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Abstract
Under approval voting (AV), each voter just distinguishes the candidates he approves
of from those appearing as unacceptable. The preference approval voting (PAV) is a
hybrid version of the approval voting first introduced by Brams and Sanver (in: Brams,
Gehrlein, Roberts (eds) The mathematics of preference, choice and order. Springer,
Berlin, pp 215–237, 2009). Under PAV, each voter ranks all the candidates and then
indicates the ones he approves. In this paper, we provide an analytical representation
of the limiting probability that PAV elects the Condorcet winner (resp. the Condorcet
loser) when she exists in three-candidate elections.We perform our analysis by assum-
ing the assumption of the Extended Impartial Culture. The aim is to measure at which
extend PAV performs better than AV both on the propensity of electing the Condorcet
winner and on that of the non-election of the Condorcet loser. For this purpose, we
also provide an analytical representation of the limiting probability that AV elects
the Condorcet winner (resp. the Condorcet loser) when she exists in three-candidate
elections. Our representation of the limiting probability that AV elects the Condorcet
winner is more general than that provided by Diss et al. (in: Laslier and Sanver (eds)
Handbook on approval voting. Springer, Berlin, pp 255–283, 2010) and it leads to the
same figures as the representation provided by Gehrlein and Lepelley (Group Decis
Negot 24:243–269, 2015).

Keywords Approval voting · Ranking · Condorcet · Extended impartial culture ·
Probability

1 Introduction

Popularized by Brams and Fishburn (1978), the approval voting (AV) rule is a voting
system under which each voter approves (any number of) candidates that he considers
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as acceptable and the winner is the most-approved candidate. This rule has made (and
continues to be) the subject of numerous researchworks in political science, economics
and computer science. To have a quick overview of these works, the reader may refer
to the books of Brams and Fishburn (2007); Brams (2008) and to the Handbook of
Approval Voting edited by Laslier and Sanver (2010). Under AV, there is no need to
rank the candidates as under the scoring rules.1 This absence of rankings gave rise to a
controversy between Saari and vanNewenhizen (1988a, b) andBrams et al. (1988a, b).
Saari and van Newenhizen (1988b) blamed AV of hiding the real preferences of the
voters which can be strict between the candidates approved by a voter. Brams and
Sanver (2009) may have brought what appears as a possible response to this criticism
by introducing the preference approval voting (PAV). Under PAV, each voter ranks all
the candidates then indicates the ones he approves.2 According to Brams and Sanver
(2009), the winner under PAV is determined by two rules:

Rule 1 The PAV winner is the AV winner if3

i. no candidate receives a majority of approval votes (i.e approved by more than half
of the electorate)

ii. exactly one candidate receives a majority of approval votes.

Rule 2 In the case that two or more candidates receive a majority of approval votes,

i. the PAV winner is the one among these candidates who is preferred by a majority
to every other majority-approved candidate.

ii. In the case of a cycle among themajority-approved candidates, then the AVwinner
among them is the PAV winner.

Brams and Sanver (2009) noticed that it is Rule 2 that clearly differentiates PAV
from AV. They pointed out that for some situations where a Condorcet winner exists,
this candidate may not be a PAV winner under each of the subcases of Rule 1 and
Rule 2. When she exists, a Condorcet winner is a candidate who defeats each of
the other candidates in pairwise comparisons. We know that AV always elects the
Condorcet winner when she exists given that voters’ preferences are dichotomous
(Ju 2010; Xu 2010). This is no more the case when the voters’ true preferences are
assumed to be strict orderings (Gehrlein and Lepelley 1998) or when indifference are
allowed in the voters’ true preferences (Diss et al. 2010; Gehrlein and Lepelley 2015).
For large electorates and three candidates, Gehrlein and Lepelley (1998) found that
AV has the same Condorcet efficiency (probability of electing the Condorcet winner
when she exists) as both the Plurality rule and the Antiplurality rule.4 Going from a
more general framework, Diss et al. (2010) found that for large electorates and three
candidates, AV performs better that both the Plurality rule and the Antiplurality rule

1 A scoring rule is a voting rule under which voters give points to candidates according to the ranks they
have in voter’s preferences. The winner is the candidate with the highest total number of points.
2 Brams and Sanver (2009) also introduced the Fallback Voting under which voters only rank the candidates
they approve. In this paper, we are not concerned with this rule.
3 Here, we have chose to split Rule 1 into two. This will be helpful for our analysis.
4 The Plurality rule is a scoring rule under which each voter votes only for (gives one point to) his top
ranked candidate and the winner is the one with the highest total number first places; under the Antiplurality
rule, the winner is the candidate with the fewest total number of last places.
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on the Condorcet efficiency; they also found some scenarios under which the Borda
rule performs better than AV. Their results were strongly reinforced by Gehrlein and
Lepelley (2015).

