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Abstract
We introduce a new solution for tournaments called the unsurpassed set. This solution
lies between the uncovered set and the Copelandwinner set.We show that this solution
is more decisive than the uncovered set in discriminating among alternatives, and
avoids a deficiency of the Copeland winner set. Moreover, the unsurpassed set is
more sensitive than the uncovered set but less sensitive than the Copeland winner set
to the reinforcement of the chosen alternatives. Besides, it turns out that this solution
violates the other standard properties including independence of unchosen alternatives,
stability, composition consistency and indempotency.

Keywords Uncovered set · Unsurpassed set · Copeland winner set · Monotonicity

1 Introduction

A tournament is presented by an ordered pair (X , P) where X is a set of alternatives
and P is a complete and asymmetric binary relation on X . In this paper, it is assumed
that X is nonempty and finite and that x Py is read as x dominates y for any x, y in
X . A tournament (X , P) is said to be regular if any two alternatives in X dominate
an equal number of alternatives. The main subject in the theory of tournaments are
solutions which assign a nonempty subset of X to any given (X , P).

Since the Condorcet winner, which is an alternative that dominates every other
alternative, may not exist, the top cycle set was proposed by Schwartz (1972) as a
generalized notion of the Condorcet winner. It has been shown in Schwartz (1986)
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that the top cycle set is nonempty for every possible tournament. However, this set
may include all the alternatives under consideration. In this case, this solution may not
discriminate among alternatives at all. Furthermore, it may contain Pareto inefficient
alternatives when the dominance relation is derived from pairwise majority compar-
isons, as pointed out by Deb (1977). In view of these defects, the uncovered set was
formulated by Miller (1980) as a refinement of the top cycle set. As shown in Miller
(1980), the uncovered set precludes the presence of Pareto inefficient alternatives suc-
cessfully. It may be worth noting that the uncovered set is also the largest tournament
solution that cannot contain Pareto dominated alternatives (See Brandt et al. 2016b).
However, the uncovered set may also include every alternative under consideration in
spite of the fact that the tournament is irregular. That means, as a tournament solution,
the uncovered set may not be discriminating enough.

There are several noted tournament solutions in the literature that may be seen
as refinements of the uncovered set. These are the Copeland winner set in Copeland
(1951), the Banks set in Banks (1985), the minimal covering set in Dutta (1988), the
tournament equilibrium set in Schwartz (1990) and the union of minimal extending
sets in Brandt et al. (2017). A pleasant advantage of the Copeland winner set is that
it is always a proper subset of X as long as (X , P) is irregular. This property is not
satisfied by the uncovered set, and in this sense, the Copeland winner set is a more
decisive solution than the uncovered set. However, in some cases, the Copelandwinner
set may be a dominated subset of the uncovered set in the sense that alternatives in the
Copeland winner set are dominated by any other alternative in the uncovered set. That
means, the Copelandwinner set may only choose the alternative(s) from the uncovered
set which are worse than any other unchosen alternatives within the uncovered set.
Given this point, it might be argued that the Copeland winner set is an unsatisfactory
refinement of the uncovered set. By comparison, it has been shown in Laslier (1997)
that none of the Banks set, the minimal covering set and the tournament equilibrium
set may be a dominated subset of the uncovered set. Moreover, due to the minimal
extending sets being included in theBanks set (Brandt et al. 2017), the unionofminimal
extending sets is not a dominated subset of the uncovered aswell. Regrettably, given an
irregular tournament, all of them may choose all the alternatives under consideration.
In other words, these refinements fail to remove the weakness of the uncovered set in
discriminating among alternatives.

In view of the above facts, it is worth exploring a restrictive theory with more
discriminatory power than the uncovered set, but which avoids the weakness of the
mentioned refinements of the uncovered set. With this motivation, we put forward a
new solution called the unsurpassed set. It will be shown that the unsurpassed set is
nested between the uncovered set and the Copeland winner set. More importantly, the
unsurpassed set avoids the mentioned weaknesses of the uncovered set and that of
the Copeland winner set. We also investigate how the unsurpassed set changes when
the dominion of a chosen alternative is reinforced and the dominance relation among
the unchosen alternatives is unaltered. Moreover, we make a comparison with the
solutions of the uncovered set and of the Copeland winner set in this respect. Besides,
it will be shown that the unsurpassed set fails to satisfy the choice-theoretic properties:
stability, composition consistency and idempotence.
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The rest of this paper is organized as follows. In Sect. 2, we recall necessary defi-
nitions, notations and conclusions concerning tournaments and their solutions which
are partly from Brandt et al. (2016a). Section 3 is devoted to the solutions of the top
cycle set, of the uncovered set and of the Copeland winner set. Here, we display the
disadvantages of these solutions in a detailed way. We propose the unsurpassed set
and investigate which properties are satisfied or violated by this solution in Sect. 4.
Finally, we end this paper with some short concluding remarks in Sect. 5 where our
results and future research topics are roughly discussed.

