
Theory Dec. (2018) 85:21–39
https://doi.org/10.1007/s11238-017-9639-3

Weighted averaging, Jeffrey conditioning
and invariance

Denis Bonnay1 · Mikaël Cozic2

Published online: 17 January 2018
© Springer Science+Business Media, LLC 2018

Abstract Jeffrey conditioning tells an agent how to update her priors so as to grant a
given probability to a particular event.Weighted averaging tells an agent how to update
her priors on the basis of testimonial evidence, by changing to a weighted arithmetic
mean of her priors and another agent’s priors.We show that, in their respective settings,
these two seemingly so different updating rules are axiomatized by essentially the
same invariance condition. As a by-product, this sheds new light on the question how
weighted averaging should be extended to deal with cases when the other agent reveals
only parts of her probability distribution. The combination of weighted averaging (for
the events whose probability the other agent reveals) and Jeffrey conditioning (for
the events whose probability the other agent does not reveal) is a comprehensive
updating rule to deal with such cases, which is again axiomatized by invariance under
embedding. We conclude that, even though one may dislike Jeffrey conditioning or
weighted averaging, the two make a natural pair when a policy for partial testimonial
evidence is needed.
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1 Introduction

A theory of rational belief typically contains two components: a synchronic component
which describes the constraints which an agent’s doxastic state should obey, and a
diachronic component saying how an agent’s doxastic state should be updated upon
receiving new information. In this paper, we will be concerned with the dynamics of
beliefs, under the assumption that an agent’s doxastic state can be represented by a
probability distribution.

When one is interested in the issue of knowing how an agent should update her
prior probabilities upon receiving new information, one may prima facie distinguish
two kinds of situation. In the case of an individual update, the agent learns that some
event has a given probability and updates her priors so as to grant that probability
to the event. Conditioning (when the new probability of the event is 1) and Jeffrey
conditioning (when the new probability of the event is an arbitrary new value) are
the two most popular updating rules for this kind of situation. In the case of a social
update, the agent learns another agent’s opinions and updates her own priors so as to
take into account the other’s opinions. In this case, the most popular rules consist in
averaging the two priors, using weighted arithmetic or geometric means.1

Let us have a closer look at social updates. An agent A1 updates her priors on the
basis of the testimony of some other agent A2, who reveals her degree of belief in
an event E . This process may be broken down into two different stages. First, some
kind of trade-off occurs, between A1’s own prior towards E and A2’s prior. A1 has to
decide how, and howmuch, she is going to change her belief in E given A2’s degree of
belief in E . The output of this process is A1’s posterior probability for E . The second
stage consists in A1’s adjusting her probabilities towards the other events. A1 has to
decide what her degrees of beliefs in all other events become, now that her belief in
E has changed.

Theories of individual update (like those mentioned above) typically deal with
adjustment. What the posterior probability for the target event should be is taken as
given, and the problem is precisely how to do the adjustment for the other events in
the algebra. By contrast, theories of social update, as usually stated, only deal with the
trade-off task. They answer the question what the posterior probability for E should
be,2 but they remain silent as to how the agent should complete her posterior distribu-
tion following the trade-off stage. The question how this should be done has recently
been raised, by Jehle and Fitelson (2009) and Steele (2012), but a principled supple-
mentation of trade-off rules, such as weighted averaging, is still lacking. Jehle and
Fitelson (2009) are concerned with situations of peer-disagreement. As an updating
rule to handle such situations, they consider unweighted arithmetic means supple-
mented with a constraint of distance minimization (using Euclidean distance) with
respect to the agent’s priors, but they do not claim to provide a vindication of this
particular way to supplement the averaging. Steele (2012) considers supplementing

1 For surveys, see Genest and Zidek (1986) and Dietrich and List (2016).
2 We are simplifying a bit: A2 may well disclose her subjective probabilities for other events, and maybe
for all events in the algebra under consideration. But the point is that A2 may not do that and may only
reveal parts of her subjective probabilities.
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Weighted averaging, Jeffrey conditioning... 23

weighted averaging with Jeffrey conditioning, but ends up rejecting both, on account
of failure of commutativity. Neither is there to be found a joint approach to individual
and social updates: characterizations of individual updating rules are usually spelled
out in terms which are alien to the axiomatic approach widespread in the literature on
combining probability distributions. In this paper, we wish to propose such a unified
view of individual and social updates on the one hand, and of trade-off and adjustment
on the other hand. Our approach will be axiomatic: we aim to find principled axioms
from which one can derive adjustment rules for individual updates, trade-off rules for
restricted social updates (which assume that A2’s priors are revealed for all events in
the algebra), and, finally, trade-off and adjustment rules for unrestricted social updates
(which generalize over restricted social updates by allowing for cases when agent A2
reveals her priors about some but not all events in the algebra).