To our knowledge, nothing is known about the Condorcet efficiency of PAV. One
objective of this paper was thus to try to fill this void for voting situations with three
candidates by focusing on the Condorcet efficiency of PAV when indifference are
allowed as in Diss et al. (2010). So, we provide a representation of the limiting prob-
ability of the Condorcet efficiency of PAV. All the computations are done under the
extended impartial culture assumption introduced by Diss et al. (2010); this assump-
tion will be defined later. By definition, it is obvious that PAV performs better than AV
on electing the Condorcet winner when she exists. It would be interesting to measure
the extent of this dominance. In order to better reflect this, we first provide a more
general representation of the limiting probability of the Condorcet efficiency of AV.
Then, the representation provided by Diss et al. (2010) comes as a particular case of
ours which appears as an alternative form of the representation provided by Gehrlein
and Lepelley (2015).

When she exists, a Condorcet loser is a candidate who is defeated by each of the
other candidates in pairwise comparisons. Gehrlein and Lepelley (1998) showed that
with more than three candidates and under the impartial culture assumption, AV is
more likely to elect the Condorcet loser than the Plurality rule. For three-candidate
elections, they showed that AV has the same probability of electing the Condorcet
loser as both the Plurality rule and the Antiplurality rule. This result is a bit challenged
by a recent paper by Gehrlein et al. (2016). Using impartial anonymous culture-like
assumptions5 and considering a range of scenarios, Gehrlein et al. (2016) concluded
that in three-candidate elections, AV is less likely to elect the Condorcet loser than
both the Plurality rule and the Antiplurality rule. By definition, PAV is less likely to
elect the Condorcet loser than AV. The second objective of this paper was to focus
on the probability that PAV elects the Condorcet loser when she exists. We provide
for AV and for PAV, analytical representations of the limiting probability of electing
the Condorcet loser in three-candidate elections under the extended impartial culture
assumption. By doing so, we will highlight at which extent PAV is less likely to elect
the Condorcet loser than AV.

The rest of the paper is structured as follows: Sect. 2 is devoted to basic notations
and definitions. Section 3 presents our results on the Condorcet efficiency. Section 4
deals with the probability of electing the Condorcet loser. Section 5 concludes.

2 Preliminaries

2.1 Preferences in three-candidate elections

Let N be a set of n voters (n ≥ 2) and A = {a, b, c} a set of three candidates. We
assume that voters rank all the candidates, indifference is allowed and they indicate

5 We will say more on this assumption later.
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Table 1 The 19 possible
preference types with three
candidates

Class I a � b � c p1 Class II a � b � c p7
a � c � b p2 a � c � b p8
b � a � c p3 b � a � c p9
b � c � a p4 b � c � a p10
c � a � b p5 c � a � b p11
c � b � a p6 c � b � a p12

Class III a ∼ b � c p13 Class IV a � b ∼ c p16
a ∼ c � b p14 b � a ∼ c p17
b ∼ c � a p15 c � a ∼ b p18

Class V a ∼ b ∼ c p19

Table 2 The AV score of the candidates

S(a) = n1 + n2 + n7 + n8 + n9 + n11 + n13 + n14 + n16 + n19
S(b) = n3 + n4 + n7 + n9 + n10 + n12 + n13 + n15 + n17 + n19
S(c) = n5 + n6 + n8 + n10 + n11 + n12 + n14 + n15 + n18 + n19

which candidates they approve by underlining the names of the candidates.6 So, there
are 19 possible types of preferences. Following Diss et al. (2010), these 19 types of
preferences can be partitioned into five classes of preferences:

Class I this class is made of voters with strict rankings and who only approve their
top ranked candidates. These voters are labeled 1–6 in Table 1.
Class II voters in this class also have strict ranking and they approve their top two
ranked candidates. These types of voters are labeled 7–12 in Table 1.
Class III in this class, voters are indifferent between their two preferred candi-
dates or do not consider the difference significant enough to reveal their true strict
preference. These types of voters are labeled 13–15 in Table 1.
Class IV in this class, voters rank one candidate strictly above the two other
between whom they are indifferent. These types of voters are labeled 16–17 in
Table 1.
Class V voters of this class are indifferent between the three candidates; thus they
approve all the three candidates(type 19).

If we denote by nt the number of voter of type t , a voting situation is an 19-tuple
ñ = (n1, n2, . . . , nt , . . . , n19) that indicates the total number nt of voters casting each
type of preferences such that

∑19
t=1 nt = n. A voting profile identifies the specific

ranking that each voter has on the candidates. We denote by pt the probability that a
voter chooses the preference type t such that

∑19
t=1 pt = 1 where pt = nt

n . In Table
2, S(a) denotes the AV score of candidate a given the labels of Table 1. We denote by
p the preference profile of voters which identifies the specific linear ranking that each
voter has on the candidates.

Given a, b ∈ A, we denote by nab the total number of voters who strictly prefer
a to b. If nab > nba , we say that a majority dominates candidate b; or equivalently,

6 It is assumed that voters vote sincerely. So, we are not concerned with strategic behaviors.
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a beats b in a pairwise majority voting. In such a case, we will simply write aMb.
Candidate a is said to be the Condorcet winner (resp. the Condorcet loser) if for all
b ∈ A\{a}, aMb (resp. bMa). If for a given voting situation we get aMb, bMc and
cMa, this describes a majority cycle.