2 Preliminaries

A tournament is a pair (X , P) where X is a nonempty finite set of alternatives and
where P is a binary relation on X satisfying

– asymmetry ∀x, y ∈ X , if x Py then not yPx ;
– completeness ∀x, y ∈ X , if x �= y, then either x Py or yPx .

For any x, y ∈ X , we read x Py as x dominates1 y which means that x , if taken
into consideration, excludes the acceptance of y. Denote by T (X) the collection of
tournaments on X . Given a subset T of X , define the restriction of P to T by PT =
P ∩ (T × T ). Any (X , P) ∈ T (X) may be represented by a digraph where X is a
vertex set and P is the set of directed edges.

For any x ∈ X , let B(X ,P)(x) be the set of alternatives that dominate x ; and
D(X ,P)(x)be the set of alternatives that are dominated by x .An alternative in B(X ,P)(x)
is called a dominator of x and D(X ,P)(x) is termed the dominion of x . In order to
improve readability, we omit the respective subscript whenever X and P are known
from the context. Denote by b(x) and d(x) the cardinalities of B(x) and of D(x),
respectively.

A tournament (X , P) is called regular if b(x) = b(y) and d(x) = d(y) for any
x, y ∈ X . (X , P) is called irregular if it is not regular. Any Y ⊆ X is called a
dominated subset of X if x Py for any x ∈ X \ Y and y ∈ Y .

A dominance relation P on X is said to be

– transitive ∀x, y, z ∈ X , if x Py and yPz, then x Pz;
– cyclic ∃ x1, x2, . . . , xm ∈ X such that x1Px2, . . . , xm−1Pxm, xm Px1;
– acyclic if it is not cyclic.

A solution for tournaments is a mappingS: T (X) → 2X\{∅}.S(X , P) is called the
choice set of (X , P). For any B ⊆ X , we write S(B) instead of S(B, PB) whenever
the tournament (B, PB) is clear from the context. Let S,S ′ be two solutions for
tournaments. S ′ is called a refinement of S if S ′(X , P) ⊆ S(X , P) for any (X , P) ∈
T (X).

Definition 1 A tournament solution S is said to be

1 Note that, x Py is also frequently referred to as x beats y instead of x dominates y in the tournament
literature. In essence, a tournament is an abstract game. For this, we employ the notion of the dominance
that was originally defined in (Von Neumann and Morgenstern 1944, p. 37).
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(i) α-monotonic: for any (X , P) ∈ T (X), x ∈ S(X , P) and y ∈ X , if P ′ = P
except x P ′y, then x ∈ S(X , P ′);

(ii) β-monotonic: for any (X , P) ∈ T (X), x ∈ S(X , P) and y ∈ X , if P ′ = P
except x P ′y, then x ∈ S(X , P ′) but y /∈ S(X , P ′);

(iii) γ -monotonic: for any (X , P) ∈ T (X), x ∈ S(X , P) and y ∈ X , if P ′ = P
except x P ′y, then S(X , P ′) = {x}.
The property of α-monotonicity prescribes that a chosen alternative should still

be chosen if it is reinforced by changing from yPx to x Py and everything else is
unchanged. The property of β-monotonicity says that any chosen alternative x is still
in the choice set but excludes the acceptance of ywhen x is reinforcedby changing from
yPx to x Py and everything else is unchanged. The property of γ -monotonicity states
that any chosen alternative x becomes the unique chosen alternative whenever it is
reinforced by changing from yPx to x Py and everything else is unchanged.Notice that
α-monotonicity and γ -monotonicity are also referred to as monotonicity and strong
monotonicity, respectively, in the literature. As for other well-known monotonicity
concepts, one may study cover-monotonicity and Maskin monotonicity in Özkal-
Sanver and Sanver (2010).

Lemma 1 Let S be a solution for tournaments. Then

(i) S is α-monotonic if it is β-monotonic;
(ii) S is β-monotonic if it is γ -monotonic.

This lemma states that β-monotonicity is a more demanding constrain than α-
monotonicity, but a less demanding constrain than γ -monotonicity. This statement
follows straightforwardly from the above definition.

