conclude that Ti = {t}
(using Theorem 1 and Tη = {t}).

But notice that this whole story only works because we assumed that arguments
in S∗\S never trump any argument in S. This assumption is clearly unrealistic:
any slight reformulation of sc1, for example, will most likely also trump s. This is
not the only unrealistic assumption in our hypothetical scenario: it is also unlikely
that the whole set S∗ indeed satisfies Bounded length, for example. This condition
requires an absence of cycle in the trump relation. While this may be considered to
hold on S, it is possible that some ambiguous or poorly phrased arguments in S∗
would confuse i in such a way that i will declare, for example, that s1 �∃ s2 �∃
s3 �∃ s1 for some triple of such unclear arguments. Hence the need to go beyond
Theorem 1. �

Theorem 1 embodies an important step towards being able to confront models of
deliberated judgment with empirical reality, by spelling out sufficient conditions upon
which unrolling the procedures of refutation is not a pure waste of time and energy,
because there is something to be found. It also illustrates the potential usefulness of
the notion of operational validity. Indeed, since the point of the modeling endeavor
in our context is to capture Ti , we know by virtue of (iii) in Theorem 1 that, if the
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corresponding conditions are met, and if we have good reasons to believe that we have
an operationally valid model, then we can admit that it captures Ti .

However, establishing this theorem cannot be more than just a first step. As illus-
trated in Example 8, the conditions above are quite heroic. One cannot realistically
expect that real-life decision situations will fulfill these conditions. The most impor-
tant issue is that we need ameans to distinguish S∗ from the restricted set of arguments
with which the analyst works in practice. And we need means to make sure that the
restricted set indeed “covers” the matter “sufficiently”, so as to escape the situation in
which the analyst is locked in Example 8, where he finds himself condemned to make
wildly unrealistic assumptions. The next subsection tackles this pivotal issue.

3.3 Weakening of some conditions

To obtain the results we want, all we actually need is that it should be possible to
define a subset of arguments Sγ ⊆ S∗ that satisfies conditions akin to the ones defined
above, and which are sufficient to cover the topic at hand.

Let us start by formalizing the requirement, for Sγ , to cover the topic at hand. What
we want is that all the arguments needed for the decision-maker to make up her mind
about the topic should be encapsulated in Sγ . This means that, if arguments from
s ∈ S∗\Sγ are brought to bear, it should be possible either to discard them or to show
that they can be replaced by arguments in Sγ .

This is done thanks to the following formal definitions and condition.

Definition 9 (Unnecessary argument) Given a decision situation and a subset Sγ ⊆ S∗
of arguments, we say that S ⊆ S∗ essentially replaces s ∈ S∗ iff (�∃(s)∩Sγ ) ⊆ �∃(S)

and↝(s) ⊆ ↝(S).
Let Sγ dec = Sγ ∩ �∃(S∗) denote the decisive arguments in Sγ . We say that an

argument s ∈ S∗ is resistant iff it is not trumped by any argument in Sγ dec. Let
Sγ res = Sγ ∩ �∃(Sγ dec) denote the resistant arguments in Sγ .

We say that an argument s ∈ S∗ is unnecessary iff s is trumped by a resistant argu-
ment from Sγ or s is essentially replaceable by Sγ res. In formal terms: s ∈ �∃(Sγ res)

or [(�∃(s) ∩ Sγ ) ⊆ �∃(Sγ res) and↝(s) ⊆ ↝(Sγ res)].
Condition 5 (Covering set of arguments) Given a decision situation and a set of argu-
ments Sγ ⊆ S∗, Sγ is covering iff all arguments s ∈ S∗\Sγ are unnecessary.

Let us now relax the conditions of Theorem 1 by formulating weaker requirements
confined to Sγ . This adaptation is straightforward for Conditions 1 and 2.

