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Abstract
Internet services, such as review sites, FAQ sites, online auction sites, online flea
markets, and social networking services, are essential to our daily lives. Each Internet
service aims to promote information exchange among people who share common
interests, activities, or goods. Internet service providers aim to have users of their
services actively communicate through their services. Without active interaction, the
service falls into disuse. In this study, we consider that an Internet service has a
network externality as its main feature, and we model user behavior in the Internet
service with network externality (ISNE) as a dynamic game. In particular, we model
the diffusion process of users of an ISNE as an infinite-horizon extensive-form game
of complete information in which: (1) each user can choose whether or not to use the
ISNE in her/his turn and (2) the network effect of the ISNE depends on the history of
each player’s actions. We then apply Markov perfect equilibrium to analyze how to
increase the number of active users. We derive the necessary and sufficient condition
under which the state in which every player is an active user is the unique Markov
perfect equilibrium outcome. Moreover, we propose an incentive mechanism that
enables the number of active users to increase steadily.
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1 Introduction

This study deals with Internet services such as review sites, FAQ sites, online auc-
tion sites, online flea markets, and social networking services, and investigates how a
service could be used widely and actively over long periods. Internet services are cur-
rently essential to our daily lives. An Internet service is an online membership service
or site that aims to promote information exchange among people who share common
interests, activities, or goods. Internet service providers aim to have their subscribers
actively communicate through their services, because, without active interaction, an
Internet service becomes inactive.1 In our analysis, we particularly note that one of the
main features of Internet services is the presence of a network externality, originally
defined as the effect, or property, by which the value of a good increases with the
number of consumers of the good. For example, a telephone is a good with a network
externality, in that as the popularity of telephones increases, each user’s telephone
becomes more valuable, because the number of friends or contacts that the user can
call or receive calls from also increases. Similarly, as the number of active users of
an Internet service increases, users can exchange more information with other users,
and the convenience of the service improves. This study focuses on this mechanism
and models user behavior on the Internet service with network externality (ISNE) as
a dynamic game. It then examines how to increase the number of active users on the
ISNE. It is well known that any good or service rapidly becomes more common once
the number of users exceeds a certain level (Rohlfs 1974, 2003).

In the literature subsequent to Rohlfs (1974), such as Katz and Shapiro (1985) and
Farrell and Saloner (1985), an increase in the number of users of the same good or
compatible goods also increases the value of the good. Nonetheless, some goods and
services with limited capacities, such as road and information infrastructure, might
have negative network externalities. This is because an increase in users causes con-
gestion in these goods or services, because the resource has a capacity constraint. In
contrast, in our study, we deal with only Internet services that employ well-maintained
infrastructure. Therefore, we assume that only a positive network externality exists.
The existing studies in which the single good diffusion process draws on a dynamic
game model include Gale (1995), Ochs and Park (2010), and Shichijo and Nakayama
(2009). For example, Gale (1995) analyzed a dynamic N -person game in which N
players simultaneously decide whether to adopt a good. In this model, the utility each
player gains depends only on the number of adopters of the good. Asmentioned above,
this setting is common in the above-mentioned literature. Gale (1995) also focused on
the equilibrium in which all players are adopters in a certain period, especially after
the second period. This is an equilibrium with delay, by which it is shown that if the
length of a unit period is sufficiently short, then the equilibrium with delay could be
removed. In addition, Gale (1995) showed the existence of an equilibrium in which
no one adopts the good.

Our model is an extension of Gale’s dynamic model (Gale 1995). However, we
additionally include the following properties: (1) in each period, only one player

1 For instance, Rakuten auction, an online auction site, and Mobli, a media-sharing service, closed in
2016.So.cl, a social networking service, closed in March 2017.
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makes her/his decision, and (2) the reversible behavior of players is considered. The
first modification arises from a characteristic of Internet services. If we set the duration
to be sufficiently short, players cannot choose their actions at the same time; this is
because it takes time to observe other players’ decisions. Thus, most previous studies
have employed a simultaneous model in which all players simultaneously decide their
actions. By contrast, in the ISNE, users can observe others’ actions immediately after
their actions have been chosen. Therefore, we assume that only one player makes
her/his decision in each period. The second modification is to allow for the reversible
behavior of players. In most of the literature discussed, it is generally assumed that the
status “consumer adopted the good/service” is an irreversible transition from the status
“consumer has not adopted the good/service”.2 This means that once a player adopts
the good in period t in her/his strategy, her/his action after t + 1 must be adoption.
However, as in some ISNE, there is no irreversibility in consumer behavior, because
consumers can easily cease use of the service. Thus, in our model, we allow every
consumer to adopt and not to adopt, even if she/he has already adopted previously.
Moreover, it is reasonable to assume that the value of an ISNE depends not on the
number of members, or users who have used the service at least once, but rather on
the number of active users who actively communicate through the ISNE. The utility
gained by a player in each period then depends not on the number of active users
but on the action history. In the above model, we study Markov perfect equilibrium
(MPE). We focus on an equilibrium in which every player uses the ISNE actively in
her/his turn, and we call this active equilibrium. Then, we show that for the existence
of an active equilibrium, it is crucial decision whether active behavior is beneficial on
condition that other users always use the service actively. It turns out that all versions
of MPE are active equilibria if choosing active behavior is beneficial in the moment,
and that, by contrast, there is no active equilibrium if staying off the ISNE is beneficial.
Furthermore, we show the condition in which equilibrium exists, such that no one uses
the ISNE. Along the lines of Shichijo and Nakayama (2009), we propose an incentive
system to resolve the problem of delay, and show that we can construct the incentive
system in which all MPE are equilibria without delay.

The rest of this paper is organized as follows. The next section, Sect. 2, provides
a literature review. In Sect. 3, we model the diffusion process of ISNE users as a
dynamic game by focusing on these features of the ISNE. In Sect. 4, we study the
MPE of the game and derive a necessary and sufficient condition in which all users
rapidly become active users. In addition, we show the condition for equilibrium in
which all users do not use the ISNE. In Sect. 5, we propose an incentive system to
increase the number of active users rapidly, even if the original game has the problem
of inactiveness. We devote Sect. 6 to a model that includes the participation cost for
the ISNE. We then show that an analogy of the main theorem continues to hold when
we allow all players to know the current number of ISNE users.

2 Ochs and Park (2010) analyzed the situation in which players can reverse their decisions at no cost in an
incomplete information model.
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2 Literature review

Rohlfs (1974) first investigated the diffusion process of communication services or
devices, including telephones and facsimiles, that have a network externality. David
(1985) pointed out that the QWERTY keyboard also has a network externality in
his historical paper. By the 1980s, the markets of two or more goods with a network
externality had begun to be studied actively. For example, Katz and Shapiro (1985) and
Farrell and Saloner (1985) analyzed the incentive to achieve compatibility of goods
with a network externality. As mentioned above, in this literature, only a positive
network externality is considered.

Ochs and Park (2010) and Shichijo and Nakayama (2009) analyzed the diffusion
process through a dynamic game model like Gale (1995). The model in Shichijo
and Nakayama (2009) is similar to the model in Gale (1995), in that both models
have multiple equilibria, including inefficient equilibrium with delay. To solve this
problem, Shichijo and Nakayama (2009) proposed a two-step subsidy scheme after
considering participation fees. The authors then derived the condition in which the
delay in equilibrium decreases and all players eventually adopt the good. Finally, the
model in Ochs and Park (2010) includes incomplete information.3 Here, Ochs and
Park (2010) defined a cut-off strategy and focused on symmetric equilibrium. They
showed that, if the discount factor δ is sufficiently large, there is unique symmetric
equilibrium.

The aforementioned literature studied the diffusion process by deriving equilibria
of dynamic game model as we do in our paper. However, we introduce reversible
behavior of players, while the previous studies consider only irreversible behavior.
Allowing reversible behavior broadens players’ alternatives in the sense that each
player can a make decision at many times, which is an interesting feature of our study.

Network externalities have been studied in many aspects other than game theory.
For instance, Arthur (1987, 1989)) and Arthur et al. (1987) investigated network
externality using stochastic processes, especially thePolya–Eggenberger process.Dosi
et al. (1994) and Dou and Ghose (2006) also modeled the diffusion process as a
stochastic process.4 However, these studies do not deal with consumers’ decision-
making and do not derive equilibrium in contrast to our game theoretical approach.