Surprisingly enough, a single invariance axiom does the job for the three kinds of
situations we wish to consider. In Sect. 2, we introduce invariance under embedding
and show that it axiomatizes Jeffrey conditioning (J), as an individual updating rule
for an agent setting her prior for an event to some new value. This result is a discrete
version of a previous characterization of Jeffrey conditioning by Teller (1973) and van
Fraassen (1990) which allows itself with the resources of real analysis. Section 3 sets
the stage for social updates, in their restricted and unrestricted forms. We then show
in Sect. 4 that weighted averaging (WA), as a restricted social updating rule for an
agent who wishes to mitigate her priors with another agent’s fully disclosed priors, is
also axiomatized by invariance under embedding (this is merely a variation on known
results). Fruits are ripe to show at the end of Sect. 4 that invariance under embedding
axiomatizes weighted averaging extended with Jeffrey conditioning (EWA), as an
unrestricted social updating rule for an agent who updates with respect to the partially
revealed priors of an another agent. Finally, in Sect. 5, we lay the basis for further work
on invariance and updating rules. Building on earlier results by Gilardoni (2002), we
suggest how the same strategy may be applied to trade-offs based on geometric rather
than linear averaging, leaving open the question what the corresponding adjustment
rule would be.

2 Jeffrey conditioning and invariance

Wefirst consider individual update functions, as ways to update one’s priors, given that
one wishes to set one’s subjective probability for a given event to a particular value.3

Without loss of generality, we first consider updates with respect to only one event at
a time. For simplicity, we shall consider a fixed, infinite set � of possible worlds. The
agents’ priors and posteriors shall be represented as probabilities p defined on a finite

3 We leave aside the motivations for such a wish and the question whether perceptual evidence provides
us with that kind of information.

123



24 D. Bonnay, M. Cozic

subalgebra S of 2�.4 The “belief state” of an agent is thus a pair S = 〈S, p〉,5 and we
note S the set of possible belief states.

An update instruction U = 〈A, r〉 for the belief state S consists in an event A ∈ S
(A �= �,∅), and a new probability r ∈ [0, 1] to be attached to that event. We note U
the set of update instructions for some belief state.

Definition 1 An individual updating rule is a continuous6 function F : D → Swhere

1. D = {(S = 〈S, p〉,U = 〈A, r〉) : S is a belief state, U is an instruction for S and
0 < p(A) < 1}.7

2. F(U,S) = 〈S, p′〉 for some probability distribution p′ such that p′(A) = r.8

For a given instructionU , FU (.) will refer to F(U, .). FU maps an old belief states
〈S, p〉 to a new one 〈S, p′〉. Since the algebra S is implicitly encoded in p and p′
(by being their domain), FU can equivalently be regarded as a function mapping a
probability measure p (on some finite algebra S) to a new one. We shall indeed often
regard FU as a mapping between probability measures p (on finite algebras) rather
than belief states 〈S, p〉. So, for any belief stateS = 〈S, p〉with r ∈ [0, 1], FU (〈S, p〉)
stands for the new belief state and FU (p) stands for the new probability measure on
S, i.e. FU (〈S, p〉) = (S, FU (p)).
In this framework, Jeffrey conditioning (Jeffrey 1983) is the individual updating rule
defined by

JU (p)(B) = p(B|A) × r + p(B|¬A) × (1 − r)

with S = 〈S, p〉, U = 〈A, r〉, A, B ∈ S and r ∈ [0, 1].
The result of this section will relate Jeffrey conditioning to a property of invariance

under embedding of belief states. An embedding of a “smaller‘” belief state into a
“bigger” one is to be thought of as an isomorphism between the smaller state and a
substate of the bigger one.