2.2 PAV, the Condorcet winner and the Condorcet loser

By the definition of PAV, it is obvious that with three candidates, if there is a Condorcet
winner who belongs to the subset of majority-approved candidates, she is always
elected if Rule 2i applies while rule 2ii will never apply. So, Rule 1i and 1ii can fail
to elect the Condorcet winner. It is also obvious that if there is a Condorcet loser in
a three-candidate election, she cannot be elected under Rule 2i and 2ii; so, PAV may
elect the Condorcet loser only when Rule 1i or 1ii applies.

In order to motivate the paper, let us take the following two voting profiles7 each
with 9 voters Vi (i = 1 . . . 9) in order to illustrate that in three-candidate elections,
PAV can fail to select the Condorcet winner when she exists (under Rules 1i, 1ii and
2i) and that it can select the Condorcet loser (under Rules 1i and 1ii).

Profile 1

V1:a � c � b V2:a � c � b V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:b � a � c V8:c � b � a V9:a � b � c

Profile 2

V1:a � c � b V2:b � a � c V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:c � a � b V8: a � b � c V9:c � b � a

Under both profiles, the reader can check that c is the Condorcet winner and b is the
Condorcet loser. Under the first profile, we get S(a) = S(c) = 3 and S(b) = 4;
no candidate gets the majority of the approvals (5 votes), according to Rule 1i, b is
the winner since she is the AV winner. Thus, PAV under Rule 1i fails to select the
Condorcet winner but selects the Condorcet loser. Under the second profile, b is the
unique majority-approved candidate with 5 votes; Rule 1ii applies and b is the PAV
winner: PAV under Rule 1i fails to elect the Condorcet winner but can select the
Condorcet loser.

Toget a profile underwhichRule 2i applies and that PAVfails to select theCondorcet
winner, the reader only needs to add the following groups of voters to Profile 1: 3 voters
with a � b � c, 2 voters with a � c � b, 3 voters with c � a � b and 4 voters with
c � b � a.

7 Other examples are provided in Brams (2008); Brams and Sanver (2009).
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The profiles we just used illustrate that under some voting situations, PAV can fail
to elect the Condorcet winner when she exists and that it can elect the Condorcet loser
when she exists. These two behaviors of PAV are just rare oddities or are a common
occurrence? The aim of this paper was then to provide an answer to this question.
So, we compute the Condorcet efficiency of PAV and its probability of electing the
Condorcet loser for voting situations with three candidates. Before starting this task,
we need to define a probability model for this.

2.3 The probability model: the extended impartial culture assumption

The impartial culture (IC) assumption, first introduced in the social choice literature
by Gehrlein and Fishburn (1976), is one of the hypothesis used in the social choice
literature when computing the likelihood of voting events. Under IC, it is assumed
that each voter chooses her (strict) preference according to a uniform probability
distribution. When only strict rankings are allowed with m candidates, IC gives a
probability 1

m! for each of the m! rankings to be chosen independently. The likelihood
of a given voting situation ñ = (n1, n2, . . . , nt , . . . , nm!) is

Prob (ñ = (n1, n2, . . . , nt , . . . , nm!)) = n!
∏m!

t=1 nt !
× (m!)−n

For more details about the IC assumption, see among others Gehrlein and Fishburn
(1976); Berg and Lepelley (1994); Gehrlein and Lepelley (2010, 2017); Gehrlein and
Fishburn (1980b). According to Gehrlein (1979), one can derive the likelihood of most
voting events under the IC assumption using existing results on the representations
of quadrivariate normal rules as suggested by Plackett (1954).8 Gehrlein–Fishburn’s
technique usually needs a good knowledge of the existing formulas in statistics for
the representation of quadrivariate positive orthants (Abrahamson 1964; David and
Mallows 1961; Gehrlein 1979).

When indifference is allowed, the Impartial Weak Ordering Culture (IWOC) was
introduced by Gehrlein and Fishburn (1980a) as an extension of IC. The reader may
refer to Gehrlein and Lepelley (1998); Gehrlein and Valognes (2001); Lepelley and
Martin (2001); Merlin and Valognes (2004); Gehrlein and Lepelley (2015) for a non
exhaustive review of theoretical works taken under IWOC-like assumptions. Recently,
Diss et al. (2010) provided an extension of IC that allows the possibility that voters
could have dichotomous preferences with complete indifference between two of the
candidates and also the possibility of a complete indifference between all three candi-
dates: the Extended Impartial Culture (EIC) assumption. Let us describe how it works.
Consider the 5 classes of preferences described in Table 1 and let us denote by k1 the
probability that a voter’s preference belongs to Class I; by k2 the probability that a
voter’s preference belongs to Class II; by k3 the probability that a voter’s preference
belongs to Class III; by k4 the probability that a voter’s preference belongs to Class

8 Assume (X1, X2, . . . , Xn) a vector of n random variables with a nonsingular multivariate normal distri-
bution. Plackett (1954) evaluated the probability P(X1 > x1, X2 > x2, . . . , Xn > xn); he ended with a
reduction formula of this probability based on the numerical quadrature for n = 3, 4.
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IV and by k5 the probability that a voter’s preference belongs to Class V such that
k1 + k2 + k3 + k4 + k5 = 1. Under EIC, it is assumed that the rankings within a class
are equally likely: pt = k1