Condition 6 (Set of arguments allowing answerability) Given a decision situation and
a subset Sγ ⊆ S∗ of arguments, we say that the set Sγ satisfies Answerability iff, for
all s ∈ S∗, s′ ∈ Sγ : s′ �∃ s and s′ �∃ s ⇒ ∃sc ∈ S∗ | sc �∃ s′.
Condition 7 (Set of arguments closed under reinstatement) Given a decision situation
(T , S∗,↝,�∃, �∃) and a subset Sγ ⊆ S∗ of arguments, we say that the set Sγ is
closed under reinstatement iff, ∀s1, s3 ∈ Sγ , s1 �= s3, s3 not trumping s1, s3 decisive:

∃s ∈ Sγ | s replaces s1 and �−1
∃ (s) ⊆ �−1

∃ (s1)\ �∀ (s3).
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This condition is vacuous when there is no s2 such that s3 �∃ s2 �∃ s1: in that case, s1
replaces itself.

Similarly, we can relax Condition 3 and apply it to a subset of arguments. When an
argument has very numerous counter-arguments, one may think that their vast number
might spring from some common reasoning that they share. For example, an argument
might involve some real value as part of its reasoning, and be multiplied as infinitely
many similar arguments of the same kind using tiny variations of that real value. If so,
and if we know that we can convincingly rebut each of these counter-arguments, we
might believe that only a small number of counter-counter-arguments will suffice to
rebut the counter-arguments.

Definition 10 (Defense) We say s ∈ S∗ is Sγ -defended iff all the arguments sc trump-
ing s are trumped by a decisive argument in Sγ , or formally, ∀sc ∈ S∗ | sc �∃ s :
(∃scc ∈ Sγ | scc �∀ sc, scc decisive). We say s ∈ S∗ is ( j, Sγ )-defended iff there exists
a set S ⊆ Sγ of arguments of cardinality at most j such that s is S-defended (thus, if
j arguments from Sγ suffice to defend s).

Condition 8 (Set of arguments with width bounded by j) Given a decision situation
and a natural number j , a set of arguments Sγ ⊆ S∗ has width bounded by j iff, for
each argument s ∈ Sγ , if s is Sγ -defended, then it is ( j, Sγ )-defended.

The condition is vacuously true when no argument in S∗ is trumped by more than j
counter-arguments.

Our last condition relaxes Condition 4. We want to exclude some of the long chains
in S∗. But wewant to tolerate long chains, including cycles, among unclear arguments.
Indeed, anecdotal evidence from ordinary argumentation situations suggests that in
many (otherwise interesting) decision situations, cycles do appear in trump relations
among arguments (for example, because arguments can use ambiguous terms). How-
ever, this does not necessarily prevent the situation from being modelizable in our
sense. What we do need is to avoid some of the cycles or chains that involve “too
many” arguments from Sγ , in a somewhat technical sense captured by the following
condition.

Condition 9 (Set of arguments with length bounded by k) Given a decision situation,
a natural number k, and a set of arguments Sγ , define a binary relation Q over Sγ as
s2Qs1 iff s2 �∃ s1 or s2 �∃ s �∃ s1 for some s ∈ S∗, thus, Q = (�∃ ∪ (�∃ ◦ �∃)) ∩
(Sγ × Sγ ). Let Q1 = Q and Qk+1 = Qk ◦ Q for any natural number k. The set Sγ

has length bounded by k iff �s2, s1 ∈ Sγ | s2Qk+1s1, thus, iff it is impossible to reach
an argument from Sγ , starting from an argument from Sγ , following Q more than k
times.

This condition tolerates cycles14 in �∃ that involve only arguments picked outside
the chosen set Sγ . It only forbids a subset of the situations where a cycle (or a too long

14 Cycles in our sense have to be distinguished from cycles involving an attack relation as defined in formal
argumentation theory.We do not deny that cycles of attacks in the formal argumentation sense often happen,
and Condition 9 does not exclude cycles understood in that sense: these cycles are generally not cycles in
“trump” relations. We consider that an argument s2 trumps another one only when i considers that the first
one is strong enough to render the second one ineffective. This definition relies on an asymmetry, s2 being,
in a sense, “favored over” s1. Our trump relation is therefore somewhat analogical to a strict preference
relation, for which an assumption of acyclicity is commonplace in the literature.
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chain) is built that involve arguments from Sγ . For example, it excludes a situation
where s2 �∃ s �∃ s1 �∃ s2 for some s1, s2 ∈ Sγ and s /∈ Sγ .15

Thanks to Conditions 5–9, we are now in a position to define our set of arguments
of interest.