Definition 2 (Embedding) An embedding of S = 〈S, p〉 into S ′ = 〈S′, p′〉 is an
injective map f : S → S′ such that for all B,C ∈ S

• f (B ∪ C) = f (B) ∪ f (C) and f (B) = f (B) (preservation of set-theoretic
operators), and

• p(B) = p′( f (B)) (preservation of probability)

4 The results could be extended to infinite σ -algebras, but we find it interesting that they already hold
working just with finite ones.
5 In the following, varying S will prove to be crucial. This is the reason why we make it explicit, instead
of merely working with probability distributions on a fixed algebra, as is commonly done in the literature
on opinion pooling.
6 Continuity applies only to one of the arguments of an updating rule, namely the probability function. It
means that, given a sequence of belief states of the form 〈S, pi 〉 and a belief state 〈S, p〉 such that 〈S, p〉 =
lim
i→∞〈S, pi 〉, FU commutes with limits, that is FU (〈S, p〉) = lim

i→∞FU (〈S, pi 〉). 〈S, p〉 = lim
i→∞〈S, pi 〉 is

short for p(A) = lim
i→∞pi (A), for all A ∈ S.

7 We require that 0 < p(A) < 1 to guarantee that Jeffrey conditioning is well-defined on the whole domain.
8 This condition is reminiscent of the so-called Success Postulate in AGM-type belief revision.
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Weighted averaging, Jeffrey conditioning... 25

When f is an embedding and U = 〈A, r〉 an update instruction, we note f (U )

for 〈 f (A), r〉, the update instruction corresponding to U in the bigger belief state.
Invariance under embedding says that the result of an update should be the same for a
given belief state and for an isomorphic copy of that belief state within a bigger belief
state:

Definition 3 (Invariance under embedding) An individual updating rule F is invariant
under embedding (IE) if, whenever f is an embedding from S into S ′ and U is an
updating instruction on S, f is also an embedding from FU (S) into Ff (U )(S ′).

In other words, if an updating rule F is invariant under embedding, then the fol-
lowing diagram commutes:

S f

FU

S ′

Ff (U )

FU (S)
f

F f (U )(S ′)

Why should we want F to be so invariant? Intuitively, invariance asks for similar
results across similar situations. Slightlymore precisely, invariance of updatings under
a given class of transformations requires that no superfluous information be used in
order to determine what the result of the updating is. Information is deemed super-
fluous if it distinguishes between two scenarios represented by two similar structures,
two structures being similar if one can be transformed into the other by a transfor-
mation in the class. Now embeddings relate a belief state and an isomorphic copy of
that belief state (possibly within a bigger state). Hence invariance under embedding
requires that updatings do not take into account information regarding the nature of
the events under scrutiny: the updating rule should be formal. Embeddings also relate
a belief state ‘on its own’ and that belief state as part of a broader algebra (possibly
modulo an isomorphism). Hence invariance under embedding requires that updatings
do not take into account the context surrounding some given events: the rule should be
local. Thus, invariance under embedding captures a twofold requirement of formality
and locality: the updating rule should be insensitive to content and context.9 Is such
frugality desirable per se? The question goes beyond the scope of the present paper.
However, let us remark that frugality is desirable if the updating is to make mini-
mal assumption regarding what the agent knows. When the agent just knows that she
should set her degree of belief for some event to a given value, and does not know how

9 Invariance under embedding could be unpacked into two distinct requirements of invariance under iso-
morphism and of invariance under substates (we are thankful to the editor in charge for this remark). This
will also show up in Sect. 4, in connection with standard axioms for the aggregation of probability distribu-
tions, which similarly distinguish the formality and the locality constraints. In the present paper, we wish to
push the intuition, familiar in model theory, of invariance under embedding as a sui generis idea: updatings
should be insensitive to moving around the belief state in which they operate.
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26 D. Bonnay, M. Cozic

the nature of particular events or the context in which the updating takes place should
impact that updating, then she should go for a frugal rule, as captured by invariance
under embedding.10

From now on, we shall take for granted that invariance under embedding is at least
an interesting requirement, possibly vindicated under minimality assumptions on the
information available to the updating agent. Our first result is that invariance under
embedding exactly characterizes Jeffrey conditioning.