6 for t = 1, 2, . . . , 6, pt = k2
6 for t = 7, 8, . . . , 12, pt = k3

3
for t = 13, 14, 15, pt = k4

3 for t = 16, 17, 18 and p19 = k5.
Diss et al. (2010) used EIC to analyze the Condorcet efficiency of AV and that

of all the extended scoring rules. They also provided the limiting probability that a
Condorcet winner exists as follows:9

P∞
Con = 3

4
+ 3

2π
arcsin

(
k1 + k2 + k3 + k4

3k1 + 3k2 + 2k3 + 2k4

)

Given that k1 + k2 + k3 + k4 + k5 = 1, we can rewrite P∞
Con:

P∞
Con(k34, k5) = 3

4
+ 3

2π
arcsin

(
1 − k5

3 − k3 − k4 − 3k5

)

= 3

4
+ 3

2π
arcsin

(
1 − k5

3 − k34 − 3k5

)

with k34 = k3 + k4

3 Probability that PAV elects the Condorcet winner

Diss et al. (2010) compute the Condorcet efficiency of AV under EIC assumption by
assuming that p19 = 0. They made this assumption because the preference type of
ClassV has no impact on the outcome under AV; this is not the case under PAV where
type 19 can really matter. Gehrlein and Lepelley (2015) provided a representation of
the limiting probability of the Condorcet efficiency of AV by assuming that p19 ≥ 0.
In this paper, we provide an alternative form of this representation, and then we move
to that of PAV.

Given the voting situation ñ on A = {a, b, c}, assume without loss of generality
that candidate a is the Condorcet winner; this means that aMb and aMb. Using the
labels of Table 1, these conditions are, respectively, equivalent to Eqs. 1 and 2.

n1 + n2 − n3 − n4 + n5 − n6 + n7 + n8 − n9
−n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (1)

n1 + n2 + n3 − n4 − n5 − n6 + n7 + n8 + n9 − n10
−n11 − n12 + n13 − n15 + n16 − n18 > 0 (2)

Candidate a being also the AV winner means that S(a) > S(b) and S(a) > S(c)
which are, respectively, equivalent to Eqs. 3 and 4.

n1 + n2 − n3 − n4 + n8 − n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (3)

n1 + n2 − n5 − n6 + n7 + n9 − n10 − n12 + n13 − n15 + n16 − n18 > 0 (4)

9 Notice that P∞
Con is also the probability that a Condorcet loser exists.
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So, a voting situation under which AV elects the Condorcet winner is fully described
by Eqs. 1–4. In order to get a representation of the Condorcet efficiency of AV, we
follow the same technique as Gehrlein and Fishburn (1978a). So, considering each of
Eqs. 1–4, we define the following four discrete variables:

X1 = 1 : p1 + p2 + p5 + p7 + p8 + p11 + p14 + p16
−1 : p3 − p4 + p6 + p9 + p10 + p12 p15 + p17
0 : p13 + p18 + p19

X2 = 1 : p1 + p2 + p3 + p7 + p8 + p9 + p13 + p16
−1 : p4 + p5 + p6 + p10 + p11 + p12 + p15 + p18
0 : p14 + p17 + p19

X3 = 1 : p1 + p2 + p8 + p11 + p14 + p16
−1 : p3 + p4 + p10 + p12 + p15 + p17
0 : p5 + p6 + p7 + p9 + p13 + p18 + p19

X4 = 1 : p1 + p2 + p7 + p9 + p13 + p16
−1 : p5 + p6 + p10 + p12 + p15 + p18
0 : p3 + p4 + p8 + p11 + p14 + p17 + p19

where pi is the probability that a voter who is randomly selected from the electorate
is associated with the i th ranking of Table 1; X1 > 0 indicates that a is preferred to
b and X1 < 0 indicates the reverse; X1 = 0 indicates that there are as many voters
who prefer a to b than those who prefer b to a. Similarly, X2 > 0 indicates that a is
preferred to c. X3 and X4, respectively, represent S(a)− S(b) and S(a)− S(c) which
are, respectively, the differences in scores between a and b, then between a and c.
Eqs. 1–4 fully describe a situation under which AV elects the Condorcet winner when
the average value X j of each of the X j (for j = 1, 2, 3, 4) is positive. According
the Gehrlein and Fishburn (1978a, b), the probability of such a situation is equal to
the joint probability X1 > 0, X2 > 0 , X3 > 0 and X4 > 0; when n → ∞,
it is equivalent to the quadrivariate normal positive orthant probability Φ(R4) such
that X j

√
n ≥ E(X j

√
n) and R4 is a correlation matrix between the variables X j .