Definition 11 (CAC arguments) Given a decision situation and a set Sγ ⊆ S∗, we
say that Sγ is clear and covering, or CAC, iff it is Closed under reinstatement and
Answerable, has width bounded by some number j and length bounded by some
number k, and is such that all arguments s ∈ S∗\Sγ are unnecessary.

Following the same rationale, we can define an operational criterion echoing Defi-
nition 8.

Definition 12 (Sγ -operational validity) Given a decision situation and a set Sγ ⊆ S∗,
we define a model η as Sγ -operationally valid iff for all (s ↝η t), s ∈ S∗, we have
[s↝ t] and [∀sc ∈ Sγ : (sc �∃ s) ∨ (∃scc ∈ S∗ | scc �η sc ∧ scc �∃ sc)], and when t is
not supported by η, ∀s ∈ Sγ | s ↝ t : (∃sc ∈ S∗ | sc �η s ∧ sc �∃ s).

A theorem echoing Theorem 1 can then be proved.

Theorem 2 Given a decision situation (T , S∗,↝,�∃, �∃), given Sγ ⊆ S∗, if Sγ is
CAC, then (i) the decision situation is clear-cut; (ii) there exists an Sγ -operationally
valid model η; (iii) any Sγ -operationally valid model η satisfies Ti = Tη.

This theorem is a strengthened version of Theorem 1 since it produces the same
results based (i) on the conditions encapsulated in the definition of CAC arguments,
and (ii) on Sγ -operational validity. Those conditions are implied by the ones assumed
by Theorem 1. Indeed, when the conditions of Theorem 1 hold, taking Sγ = S∗
satisfies the conditions of theorem 2.16

15 Readers used to decision theoretic axiomatizations might find this condition odd, since axioms usually
mandate conditions considered more “basic”, such as transitivity and irreflexivity, and derive from them
the conclusion that cycles are forbidden. This strategy does not work for our setting (or is not applicable
in a simple way), because “basic” conditions such as transitivity would be unreasonable to impose here.
For example, given s3 �∃ s2 and s2 �∃ s1, it is easy to think about situations where i would consider that
s3 �∀ s1, and to think about situations where i would consider that s3 �∃ s1. Neither anti-transitivity nor
transitivity can thus be reasonably imposed (and our current condition avoids such requirements). Studying
which conditions exactly are necessary to ban cycles (or make them innocuous) in our setting would be
interesting, but it does not seem crucial at this stage. Indeed, in concrete settings we consider that cycles
involving arguments from Sγ are unlikely to occur. (This claim should be backed up by empirical studies.)
16 Theorem 2 has an interesting corollary which permits to view our proposal as providing useful means
to take account of the fact that knowledge evolves. In some cases it might be important, for example for
efficiency reasons in contexts of limited resources, to investigate if a decision-aid provided before some
discovery of new knowledge is still valid after the discovery. Take a decision-aid which has been provided
using a set of argument Sγ which is CAC with respect to the set of known arguments before the discovery
S∗
before and using a Sγ -operationally valid model η. Theorem 2 shows that, if we can prove that Sγ is CAC

with respect to the set of all the arguments S∗
after supplemented thanks to the new discovery, then there is

no need to check the validity of η again. We thank an anonymous reviewer for this observation.
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4 Significance of the deliberated judgment framework for decision
theory and the practice of decision analysis

Section 2 displayed the conceptual core of our framework and Sect. 3 explained how
this framework can be confronted to empirical reality. The present section reflects on
the meaning, promises and limits of our approach. We start by pondering on how the
various conditions spelled out in Sect. 3 can be interpreted (Sect. 4.1). We then take a
broader view to discuss how our framework relates to the larger literature in decision
science (Sect. 4.2).

4.1 Themeaning of our conditions

To understand the precise meaning of the conditions of Theorem 1 and, more impor-
tantly, of Theorem 2, an almost trivial but nonetheless very important first step is to
spell out what it means if these conditions are not fulfilled.