Theorem 1 Jeffrey conditioning is the only individual updating rule satisfying (IE).

Proof (⇒). First, let us prove that Jeffrey conditioning satisfies (IE). Let S = 〈S, p〉
and S ′ = 〈S′, p′〉 be two belief states,U = 〈A, r〉 an updating instructions for S, and
f : S → S′ an embedding of S into S ′.
Wewant to show that f is an embedding of 〈S, JU (p)〉 into 〈S′, J f (U )(p′)〉. LetC ∈ S.
We need to show that JU (p)(C) = J f (U )(p′)( f (C)). If C = A, this is obviously the
case since J f (U )(p′)( f (A)) = r = JU (p)(A) by definition of an updating rule. When
C �= A , we have, by definition of J :

J f (U )(p
′)( f (C)) = p′( f (C)| f (A)) × r + p′( f (C)|¬ f (A)) × (1 − r)

JU (p)(C) = p(C |A) × r + p(C |¬A) × (1 − r)

One needs to show that

p′( f (C)| f (A)) = p(C |A)

p′( f (C)|¬ f (A)) = p(C |¬A)

By Bayes rule, the first equality amounts to

p′( f (A) ∩ f (C))

p′( f (A))
= p(A ∩ C)

p(A)

Hence it is sufficient to remark that f is an embedding, since this implies that
p′( f (A)) = p(A) and that p′( f (A) ∩ f (C)) = p′( f (A ∩ C)) = p(A ∩ C). The
second equality holds for similar reasons.
(⇐). We have to show that if an individual updating rule F satisfies (IE), then F is
Jeffrey conditioning. So let F be an individual updating rule satisfying (IE),S = 〈S, p〉
a belief state andU = 〈A, r〉 an updating instruction forS. Inwhat follows, we assume
that p has values in [0, 1]∩Q, the general result follows by continuity of F . For B ∈ S
with B �= A, we need to show that

FU (p)(B) = p(B|A) × r + p(B|¬A) × (1 − r)

10 van Fraassen (1990) appeals to invariance under embedding in the wider context of a vindication of
basic laws by symmetry principles. He does not provide a detailed vindication in that particular case, but
he points out that, when a rule is invariant under embedding, “we are allowed to switch our attention to a
more tractable ’equivalent’ probability space” (p. 334).
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Weighted averaging, Jeffrey conditioning... 27

For simplicity, let B be an atom (that is, a minimal element of the algebra dis-
tinct from the empty set) and B ⊂ A. This implies that we will have to show that
FU (p)(B) = p(B|A) × r since p(B|¬A) = 0. The proof for B ⊂ ¬A is similar, and
the property for other sets in S follows from the property for atoms.
Since p has values in the rational numbers, we can write p(B)

p(A)
as m

n for some integers
m and n with m ≤ n. Now let us consider two new belief states S ′ = 〈S′, p′〉 and
S ′′ = 〈S′′, p′′〉. Let (X,Y, Z) be a ternary partition of �. S′ is defined as the algebra
whose atoms are X, Y and Z . In addition,

• p′(X) = p(B),
• p′(Y ) = p(A\B), and
• p′(Z) = p(¬A).

S′′ is just like S′ except that X is split into m new atoms X1, . . . , Xm and Y is split
into n − m new atoms Y1, . . . ,Yn−m . p′′ is defined by

• p′′(Xi ) = p′′(Y j ) = p(A)
n .

Note that p′′(X1 ∪ · · · ∪ Xm) = p′(X) = p(B) and p′′(Y1 ∪ · · · ∪ Yn−m) = p′(Y ) =
p(A\B).