In addition, recently, artificial market simulations have been used extensively. For
instance, the existence of a “locality,” in which the distribution of consumer locations
influences the diffusion process, is found in Iba et al. (2001). Delre et al. (2007),
Uchida and Shirayama (2008), and Heinrich (2016) also used agent-based models
with network structure to study the diffusion process.5 Moreover, Homma et al. (2010)

3 Aoyagi (2013) also examined incomplete information models of a monopoly good with a network
externality. Although his model is not a dynamic game, Aoyagi (2013) proposed a price-posting scheme that
assigns each adopter a monetary transfer according to the number of adopters, and derived the conditions
under which the revenue-maximizing scheme maximizes the network size subject to the participation
constraints.
4 In Dou and Ghose (2006), each consumer is supposed to choose whether to adopt a good or not like in
Gale (1995).
5 In these literature, it is well known that the result depends on the network structure, while all potentially
users are supposed to have connections each other in most studies of a dynamic game.
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analyzed the diffusionmodel of a two-sided service system in which there is a network
effect between one good and a complementary good, such as electric vehicles and
electric vehicle chargers.6 The analysis in that study extended Rohlfs’ model to a
two-sided service system, and conducted a computer simulation of the market for an
electronicmoney system. This literature computationally seeks the consequence of the
diffusion process, which is quite different from our approach of deriving the equilibria
theoretically.

3 Model

Let I = {1, 2, . . . , N } be the set of consumers including potential users. Suppose
that each consumer is randomly given opportunities to select her/his action from two
alternatives: “active” and “no-action.” For example, “active” means posting a message
and review or sending a reaction on an ISNE, whereas “no-action” indicates that none
of these actions are undertaken. Ours is a binary model in which there are only two
alternatives,7 because most previous studies mentioned in Sect. 1 employed binary
models.

In our analysis, we consider the discrete-time dynamics. As discussed, on the ISNE,
users can observe other’s action immediately after the action is chosen. We, therefore,
assume that, in each period, only one player is selected in the period by setting the
period to be sufficiently short. Moreover, we assume that the probability that each
player is selected is the same. That is, we assume that, in each period, a player is
randomly selectedwith probabilityw = 1/N . Only the selected player chooses her/his
action in each period and she/he does not necessarily choose the same action chosen
by her/him in the past period.

Let htx = (x1, x2, . . . , xt ) denote a history of players selected in periods τ =
1, 2, . . . , t , where τ th element xτ indicates the player chosen in period τ . We refer to
this as the player history. For each τ , let ατ be the action actually chosen in period
τ , such that ατ will be either a (active) or n (no-action) and an action history by t is
htα = (α1, α2, . . . , αt ). We refer to the pair of the player history and the action history
ht = (htx , h

t
α) as the history of period t . Let h0 = (h0x , h

0
α) be the null history. Let

us denote the set of all histories of t by Ht , and H = ∪∞
t=0H

t , where H is the set
of all histories. Similarly, let us denote the set of all action histories of t by Ht

α , and
Hα = ∪∞

t=0H
t
α , where Hα is the set of all action histories.

We introduce the following notation. Let (a : k) be an action history in which
action a is chosen k times successively, where it does not matter which player selects
“active.” Then, let (htα, a) be an action history in which action a is selected only once
(immediately) after history htα; thus, (htα, a) is the action history ht+1

α with length
t + 1. Similarly, (htα, n) is an action history where action n is chosen only once after
htα . Finally, we denote with (htα, a : k) an action history in which action a is chosen
k times one after the other after history htα .

6 This type of network externality is often known as an indirect network externality (Katz and Shapiro
1985).
7 Although our model is a binary one, each player’s set of alternatives is much wider than in the traditional
binary models, because we introduce reversible behavior, and players can make a decision several times.
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Suppose that if a player selects “active,” the network effect of the action lasts several
periods. For instance, on an ISNE, a message posted in the first period is read by others
and brings about a positive externality, but the effect may decrease as the information
becomes dated. In addition, suppose that the network effect does not depend on which
player selects the active action, i.e., the model does not consider network structures.
Consequently, in each period t , an instant payoff to player xt depends only on the
action history htα .

Denote the instant payoff to player xt as u(htα). Note that u(·) depends not only on
the action history before player xt selects an action but also the action chosen in period
t . The instant payoff to player xt is thus defined as a function of an action history htα
for period t . When player xt selects “no-action,” i.e., αt = n, let the instant payoff to
her/him be zero (i.e., u(ht−1

α , n) = 0), regardless of ht−1
α .

We now introduce the following assumptions about the instant payoff function u(·).
To shorten this notation, we sometimes denote the instant payoff of history (hτ

α, h̃tα)

in a more compact way, whereby u((htα, h̃τ
α)) is denoted by u(htα, h̃τ

α), and so on.

Assumption 1 Basic assumption of instant payoff function

(A1) For any finite period t < ∞:

u(htα) = u(n, htα) for all htα ∈ Ht
α.

(A2) For any finite periods t, τ < ∞:

u(htα, a, h̃τ
α) ≥ u(htα, n, h̃τ

α) for all htα ∈ Ht
α and h̃τ

α ∈ H τ
α .

(A3) For any finite periods t, τ < ∞:

u(n, htα, h̃τ
α) ≥ u(htα, n, h̃τ

α) for all htα ∈ Ht
α and h̃τ

α ∈ H τ
α .

(A4) u(a) < 0.
(A5) For some t < ∞, there exists a finite action history htα ∈ Ht

α , such that
u(htα) > 0.

(A6) There exist an infimumU > −∞ and a supremumU < +∞ of value of utility
function. That is,U < u(htα) < U for all htα ∈ Ht

α for any finite period t < ∞.

(A1) means that the action history (n) is equivalent to the history h0α . (A2) assumes
that if a player changes her/his action from “active” to “no-action” in a period, the
instant payoff will decrease. (A3) states that newer n reduce the instant payoff more.
In other words, the lack of older information is not important in the ISNE. Likewise,
older information, such as amessage or review, is less important than new information.
(A4) assumes selecting “active” provides a negative instant payoff when “active” has
not been selected before. Conversely, we assume, in (A5), that an action history exists,
such that the instant payoff of the history is strictly positive. Finally, (A6) indicates
that the instant payoffs are uniformly bounded.
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The following provides a natural example of a utility function that satisfies the basic
assumptions (A1)–(A6). For later use, we introduce an indicator function:

1c(θ) =
{
1 if θ = c,

0 otherwise.

Example 1 Let D ∈ N, and suppose that u(htα) = ∑t
τ=max{1,t−D} 1a(ατ ). In this

example, a player’s utility is determined by the number of “active” taken during the
most recent D periods. This utility function can be intuitively understood, because
information older than a certain period may not be reliable, or may be hidden in
reality. The above utility function satisfies assumptions (A1)–(A6).

The next example generalized Example 1, in the sense that value of older informa-
tion gradually decreases.8

Example 2 Let us consider a function q : N → R, such that q(0) ≥ q(1) ≥ q(2) ≥
· · · ≥ q(t − 1) for any t < ∞, and a function f : R → R satisfying the following
three properties:

– There exist a infimum U > −∞ and a supremum U < +∞, such that U <

f (x) < U for all x ,
– f (q(0)) < 0,
– f (

∑∞
τ=0 q(τ )) > 0.

For htα = (α1, α2, . . . , αt ), let u(htα) = f (
∑t

τ=1 1a(α
τ )q(t − τ)), where 1a(ατ ) is 1

if the action chosen in period τ is “active” (i.e., ατ = a), otherwise 0.
According to the above utility function, users gain more from selecting “active”

in a more recent period than in an older period. The network effect of “active” also
decreases with time. Such a utility function satisfies assumptions (A1)–(A6).

Given an infinite history h, the payoff that player i gains is the discounted sum of
the instant payoffs. Thus, we can calculate it using:

Pi (h) =
∞∑

τ=1

1i (xτ ) · 1a(ατ ) · u(hτ
α)δτ−1, (1)

where δ < 1 is the discount factor.
In this study, we focus on the payoff-relevant strategies. Player i’s strategy σi

consists of her/his behavioral strategy σ t
i , that is σi = (σ t

i )t . In general, in the payoff-
relevant strategy of player i , σi , player i’s action at time t depends only on a certain
variable which determines player’s payoff rather than on the whole history, ht (see
Maskin and Tirole (2001) for details). From Eq. (1), we can see that a payoff after
period t + 1 does not depend on htx in our model. In fact, only action history htα

8 In fact, suppose that q(t − τ) = 1 if τ ≤ D and q(t − τ) = 0; otherwise, and f (x) = x . Then, Examples
1 and 2 are identical.
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influences the payoff at time t + 1. Thus, in this analysis, we consider a payoff-
relevant strategy, which does not depend on the players’ history htx , but does depend
on the action history htα .

The payoff-relevant behavioral strategy σ t+1
i of player i at time t + 1 is a function

σ t+1
i : htα �→ p ∈ [0, 1] that assigns to each action history htα the probability of

choosing “active” at time t + 1. We can see that this satisfies σ t+1
i (htα) = σ t+1

i (n :
k, htα) as u(htα) = u(n : k, htα) by (L1) in Lemma 1 (see the appendix). For example,
the payoff-relevant behavioral strategy σ t+1

i assigns the same probability to action
history (a)where “active” is chosen in the first period, and (n : k, a)where action a is
chosen once after n is chosen k times one after the other, i.e., σ 2

i (a) = σ 2
i (n : k, a).9

In the rest of this paper, let us denote the set of all payoff-relevant strategies of player
i by Δi , and suppose that Δ = Δ1 × Δ2 × · · · × ΔN .