We already stressed that the conditions of Theorem 1 are certainly too strong to
be fulfilled. The conditions of Theorem 2 are, by construction, much weaker. But
still, there certainly are situations where they are not fulfilled. In such cases, we do
not claim that decision analysis is impossible. Neither is our general framework, as
presented in Sect. 2, rendered bogus. The sole implication is that our approach to
operational empirical validation cannot be implemented. This does not prevent, for
example, the analyst from trying to identify directly decisive arguments, and this does
not render irrelevant a decision analysis based on decisive arguments. Neither does
this prevent completely other approaches to decision analysis to be implemented.
The only implication is that a full-fledged implementation of our approach, including
operational empirical validation, is not guaranteed to be possible in such situations.
It is no part of our claim that our approach can be applied all the time and provides
an all-encompassing framework liable to overcome all other approaches to decision
analysis. Our approach has a specific domain of application.

Beyond these simple, negative comments, how are our conditions to be understood?
In general terms, these various conditions can be interpreted in three different ways:

(i) as axioms capturing minimal properties concerning arguments and the way i
reasons,

(ii) as empirical hypotheses,
(iii) as rules governing the decision process (rules that i can commit to abide by, or can

consider to be well-founded safeguards for the proper unfolding of the process).

Example 9 (Budget reform (cont.)) We can now improve Example 8 by relaxing the
assumptions it contains. One can envisage in turn the three possibilities spelled out
above.

In interpretation (i), instead of assuming that i always reasons in such a way that
S∗ in its entirety satisfies the conditions of Theorem 1, we only assume that the set of
argument S = {s, sc1, sc2, sc1c, sc2c, s1,reinstated, s2,reinstated, sreinstated} is CAC.

In interpretation (ii), we have to take advantage of empirical data to claim that the
above set is CAC. Imagine, for example, that we have been able to show that the
overwhelming majority of people does reason with respect to the arguments in this
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set in such a way that it can be considered CAC. This would provide strong empirical
support to admit that this set can be considered CAC for the purpose of the decision
process at issue (assuming the pragmatic interpretation of S∗). In the present article, we
leave aside the important difficulties that such empirical concrete applications would
face.

In interpretation (iii), the analyst would start by explaining to i the content of the
requirements encapsulated in the definition of a CAC set of arguments and ask her if
she is willing to commit herself to reason in such a way as to fulfill these requirements
when thinking about the arguments to be discussed in the process. For example, for
the Answerability of the set of arguments (Condition 6), the analyst would ask i if she
would accept to commit not to change her mind depending on her mood or any other
non-argumentative factor. Notice that i might figure at some point that it was not a
good idea after all to commit to these various things, and in such a case the decision
analysis process would fail. �

Some of the conditions of our theorems are arguably more congenial to a given
interpretation. For example, it seems natural enough to interpret Condition 2 as a
rationality requirement of the kind that itmakes sense to use as an axiom (interpretation
(i)). By contrast, Condition 1 is the kind of condition that can easily be translated in
the form of rules than decision-makers can be asked to abide by when they engage
in a decision process (interpretation (iii)). By construction, Conditions 6 and 7 are
weakened versions of the above stronger conditions. They accordingly inherit the
preferred interpretation suggested above. Conditions 8 and 9 can easily be seen as
empirical hypotheses (interpretation (ii)).

However, although it is tempting to draw such connections between specific condi-
tions and specific interpretations, at a more abstract level all the conditions above can
be interpreted in all three interpretations. The different conditions can even be inter-
preted differently in the context of different implementations. In the present, largely
theoretical work, we want to leave all these possibilities open. Future, more applied
works, should assess if and when these different interpretations can be used, in partic-
ular by elaborating and implementing the convenient empirical validation protocols in
interpretation (ii) and the convenient participatory procedures in interpretation (iii).

4.2 The deliberated judgment framework in perspective

Now that the meaning of the conditions of our theorems is clarified, we are in a firmer
position to discuss the nature of our contribution to the literature.

The central, distinctive concept of our approach is the one of deliberated judgments
of an individual. Deliberated judgments are the propositions that the individual her-
self considers based on decisive arguments, on due consideration. This formulation
highlights the two key features of the concept.

The first key feature is that deliberated judgments are the result of a careful exam-
ination of arguments and counter-arguments. This echoes the approach to the notion
of rationality developed most prominently by Habermas (1981). In this approach,
actions, attitudes or utterances can be termed “rational” so long as the actor(s) per-
forming or having them can account for them, explain them and use arguments and
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counter-arguments to withstand criticisms that other people could raise against them.
Variants of this vision of rationality play a key role in other prominent philosophical
frameworks, such as Scanlon’s (2000) and Sen’s (2009). Having in mind this approach
to rationality, in the remainder of this discussion, we will therefore simply talk about
“rationality” when referring to this first idea underlying our framework.