A tournament solution S is independent of unchosen alternatives if

S(X , P) = S(X , P ′) for all (X , P), (X , P ′) ∈ T (X)

such that for all x ∈ S(X , P) and y ∈ X , x Py if and only if x P ′y.
Independence of unchosen alternative says that the choice set should be unaffected

by changes in the dominance relation between unchosen alternatives.
A tournament solutionS is stable if for all tournaments (X , P) and for all nonempty

subsets A, B,C ⊆ X with A ⊆ B ∩ C ,

A = S(B) = S(C) if and only if A = S(B ∪ C).

This property says that a set is chosen from two different sets of alternatives if and
only if it is chosen from the union of these sets.2 Stability was factorized into two
conditions α̂ and γ̂ in Brandt et al. (2017) by considering each implication in the
above equivalence separately.

2 In comparison to monotonicity, stability is a more demanding property such that most of the tournament
solutions may not satisfy this property. We refer to Brandt et al. (2016a) for a more thorough discussion
about which tournament solution satisfies the property of stability.
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A tournament solution S satisfies α̂ if for all tournaments (X , P) and for all
nonempty B,C ⊆ X ,

S(B) ⊆ C ⊆ B implies S(C) = S(B).

Condition α̂ requires that if the range of available alternatives is narrowed from B to
C but still contains all previously chosen alternatives, the choice from C should be
the same as that from B.

A tournament solutionS satisfies γ̂ if for all tournaments (X , P) and for all B,C ⊆
X ,

S(C) = S(B) implies S(B ∪ C) = S(B).

Condition γ̂ states that a choice set for two different sets of available alternatives
should still be the choice set when the range of alternatives is expanded by merging
the two sets.

Note that α̂ corresponds to the implication from right to left whereas γ̂ is the
implication from left to right.3

A component of (X , P) is a nonempty subset of alternatives B ⊆ X such that for
all x ∈ X \ B, either x Py for any y ∈ B or yPx for any y ∈ B. A decomposition of
(X , P) is a partition of X into components.

For a given tournament ˜T = (˜X , ˜P) where ˜X = {1, 2, . . . , k}, a new tournament
T = (X , P) can be constructed by replacing each alternative in ˜X with a com-
ponent. Consider a set of tournaments T1 = (X1, P1), T2 = (X2, P2), . . . , Tk =
(Xk, Pk) where X1, . . . , Xk are pairwise disjoint sets of alternatives. The product of
T1, T2, . . . , Tk with respect to˜T is the tournament T = (X , P) such that X = ⋃i=k

i=1 Xi

and for any s ∈ Xi , t ∈ X j , sPt if and only if i = j and sPi t , or i �= j and i ˜P j . ˜T is
called the summary of T with regard to the decomposition {X1, X2, . . . , Xk}.

A tournament solution S is composition consistent if for all tournaments T1, T2,
. . ., Tk and ˜T such that T = ∏

(˜T , T1, T2, . . . , Tk),

S(T ) =
⋃

i∈S(˜T )

S(Ti ).

This property expresses that a tournament solution is composition consistent if it
selects the “best” alternatives from the “best” components.

A tournament solution S is idempotent if S(S(T )) = S(T ) for all T = (X , P) ∈
T (X). This property requires that the choice set be invariant under repeated application
of the solution concept.

3 The property of stability was further factorized into four conditions:̂α⊆ ,̂α⊇,γ̂⊆ and γ̂⊇ in Brandt et al.
(2017). We refer to Brandt et al. (2017) for a more thorough discussion of these conditions. Note that α̂ is
also known as Chernoff’s postulate 5∗ in Chernoff (1954), the strong superset property in Bordes (1979)
and the attention filter axiom in (Masatlioglu et al. 2012).

123



112 W. Han, A. V. Deemen

3 Top cycle set, uncovered set and Copeland winner set

An alternative x ∈ X is said to be maximal in (X , P) if yPx for no y ∈ X . As the
dominance relation may contain cycles, a given tournament may not admit a maximal
alternative.4 Due to the possible non-existence of maximal alternatives, the top cycle
set5 was proposed as a generalization of the concept of maximal alternative.

The top cycle set of (X , P), denoted by T C(X , P), is defined as follows:

T C(X , P) = {x ∈ X | x Pτ y for any y ∈ X}.

where x Pτ y if there exists a sequence x = x0, x1, . . . , xm = y ∈ X such that xi Pxi+1
for all i = 0, . . . , (m − 1).