We introduce strategy σ i , called the maximum strategy, such that player i always
chooses “active”, i.e., σ t+1

i (htα) = 1 for every t < ∞, and htα ∈ Ht
α .

10

Strategy profile σ is a profile of players’ strategies, that is σ = (σi )i∈I . We often
denote by σ−i ∈ ∏

j 	=i Δ j , the strategy profile where every player other than player
i , say player j , uses σ j . For example, in strategy profile (σ ′

i , σ−i ), player i employs
σ ′
i , but all players except for player i adhere to σ . If σ t

i = σ t
j for any i, j , and t

(0 ≤ t < ∞), we can say that strategy profile σ = (σi )i∈I is symmetric. Let us denote
by σ = (σ i )i∈I the symmetric strategy profile where all players use the maximum
strategy, and let us call it the maximum strategy profile.

Given strategy profile σ , let us denote an expected payoff to player i after history
htα by Πi (σ | htα).11 This expected payoff is calculated without knowing whether
xt+1 = i or not, and:

Πi (σ | htα) = w
[
σ t+1
i (htα){u(htα, a) + δΠi (σ | htα, a)}

+ (1 − σ t+1
i (htα))δΠi (σ | htα, n)

]
+ w

∑
j 	=i

δ
[
σ t+1
j (htα)Πi (σ | htα, a) + (1 − σ t+1

j (htα))Πi (σ | htα, n)
]
.

(2)

The first line of the formula is the expected payoff where player i is selected in period
t with probability w(= 1/N ), and the second line is that where player j other than i
is selected.

Given ht , we denote by Πa
i (σ | htα) the expected payoff to player i where i is

selected in period t + 1, and s/he selects “active” in period t + 1 and plays according
to σi after t + 2. From the formula (2), we can write this as follows:

9 A payoff-relevant strategy is time homogeneous, that is, for any t and t ′ σ t
i (h

t
α) = σ t ′

i (htα). Thus,

naturally σ 2
i (a) = σ k+2

i (n : k, a).
10 We name σ i the maximum strategy, because the probability of choosing “active” over the whole time is
maximum among all strategies. For instance, we can call the minimum strategy σ i , such that σ

t+1
i (htα) = 0

for every t < ∞, and htα ∈ Ht
α .

11 Πi (σ | htα) is the expected payoff to i in the subgame starting at htα .
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Πa
i (σ | htα) = u(htα, a) + δΠi (σ | htα, a). (3)

Given that Πa
i (σ | htα) is the expected payoff to the player selected at time t + 1,

w does not appear in the first term. Similarly, the expected payoff to player i where
i = xt+1 selects “no-action” in period t + 1 and plays according to σi after t + 2 is as
follows:

Πn
i (σ | htα) = δΠi (σ | htα, n). (4)

If σ is symmetric, we omit the subscript i from Eq. (2) and denote the expected
payoff by Π(σ | htα):

Π(σ | htα) = w
[
σ t+1
i (htα){u(htα, a) + δΠ(σ | htα, a)}

+ (1 − σ t+1
i (htα))δΠ(σ | htα, n)

]
+ (1 − w)δ

[
σ t+1
i (htα)Π(σ | htα, a) + (1 − σ t+1

i (htα))Π(σ | htα, n)
]

= wσ t+1
i (htα)u(htα, a) + δσ t+1

i (htα)Π(σ | htα, a)

+ δ(1 − σ t+1
i (htα))Π(σ | htα, n). (5)

Similarly, for symmetric strategy, we can arrange Eqs. (3) and (4), and obtain (6)
and (7), respectively. After history ht , the expected payoff to i = xt+1 if s/he selects
“active” in period t + 1 and plays according to symmetric strategy σ after t + 2 is as
follows:

Πa(σ | htα) = u(htα, a) + δΠ(σ | htα, a). (6)

If player i = xt+1 selects “no-action” in period t + 1, then the expected payoff can
be written as follows:

Πn(σ | htα) = δΠ(σ | htα, n). (7)

Definition 1 [Positive externality] We say that a utility function has a positive exter-
nality if Πi (σi , σ−i | htα) ≥ Πi (σ | htα) for all σ ∈ Δ and htα ∈ Ht

α for any t < ∞.

4 Condition for the existence of active equilibrium

In this section, we study the equilibria in the above model. In this model, the state
where there is no inactive user in the ISNE is considered as the state where every user
selects a (active) in her/his turn.

In the rest of this paper, we focus on the particular type of equilibria in which the
equilibrium outcome is that every user selects “active” in her/his turn from the first
period. We refer to this equilibrium as the active equilibrium. An outcome of every
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active equilibrium is the infinite history (a, a, a, . . . ). Note that σ is also an active
equilibrium.

We also focus on the equilibrium in which the equilibrium outcome is that there is
no “active” in the equilibrium outcome. That is, the equilibrium outcome must be the
history (n, n, n, . . . ). Thus, we refer to this equilibrium as the no-action equilibrium.

When all users play the game according to strategy profile σ , the sum of the users’
expected payoffs from the first period is

∑
i Πi (σ | h0α). We, thus, have the following

theorem about equilibrium with the highest consumer surplus.

Theorem 1 (i) If the expected payoff of the maximum strategy profile σ is nonnega-
tive, then the active equilibria attain the maximum consumer surplus among all
strategy profiles. That is, if Π(σ | h0α) ≥ 0, then

∑
i Πi (σ | h0α) ≤ NΠ(σ | h0α)

for all σ ∈ Δ.
(ii) If the expected payoff of the maximum strategy profile σ is negative, then no-action

equilibria yield the maximum consumer surplus among all strategy profiles. That
is, if Π(σ | h0α) < 0, then

∑
i Πi (σ | h0α) ≤ 0 for all σ ∈ Δ.

The proof is given in the appendix. This theorem says that, if the expected payoff
of the maximum strategy profile is not less than zero, then the outcome in which
“active” succeeds leads to a desirable state for users. In contrast, if the expected
payoff is negative, the desirable outcome for all users is the state where all users never
choose active. Theorem 1 is quite important, because we can see which state is the
socially optimal one just by observing at the expected payoff of the maximum strategy
profile. This implies that the maximum strategy profile is useful to estimate whether
the ISNE becomes popular or it becomes inactive, even if the active equilibrium is
rarely observed in reality.12

An analogy of Theorem 1 for any history htα can be proved in a similar way. We,
therefore, obtain the following corollary for symmetric strategy profiles.

Corollary 1 For any symmetric payoff-relevant strategy σ and any history ht , the fol-
lowing hold:

(i) If Π(σ | htα) ≥ 0 then Π(σ | htα) ≤ Π(σ | htα).
(ii) If Π(σ | htα) < 0, then Π(σ | htα) ≤ 0.

We then analyze the conditions for the existence and uniqueness of the active
equilibrium. In this study, we apply the Markov perfect equilibrium (MPE) (Maskin
and Tirole 2001) concept, whereMPE is a payoff-relevant strategy profile that satisfies
subgame perfection.

Definition 2 Strategy profile σ ∗ is said to be MPE if for each i and ht ∈ Ht for any
t < ∞, Πi (σ

∗ | ht ) ≥ Πi (σi , σ
∗−i | ht ) for all σi ∈ Δi .

As δ ∈ (0, 1) and, from (A6), u(htα) is bounded, there must be an MPE (Fudenberg
and Tirole 1991).

12 It may be possible that the equilibrium is observed in reality as if consumers have perfect rationality,
even though they are not perfectly rational and use heuristic decision-making (cf. “as if” hypotheses of
Friedman 1953).

123



A dynamic game analysis of Internet services. . . 371

Intuitively, a no-action equilibrium appears to perpetually exist, because each player
is unlikely to choose “active” when no one choose it. In practice, no-action equilibrium
is always a Nash equilibrium. However, the following main theorem states that no-
action equilibrium is notMPE in some cases.Moreover, in each case, we can seewhich
equilibrium isMPE just by looking atmagnitude relationship betweenΠa(σ | h0α) and
Πn(σ | h0α). Recall here that Πn(σ | h0α) stands for the expected payoff when player
selects “no-action” in period 1 and every player plays according to the maximum
strategy profile σ after period 2.

Theorem 2 (i) All MPE are active equilibria if and only if Πa(σ | h0α) > Πn(σ |
h0α). That is, Πa(σ | h0α) > Πn(σ | h0α) is a necessary and sufficient condition
for the action history (a, a, a, . . .) to be the unique MPE outcome.

(ii) All symmetric MPE are active equilibria if Πa(σ | h0α) = Πn(σ | h0α).
(iii) There is no MPE that is an active equilibrium if Πa(σ | h0α) < Πn(σ | h0α).