The second key feature is that deliberated judgments are nevertheless the indi-
vidual’s own judgments, in the sense that they do not reflect the application of any
exogenous criterion. This second idea can also be nicknamed, for brevity’s stake, by
simply talking about “non-paternalism”.

Our approach, when applied in a decision analysis perspective, requires admitting
the soundness of these two normative notions of rationality and non-paternalism.

Our approach, however, also has a strong descriptive dimension, which is a direct
implication of the very meaning of non-paternalism. Though we are interested in
deliberated judgments rather than in the “shallow” preferences that individuals spon-
taneously express, still the deliberated judgments that we are interested in are the ones
of real, empirical individuals that are not constrained by our framework to adhere to a
specific set of exogenous stances. These descriptive aspects feed a normative approach
that accordingly owes its normative credentials both to its normative foundations and
to its reference to empirical reality.

Due to this double anchorage in normative and descriptive aspects, our approach
opens avenues to overcome perennial difficulties facing decision theory concerning
its descriptive vs. normative status. Indeed, our framework sets the stage for decision-
aiding practices that could have a crucial strength as compared with more standard
approaches, by including rigorous tests of whether individuals endorse or not various
arguments and argumentative lines, thereby avoiding both actively advocating them
(a purely normative approach) and leaving the individual in the ignorance of their
existence (a purely descriptive approach). Decision analyses based on deliberated
judgments thereby provide compelling reasons for the aided individual to think that
the decisions he makes once he has been aided are better than the one he would
have made otherwise. Such reasons are liable to play a key role in strengthening the
legitimacy and validity of decision analysis—two requirements largely discussed in
the literature (Landry et al. 1983, 1996).

To illustrate this idea, it is useful to compare our framework to more classical
approaches, such as utility theory. Proponents of utility theory could claim that util-
ity functions provide arguments that individuals will consider convincing (Savage
1972;Morgenstern 1979; Raiffa 1985), and that, therefore, our approach will converge
towards utility theory. However, the convincing power of utility-based arguments is
debatable (Ellsberg 1961; Allais 1979). Psychologists have tried to test it experimen-
tally (Slovic and Tversky 1974; MacCrimmon and Larsson 1979). But such tests can
hardly be considered conclusive: the meaning of their results depends on how argu-
ments have been presented to the individuals and on whether counter-arguments have
been presented, as Slovic and Tversky (1974) themselves point out. Such a system-
atic confrontation with counter-arguments is precisely what our proposed framework
allows to implement.

The formal framework presented in this article will, however, only live up to its
promises if empirical applications are developed. Researchers in artificial intelligence
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(Labreuche 2011) and persuasion (Carenini and Moore 2006) have produced ways of
“translating” formalMulti-Attribute Value Theory models into textual arguments, that
could possibly provide promising tools to develop such applications.

Acknowledgements We thank Denis Bouyssou, Cyril Hédoin, Jean-Sébastien Gharbi, André Lapied,
Bernard Roy, Stéphane Deparis and two anonymous reviewers for very helpful comments.

A Proofs, and additional explanatory results

Our main goal in this section is to prove Theorem 2. We do this by first proving that if
a set Sγ is CAC, then it includes enough decisive arguments to settle the issue (we will
call such a set S ⊆ S∗ efficient). This requires a few intermediate lemmas. Efficiency
will bring a number of consequences of interest to us, among which Theorem 2. As a
second goal, we want to give some further results that help understand the relationship
between the notions of clear-cut, validity and operational validity, existence of a CAC
set of arguments, and efficiency.

Let us start with the formal definition of efficiency.

Definition 13 (Efficiency) Given a decision situation (T , S∗,↝,�∃, �∃), given S ⊆
S∗, S is efficient iff Ti = ↝(S ∩ �∃(S∗)), and t /∈ Ti ⇔ ↝−1(t) ⊆ �∀(S ∩ �∃(S∗)).

Recall that �∃(S∗) designates the arguments not trumped by any argument, thus,
the decisive arguments, and hence, �∀(S ∩ �∃(S∗)) designates the arguments always
trumped by some decisive argument in S.