The top cycle set is not only nonempty but also unique for every tournament. More-
over, any alternative in the top cycle set dominates any alternative outside this set, and
no proper subset of the top cycle set has this property, as showed in Schwartz (1986).
However, this solution may not discriminate the alternatives under consideration even
if the tournament is irregular, and it also may contain Pareto inefficient alternatives
when the dominance relation is derived from pairwise majority comparisons, as clar-
ified in Moulin (1986).

The next lemma will be useful in the sequel.

Lemma 2 For any (X , P) ∈ T (X) and Y ⊆ X, Y is not a dominated subset of X if
Y ∩ T C(X , P) �= ∅.
Proof Let Y ∩ T C(X , P) �= ∅. Suppose Y is a dominated subset of X . Then x Py for
any x ∈ X\Y and y ∈ Y . Take z ∈ Y ∩ T C(X , P). Then D(z) ⊆ Y . Moreover, not
zPτ x for any x ∈ X \ Y , which contradicts z ∈ T C(X , P). ��

The uncovered set was proposed by Miller (1980) in order to overcome the disad-
vantages of the top cycle set.6

The uncovered set of (X , P) is defined as:

UC(X , P) = {x ∈ X | yPcx for no y ∈ X}

where y covers x , denoted by yPcx , if yPx and D(x) ⊆ D(y).
The uncovered set selects the maximal alternatives with respect to the covering

relation Pc. Since Pc is a transitive sub-relation of P , the uncovered set is nonempty
for every possible tournament. Moreover, it has been shown in Miller (1980) that the
uncovered set refines the top cycle set and that every alternative in the uncovered
set is Pareto efficient when the dominance relation is derived from pairwise majority
comparisons.

4 The maximal alternative is also well-known as the Condorcet winner in the context of tournaments.
5 Here, we follow the definition of the top cycle set in Moulin (1986) which is the same as the notion of
the admissible set in Kalai and Schmeidler (1977). See a different but equivalent definition of the top cycle
set in Schwartz (1990).
6 An equivalent definitionwas independently formulated by Fishburn (1977). Here, we follow the definition
from Miller (1980).
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Fig. 1 (X , P)
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However, the uncovered set is still not discriminating enough in the sense that
it may include every alternative under consideration in the case of some irregular
tournaments. To show this point, consider the following example:

Example 1 Consider the tournament in Fig. 1. Because of d(x3) �= d(x4), (X , P) is
irregular. But UC(X , P) = X .

Remark 1 It could be verified that for the tournament in Fig. 1, the solutions of the
Banks set in Banks (1985), of the minimal covering set in Dutta (1988), of the tourna-
ment equilibrium set in Schwartz (1990) and of the minimal extending set7 in Brandt
(2011) do not discriminate among the alternatives in X at all in spite of the fact that
the tournament is irregular.

The Copeland winner set of (X , P) is defined as follows:

CW(X , P) = {x ∈ X | yPcox for no y ∈ X},

where y co-dominates x , denoted by yPcox , if d(y) − b(y) > d(x) − b(x).
Due to the asymmetry and completeness of P , we get x Pcoy if and only if d(x) >

d(y). Since Pco is transitive, the nonempty Copeland winner set always exists for
every possible tournament. We note that Pco is not necessarily a sub-relation of P .
That is, it is not necessarily true that Pco ⊆ P .

It can be easily verified that the Copeland winner set is a proper subset of the
alternative set as long as a tournament is irregular. It has been shown inMoulin (1986)
that the Copeland winner set is a refinement of the uncovered set and that a deficiency
of this solution may arise when X includes more than twelve alternatives. In this case,
the Copeland winner set might be a dominated subset of the uncovered set. To confirm
this point, we reproduce the example from (Moulin 1986, p. 280) in the following.

Denote by T C(UC(X , P)) the top cycle set of the restriction of tournament (X , P)

to its own uncovered set UC(X , P).

7 A remarkable feature of the minimal extending set is that it may rule out alternatives even though a
tournament is regular, as indicated in (Brandt 2011, p. 1497).
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Fig. 2 (X , P): non-depicted
arrows go downward
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Example 2 Consider the tournament in Fig. 2. It is not difficult to verify that
UC(X , P) = {x1, x2, x3, x4}, CW(X , P) = {x4} and T C(UC(X , P)) = {x1, x2, x3}.
Clearly, x1Px4, x2Px4 and x3Px4. Thus, CW(X , P) is a dominated subset of
UC(X , P).