There is an obvious embedding from S ′ to S such that the image of X is B, the
image of Y is A\B and the updating instruction U ′ = 〈X ∪ Y, r〉 on S ′ is turned
into U on S. Similarly, there is an obvious embedding from S ′ to S ′′ such that the
image of X is X1 ∪ · · · ∪ Xm , the image of Y is Y1 ∪ · · · ∪ Yn−m andU ′ is turned into
U ′′ = 〈X1 ∪ · · · ∪ Xm ∪ Y1 ∪ · · · ∪ Yn−m, r〉 on S ′′. Since F satisfies (IE), F treats all
three updatings similarly:

FU (S)(B) = FU ′(S ′)(X) = FU ′′(S ′′)(X1 ∪ · · · ∪ Xm})

Hence, it is sufficient to show that FU ′′(S ′′)(X1 ∪ · · · ∪ Xm) = p(B|A)× r . Consider
any M, N ∈ {X1, . . . , Xm,Y1, . . . ,Yn−m} and fM,N : S′′ → S′′ be the function
which substitutes M for N (and vice-versa) in each set of S′′. fM,N is an embedding
of S ′′ into itself. Moreover, X1 ∪ · · · ∪ Xm ∪ Y1 ∪ · · · ∪ Yn−m is its own image. Since
F satisfies (IE), it follows that

FU ′′(S ′′)(M) = FU ′′(S ′′)(N )

That is, atoms, which were equiprobable before the updating, still are after the updat-
ing. This gives what we wanted: since all the atoms X1, . . . , Xm,Y1, . . . ,Yn−m are
equiprobable and FU ′′(S ′′)(X1 ∪ · · · ∪ Xm ∪ Y1 ∪ · · · ∪ Yn−m) = r ,

FU ′′(S ′′)(X1 ∪ · · · ∪ Xm) = m × FU ′′(S ′′)(X1 ∪ · · · ∪ Xm ∪ Y1 ∪ · · · ∪ Yn−m)

n

= m × r

n
= p(B|A) × r

Thus, FU (S)(B) = p(B|A) × r .
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28 D. Bonnay, M. Cozic

Theorem 1 also generalizes to the case where the updating instruction is partitional,
i.e. to the case where the agent’s degrees of belief adjust to a change towards the
elements of a partition A = (Ai )i≤n . In this case, an updating instruction has the
form U = 〈A, (ri )i≤n〉 with ri ≥ 0 and

∑
i ri = 1 and the prior for each Ai in

(0, 1). The exact same proof would show that within each Ai , for an atom B ⊂ Ai ,
FU (S)(B) = p(B|Ai ) × ri .

Let us compare our result to other characterizations of Jeffrey conditioning. A
simple way to get Jeffrey conditioning is to require that the updating rule be rigid, that
is probabilities conditional on the events involved in the updating instruction do not
change.11 Relative to an updating instruction U = 〈A, (ri )i≤n〉 and for all Ai ∈ A,
rigidity may be spelled out as:

p(.|Ai ) = FU (p)(.|Ai ) (R)

Equivalently, Jeffrey conditioning may be characterized by the preservation of the
ratios of probabilities of atoms belonging to the same cell of the relevant partition. In
other words, let Bi , Bj be atoms belonging to the cell Ak ∈ A,

p(Bi )/p(Bj ) = FU (p)(Bi )/FU (p)(Bj ) (R′)

Technically, (R′) is the condition closest to invariance under isomorphism, which
straightforwardly implieswithin-cell preservation of equality of equiprobable atoms—
the “embedding” condition further giving the full force of (R′). Note that that both
(R) and (R′) may be viewed as ways of capturing the idea that the belief change
achieved by Jeffrey conditioning should be minimal, since they characterize Jeffrey
conditioning as an updating rule keeping at least some things unchanged.

Teller (1973) showed that within-cell preservation of equality for atoms character-
izes Jeffrey conditioning, under the assumption that the probability measure is ‘full’.
Fullness is defined for a probability measure p by requiring that for each event A
in the algebra, for each real number r lower than p(A), there is an event B ⊂ A
such that p(B) = r . In a continuous rather than discrete setting, van Fraassen (1990)
defines the same notion of invariance under embedding we have been using in this
section and relies on Teller’s result to show that it characterizes Jeffrey conditioning.
Van Fraassen’s proof consists in showing that invariance under embedding (or, in that
case, just invariance under isomorphism) implies within-cell preservation of equality
of atoms, and that any probability space can be embedded into a full space (this is the
part where embeddings, and not just isomorphisms, are needed). We provide a simpler
proof which works for the discrete case, where the embedding into an algebra with
equiprobable atoms makes it unnecessary to appeal to the theorem of calculus about
additive functions used by Teller and van Fraassen.12