The idea of the proof of Theorem 2 (i) is as follows: We first prove that each user
naturally takes “active” if “active” has been taken a certain number of times, say m∗
or more, in a row. We show that every user selects “active” when m∗ − 1 “actives”
are taken in a row, and we proceed by induction on the number of “actives”.13 See the
appendix for the details of the proof. The first part of the theorem gives the necessary
and sufficient condition that all MPE are active equilibria. This states that we can
know if the MPE is an active equilibrium by checking only the maximum strategy
profile σ , which is just one of the strategies that results in (a, a, a, . . . ), and by
focusing only on whether the player has an incentive to choose “no-action” in the
first period. We obtain the second part of the theorem by adding symmetry. When
Πa(σ | h0α) > Πn(σ | h0α), only active equilibria are MPE without assuming the
symmetry of strategy profiles. However, there is an asymmetric MPE that is not an
active equilibrium when Πa(σ | h0α) = Πn(σ | h0α). This asymmetric MPE is
that only one player selects “no-action” with a positive probability (see the proof of
Theorem 2 in the appendix). Finally, the third part says that even if Π(σ | h0) > 0
holds, and active equilibria are desirable for users, the active equilibria may not be
achieved when Πa(σ | h0α) < Πn(σ | h0α).

Example 3 Let the number of agents be 2. Suppose that, for any action history htα ,
u(htα) > 0, if αt = αt−1 = a, u(htα) = −x < 0 otherwise. Let Πa(σ | h0α) > 0. In
this case, we have the following:

Πa(σ | h0α) = −x + δΠ(σ | a) (8)

Πn(σ | h0α) = −δx/2 + δ2Π(σ | a). (9)

The difference between the above expected payoffs ε is as follows:

ε = Πa(σ | h0α) − Πn(σ | h0α) = −x(1 − δ/2) + (1 − δ)δΠ(σ | a).

13 The precise proof is complex, because our model considers infinite history.
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From this, we obtain x = (1−δ)
1−δ/2δΠ(σ | a)−ε/(1−δ/2) . Substituting this formula

into (8) yields the following equation:

Πa(σ | h0α) =
[
− 1 − δ

1 − δ/2
+ 1

]
δΠ(σ | a) − ε

1 − δ/2

= 1

2 − δ
δ2Π(σ | a) − ε

1 − δ/2
. (10)

Consider the free-ride strategy of choosing “active” only if positive instant payoff
can be obtained, and choosing “no-action” otherwise. Consider the case that agent 1
adopts the free-rider strategy σ̃1 and that agent 2 adopts the maximum strategy σ 2.
That is, for any t ∈ N and htα ∈ Ht

α:

σ̃ t+1
1 (htα) =

{
1 if αt = a

0 otherwise ,
(11)

and σ t+1
2 (htα) = 1. In the following, we obtain the expected payoff for agent 1 on the

condition that agent 1 is selected at period 1 and chooses “no-action”. To obtain this,
consider the following cases.
Case 1 (agent 2 is selected at period 2): This case occurs with probability 1/2. In this
case, agent 2 chooses “active” at period 2. From period 3, agent 1 also chooses “active”
when s/he is selected and obtains the expected payoff Π(σ | a) .
Case 2 (agent 1 is selected at period 2 and agent 2 is selected at period 3): This case
occurs with probability 1/4.p In this case agent 1 chooses “no-action” at period 2 and
agent 2 chooses “active” at period 3. From period 4, agent 1 chooses “active” and
obtains the expected payoff Π(σ | a).

In the same way as above, the following equation can be obtained by the following:

Πn
1 (σ̃1, σ 2 | h0α) = δ2Π(σ | a) × 1/2

∞∑
t=1

(δ/2)t−1

= 1

2 − δ
δ2Π(σ | a). (12)

On the other hand, the expected payoff to agent 2 when agent 2 is selected at period
1 is Πa

2 (σ̃1, σ 2 | h0α) = Πa(σ | h0α) > 0. There are three cases ε > 0, ε = 0, ε < 0.
The details of the proof are omitted. We have the following equilibria for each case.
Case 1 (ε > 0): the free-rider strategy is not the best response to themaximum strategy,
since Πn

1 (σ̃1, σ 2 | h0α) < Πa
1 (σ 1, σ 2 | h0α). As we see in Theorem 2 (i), only active

equilibria are Markov perfect.
Case 2 (ε = 0): in this case, the free-rider strategy and the maximum strategy are the
best responses to the maximum strategy, since (12) is equal to (10). The profile of
free-rider strategy and the maximum strategy is an MPE. As we see in Theorem 2 (ii),
all MPE are active equilibrium.
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Case 3 (ε < 0): in this case, the maximum strategy is not the best response to the
maximum strategy. There is no MPE that is an active equilibrium as we see in The-
orem 2 (iii). On the other hand, the free-rider strategy is the best response to the
maximum strategy. The profile of free-rider strategy and the maximum strategy is an
MPE. Moreover, there exits mixed strategy equilibrium as we see in Example 4.

Example 4 Let the number of agents be 2. Suppose that, for any action history htα ,
u(htα) > 0 if αt = αt−1 = a, u(htα) = −x < 0 otherwise. That is, in each period,
if “active” is chosen in the previous period, then choosing “active” brings positive
instant payoff and is the best for each user after the period.

Let Πa(σ | h0α) < Πn(σ | h0α) and Πa(σ | h0α) > 0.
In this case, from Theorem 2 (iii), there is no active equilibrium in MPE, but there

exists asymmetric equilibrium as we saw in Example 3. Moreover, we have symmetric
mixed MPE σ as we see in the following.

Let q be the probability of choosing “active” when “active” has not been chosen
before. Formally, for any i ∈ I σ t+1

i (h0α) = σ t+1
i (n : t) = q for all t . On the other

hand, equilibrium strategy should choose “active” with probability 1 when “active” is
chosen in the previous period, i.e., σ t+1

i (htα) = 1 if αt = a.
Wedenote the expectedpayoff ofσ byV , i.e.,V = Π(σ | h0α). From the assumption

of relevant strategy, we have Π(σ | n : t, n) = Π(σ | n : t) = V . Thus, we have

V = q
[

− x/2 + δΠ(σ | a)
]

+ (1 − q)δV . We, therefore, obtain the following:

(1 − δ + qδ)V = q
[

− x/2 + δΠ(σ | a)
]
. (13)

Assume that σ is strictly mixed strategy profile, i.e., 0 < q < 1. Then, noting that
the payoffs of “active” and “no-action” are the same, we have the following:

δV = −x + δΠ(σ | a). (14)

From Eqs. (13) and (14):

V = −x + δΠ(σ | a)

δ
,

and

q = 2(1 − δ)(−x + δΠ(σ | a))

δx
.

We can easily check that there is no incentive to deviate from σ for the history with
h0α or n : t . Moreover, there is no obvious incentive to deviate from σ for the history
with αt = a. Hence, there is a symmetric MPE, in which players choose “active” with
probability q when no one has chosen “active” before, and players choose “active”
with probability 1 if at least one user has chosen “active” before.

Incidentally, if Πa(σ | h0α) = Πn(σ | h0α), then q is equal to 1 from the above
equations. Thus, there is no symmetric proper mixed strategy equilibrium. This is
consistent with Theorem 2 (ii).
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In the next theorem, we show that, if the discount factor δ increases, then the active
equilibrium is easily achieved.

Theorem 3 Given u(·) and w, if all MPE are active equilibria for some δ, then, for
any δ′(> δ), all MPE are active equilibria.

Proof We have the following:

Πa(σ | h0α) − Πn(σ | h0α) = u(a) + w

∞∑
k=2

δk−1u(a : k) − w

∞∑
k=1

δku(a : k)

= u(a) + w

∞∑
k=2

δk−1u(a : k) − w

∞∑
k=2

δk−1u(a : k − 1)

= u(a) + w

∞∑
k=2

δk−1(u(a : k) − u(a : k − 1)),

which is a monotone increasing function in δ. �
Recall that if the expected payoff of the maximum strategy profile σ , Π(σ | htα), is

nonnegative then active equilibria is socially desirable equilibrium (see Theorem 1).
The following theorem shows that, if Πa(σ | htα) < 0, then even any equilibrium
where every user eventually selects “active” cannot be achieved. Thus, ifΠ(σ | htα) >

0, but Πa(σ | htα) < 0, then the problem of inactiveness is more serious in the sense
that the desirable equilibrium never occur.

Theorem 4 If Πa(σ | htα) < 0, in the subgame after history ht = (htx , h
t
α), “active”

does not appear on any equilibrium path of a symmetric MPE. Thus, all symmetric
MPE are no-action equilibria.

Proof Case 1 (Case that Π(σ | htα, a) ≥ 0): Given Π(σ | htα, a) ≥ 0, by
Corollary 1(i), we obtain Π(σ | htα, a) ≤ Π(σ | htα, a). Given Πa(σ | htα) =
u(htα, a) + δΠ(σ | htα, a) for any symmetric strategy profile σ , we have Πa(σ |
htα) ≤ Πa(σ | htα) < 0. If a player selects “no-action” in her/his every turn then
Πn(σ | htα) = 0. Thus, when “active” has not been picked before, “active” is domi-
nant and would never be chosen.