In all this section, we assume we are given a decision situation (T , S∗,↝,�∃, �∃)
and a subset of arguments Sγ ⊆ S∗ (except in Theorem 5).

Our strategy for proving that CAC implies efficiency, roughly speaking, involves
excluding “undecided” situations from Sγ . For example, we want to show that it is
impossible that an argument has no decisive argument trumping it in Sγ , but also
fails to be defended in Sγ . We will do this by progressively promoting or degrading
arguments, e.g., show that, in Sγ , if an argument is resistant (has no argument that
decisively trumps it), then it must also be defended, and if it is defended, it must be
replaceable by decisive arguments.

Define Sγ dec = Sγ ∩ �∃(S∗) as the decisive arguments from Sγ .
Define an argument s as finitely defended iff some finite set of arguments from

Sγ dec defends it, thus, iff ∃S ⊆ Sγ dec such that �−1
∃ (s) ⊆ �∃(S), S finite. Define

Sγ def as the arguments from Sγ that are finitely defended.
Define Rγ dec ⊆ S∗ as the arguments that are replaceable by Sγ dec. Recall that S

replaces s iff �∃(s) ⊆ �∃(S) and↝(s) ⊆ ↝(S).
Define Sγ res = Sγ ∩ �∃(Sγ dec) as the resistant arguments from Sγ , namely, those

not trumped by any argument from Sγ dec.
Define Eγ res ⊆ S∗ as the arguments that are essentially replaceable by Sγ res. Recall

that S essentially replaces s iff (�∃(s) ∩ Sγ ) ⊆ �∃(S) and↝(s) ⊆ ↝(S).
Similarly, Eγ dec are the arguments essentially replaceable by Sγ dec.
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Lemma 1 (Sγ def ⊆ Rγ dec) If Sγ is Closed under reinstatement and Answerable, then
the arguments from Sγ that are finitely defended are replaceable by decisive arguments
from Sγ ; formally: Sγ def ⊆ Rγ dec.

Proof The strategy for this proof is the following. If s ∈ Sγ def, some finite set of
arguments defends s. We wish to pick defenders one by one, replacing s by applying
Closed under reinstatement to s and the chosen defender, obtaining an argument that
fewer arguments trump, and then show that iterating the process yields a decisive
argument replacing s.

We need the following intermediate result. Assume a set of arguments S ⊆ Sγ dec
is given, together with an argument s1 ∈ S and an argument sr1 ∈ Sγ defended by S.
Then, there exists an argument sr2 ∈ Sγ replacing sr1 and defended by S\{s1}.

Indeed, from Answerability, because s1 ∈ Sγ dec, �∃(s1) = �∀(s1). Also, as s1 ∈
Sγ dec, we can assume that s1 �= sr1, otherwise sr1 ∈ Sγ dec and the result is obtained
by taking sr2 = sr1. And s1 does not trump sr1, otherwise sr1 is trumped by a decisive
argument and thus not defended. We can thus apply Closed under reinstatement to
(s1, sr1). We obtain that for some sr2 ∈ Sγ , �−1

∃ (sr2) ⊆ �−1
∃ (sr1)\ �∃ (s1) and sr2

replaces sr1. Thus, S\{s1} defends sr2: any argument trumping sr2 already trumped sr1,
hence, is trumped by S (because that set defends sr1), and is not trumped by s1. This
proves our intermediate result.

Coming back to the main point, we know that a finite coalition S ⊆ Sγ dec defends
s ∈ Sγ . Define sr1 = s and apply the intermediate result repetitively to obtain an
argument sr2 ∈ Sγ replacing s and defended by S minus one element, then sr3 ∈ Sγ

replacing sr2, thus, replacing s (because replacement is transitive) and defended by S
minus two elements, and so on, until obtaining a replacer defended by ∅, thus, decisive.

��
Lemma 2 (S∗ = Eγ res ∪ �∃(Sγ res)) If Sγ is covering, then any argument is either
essentially replaceable by Sγ res, or attacked by an argument from Sγ res; formally:
S∗ = Eγ res ∪ �∃(Sγ res).