4 Unsurpassed set and its properties

In this section, we attempt to formulate a new refinement of the uncovered set which
may accommodate the mentioned shortcomings of the uncovered set and of the
Copeland winner set in the last section. We also analyze this refinement with respect
to two different types of properties: dominance-based properties and choice-theoretic
properties.

Definition 2 The unsurpassed set of (X , P) is defined as follows:

US(X , P) = {x ∈ X | yPsx for no y ∈ X},

where y surpasses x , denoted by yPsx , if yPx and d(y) > d(x).

The idea behind the surpassing relation is that y surpasses x if not only y dominates
x but also the size of y’s dominion is larger than that of x . The unsurpassed set is then
the set of maximal alternatives with respect to Ps .

Example 3 For the tournament inFig. 1,US(X , P) = {x3},whereas for the tournament
in Fig. 2, US(X , P) = {x1, x2, x3, x4}.
Theorem 1 Let (X , P) ∈ T (X). Then
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(i) Ps is an acyclic sub-relation of P;
(ii) Pc ⊆ Ps ⊆ Pco.

Proof (i) It is clear that Ps ⊆ P . Since by (ii) below, Ps ⊆ Pco and Pco is transitive,
Ps is acyclic.

(ii) Let x, y ∈ X . If x Pcy, then x Py and D(y) ⊆ D(x), which implies d(x) > d(y)
and x Ps y. If x Ps y, then d(x) > d(y). As b(x) = |X | − d(x)− 1, d(x)− b(x) >

d(y) − b(y). Thus x Pcoy.
��

Theorem 1-(i) ensures that the unsurpassed set is nonempty for every possible tour-
nament. Theorem 1-(ii) expresses the fact that the surpassing relation is weaker than
the covering relation but stricter than the co-dominance relation. Thus, the following
conclusion can be straightforwardly obtained:

Corollary 1 Let (X , P) ∈ T (X). Then

(i) US(X , P) �= ∅;
(ii) CW(X , P) ⊆ US(X , P) ⊆ UC(X , P).

Theunsurpassed setmaybe properly included in the uncovered set and theCopeland
winner setmay be strictly contained in the unsurpassed set. This point can be confirmed
by reconsidering the tournaments in Figs. 1 and 2, respectively. Thus, the unsurpassed
set can be seen as a refinement of the uncovered set but an extension of the Copeland
winner set.

Remark 2 It is worth emphasizing that the unsurpassed set neither contains nor refines
the solutions of the Banks set in Banks (1985), of the minimal covering set in Dutta
(1988), of the tournament equilibrium set in Schwartz (1990) and of the union of
minimal extending sets in Brandt et al. (2017). This statement can be easily verified
by examining again the tournaments in Figs. 1 and 2.

4.1 Distinctive properties

This subsection is devoted to verifying whether the unsurpassed set may avoid the
mentioned shortcomings of the uncovered set and its refinements.

The following theoremsays that the unsurpassed set includes every alternative under
consideration whenever the tournament is regular and excludes some alternative(s) as
long as the tournament is irregular.

Theorem 2 Let (X , P) ∈ T (X). US(X , P) = X if and only if (X , P) is regular.

Proof If (X , P) is regular, d(x) = d(y) for any x, y ∈ X . Then, no x ∈ X is surpassed
by any y ∈ X . Thus, US(X , P) = X .

Assume that (X , P) is irregular. Take the partition (X1, X\X1) of X that satisfies:
(i) d(x) = d(y) for any x, y ∈ X1; (ii) d(x) < d(y) for any x ∈ X1 and y ∈ X\X1.
As (X , P) is irregular, both X1 and X\X1 are nonempty. If there exist x ∈ X1 and
y ∈ X\X1 such that yPsx , then US(X , P) is a proper subset of X . Otherwise, x Py
for any x ∈ X1 and y ∈ X\X1, which implies that d(x) > d(y) for every x ∈ X1 and
y ∈ X\X1. This is a contradiction and, hence, US(X , P) is strictly included in X . ��
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In contrast, the Copeland winner set is provided with the same property while this is
not true for the uncovered set, the Banks set in Banks (1985), the minimal covering set
in Dutta (1988), the tournament equilibrium set in Schwartz (1990), and the minimal
extending sets in Brandt et al. (2017).