11 Dietrich et al. (2016) have recently proposed a characterization of Jeffrey conditioning in terms of a
property called “conservativeness”, that generalizes rigidity. In a nutshell, conservativeness says that the
updating process should leave unchanged the probabilities on which the update instruction is “silent”, in
that case conditional probabilities.
12 We are grateful to an anonymous referee for pointing us to Teller and van Fraassen’s work, which we
were unaware of when we first up with Theorem 1.
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There are also several approaches to Jeffrey conditioning in terms of distance
minimization. The idea is to think of Jeffrey conditioning as the rule whose out-
put minimizes the distance (formally defined) to the prior distribution (May 1976;
Williams 1980; Van Fraassen 1980). These attempts are surveyed by Diaconis and
Zabell (1982) (Sect. 5). For instance, Williams (1980) proves that Jeffrey condition-
ing minimizes the Kullback–Leibler measure of the information in p relative to p0

defined as I (p, p0) = ∑
ω∈� p(ω) × ln(p(ω)/p0(ω)). Again, albeit with a different

approach to minimality, this amounts to requiring that the change in belief is minimal.
The approach in terms of invariance provides a seemingly distinct way of deriving

Jeffrey conditioning. As explained above, invariance under embedding simultaneously
enforces the ideas of formality and locality. The updating mechanism should be insen-
sitive to content and context. This embodies a view of minimal change which differs
from the ones just discussed. Those concern the result of the updating, which would
be as close as possible to the agent’s priors (by retaining some of their properties, or
by being the closest with respect to some notion of distance). By contrast, invariance
under embedding puts minimality at play in a different manner: it is the process of
belief change itself which is to beminimal, in the sense of being informationally frugal
(blindness to content and context). Viewed in this light, our result shows a conver-
gence between two approaches of minimality: requiring that the output of the process
is minimally different from the output, or that the mechanism producing that output
is informationally frugal, amounts to the same thing.

We have been working in a standard Bayesian setting, where priors are given and
the problem is to update those priors. Invariance under embedding has been used by
Halpern and Koller (2004) in a different setting, where a “knowledge base” constrains
probability distributions, and inferences are drawn by selecting certain probability
measures compatiblewith the knowledge base (e.g. thosemaximizing entropy). Invari-
ance under embedding is then meant to ensure that those inferences are not sensitive to
the format of representation. This suggests a general project of setting down invariance
conditions both for the type of inferences considered byHalpern andKoller (2004) and
for updating mechanisms. However, in the former case, invariance may prove to be too
strong a constraint, since it deals only with the algebra of events and the knowledge
base, before any assignment of probabilities. Accordingly, the results in Halpern and
Koller (2004) for invariance under embedding as a constraint on the choice of (family
of) probability measures are mostly negative, showing that such choices are hard to
come by.

3 Weighted averaging and its completion with Jeffrey conditioning

We shall now consider social updating rules, in order to model scenarios where one
agent updates her priors when she comes to know another agent’s priors. In general,
the other agent may not reveal her whole prior distribution, in which case the first
agent only learns about a substate of the belief state representing her own priors. As a
limit case, she may learn the other’s degree of belief only toward some specific event
(and, by implication, its complement).
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30 D. Bonnay, M. Cozic

Definition 4 (Social updating rules) A social updating rule is a partial function F :
D′ → S such that

1. D′ = {(〈S, p〉, 〈S′, p′〉) : (i) S′ ⊆ S and (ii) for any atom Ai of S′, p(Ai ) > 0.
2. if F(. , .) is defined for (S,S ′), the result is a belief state F(S,S ′) = 〈S, p∗〉 for

some probability p∗.

Since F induces a map taking a pair of probability measures as argument, F(p, p′)
will stand for the new probability measure p∗, i.e. F(S,S ′) = 〈S, F(p, p′)〉.

As discussed in Sect. 1, a social updating rule F is a restricted rule if F(S,S ′) is
defined only when S = S′, that is when the other agent’s priors are totally disclosed.
It is unrestricted, accepting partial inputs as well, if it is also defined when S′ ⊂ S.
Weighted averaging (also called Linear Pooling) is usually defined only as a restricted
rule. It is parametrized by a weight λ representing how much impact is granted to the
other agent’s opinions, the weight for the agent’s own opinions being 1 − λ.