Proof We consider in turn three sets whose union yields S∗: Sγ , Sγ ∩ �∃(Sγ dec) and
Sγ ∩ �∃(Sγ dec).

First, Sγ ⊆ Eγ res ∪ �∃(Sγ res): from covering, if s /∈ Sγ , s is unnecessary, and by
definition, s is unnecessary iff s ∈ Eγ res or s ∈ �∃(Sγ res).

Second, Sγ ∩ �∃(Sγ dec) ⊆ �∃(Sγ dec) ⊆ �∃(Sγ res), because Sγ dec ⊆ Sγ res.
Third, Sγ ∩ �∃(Sγ dec) ⊆ Eγ res, because Sγ ∩ �∃(Sγ dec) = Sγ res by definition.
We have considered all three possible cases, and the conclusion obtains in all cases.

��
Lemma 3 (Sγ res ⊆ Sγ def) If Sγ is CAC, any argument in Sγ that has no argument that
decisively trumps it is finitely defended; formally: Sγ res ⊆ Sγ def.

Proof Recall that the relation Q is defined in Bounded length (Condition 9) as Q =
(�∃ ∪ (�∃ ◦ �∃)) ∩ (Sγ × Sγ ). Observe that, given any set S �= ∅, Bounded Length
forbids that ∀s ∈ S : S ∩ Q−1(s) �= ∅. Otherwise, applying Q−1 to an element of S
would always yield some element in S, and Q−1 could then be applied any desired
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number of times starting from any s ∈ S, thereby building a chain as long as desired.
Accordingly, for any set S, Bounded Length imposes that if ∀s ∈ S : S ∩ Q−1(s) �= ∅,
then S = ∅.

Define S = Sγ res ∩ Sγ def. We show that, given any s ∈ S, S ∩ Q−1(s) �= ∅. This
suffices to obtain S = ∅ and, therefore, our desired conclusion.

Pick any s ∈ S. Towards exhibiting an argument in S ∩ Q−1(s), we want first
to exhibit some argument s′ that is a) trumped by some argument s∗ ∈ Sγ res, thus
s′ ∈ �∃(Sγ res); b) not trumped by any argument in Sγ dec, thus s′ /∈ �∃(Sγ dec); c)
equal to s or trumping s. As a second step, from the existence of such an s′ we will
then prove that s∗, the particular trumping argument in part a), belongs to S (thanks
to parts a) and b)), and belongs to Q−1(s) (thanks to part c)).

Our first step thus amounts to show that some s′ satisfies our three conditions above.
From s /∈ Sγ def and s ∈ Sγ , we know that s is not finitely defended, and using the

contrapositive of Bounded width, we obtain that s is not infinitely defended either.
Hence, by definition of defense, there exists some s1 ∈ �∃(Sγ dec) ∩ �−1

∃ (s). And,
applying [S∗ = Eγ res ∪ �∃(Sγ res)], either s1 ∈ Eγ res, or s1 ∈ �∃(Sγ res).

If s1 ∈ Eγ res, s ∈ �∃(Sγ res). Besides, because s ∈ S, s ∈ Sγ res. Thus taking s′ = s
satisfies our three conditions.

And if s1 ∈ �∃(Sγ res), because s1 ∈ �∃(Sγ dec)), taking s′ = s1 satisfies our three
conditions.

For our second step, consider an argument s∗ ∈ Sγ res that trumps s′ (we know this
is possible thanks to part a)). Thanks to part b), we know that s′ is not trumped by
any argument in Sγ dec, and from [Sγ def ⊆ Rγ dec], we know that if s′ was trumped
by an argument in Sγ def, it would be trumped by an argument in Sγ dec, thus, s′ is not
trumped by any argument in Sγ def. Because s∗ �∃ s′, we know that s∗ /∈ Sγ def. Thus,
s∗ ∈ S. Finally, s∗ �∃ s or s∗ �∃ s′ �∃ s (thanks to part c)), thus, s∗ ∈ Q−1(s). ��
Lemma 4 (S∗ = Eγ dec ∪ �∃(Sγ dec)) If Sγ is CAC, any argument is either essentially
replaceable by decisive arguments from Sγ , or attacked by a decisive argument from
Sγ ; formally: S∗ = Eγ dec ∪ �∃(Sγ dec).