Theorem 3 For any (X , P) ∈ T (X), US(X , P) ∩ T C(UC(X , P)) �= ∅.
Proof Suppose US(X , P) ∩ T C(UC(X , P)) = ∅. Take x ∈ T C(UC(X , P)) such
that d(x) ≥ d(y) for any y ∈ T C(UC(X , P)). Since x /∈ US(X , P), there exists
a z ∈ X with zPsx , which implies zPx and d(z) > d(x). Since xi Px j for any
xi ∈ T C(UC(X , P)) and x j ∈ UC(X , P) \ T C(UC(X , P)), z /∈ UC(X , P) and
z /∈ US(X , P). Then there exists a w ∈ UC(X , P) such that wPcz implying wPz
and d(w) > d(z) > d(x). As wPcz and zPx , wPx implying w ∈ T C(UC(X , P)),
which is a contradiction, since d(x) ≥ d(y) for any y ∈ T C(UC(X , P)). ��

The above theorem says that the unsurpassed set always picks out some alterna-
tive(s) from the top cycle set of the uncovered set. Because of Lemma 2, the following
conclusion is straightforwardly obtained:

Corollary 2 The unsurpassed set is never a dominated subset of the uncovered set.

This result shows that the unsurpassed set makes up for the aforementioned flaw
of the Copeland winner set as a refinement of the uncovered set.

4.2 Dominance-based properties

In this subsection, we investigate the sensitivity of the unsurpassed set to the changes
in the dominance relation. As the notion of the unsurpassed set has a close relationwith
that of the uncovered set and of the Copeland winner set, we compare its performance
with them in this respect.

Intuitively, a chosen alternative should still be chosen whenever it is reinforced
(i.e., expanding its dominion). Moreover, it may be desirable that the choice set be
independent from the modifications of the dominance relation among alternatives
outside this set. The following theorem shows that the unsurpassed set satisfies the
former property but violates the latter one.

Theorem 4 The unsurpassed set satisfies β-monotonicity (and, consequently, α-
monotonicity), but does not necessarily satisfy independence of unchosen alternatives.

Proof Let x ∈ US(X , P) and y ∈ X with yPx . Since x ∈ US(X , P), then d(y) ≤
d(x). For any (X , P ′) ∈ Ω(X) with P ′ = P except x P ′y. Then

|{z ∈ X |yP ′z}| = d(y) − 1 < |{z ∈ X |x P ′z}| = d(x) + 1.

Thus, x P ′s y and y /∈ US(X , P ′). Therefore, the unsurpassed set is β-monotonic. By
Lemma 1, we obtain that the unsurpassed set satisfies α-monotonicity.

To confirm the second statement, reconsider the tournament in Fig. 1. US(X , P) =
{x3}. Take (X , P ′) where P ′ = P except x1P ′x2. Then, we have US(X , P ′) =
{x1, x3} �= US(X , P). ��
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In general, the unsurpassed set does not satisfy γ -monotonicity. To see this point,
reconsider the tournament in Fig. 2. Take (X , P ′)where P ′ = P except x4P ′x3. Then,
we have US(X , P ′) = {x1, x2, x4}.

As a comparison, the uncovered set is α-monotonic, which follows from the fact
that any uncovered alternative is still uncovered by enlarging its dominion set with-
out expanding its dominator set whereas the Copeland winner set is γ -monotonic,
which was clarified in Henriet (1985). Note that the uncovered set is neither β-
monotonic nor γ -monotonic. To show this statement, reconsider the tournament in
Fig. 2. Take (X , P ′) where P ′ = P except x4P ′x3. Then UC(X , P ′) = UC(X , P) =
{x1, x2, x3, x4}. In spite of the reinforcement of x4 in (X , P ′), x4 fails to exclude the
acceptance of x3.

The above result states that the unsurpassed set may change with a modification of
the dominance relation between alternatives outside it. Similarly, neither the uncovered
set nor the Copeland winner set satisfies independence of unchosen alternatives. This
can be shown by reexamining the tournaments in Figs 1 and 2, respectively.

Example 4 Reconsider the tournament in Fig. 2. Take (X , P ′) where P ′ = P except
x10P ′x11. We have

UC(X , P ′) = {x1, x2, x3, x4, x10} �= UC(X , P) = {x1, x2, x3, x4}.

Reconsider the tournament in Fig. 1. Take (X , P ′) where P ′ = P except x5P ′x1.
We have CW(X , P ′) = {x3, x5} �= CW(X , P) = {x3}.

4.3 Choice-theoretic properties

This subsection is dedicated to investigating whether the unsurpassed set satisfies the
properties that concern the consistency of choices from different sub-tournaments of
the same tournament to each other.

Theorem 5 The unsurpassed set satisfies neither α̂ nor γ̂ .