The expectation value of X j is E(X j ) = 0, the variances (V (X j ) = E(X2
j )) and

covariances (Cov(X j , Xk) = E(X j Xk)) are:

V (X1) = V (X2) = 3k1 + 3k2 + 2k3 + 2k4
3

= 3 − 3k5 − k34
3

V (X3) = V (X4) = 2(k1 + k2 + k3 + k4)

3
= 2(1 − k5)

3

Cov(X1, X2) = Cov(X1, X4) = Cov(X2, X3) = Cov(X3, X4) = 1 − k5
3

Cov(X1, X3) = Cov(X2, X4) = 2Cov(X1, X2)
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We derive the correlation matrix R4 where the components r jk are r jk = rk j =
Cov(X j ,Xk )√
V (X j )V (Xk )

:

R4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1−k5
3−3k5−k34

√
2(1−k5)

3−3k5−k34

√
1−k5

2(3−3k5−k34)

1
√

1−k5
2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34

1 1
2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Gehrlein (1979) has developed a general representation of the orthant probabilities
for obtaining numerical values of Φ(R4) as a function of a series of bounded integrals
over a single variable. Given r jk the correlation terms in the matrix R4, this general
representation is defined as follows:

Φ(R4)

= f (r12, r13, r14, r23, r24, r34)

= 1

16
+ arcsin(r12) + arcsin(r13) + arcsin(r23)

8π

+ r14
4π2

⎡

⎢
⎢
⎢
⎢
⎣

∫ 1

0

arccos

(
r24r34z

2−r13r14r24z
2+r12r13+r214r23z

2−r12r14r34z
2−r23√

(1−r214z
2−r213−r234z

2+2r13r14r34z2)(1−r224z
2−r212−r214z

2+2r12r14r24z2)

)

√
1 − r214z

2
dz

⎤

⎥
⎥
⎥
⎥
⎦

+ r24
4π2

⎡

⎢
⎢
⎢
⎢
⎣

∫ 1

0

arccos

(
r14r34z

2−r14r23r24z
2+r12r23+r224r13z

2−r12r24r34z
2−r13√

(1−r224z
2−r223−r234z

2+2r23r24r34z2)(1−r224z
2−r212−r214z

2+2r12r14r24z2)

)

√
1 − r224z

2
dz

⎤

⎥
⎥
⎥
⎥
⎦

+ r34
4π2

⎡

⎢
⎢
⎢
⎢
⎣

∫ 1

0

arccos

(
r14r24z

2−r14r23r34z
2+r13r23+r234r12z

2−r13r24r34z
2−r12√

(1−r224z
2−r223−r234z

2+2r23r24r34z2)(1−r214z
2−r213−r234z

2+2r13r14r34z2)

)

√
1 − r234z

2
dz

⎤

⎥
⎥
⎥
⎥
⎦

Let us define the following quantities:

N1
(
k34, k5, z

) = 1

2

(
z + 1

)(
z − 1

)(
1 − k5 − k34

)(
3 − 3k5 − k34

)− 3
2
(
2
(
1 − k5

)) 1
2 ;

N2
(
k34, k5, z

) = − 1

4

((
k34 + 7k5 − 7

)
z2 − 4k34 − 10k5 + 10

)(
3 − 3k5 − k34

)− 3
2
(
2
(
1 − k5

)) 1
2 ;

D1
(
k34, k5, z

) = 1

4

(
z − 2

)(
z + 2

)(
1 − k5 − k34

)

(
3k5 + k34 − 3

)−1;

D2
(
k34, k5, z

) =
(
16−32k5−12k34+16k25+12k5k34+2k234+(22k5+5k34−5k5k34−11k25−11

)
z2
)

2
(
3k5+k34−3

)2 ;

D3
(
k34, k5, z

) = − 1

4

((
k34 + 7k5 − 7

)
z2 − 4k34 − 10k5 + 10

)(
3k5 + k34 − 3

)−1;
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μ
(
k34, k5, z

) = 1 + z2
(
1 − k5

)(
2
(
3k5 + k34 − 3

))−1;
ν
(
k34, k5, z

) = 1 + 2z2
(
1 − k5

)(
3k5 + k34 − 3

)−1

We derive Theorem 1 which gives the representation of the limiting Condorcet effi-
ciency of AV.

Theorem 1 With three candidates and an infinite number of voters, the Condorcet
efficiency of AV is given by:

CE∞
AV(k34, k5) = 3

(
Φ(R4)

P∞
Con

)

=
(

3

(

π + 2 arccos

(
k5 − 1

3k5 + k34 − 3

)))−1

×
{
3π

4
+ 3

2
arcsin

(
1 − k5

3 − 3k5 − k34

)

+ 3

2
arcsin

(√
2(1 − k5)

3 − 3k5 − k34

)

+ 3

2
arcsin

(
1

2

√
2(1 − k5)

3 − 3k5 − k34

)

+ 3

2π

√
2(1 − k5)

3 − 3k5 − k34

⎛

⎜
⎜
⎝

∫ 1

0

arccos

(
N1(k34,k5,z)√

D1(k34,k5,z)×D2(k34,k5,z)

)

√
μ(k34, k5, z)

dz

⎞

⎟
⎟
⎠

+ 3

π

√
2(1 − k5)

3 − 3k5 − k34

⎛

⎜
⎜
⎝

∫ 1

0

arccos

(
N2(k34,k5,z)√

D2(k34,k5,z)×D3(k34,k5,z)

)

√
ν(k34, k5, z)

dz

⎞

⎟
⎟
⎠

+ 3

4

⎛

⎝
∫ 1

0

1
√
1 − z2

4

dz

⎞

⎠

⎫
⎬

⎭

Notice that the formula of Theorem 1 is a conditional probability; we multiply the
numerator by three in order to annihilate the coefficient 3 that had already been used
in the calculation of P∞

Con. This remark holds for all the other probabilities of the paper.
In Table 3, we report some computed values of CE∞

AV(k34, k5). It comes out that
given the proportion of voters of each of the types 3, 4 and 5, AV always elects the
Condorcet winner in more than 75% of the cases. In this table, one can notice that
for a given value of one parameter, the probability tends to increase with the other
parameter. Notice that for k5 = 0, we recover the same figures as Diss et al. (2010);
for well-defined values of k34 and k5, we get the same figures obtained by Gehrlein
and Lepelley (2015).