Proof This follows from [S∗ = Eγ res ∪ �∃(Sγ res)], [Sγ res ⊆ Sγ def] and [Sγ def ⊆
Rγ dec]. ��
Theorem 3 (CAC implies efficiency) If Sγ is CAC, Sγ is efficient.

Proof We prove that ↝(Eγ dec) ⊆ ↝(Sγ dec) ⊆ Ti ⊆ ↝(�∀(Sγ dec)) ⊆ ↝(Eγ dec).
This proves the point, as it shows that

(i) Ti = ↝(Sγ dec), and
(ii) t /∈ Ti ⇔ ↝−1(t) ⊆ �∀(Sγ dec), because Ti = ↝(�∀(Sγ dec)).

That↝(Eγ dec) ⊆ ↝(Sγ dec) ⊆ Ti follows from the definitions of Eγ dec and Ti .
The next subset relation holds because if some decisive argument supports t , that

argument is not in �∀(Sγ dec).
Finally, Answerability mandates that�∃(Sγ dec) ⊆ �∀(Sγ dec), hence,�∀(Sγ dec) ⊆

�∃(Sγ dec), and using [S∗ = Eγ dec ∪ �∃(Sγ dec)], �∃(Sγ dec) ⊆ Eγ dec. ��
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Theorem 4 (Validity of η) Assume Sγ is efficient and η, a model of the decision
situation, is Sγ -operationally valid. Then Ti = Tη.

Proof Recall that a model is Sγ -operationally valid iff for all (s ↝η t), s ∈ S∗, we
have [s ↝ t] and [∀sc ∈ Sγ : (sc �∃ s) ∨ (∃scc ∈ S∗ | scc �η sc ∧ scc �∃ sc)], and
when t is not supported by η, ∀s ∈ Sγ | s ↝ t : (∃sc ∈ S∗ | sc �η s ∧ sc �∃ s).

Consider t ∈ Tη. By definition, some s ↝η t . From operational validity of η, we

obtain that s ↝ t and ∀sc �∀ s : sc /∈ Sγ ∩ �−1
∃ (S∗) (because [sc �∀ s ∧ sc ∈ Sγ ] ⇒

sc ∈ �−1
∃ (S∗)). Hence, s /∈ �∀(Sγ ∩ �−1

∃ (S∗)), thus ↝−1(t) � �∀(Sγ ∩ �−1
∃ (S∗)).

Efficiency of Sγ brings t ∈ Ti .
If t /∈ Tη, from operational validity of η, no decisive argument in Sγ may support

t , equivalently, t /∈ ↝(Sγ ∩ �∃(S∗)), and from efficiency, t /∈ Ti . ��
We can now prove Theorem 2.

Proof of theorem 2 From [CAC implies efficiency], we obtain that Sγ is efficient. It
then follows from the efficiency of Sγ that the decision situation is clear-cut and that
a Sγ -operationally valid model exists. The last consequence is given by Theorem 4. ��

The following theorem may help clarify the relationship between efficiency, exis-
tence of CAC arguments, and the situation admitting a model as we conceive it.

Theorem 5 (CAC subset equivalent to efficiency) Given a decision situation (T , S∗,
↝,�∃, �∃) and a subset of arguments S ⊆ S∗, there exists a set Sγ ⊆ S that is CAC
iff S is efficient.

Proof From [CAC implies efficiency], if some set Sγ ⊆ S is CAC, then Sγ is efficient,
and because efficiency propagates to supersets, S is efficient.

If S is efficient (thus, the decision situation is clear-cut), then a CAC subset Sγ

exists: suffices to choose as members of Sγ only the decisive arguments required
to support the justifiable propositions and trump the supporters s ↝ t of untenable
propositions. Observing that no arguments trump any argument in the resulting set
(thus s �∃ sγ for no s ∈ S∗, sγ ∈ Sγ ), most of the conditions for Sγ to be CAC are
immediately seen to be satisfied. About arguments s ∈ S∗\Sγ being unnecessary, we
only have to show that when s↝ t , either s is trumped by an argument from Sγ that is
not decisively trumped, or s is essentially replaceable by arguments from Sγ . Indeed,
by our construction of Sγ , if s supports an accepted t , it is essentially replaceable, and
otherwise, it is trumped by a decisive argument. ��
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