Case 2 (Case that Π(σ | htα, a) < 0): From Corollary 1(ii), we can see that
Π(σ | htα, a) ≤ 0 holds. Given Π(σ | htα, a) < 0, we have u(htα, a) < 0.

Thus, Πa(σ | htα) = u(htα, a) + δΠ(σ | htα, a) < 0. �
Remark 1 There might also be an asymmetric equilibrium (strategy profile) where
player i selects “active” in a period and does not choose it for a while after the period,
but another player j 	= i plays “active.”

While Theorem 2 (i) and (ii) showed the condition where only active equilibria are
(symmetric) MPE, we showed the condition that only no-action equilibria are MPE in
Theorem 4. Example 4 shows the equilibrium that occurs when neither case applies.
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5 Incentive system

In this section, we design an incentive system that enables the number of active users to
increase steadily, even if there is no active equilibrium,14 i.e., Πa(σ | h0α) < Πn(σ |
h0α). In this study,we assume that ISNEproviderswish to achieve the situation inwhich
almost all users actively use the ISNE in the future. Consequently, let ISNE providers
be sufficiently patient, and the discount factor δ′ for the providers be sufficiently close
to 1. Then, assume that, to attract more users, the providers plan to give incentive
rewards to users that actively communicate through the ISNE when the ISNE starts
up.

In particular, given history ht = (htx , h
t
α), we assign incentive reward η(htα) ≥ 0

to the selected player xt only when s/he selects “active” at time t .
That is, in period t , the player gains u(htα) + η(htα) (or 0) if s/he selects “active”

(or “no-action,” respectively). Let us denote an instant payoff including the incentive
reward by uW (hτ

α) = u(hτ
α) + η(hτ

α). Denoting the total payoff that i gains by period
t by PWi , we have the following:

PWi (h
t ) =

t∑
τ=1

1i (xτ ) · 1a(ατ ) · uW (hτ
α)δτ−1

=
t∑

τ=1

1i (xτ ) · 1a(ατ ) · [u(hτ
α) + η(hτ

α)]δτ−1.

From Lemma 3, if Πa(σ | a : t ′ − 1) > Πn(σ | a : t ′ − 1) for any t ′ ≥ t ,
after action history (a : t − 1) every player selects “active” in her/his turn without
any incentive reward. Accordingly, we denote with t∗ the minimum t satisfying the
condition above.15 More formally:

t∗ ≡ min{t : ∀t ′ ≥ t,Πa(σ | a : t ′ − 1) > Πn(σ | a : t ′ − 1)}.

Using t∗ as defined above, we set incentive η(htα) as follows:

(I1) η(a : t) = 0 if t ≥ t∗.
(I2) η(a : t) = max

[
supσi∈Δi

Πn(σi , σ−i | a : t − 1) − Πa(σ | a : t − 1) −
w

∑t∗−1
τ=t+1 η(a : τ)δτ−t + ε, 0

]
, where ε > 0.

(I3) For an action history htα other than that mentioned above, η(htα) = 0, which
means that, for any action history, including at least one “no-action,” the ISNE
provider does not pay any incentives.

Theorem 5 Given the incentive system defined above, the series of “actives” is the
unique equilibrium outcome.

14 In this section, we use the original definitions of Π(σ | ht ), Πa(σ | ht ) and Πn(σ | ht ), again.
15 Given that Πa(σ | a : t − 1) − Πn(σ | a : t − 1) is not necessarily monotonically increasing in t , t∗
may differ with min{t : Πa(σ | a : t − 1) > Πn(σ | a : t − 1)}.
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Proof Given ht
∗−1 = (ht

∗−1
x , (a : t∗ − 1)), by selecting “active”, a user can earn

expected payoff Πa(σ | a : t∗ − 1) + supσi∈Δi
Πn(σi , σ−i | a : t∗ − 1) − Πa(σ |

a : t∗ − 1) + ε > supσi∈Δi
Πn(σi , σ−i | a : t∗ − 1), because after t∗ all players

select “active” in their turn. Thus, the player xt is better off selecting “active”, and the
theorem is proved by induction. �

6 Participation costs

When a player starts to use ISNE, s/he has to pay some participation cost. The cost
here does not indicate a monetary cost, rather the time cost. S/he has to learn the usage
of the ISNE and input some personal data for registration. In this section, we take into
account this participation cost C(> 0). In the model defined in the previous section,
we assume that the instant payoff to a player that first selects “active” is u(·) −C . We
refer to a player who has selected “active” and paid the participation cost as amember
of the ISNE.We refer to a player who has not selected “active” before as a nonmember.
Until the preceding section, we assumed that the strategy of a player depends only
on the action history as the player history has no effect on the payoff. In this section,
a payoff to each player depends on whether the player is a member. Each player is,
therefore, concerned with not only if s/he is a member, but also if the other player
is a member when s/he makes a decision. In practice, nonmembers cannot know the
detailed information of ISNEmembers, for example, who exactly is amember or when
s/he joins the ISNE. However, nonmembers can know the number of ISNE members
from news or statistics provided on the Internet. Some ISNE also detail the number of
members on their own sites. For instance, we can find a list of the number of Facebook
users by country on the Internet, and Facebook provides the number of active users
on its own site (under newsroom). In fact, the number of members is still very useful
for players when deciding whether to join the ISNE and become a new member. We
thus make the following assumption.16

Assumption 2 Each player knows the number of members and whether or not s/he is
a member before s/he selects her/his action.

In this section, the strategy of a player depends on the action history, the number
of members, and whether s/he is a member. Purely for notational convenience, we
assume that the strategy depends on the whole history ht , which is the pair of the
action history htα and the player history htx . However, in fact, the number of members
only matters for nonmembers, and we do not need to assume that players know the
entire player history. Our proof of the following results uses only the number of
members. Formally, suppose that the behavioral strategy σ t+1

i of player i at time t +1
is a function σ t+1

i : ht �→ p ∈ [0, 1] that assigns to each history ht the probability of
choosing “active” at time t + 1. In this section, we continue to consider the payoff-
relevant strategy, and therefore, σi satisfies σi (( j, htx ), (n, htα)) = σi (htx , h

t
α) for all

ht = (htx , h
t
α) ∈ H and all j ∈ I .

16 Instead of this assumption, we can use the assumption that there exists an action history, such that
u(htα) − C > 0 to obtain the same theorem.
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We denote expected payoffs after action history htα , Π(σ | htα),Πa(σ | htα), and
Πn(σ | htα) byΠC (σ | ht ),Πa

C (σ | ht ), andΠn
C (σ | ht ), respectively. Given strategy

profile σ , for example, we denote by ΠC (σ | ht ) an expected payoff to player i after
the whole history ht .

Now, let us consider symmetric strategy σ . Given history ht , Πa
C (σ | ht ) denotes

the expected payoff to the selected player if s/he i selects “active” in period t + 1 and
has already chosen “active” before. Otherwise (i.e., when s/he first selects active in
period t + 1), the expected payoff is Πa

C (σ | ht ) − C , because player i should pay
the participation cost at time t + 1. On the other hand, if player i selects “no-action”
in period t + 1, the expected payoff to the player is Πn

C (σ | ht ) if s/he has already
chosen “active” before period t , Πn

C (σ | ht ) − ∑∞
τ=1(1 − w)τ−1δτwC = Πn

C (σ |
ht )−δwC/(1−(1−w)δ) otherwise (i.e., when s/he has not chosen “active” by period
t + 1). We have a similar theorem to Theorem 2.

Theorem 6 (i) EveryMPE is an active equilibrium if and only if the following inequal-
ity holds:

Πa
C (σ | h0) − (1 − δ)C

1 − (1 − w)δ
> Πn

C (σ | h0).

(ii) All symmetric MPE are active equilibria if the following equality holds:

Πa
C (σ | h0) − (1 − δ)C

1 − (1 − w)δ
= Πn

C (σ | h0).

(iii) There is no MPE that is an active equilibrium if the following equality holds:

Πa
C (σ | h0) − (1 − δ)C

(1 − (1 − w)δ)
< Πn

C (σ | h0).

Proof The proof follows the same logic as the proof of Theorem 2. �

7 Concluding remarks

In this study, we modeled an ISNE as a dynamic game in which the players are ISNE
users, including potential users, and studied the condition that every user actively
communicates through the ISNE. In particular, we focused on the active equilibria
where each user always selects “active” in her/his turn, and derived the necessary and
sufficient condition that the active equilibrium is an MPE. In our main theorem, we
also obtained the condition that every symmetric MPE is an active equilibrium. The
main theorem states that we can know that the MPE is an active equilibrium by only
checking the expected payoff of themaximumstrategy profileσ .Moreover,we showed
in Theorem 4 that there is no active action in the equilibrium path. Section 5 proposed
an incentive mechanism that achieves an active equilibrium even if the assumption of
Theorem 4 holds. In Sect. 6, we took into account the participation cost and assumed
that a player would pay a constant cost C when s/he first selects “active.” We then
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showed that a similar result to the main theorem holds when we allow all players to
know the current number of ISNE members.