Let us turn to the Condorcet efficiency of PAV. Assume without loss of generality
that a is the PAV winner on A = {a, b, c}. By definition, PAV elects the Condorcet
winner when she exists if one of the following cases holds:
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(i) when no candidate receive a majority of approvals, the Condorcet winner is the
AV winner;

(ii) the Condorcet winner is among the majority approved candidates.

These two cases are disjoints and they fully describe the situations under which PAV
always selects the Condorcet winner when she exists. So, given the voting situation ñ
on A = {a, b, c}, we get

Case (i) when no candidate receive a majority of approvals

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aMb

aMb

S(b) < S(a)

S(c) < S(a)

S(a) < n
2

S(b) < n
2

S(c) < n
2

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aMb
aMb
S(b) < S(a)

S(c) < S(a)

S(a) < n
2

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nab − nba > 0
nac − nca > 0
S(a) − S(b) > 0
S(a) − S(c) > 0
−2S(a) + n > 0

The first four inequalities of the final system, respectively, correspond to Eqs. 1–4.
We derive the last inequality as follows:

−n1 − n2 + n3 + n4 + n5 + n6 − n7 − n8 − n9 + n10 − n11 + n12
−n13 − n14 + n15 − n16 + n17 + n18 − n19 > 0 (5)

So, a voting situation under which no candidate is majority-approved and that PAV
elects the Condorcet winner is fully described by Eqs. 1–5. We proceed as in the
proof of Theorem 1 by defining for each equation, a discrete variable. As we have
already defined the discrete variables X1, X2, X3 and X4 for Eqs. 1–4, it remains
for us to define the discrete variable X5 associated with Eq. 5.

X5 = 1 : p3 + p4 + p5 + p6 + p10 + p12 + p15 + p17 + p18
−1 : p1 + p2 + p7 + p8 + p9 + p11 + p13 + p14 + p16 + p19

Following Gehrlein and Fishburn (1978a, b), the probability of such a situation is
equal to the joint probability X1 > 0, X2 > 0 , X3 > 0, X4 > 0 and X5 > 0; when
n → ∞, it is equivalent to the quadrivariate normal positive orthant probability
Φ(R5) such that X j

√
n ≥ E(X j

√
n) and R5 is a correlation matrix between the

variables X j . It remains for us to compute the following variances and covariances:
V (X5) and Cov(X j , X5) ( j = 1, 2, 3, 4); we find that

V (X5) = 1

Cov(X1, X5) = Cov(X2, X5)=Cov(X3, X5)=Cov(X4, X5)=−2Cov(X1, X2)

Cov(X1, X2) = 1 − k5
3
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We derive the correlation matrix R5:

R5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1−k5
3−3k5−k34

− 2
√
3

3

(
(1−k5)

√
3−3k5−k34

3−3k5−k34

) √
2(1−k5)

3−3k5−k34

√
1−k5

2(3−3k5−k34)

1 − 2
√
3

3

(
(1−k5)

√
3−3k5−k34

3−3k5−k34

) √
1−k5

2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34

1 −
√

2(1−k5)
3 −

√
2(1−k5)

3

1 1
2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Based on the Boole’s Theorem, Gehrlein (2017, 2014) developed a general rep-
resentation of the orthant probabilities for obtaining numerical values of Φ(R5)

as a linear combination of Φ(R4) values, where matrices R4 are obtained from
correlation terms in R5.

Φ(R5) = 1

2

(

f (r12, r13, r14, r23, r24, r34

)

− f (r12, r13,−r15, r23,−r25,−r35

)

+ f

(

r12,−r14,−r15,−r24,−r25, r45

)

− f

(

− r13,−r14,−r15, r34, r35, r45

)

+ f

(

r23, r24, r25, r34, r35, r45

))

Then, the probability of electing the Condorcet winner in this case is equal to
3Φ(R5)
P∞
Con

. For the sake of space, we do not report the expression of Φ(R5) here; this

will also be the case throughout the paper for all the orthant probabilities associated
with a 5 × 5-correlation matrix.
Case (ii) the Condorcet winner is among the majority approved candidates.