Definition 5 The rule of weighted averaging FW
λ : D′ → S is the restricted social

rule defined as follows for some λ ∈ [0, 1] and all A ∈ S

FW
λ (p, p′)(A) = (1 − λ) · p(A) + λ · p′(A)

How can the rule of weighted averaging be extended into an unrestricted rule, dealing
with partial updatings as well? The issue has been raised recently by Jehle and Fitelson
(2009) and Steele (2012). A natural suggestion is to appeal to Jeffrey conditioning, as
follows:

Definition 6 The extended rule of weighted averaging EFW
λ : D′ → S is an unre-

stricted social rule defined, for A ∈ S, by

EFW
λ (p, p′)(A) =

∑

i

p(A|Ai ) × FW
λ (p, p′)(Ai )

where A1, . . . , An are the atoms of S′ which partition the domain of S.

Note that when A ∈ S∩ S′, EFW
λ reduces to FW

λ . Steele (2012) considers using EFW
λ

but eventually rejects it on account of issues of non-commutativity, and abandons
FW

λ altogether. We shall not aim at a thorough defense of the non-commutativity of
Jeffrey conditioning and weighted averaging, but a few words are in order, since our
axiomatization also relies on commutativity, albeit of a different kind.

Let us discuss briefly the case for weighted averaging by considering a toy sce-
nario. I have a prior belief in some event A of 0.5. Two witnesses, Joe and John, have
different priors for A of, respectively, 0.5 and 0.8. Assume that the doxastic weight I
grant to Joe is 0.9 and the doxastic weight I grant to John is 0.5. If I first meet John
and then Joe, applying weighted averaging, I end up with a posterior of 0.515 for A.
If I first meet Joe and then John, my belief for A will eventually be 0.65. Critics of
weighted averaging find this order-dependence unwelcome and contend that the end
result should be the same, no matter whether I first meet Joe or John. This relies on
the faulty assumption that doxastic weights should themselves be insensitive to the
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order of encounters. But this is not so. I might be very unconfident about my degree
of belief in A to start with, so that I am willing to much defer to John, and average our
priors for A by weighting his prior with 0.8 and mine with 0.2. But if I have first met
Joe, and taken into account his own prior for A by considering him rather reliable,
then my grounds for my belief in A have improved, and it does not seem right to
still grant John’s a doxastic weight of 0.8: intuitively, the figure should be lower. This
leaves open the questions how doxastic weights are to be computed, and whether a
different kind of order independence should hold when weights are properly adjusted
to the order of encounters. Answering those questions goes well beyond the goal of
the present paper, but what has been said suggests that failure of commutativity per se
is by no means a knock-down argument against weighted averaging. Interestingly, the
non-commutativity of Jeffrey conditioning may be defended along the same lines. As
Bradley (2005) puts it, “the same experiences have different effects on my probabil-
ities depending on the order in which they occur”. There is no reason to require that
conditioning by giving probability 0.9 to A, and then, say, probability 0.3 should yield
the same result as giving first giving probability 0.3 to A and then 0.9. This is because,
even if this corresponds to the same experiences in a different order, the revision trig-
gered by one and the same experience should not be the same depending on whether
this experience occurs first or second. Again, this leaves open whether some order
independence should hold for Jeffrey conditioning when order dependent differences
in impact are taken into account. But it suffices to show that failure of commutativity
per se is not a knock-down objection against Jeffrey conditioning either. In both cases,
the objection wrongly takes for granted that the impact of evidence should itself be
insensitive to order.

The commutativity property that we have used to axiomatize Jeffrey conditioning
in the previous section and that we will use to axiomatize weighted averaging in the
next section is of a very different kind. It does not concern the order of experiences,
but merely the way experience is represented. What the results to come in the next
sectionwill suggest is that, if one is willing to countenanceweighted averaging, Jeffrey
conditioning appears as a very natural completion, but also, in the other direction,
that the same ideas which speak in favor of Jeffrey conditioning also speak in favor
of weighted averaging. As a consequence, if one likes Jeffrey conditioning as an
individual updating rule, one should also like weighted averaging (at least in similar
doxastic conditions), and the other way around.