In terms of future research, we intend to extend the binary model to consider the
level of participation in a community in an ISNE. In addition, as we mentioned in
the literature review, most dynamic game models, including our own, assumed the
complete network in which all (potential) users have connections each other. There
are theoretical studies on games with network structures called network games (e.g.,
Ballester et al. 2006; Bramoullé and Kranton 2007; Galeotti et al. 2010; Belhaj et al.
2014; Bramoullé et al. 2014; Allouch 2015; Zhang and Du 2017). These studies derive
the equilibrium of a network game, and analyze the relationship between the features
of equilibrium and network structures. Moreover, Candogan et al. (2012), Bloch and
Quérou (2013) , Cohen and Harsha (2013), and Makhdoumi et al. (2017) investigated
the relationship between network structures and the optimal price of the good as well
as network structures and the equilibrium. In the first three studies, the relationship
between price and centrality (e.g., Bonacich centrality) is discussed using a one-shot
network game. The last one deals with the multi-period (specifically, finite period)
model and studies the optimal price in each period for specific network structures.
However, all aforementioned studies investigate the diffusion process of goods with
network externality and each customer’s action is irreversible unlike in our model. It
would be interesting to introduce network structures into a dynamic game model with
reversible actions.

Appendix

This appendix contains lemmas and proofs of theorems.

Appendix A: Lemmas for Section 3

First, we derive the following properties from these basic assumptions (A1)–(A6).

Lemma 1 For the instant payoff function u(·), properties (L1)–(L4) hold:
(L1) For any finite period t < ∞ and htα ∈ Ht

α:

u(htα) = u(n : k, htα) for any 0 ≤ k < +∞.

(L2) For any finite periods t, τ < ∞:

u(htα, h̃τ
α) ≥ u(h̃τ

α) for all htα ∈ Ht
α and h̃τ

α ∈ H τ
α .

(L3) u(a : k) is nondecreasing in k.
(L4) There exists m∗, such that u(a : m∗ − 1) ≤ 0 < u(a : m∗).

Proof We prove each item using the corresponding assumption.

(L1) From (A1), it immediately follows that u(htα) = u(n, htα) = u(n : 2, htα) =
· · · = u(n : k, htα).
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(L2) In each period from (A2), replacement of any action by “no-action” reduces the
instant payoff u(htα, h̃τ

α) ≥ u(n : k, h̃τ
α). Given u(n : k, h̃τ

α) = u(h̃τ
α) by (L1),

u(htα, h̃τ
α) ≥ u(h̃τ

α).
(L3) From (L2), we have u(a : k + 1) = u(a, a : k) ≥ u(a : k) for all k.
(L4) There exists htα , such thatu(htα) > 0, by (A5). Ifwe replace the action by “active”

in every period from (A2), then the instant payoff increases: u(a : t) ≥ u(htα).
Thus, u(a : t) > 0. Moreover, there exists m∗, such that u(a : m∗ − 1) ≤ 0 <

u(a : m∗), by assumption (A4) and (L3). �
Lemma 2 If the instant payoff function u(·) satisfies assumptions (A1)–(A6), the fol-
lowing properties of expected payoff (L5)–(L7) hold:

(L5) Expected payoff function Πi has a positive externality. Likewise, Πa
i and Πn

i
have a positive externality.

(L6) For any finite htα ∈ Ht
α , Π

a(σ | htα) = (1 − w)u(htα, a) + Π(σ | htα).

(L7) Πa(σ | h0α) > Πn(σ | h0α) implies that Π(σ | h0α) > Πn(σ | h0α) > 0.

Proof (L5) follows straightforwardly from (A2) and the definition ofΠi . Clearly, (L6)
holds by the definitions of Π and Πa .

Let us show (L7). From property (L6), we have:

Πa(σ | h0α) − Πn(σ | h0α) = (1 − w)u(a) + Π(σ | h0α) − δΠ(σ | h0α)

= (1 − w)u(a) + (1 − δ)Π(σ | h0α).

If Π(σ | h0α) ≤ 0, by (A4), Πa(σ | h0α) − Πn(σ | h0α) < 0. Thus, if Πa(σ | h0α) −
Πn(σ | h0α) > 0, we have Π(σ | h0α) > 0. Moreover, as Πn(σ | h0α) = δΠ(σ | h0α),
Π(σ | h0α) > Πn(σ | h0α) > 0. �

Appendix B: Proofs and Lemmas for Section 4

Proof of Theorem 1 Through this proof, let h = (hx , hα) be an infinite history that
takes place when every player plays according to σ . We prove the theorem in three
steps. We first show (i) in Steps 1 and 2.
Step 1: First, we show that the total utility of all players

∑
i Pi (h) satisfies

w
∑

i Pi (h) ≤ Π(σ | h0α) for any h ∈ H . In the following, we fix an infinite his-
tory h = (hx , hα). For hα , consider the set of periods when “active” is selected,
L = {τ | ατ = α}. Let us denote the smallest element of L by τ1 and �th smallest
element of L by τ�.

The finite action history of period t taken out from hα is denoted by htα =
(α1, α2, . . . , αt ). If u(hτ�

α ) ≤ 0 for all τ� ∈ L , then, obviously, we havew
∑

i Pi (h) ≤
Π(σ | h0α). On the other hand, u(hτ1) < 0 from (A4). Thus, we assume that there
exists τ�∗ , such that u(h

τ�∗
α ) > 0 and u(hτ�

α ) ≤ 0 for any � < �∗.

123



380 T. Shichijo, E. Fukuda

Using the notations, we have:

∑
i

Pi (h) =
∞∑

τ=1

1a(ατ )u(hτ
α)δτ−1

=
�∗−1∑
�=1

u(hτ�
α )δτ�−1 +

∞∑
�=�∗

u(hτ�
α )δτ�−1.

Now,we consider an action history h′
α , such that “no-action” is selected until τ�∗−�∗

period and “active” is selected after that. For example, if hα = (n, a, n, a, a, n, a . . . )

and τ�∗ = 4, then h′
α = (n, n, a, a, a, a, a, . . . ). The sum of total payoff of h′

α is as
follows:

∑
i

Pi (h
′
α) = δτ�∗−�∗

∞∑
k=1

u(a : k)δk−1.

We now show that
∑

i Pi (hα) ≤ ∑
i Pi (h

′
α). For k < �∗, we have u(hτk

α ) ≤ 0,
τk ≤ τ�∗ − �∗ + k and u(hτk

α ) ≤ u(a : k) from (A3) . Thus, we have u(hτk
α )δτk−1 ≤

δτ�∗−�∗
u(a : k)δk−1. On the other hand, for k ≥ �∗, we have u(τk) ≤ u(a : k),

u(a : k) > 0 and τk ≥ τ�∗ −�∗+k. Thus, we have u(hτk
α )δτk−1 ≤ δτ�∗−�∗

u(a : k)δk−1.
Therefore, we have

∑
i Pi (hα) ≤ ∑

i Pi (h
′
α).

Since
∑

i Pi (h
′
α) = Nδτ�∗−�∗

Π(σ | h0α) ≤ NΠ(σ | h0α), we finally have
w

∑
i Pi (hα) ≤ w

∑
i Pi (h

′
α) ≤ Π(σ | h0α).

Step 2: For a given strategy profile σ , let us denote the probability measure that history
h occurs by μσ (h). Then:

Πi (σ | h0α) =
∫
h
Pi (h)dμσ (h).

Thus, byw
∑

i Pi (h) ≤ Π(σ | h0α) for all h, we obtain:w
∑

i Πi (σ | h0α) ≤ Π(σ |
h0α). From Steps 1 and 2, we have proven part (i).
Step 3: We finally prove (ii). By the proof of (i), for given hα , (1) if there does not
exit �∗, such that u(h

τ�∗
α ) > 0 then

∑
i Pi (h) ≤ 0, and (2) if there exists �∗, such that

u(hτ�∗
α ) > 0, then we have

∑
i Pi (h) ≤ Π(σ | h0α) < 0.

In both cases (1) and (2),
∑

i Pi (h) ≤ 0 holds. Thus, we have
∑

i Πi (σ | hα) ≤ 0
for each history h. Therefore,

∑
i Πi (σ | h0α) ≤ 0 for any strategy profile σ , which

implies that no-action equilibria achieves the maximum consumer surplus. �
The proof of Theorem 2 is complex, because the model considers infinite history.

Thus, we need the following two lemmas to show the condition for the uniqueness of
the active equilibrium of MPE. We first consider the case where “active” is selected
k∗ times one after the other. We then derive the condition that every player always
selects “active” in the equilibrium after the history.
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Lemma 3 Suppose that Πa(σ | htα) ≥ Πn(σ | htα) for any htα . Given an integer k∗,
suppose that Πa(σ | a : k′) > Πn(σ | a : k′) for k′ ≥ k∗. Then, in all MPE, “active”
is selected successively after hk

∗ = (hk
∗
x , a : k∗).