⎧
⎨

⎩

aMb
aMb
S(a) > n

2

⇒
⎧
⎨

⎩

nab − nba > 0

nac − nca > 0
2S(a) − n > 0

The first two inequalities of this system, respectively, correspond to Eqs. 1 and 2;
the last inequality is derived from Eq. 5. We then derive R3 the matrix associated
with the final system we obtain:

R3 =

⎛

⎜
⎜
⎝

1 1−k5
3−3k5−k34

2(1−k5)√
3(3−3k5−k34)

1 2(1−k5)√
3(3−3k5−k34)

1

⎞

⎟
⎟
⎠

Following David and Mallows (1961), we derive Φ(R3) the corresponding
positive-orthant probability.
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Φ(R3) = 1

8
+ 1

4π

[

arcsin

(
1 − k5

3 − 3k5 − k34

)

+ 2 arcsin

(
2(1 − k5)√

3(3 − 3k5 − k34)

)]

In this case, the probability of electing the Condorcet winner is equal to 3Φ(R3)
P∞
Con

.

From the above, we derive Theorem 2which gives the representation of the limiting
Condorcet efficiency of PAV.

Theorem 2 With three candidates and an infinite number of voters, the Condorcet
efficiency of PAV is given by:

CE∞
PAV(k34, k5) = 3

(
Φ(R5) + Φ(R3)

P∞
Con

)

In Appendix, we provide an external link to the full formula of CE∞
PAV(k34, k5). In

Table 4 we display some values of CE∞
PAV(k34, k5).

In Table 4, we notice that given a value of k5, the probability tends to increase with
k34 and vice versa; PAV always elects the Condorcet winner in more than 88% of the
cases. When comparing the figures of Table 4 to those of Table 3, it clearly comes
out that PAV performs on the election of the of the Condorcet winner when she exists
better than AV for each pair (k5, k34; moreover, the Condorcet-efficiency of PAV is,
for each pair (k5, k34, at least 10% higher than that of AV.

4 Probability that AV and PAV elect the Condorcet loser

When the Condorcet loser exists and is elected, this is well documented in the literature
as the strongBorda paradox.A large literature is devoted to the occurrence of the strong
Borda paradox and its variations for the family of scoring rules both for single-winner
and multi-winner elections under various probability assumptions. For an overview
of these works, the reader may refer without being exhaustive, to the recent papers by
Diss and Gehrlein (2012); Diss and Tlidi (2018); Diss et al. (2018); Kamwa (2019);
Gehrlein andLepelley (2010b) andKamwa andValognes (2017). Only a little attention
has been paid to how often AV could elect the Condorcet loser when she exists; to our
knowledge, there is no work dealing with PAV on this.

Lepelley (1993) showed under an extension of IC assumption that if preferences
are single-peaked, the election of the Condorcet loser is much less frequent with AV
than with the Plurality rule. More recently, Gehrlein et al. (2016) built a framework to
compare AV and the Plurality rule and they found under impartial anonymous culture-
like assumptions10 that AV is much less susceptible to elect the Condorcet loser than
the Plurality rule. Notice that Gehrlein et al. (2016) investigated different scenarios
on voters’ preferences included the one assumed in this paper. In this section, we first
reconsider the likelihood of AV to elect the Condorcet loser when she exists under the
EIC assumption in three-candidate election.

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the
Condorcet loser and she is the AV winner; this means that bMa, cMa, S(a) > S(b)

10 Under impartial anonymous culture-like assumptions, voting situations are assumed to be equally likely.
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and S(a) > S(c). The inequalities associated with each of these conditions can easily
be derived from the inequalities defined above. Using the same technique as before,
we derive the correlation matrix R4 as follows:

R4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1−k5
3−3k5−k34

−
√

2(1−k5)
3−3k5−k34

−
√

1−k5
2(3−3k5−k34)

1 −
√

1−k5
2(3−3k5−k34)

−
√

2(1−k5)
3−3k5−k34

1 1
2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and following Gehrlein (1979, 2017), we derive Theorem 3.

Theorem 3 With three candidates and an infinite number of voters, the probability
that AV elects the Condorcet loser under the EIC assumption is given by

CL∞
AV(k34, k5) = 3

(
Φ(R4)

P∞
Con

)

=
(

3

(

π + 2 arccos

(
k5 − 1

3k5 + k34 − 3

)))−1

×
{
3π

4
+ 3

2
arcsin

(
1 − k5

3 − 3k5 − k34

)

+ 3

2
arcsin

(√
2(1 − k5)

3 − 3k5 − k34

)

+ 3

2
arcsin

(
1

2

√
2(1 − k5)

3 − 3k5 − k34

)

− 3

2π

√
2(1 − k5)

(3 − 3k5 − k34)

⎛

⎜
⎜
⎝

∫ 1

0

arccos

(
N1(k34,k5,z)√

D1(k34,k5,z)×D2(k34,k5,z)

)

√
μ(k34, k5, z)

dz

⎞

⎟
⎟
⎠

− 3

π

√
2(1−k5)

3−3k5−k34

(∫ 1

0

arccos

(
N2(k34,k5,z)√

D2(k34,k5,z)×D3(k34,k5,z)

)

√
ν(k34, k5, z)

dz

)

+ 3

4

⎛

⎝
∫ 1

0

1
√

1 − z2
4

dz

⎞

⎠

⎫
⎬

⎭

Table 5 reports some values of CL∞
AV(k34, k5). In this table, one can notice that given

the value of one of the parameters, the probability tends to decrease with the other
parameter. We notice that the probability is maximized (at 3.709%) when there is no
voters who are indifferent between their two preferred candidates (k34 = 0).