The above theorem shows that if the range of available alternatives is reduced by
removing alternatives outside the unsurpassed set, the unsurpassed set for the reduced
alternative set may change, and that the unsurpassed set for two different alternative
setsmay not necessarily be the unsurpassed set for their union. To verify this statement,
see the following counterexample:

Example 5 Consider the tournament in Fig. 3. Take B = X and C = {x1, x2, x4, x5}.
We have US(B) = {x1, x5}, but US(C) = {x1, x2, x5}, which violates α̂.8

Consider the tournament in Fig. 4. Take B = X \ {x4, x5, x6} and C = X \
{x1, x2, x8}. We have US(B) = US(C) = {x3, x7}, but US(B ∪ C) = {x7}, which
violates γ̂ .

8 This counterexample also shows that the unsurpassed set does not satisfy the Aizerman property. A
tournament solution S satisfies the Aizerman property if for all tournaments (X , P) and for all nonempty
B,C ⊆ X , S(B) ⊆ C ⊆ B implies S(C) ⊆ S(B). Note that the Aizerman property is exactly the α̂⊆ in
Brandt et al. (2017).
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Fig. 3 (X , P)
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Fig. 4 (X , P): omitted arrows
go rightwards
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The same is true for the uncovered set and the Copeland winner set. That is, both
satisfy neither α̂ nor γ̂ . To confirm this statement, see the following example:

Example 6 (i) Consider the tournament in Fig. 5. If B = X and C = {x1, x2, x3, x4},
then UC(B) = {x1, x2, x3, x4}, but UC(C) = {x1, x2, x4}, which violates α̂. (ii)
Consider the tournament in Fig. 3, but changing the preference between x1 and x4 to
x4Px1. If B = {x1, x2, x3, x5} and C = {x1, x2, x4, x5}, then UC(B) = UC(C) =
{x1, x2, x5}, but UC(B ∪ C) = {x1, x2, x4, x5}, which violates γ̂ .

Consider the tournament in Fig. 6. (i) If B = {x2, x3, x4, x5} and C = {x2, x3, x4},
then CW(B) = {x3, x4}, but CW(C) = {x2, x3, x4}, which violates α̂. (ii) If
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Fig. 6 (X , P) x1

x6

x5

x3

x4

x2

B = {x1, x2, x3, x4} and C = {x2, x4, x5, x6}, then CW(B) = CW(C) =
{x2, x4}, but CW(B ∪ C) = {x4}, which violates γ̂ .

The following example shows that the unsurpassed set is neither composition con-
sistent nor idempotent:

Example 7 Reconsider the tournament in Fig. 1. {{x1, x2, x5}, {x3}, {x4}} is a decom-
position of (X , P). Composition consistency requires x1, x2, x4, x5 ∈ US(X , P),
which is not the case.

Reconsider the tournament in Fig. 2. It can be verified that

US(US(X , P)) = {x1, x2, x3} whereas US(X , P) = {x1, x2, x3, x4}.

Thus, the unsurpassed set is not idempotent.

In contrast, it has been shown in Laslier (1997) that the uncovered set is composition
consistent but not idempotent, whereas the Copeland winner set is nether composition
consistent nor idempotent.

5 Concluding remark

In this paper, we proposed the notion of surpassing relation which is weaker than the
covering relation but stricter than the co-dominance relation. By using this notion,
we formulated the unsurpassed set which is a refinement of the uncovered set but an
extension of the Copeland winner set. The theory of the unsurpassed set always yields
a proper subset of the alternative set for all irregular tournaments while neither the
uncovered set, nor the Banks set in Banks (1985), nor the minimal covering set in
Dutta (1988), nor the tournament equilibrium set in Schwartz (1990), nor the minimal
extending sets inBrandt et al. (2017) have this property. In this respect, the unsurpassed
set is distinctive from the solution of the uncovered set and the mentioned refinements.
The unsurpassed set and the Copeland winner set both refine the uncovered set. More
important, both theories have an aspect of decisiveness in discriminating among alter-
natives. That is, both solution theories are able to rule out some alternative(s) under
consideration as long as the tournament is irregular. However, the Copeland winner
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set may exclusively choose alternatives from the uncovered set which are worse than
any other unchosen alternatives in the uncovered set, whereas the unsurpassed set in
contrast will not be provided with this feature. Based on this point, we argue that the
unsurpassed set refines the uncovered set in a more convincing way than the Copeland
winner set.