Proof Case 1 (that k ≥ m∗ − 1): given u(a : k, a) > 0 for all k, such that k ≥ m∗ − 1
and (L3), it follows that u(a : k + τ) > 0 for τ = 1, 2, . . . . Hence, for any history
hk = (hkx , a : k) in an equilibrium in a subgame after hk , every player selects “active”
in her/his turn.
Case 2 (that k∗ ≤ k < m∗ −1): suppose that, for any history hk+1 = (hk+1

x , a : k+1),
in an equilibrium of a subgame after hk+1, every player selects “active” after the
(k + 2)th period. We then show that every player selects “active” after the (k + 1)th
period in an MPE of a subgame after any history hk = (hkx , a : k).
Case 2A (that “active” is chosen in the (k + 1)th period): in a subgame after hk =
(hkx , a : k), if a player that is selected in period k + 1 selects “active,” then hk+1 =
(hk+1

x , a : k + 1). From the assumption, in an equilibrium of a subgame after hk+1,
players always select “active” after the k + 2 period. Thus, the expected payoff to a
player when s/he selects “active” in the (k + 1)th period is Πa(σ | a : k).
Case 2N (that “no-action” is chosen in the (k + 1)th period):

Let us show that Πa
i (σ | a : k) > Πn

i (σ | a : k) for any σ , where Πn
i (σ | a : k) is

the expected payoff when player i is selected in period k+1 and chooses “no-action,”
i.e., hk+1

α = (a : k, n), in a subgame from hk = (hkx , a : k).
Case 2N-1 (that a player selects “no-action” with some positive probability at finite
times):17 consider strategy profile σ , where player i always selects “active” after a
finite history/period.

Let Δ(k + Q) be the set of strategy profiles in which every player selects “active”
after the (k + Q)th period,18 including period k + Q. That is, σ ∈ Δ(k + Q) is a
strategy profile, such that for every player i ∈ I : σ

k+Q+τ
i (hk+Q−1+τ

α ) = 1 for any

hk+Q−1+τ
α ∈ Hk+Q−1+τ , τ = 0, 1, 2, 3, . . . for any σ ∈ Δ(k + Q).
Then, we show Πn

i (σ | a : k) ≥ Πn
i (σ | a : k) for all σ ∈ Δ(k + Q). First,

from the definition, for any hk+Q−2, Πn
i (σ | hk+Q−2

α ) = Πn
i (σ | hk+Q−2

α ) and

Πa
i (σ | hk+Q−2

α ) = Πa
i (σ | hk+Q−2

α ) hold. By assumption of this lemma, Πa
i (σ |

hk+Q−2
α ) ≥ Πn

i (σ | hk+Q−2
α ) for all hk+Q−2 ∈ Hk+Q−2. Thus, when we check the

maximumpayoff to player i , we can assume that s/he selects “active” at time k+Q−1.
From the positive externality, we can also assume that other players also select “active”
in the (k + Q − 1)th period. Hence, we obtain Πn

i (σ | hk+Q−3
α ) ≥ Πn

i (σ | hk+Q−3
α ).

In a similar way, we can derive Πn
i (σ | a : k) ≥ Πn

i (σ | a : k) for all σ ∈ Δ(k + Q).
We can apply the same argument for any Q = 0, 1, 2, . . . (< +∞).
Case 2N-2 (that a player selects “no-action” with some positive probability at infinite
times): Consider that a strategy profile where player i may choose “no-action” with a
positive probability at an infinite time. Given δ < 1, a T exists that satisfies:

17 σi (·) < 1 occurs at finite times.
18 To be precise, we generally suppose that Δ(t) may include nonpayoff-relevant strategies. That is, σ ∈
Δ(t) allows στ+1(n : τ) 	= σ 1(h0α) for some τ ≥ t , while it satisfies στ+1(n : τ) = σ 1(h0α) for all τ < t .
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Πa(σ | a : k) − Πn(σ | a : k) >
δT (U −U )

1 − δ
. (B.1)

By Case 2N-1, we have the following:

Πa(σ | a : k) − sup
σ∈Δ(T )

Πn
i (σ | a : k) = Πa(σ | a : k) − Πn(σ | a : k). (B.2)

On the other hand, because differences in the payoffs after the (T + 1)th period are at
most U −U , it follows that:

sup
σ∈Δ

Πn
i (σ | a : k) − sup

σ∈Δ(T )

Πn
i (σ | a : k) ≤ δT (U −U )

1 − δ
. (B.3)

Thus, we obtain the following:

Πa(σ | a : k) − sup
σ∈Δ

Πn
i (σ | a : k) = {Πa(σ | a : k) − sup

σ∈Δ(T )

Πn
i (σ | a : k)}

−{sup
σ∈Δ

Πn
i (σ | a : k) − sup

σ∈Δ(T )

Πn
i (σ | a : k)}

≥ Πa(σ | a : k) − Πn(σ | a : k)
−δT (U −U )

1 − δ
> 0,

where the first inequality follows from (3) and (4), and the second follows from (2).
Therefore, after history hk = (hkx , a : k), selecting “active” and earning Πa(σ |

a : k) are strictly better than choosing “no-action,” and hence a player selects “active”
in the (k + 1)th period. Given hk+1 = (hk+1

x , a : k + 1), the outcome where every
player selects “active” after k + 2 is the unique MPE outcome.

From Cases 1 and 2, the proof is completed by induction on k. �

We prove the following lemma to simplify the condition of the previous lemma.

Lemma 4 For any finite action history htα , the following inequality holds: Πa(σ |
htα) − Πn(σ | htα) ≥ Πa(σ | h0α) − Πn(σ | h0α).

Proof By (A3), u(htα, a : k) ≥ u(htα, n, a : k) for any k ≥ 0. Thus, we obtain the
following:

−w

∞∑
k=1

u(htα, n, a : k)δk ≥ − w

∞∑
k=1

u(htα, a : k)δk

≥ − δwu(htα, a) − δw

∞∑
k=1

u(htα, a : k + 1)δk .
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Using the above, we have the following:

Πa(σ | htα) − Πn(σ | htα) = u(htα, a) + δΠ(σ | htα, a) − δΠ(σ | htα, n)

= u(htα, a) + w

∞∑
k=1

u(htα, a, a : k)δk

− w

∞∑
k=1

u(htα, n, a : k)δk

≥u(htα, a) + w

∞∑
k=1

u(htα, a, a : k)δk

− wδu(htα, a) − wδ

∞∑
k=1

u(htα, a : k + 1)δk

=(1 − wδ)u(htα, a) + (1 − δ)w

∞∑
k=1

u(htα, a : k + 1)δk

≥(1 − wδ)u(a) + (1 − δ)w

∞∑
k=1

u(a : k + 1)δk

=Πa(σ | h0α) − Πn(σ | h0α),

where the last inequality follows from (L2). �

From the above two lemmas, we can prove the main theorem.

Proof of Theorem 2 We prove the theorem in four steps.
Step 1:We first show (iii). Suppose that MPE σ is an active equilibrium. Given that the
active equilibrium results in the action history that is a series of “actives” (a, a, a, . . . ),
Πa

i (σ | h0α) = Πa(σ | h0α).
From the fact that σ is a payoff-relevant strategy, we have σ t+1(htα) = σ t+1(n, htα).

That is, even if “no-action” is chosen in the first period, “active” will be chosen
successively after the second period, because strategy σ assigns the same action to h0α
and (n). Therefore, Πn

i (σ | h0α) = Πn(σ | h0α).
When Πa(σ | h0α) < Πn(σ | h0α), “no-action” must be the best reply in the first

period after h0, which contradicts the assumption that σ is MPE.
Step 2:We first show “if” is part of (i). FromLemma 4 andΠa(σ | h0α) > Πn(σ | h0α),
we obtain the assumption of Lemma 3. Thus, all MPE are active equilibria.
Step 3: Next, we show (ii) of Theorem 2 in three substeps, 3-1, 3-2, and 3-3.
(3-1) We first show that if Πa(σ | h0α) = Πn(σ | h0α), then all MPE are active
equilibria in any subgame after h1 = (hx , a) where “active” is chosen in the first
period.
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To show this, we prove that Πa(σ | a : t) > Πn(σ | a : t) for t(≥ 1) if
Πa(σ | h0α) = Πn(σ | h0α). The following inequality follows from (A3):

Πa(σ | a : t) − Πn(σ | a : t)

= u(a : t + 1) + w

∞∑
k=1

u(a : k + t + 1)δk − w

∞∑
k=1

u(a : t, n, a : k)δk

≥ u(a : t + 1) + w

∞∑
k=1

u(a : k + t + 1)δk − w

∞∑
k=1

u(a : k + t)δk

= (1 − wδ)u(a : t + 1) + (1 − δ)w

∞∑
k=1

u(a : k + t + 1)δk .