Let us now turn to the probability that PAV elects the Condorcet loser in order to
envisage the comparison with AV. By definition, there are two cases under which the
Condorcet loser may be elected when she exists. These two cases are disjoints and they
fully describe the situations under which PAV selects the Condorcet loser when she
exists. So, given the voting situation ñ on A = {a, b, c}, by assuming that candidate
a is the Condorcet loser, we get
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Case 1 if no candidate is majority-approved
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bMa
cMa
S(b) < S(a)

S(c) < S(a)

S(a) < n
2

S(b) < n
2

S(c) < n
2

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bMa
cMa
S(b) < S(a)

S(c) < S(a)

S(a) < n
2

⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nba − nab > 0

nca − nac > 0

S(a) − S(b) > 0

S(a) − S(c) > 0

−2S(a) + n > 0

Following the same technique as before, we derive the correlation matrix R̂5:

R̂5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1−k5
3−3k5−k34

−
√

2(1−k5)
3−3k5−k34

−
√

1−k5
2(3−3k5−k34)

2(1−k5)√
3(3−3k5−k34)

1 −
√

1−k5
2(3−3k5−k34)

−
√

2(1−k5)
3−3k5−k34

2(1−k5)√
3(3−3k5−k34)

1 1
2 −

√
6(1−k5)

3

1 −
√
6(1−k5)

3

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Case 2 if only the Condorcet loser receives a majority of approvals

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bMa
cMa
S(b) < n

2
S(c) < n

2
S(a) > n

2

⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nba − nab > 0

nca − nac > 0

2S(a) − n > 0

−2S(b) + n > 0

−2S(c) + n > 0

Following the same technique as before, we derive the correlation matrix R̃5:

R̃5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1−k5
3−3k5−k34

− 2(1−k5)√
3(3−3k5−k34)

0 − 2(1−k5)√
3(3−3k5−k34)

1 0 − 2(1−k5)√
3(3−3k5−k34)

− 2(1−k5)√
3(3−3k5−k34)

1 −3+4k5
3

3−4k5
3

1 3−4k5
3

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We then derive Theorem 4 which gives the representation of the limiting Condorcet
efficiency of PAV.

Theorem 4 With three candidates and an infinite number of voters, the probability
that PAV elects the Condorcet loser when she exists is given by:

CL∞
PAV(k34, k5) = 3

(
Φ(R̂5) + Φ(R̃5)

P∞
Con

)
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In Appendix, we provide an external link to the full formula of CL∞
PAV(k34, k5).

Table 6 displays some values of CL∞
PAV(k34, k5) which teach us that PAV elects the

Condorcet loser in less than 1.9%. We also notice that given the value of one of
the parameters, the probability tends to decrease with the other parameter. More, the
probability tends to be maximized when there is no voters who are indifferent between
their two preferred candidates (k34 = 0).

The comparison between the figures of Table 6 to those of Table 5 highlights as to
what extent PAV is less likely to elect the Condorcet loser than AV: the propensity of
electing the Condorcet loser under AV is quite the double of that under PAV for all
couple of values (k5, k34).

5 Conclusion

In this paper, we focused on the Preference Approval Voting (PAV) which is a voting
rule combining approval and preferences. This rule was first introduced by Brams
and Sanver (2009). As nothing is known on the propensity of this rule of electing the
Condorcet winner/loser when she exists, the main objective of the paper was to fill
this void. Under the extended impartial culture (EIC) assumption, we have provided
for three-candidate elections, representation of the limiting probability that PAV elects
the Condorcet winner when she exists. In addition to the analysis of Diss et al. (2010)
and Gehrlein and Lepelley (2015), we have provided another representation of the
limiting Condorcet efficiency of Approval Voting (AV) under EIC. By definition, PAV
is built to be more Condorcet-efficient than AV. Our analysis has helped us to highlight
as to what extent PAV performs better than AV on the Condorcet criterion. It comes
out that AV always elects the Condorcet winner in more than 75% of the cases, while
PAV does in more than 88% of the cases and that the efficiency of PAV is, in all cases,
at least 10% higher than that of AV.

We also focused, in three-candidate elections, on the probability of electing the
Condorcet loser when she exists. As part of our analysis, we have the representation
of the limiting probability for AV and also for PAV. For both rules, it comes out that
the probability is maximized when there are no voters who are indifferent between
their two preferred candidates. By definition, we know that PAV is less susceptible to
elect the Condorcet loser than AV in all the cases. We noted that in all the cases, the
propensity of electing the Condorcet loser under AV is quite the double of that under
PAV.

Acknowledgements We thank the Associate Editor and an anonymous reviewer for their relevant remarks
and suggestions.

Appendix

For space constraints, here are the links to:

– The full representation of CE∞
PAV(k34, k5), the limiting probability that PAV elects

the Condorcet winner when she exists.
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https://www.dropbox.com/s/bt0lxbpi39700hm/Full%20CE_PAV.pdf?dl=0

– The full representation of CL∞
PAV(k34, k5), the limiting probability that PAV elects

the Condorcet loser when she exists.

https://www.dropbox.com/s/dc6e5kw3ji6gc27/Full%20CL_PAV.pdf?dl=0
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