One of the main advantages of the unsurpassed set over the uncovered set and its
mentioned refinements is the former’s decisive power. But more precise and analytical
results about the decisive power of this tournament solution still need to be obtained.
Hence, it would be an interesting topic to see how discriminatory the unsurpassed set
really is. As we have showed, the unsurpassed set satisfies a moderate monotonicity
which is more demanding than α-monotonicity possessed by the uncovered set but
less demanding than γ -monotonicity fulfilled by the Copeland winner set. However,
it is still open whether the unsurpassed set is the maximal (with respect to set inclu-
sion) tournament solution satisfying the property of β-monotonicity. Moreover, it has
been proved that the unsurpassed set violates independence of unchosen alternatives,
stability, composition consistency and idempotence. However, whether these negative
conclusions impair the usefulness of the unsurpassed set is still unclear. For this, an
axiomatic characterization of the unsurpassed set is waiting for to be discovered.

Acknowledgements We would like to thank the anonymous referees and the editor in charge for their
excellent comments and insightful remarks. The authors are also grateful to Dr. Jean Derks whose advices
and comments improved the paper substantially. Preliminary results of this paper were presented at the 13th
Meeting of the Society for Social Choice and Welfare (Lund, Sweden, June 2016). All mistakes are our
responsibility. This research was supported by SCNU under the Project No. 508/8S0253.

References

Banks, J. S. (1985). Sophisticated voting outcomes and agenda control. Social Choice and Welfare, 1(4),
295–306.

Bordes, G. (1979). Somemore results on consistency, rationality and collective choice. In J. J. Laffont (Ed.),
Aggregation and revelation of preferences, Chap 10, (pp. 175–197). North-Hollabd.

Brandt, F. (2011). Minimal stable sets in tournaments. Journal of Economic Theory, 146(4), 1481–1499.
Brandt, F., Conitzer, V., Endriss, U., & Procaccia, A. D. (2016a).Handbook of computational social choice.

Cambridge: Cambridge University Press.
Brandt, F., Geist, C., &Harrenstein, P. (2016b). A note on themckelvey uncovered set and pareto optimality.

Social Choice and Welfare, 46(1), 81–91.
Brandt, F., Harrenstein, P., & Seedig, H. G. (2017). Minimal extending sets in tournaments. Mathematical

Social Sciences, 87, 55–63.
Chernoff, H. (1954). Rational selection of decision functions. Econometrica, 22(4), 422–443.
Copeland, A. H. (1951). A ‘reasonable’ social welfare function. Mimeographed, University of Michigan

Seminar on Applications of Mathematics to the Social Sciences.
Deb, R. (1977). On schwartz’s rule. Journal of Economic Theory, 16(1), 103–110.
Dutta, B. (1988). Covering sets and a new condorcet choice correspondence. Journal of Economic Theory,

44(1), 63–80.
Fishburn, P. C. (1977). Condorcet social choice functions. SIAM Journal on applied Mathematics, 33(3),

469–489.
Henriet, D. (1985). The copeland choice function an axiomatic characterization. Social Choice andWelfare,

2(1), 49–63.
Kalai, E., & Schmeidler, D. (1977). An admissible set occurring in various bargaining situations. Journal

of Economic Theory, 14(2), 402–411.
Laslier, J. F. (1997). Tournament solutions and majority voting. Berlin: Springer.

123



A refinement of the uncovered set in tournaments 121

Masatlioglu, Y., Nakajima, D., & Ozbay, E. Y. (2012). Revealed attention. American Economic Review,
102(5), 2183–2205.

Miller, N. R. (1980). A new solution set for tournaments and majority voting: Further graph-theoretical
approaches to the theory of voting. American Journal of Political Science, 24(1), 68–96.

Moulin, H. (1986). Choosing from a tournament. Social Choice and Welfare, 3(4), 271–291.
Özkal-Sanver, I., & Sanver, M. R. (2010). A new monotonicity condition for tournament solutions. Theory

and Decision, 69(3), 439–452.
Schwartz, T. (1972). Rationality and the myth of the maximum. Nous, 6(2), 97–117.
Schwartz, T. (1986). The logic of collective choice. New York: Columbia University Press.
Schwartz, T. (1990). Cyclic tournaments and cooperative majority voting: A solution. Social Choice and

Welfare, 7(1), 19–29.
VonNeumann, J., &Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton

University Prress.

123


	A refinement of the uncovered set in tournaments
	Abstract
	1 Introduction
	2 Preliminaries
	3 Top cycle set, uncovered set and Copeland winner set
	4 Unsurpassed set and its properties
	4.1 Distinctive properties
	4.2 Dominance-based properties
	4.3 Choice-theoretic properties

	5 Concluding remark
	Acknowledgements
	References