On the other hand, we have Πa(σ | h0α) − Πn(σ | h0α) = (1 − wδ)u(a) + (1 −
δ)w

∑∞
k=1 u(a : k + 1)δk = 0. Given u(a : k + 1) ≥ u(a : k) for all k ∈ N ∪ {0} by

(L3), from (A5) and (A6) there exists a τ , such that u(a : τ + 1) > u(a : τ).
Noting that the above strict inequality holds, we can see that:

Πa(σ | a : t) − Πn(σ | a : t) ≥ (1 − wδ)u(a : t + 1)

+ (1 − δ)w

∞∑
k=1

u(a : k + t + 1)δk

> (1 − wδ)u(a) + (1 − δ)w

∞∑
k=1

u(a : k + 1)δk = 0.

Hence, from Lemma 3, every MPE is an active equilibrium in a subgame after h1 =
(hx , a).
(3-2) Next, we show that there is no MPE where more than one player selects “no-
action” with a positive probability in the first period. That is, we show that σ 1

j (h
0
α) = 1

for all j( 	= i) for all MPE σ if σ 1
i (h0α) < 1.

As we have shown in (3-1), if “active” is selected in the first period, then every
player selects “active” after the second period. Thus, for any MPE σ , Πa(σ | h0α) =
Πa(σ | h0α).

Here, we assume that σ is an MPE:

Π j (σ | h0α) = wδ
[
σ 1
i (h0α)Π j (σ | a) + (1 − σ 1

i (h0α))Π j (σ | h0α)
]

+ w
[
σ 1
j (h

0
α)Πa

j (σ | h0α) + (1 − σ 1
j (h

0
α))δΠ j (σ | h0α)

]
+ (1 − 2w)δΠ j (σ | a).
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As Π j (σ | a) = Π j (σ | a) = (Πa
j (σ | h0α) − u(a))/δ, we have the following:

Π j (σ | h0α)

=
Πa

j (σ | h0α)
[
wσ 1

i (h0α) + wσ 1
j (h

0
α) + 1 − 2w

]
− u(a)

[
wσ 1

i (h0α) + 1 − 2w
]

1 − δw(2 − σ 1
i (h0α) − σ 1

j (h
0
α))

.

From the above equality, we obtain the following:

Π j (σ j , σ− j | h0α) − Π j (σ̃ j , σ− j | h0α)

=
(σ 1

j (h
0
α) − σ̃ 1

j (h
0
α))w

[
(1 − δ)Πa

j (σ | h0α) + δu(a)(1 − 2w + σ 1
i (h0α)w)

]
[1 − δ(2 − σ 1

i (h0α) − σ 1
j (h

0
α))w][1 − δ(2 − σ 1

i (h0α) − σ̃ 1
j (h

0
α))w] ,

where σ̃ t
j (h

t−1
α )) = 1 for all t > 1. Given Πn(σ | h0α) = wδΠa(σ | h0α) + (1 −

w)δ[Πa(σ | h0α) − u(a)], if Πa(σ | h0α) = Πn(σ | h0α), then (1 − δ)Πa(σ |
h0α) + u(a)(1 − w)δ = 0 holds. If σ 1

i (h0α) < 1 and σ 1
j (h

0
α) > σ̃ 1

j (h
0
α), we have the

following:

Π j (σ j , σ− j | h0α) − Π j (σ̃ j , σ− j | h0α)

>
(σ 1

j (h
0
α) − σ̃ 1

j (h
0
α))w

[
(1 − δ)Πa

j (σ | h0α) + δu(a)(1 − w)
]

[1 − δ(2 − σ 1
i (h0α) − σ 1

j (h
0
α))w][1 − δ(2 − σ 1

i (h0α) − σ̃ 1
j (h

0
α))w] = 0.

(B.4)

Therefore, Π j (σ | h0α) is strictly increasing in σ 1
j (h

0
α). Thus, player j can be made

better off by selecting “active” in the first period, which states that if σ 1
i (h0α) < 1 then

σ 1
j (h

0
α) = 1 for all j( 	= i) when σ is an MPE.

(3-3) From (3-2), we can see that if a symmetric MPE exists, then it is an active
equilibrium. Next, to show the existence of an active equilibrium, we prove that σ is
an equilibrium.

In a similar manner to the above, we can derive the following:

Πi (σi , σ−i | h0α) =
Πa(σ | h0α)

[
wσ 1

i (h0α) + 1 − w
]

− u(a)(1 − w)

1 − δw(1 − σ 1
i (h0α))

;

Πi (σi , σ−i | h0α) − Πi (σ̃i , σ−i | h0α)

= (σ 1
i (h0α) − σ̃ 1

i (h0α))w
[
(1 − δ)Πa

i (σ | h0α) + δu(a)(1 − w)
]

[1 − δ(1 − σ 1
i (h0α))w][1 − δ(1 − σ̃ 1

i (h0α))w] = 0, (B.5)

where σ t
i (h

t−1) = 1 for any t > 1. The last equality comes from (1 − δ)Πa(σ |
h0α) + u(a)(1− w)δ = 0 . Therefore, the player cannot be made better off by varying
σ 1
i (h0α). Thus, σ is an equilibrium.
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Step 4: Finally, we show the “only if” part of (i).
From equation (B.4) and (B.5), we see that, if Πa(σ | h0α) = Πn(σ | h0α), then

there exists an asymmetric equilibrium, where σ 1
i (h0α) < 1 and σ 1

j (h
0
α) = 1 for j 	= i .

Moreover, there is no active equilibrium if Πa(σ | h0α) < Πn(σ | h0α) from Step 1. �

Appendix C: Lemmas for Section 6

In the following, we provide a lemma and its proof for Section 6. For his-
tory ht , the difference between the expected payoff of selecting “no-action” at
time t + 1 and that of selecting “active” at time t + 1 is Πa(σ | ht ) − C −[
Πn(σ | ht ) − δwC/(1 − (1 − w)δ)

] = Πa(σ | ht ) − (1 − δ)C/(1 − (1 − w)δ) −
Πn(σ | ht ). Using this, we have the following lemma.

Lemma 5 Suppose that Πa(σ | ht ) − C(1 − δ)/(1 − δ + wδ) ≥ Πn(σ | ht ) for any
ht . Given an integer k∗, suppose thatΠa(σ | (hk

′
x , a : k′))−C(1−δ)/(1−δ+wδ) >

Πn(σ | (hk
′
x , a : k′)) for k′ ≥ k∗. Then, in all MPE, “active” is selected successively

after hk
∗ = (hk

∗
x , a : k∗).

Proof As most of the proof encompasses the same argument as the proof of Lemma 3,
we only provide an outline of the proof.
Case 1 (that k ≥ m∗ − 1):
Case 1-1 (that the number of members is N ): for any history hk = (hkx , a : k), in an
equilibrium in a subgame after hk , every player selects “active” in her/his turn as s/he
can earn a positive instant payoff.
Case1-2 (that the number ofmembers is less than N ): Suppose that in every equilibrium
of a subgame after hk = (hkx , a : k), every player selects “active” after the (k + 1)th
period if the number of members is � + 1. We then show that every player selects
“active” after the (k + 1)th period in an MPE of a subgame after any history hk =
(hkx , a : k) if the number of members is �. If the selected player xk+1 is a member,
s/he selects “active”, because s/he obtains a positive instant payoff. We consider the
case that the selected player is a nonmember and show that all of them select “active”
in an equilibrium.
Case 1-2A (that the selected player is a nonmember and s/he selects “active” in the
(k + 1)th period): if the selected player is a nonmember and selects “active” in period
k + 1, then the number of members becomes � + 1. From the assumption, in an
equilibrium of a subgame after hk+1, the player always selects “active” after the
(k + 2)th period.
Case 1-2N (that the selected player is a nonmember and s/he selects “no-action” in the
(k + 1)th period): Using the same logic as in the proof of Lemma 3, Case 2N yields
that selecting “active” is strictly better than choosing “no-action” in a subgame from
hk = (hkx , a : k) in which the number of members is �.

From Cases 1-1 and 1-2, by induction on �, we have that after history hk = (hkx , a :
k), the outcome where every player selects “active” after k + 1 is the unique MPE
outcome.
Case 2 (that k ∗ ≤ k < m∗−1): Suppose that for any history hk+1 = (hk+1

x , a : k+1),
in an equilibrium of a subgame after hk+1, every player selects “active” after the
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(k + 2)th period. Using the same logic as in Lemma 3, we obtain that every player
selects “active” after the (k + 1)th period in an MPE of a subgame after any history
hk = (hkx , a : k).

From Cases 1 and 2, the proof is completed by induction on k. �

In addition, if Πa(σ | ht ) −C(1− δ)/(1− δ + wδ) ≥ Πn(σ | ht ) for any ht , then
we can see that Πa(σ | ht ) − C is positive for any history ht .
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