Another point worth mentioning concerns the interpretation of extended weighted
averaging.13 The interpretation we have favored is in terms of a two-stage process,
launched by a social updating stage based on some testimonial probability, say p′(A).
However, p′(A) could also be viewed as the probability suggested by “Nature”. From
this point of view, the “new” probability (1 − λ) × p(A) + λ × p′(A)) which serves
as input for Jeffrey conditioning (the second stage of the process) is a sort of trade-
off between the agent’s priors p(A) and Nature’s probabilities p′(A). Under this
interpretation, extended weighted averaging is not a way of completing weighted

13 We thank the editor of this issue for having drawn our attention to this interpretive point.
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averaging, but rather a way of completing Jeffrey conditioning: Jeffrey conditioning
(alone) takes as exogeneous the new probabilities to which it is applied.

4 Axiomatizing weighted averaging and extended weighted averaging

There arewell-knownaxiomatic characterizations ofweighted averaging as a restricted
social updating rule (see McConway 1981; Wagner 1982). In this section, we will
review the properties which are involved in these standard axiomatizations and intro-
duce a new one, which is nothing but invariance under embedding suitably extended
to the framework of social updating rules. We will show that this invariance property
also characterizes weighted averaging.

Let us begin with two properties which capture the idea that the updating rule
operates ‘locally’. The most straightforward expression of this idea is the property of
eventwise independence (EI).

Definition 7 (Eventwise independence) A social updating rule F satisfies eventwise
independence (EI) iff for any belief states S1 = 〈S, p1〉, S ′

1 = 〈S, p′
1〉, S2 = 〈S, p2〉

and S ′
2 = 〈S, p′

2〉, for any A ∈ S,

if p1(A) = p2(A) and p′
1(A) = p′

2(A) then F(p1, p
′
1)(A) = F(p2, p

′
2)(A)

Eventwise independence corresponds to the ‘Weak Setwise Function Property’
(McConway 1981) and to the ‘Irrelevance of Alternatives’ axiom (Wagner 1982). It
turns out that (EI) is equivalent to the property called ‘Marginalization’ byMcConway
(1981).

Definition 8 Given a belief state S = 〈S, p〉 and an algebra T with S ⊆ T or S ⊇ T ,
the marginal probability distribution pT on T ∩ S is simply defined as pT (A) = p(A)

for A ∈ T ∩ S. Similarly, ST denotes the belief state 〈T ∩ S, pT 〉.
Definition 9 (Marginalization property) A social updating rule F has the marginal-
ization property (MP) iff, for belief states S, S ′ with S′ a sub-algebra of S, for any
algebra T on � with S′ ⊆ T ⊆ S or T ⊆ S′ ⊆ S,

F(p, p′)T (A) = F(pT , p′T )(A), for all A ∈ T

Another important idea is the one according to which the updating rule operates
formally, independently of the content of the events at hand. One way to express this
idea is as follows:

Definition 10 (Invariance under isomorphism) A social updating rule F is invariant
under isomorphism (II), iff, for any belief statesS = 〈S, p〉,S ′ = 〈S′, p′〉, T = 〈T, q〉
and T ′ = 〈T ′, q ′〉, with S′ ⊆ S and T ′ ⊆ T , any function f

• which is an isomorphism (i.e., a bijective embedding) from S to T , and
• whose restriction to S′ is an isomorphism from S ′ to T ′

is also an isomorphism from 〈S, F(p, p′)〉 to 〈T, F(q, q ′)〉.
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Wagner (1982) considers a weaker version of II, which amounts to invariance under
automorphism and which he calls ‘Label Neutrality”. A different, but maybe more
obviously desirable property, is preservation of unanimity, at least when both agents
give probability zero.

Definition 11 (Zero unanimity) A social updating rule F has the zero unanimity prop-
erty (ZU) iff, for any belief states S = 〈S, p〉 and S ′ = 〈S′, p′〉 with S′ ⊆ S, for any
A ∈ S ∩ S′,

if p(A) = p′(A) = 0 then F(p, p′)(A) = 0

The conjunction of (EI) and either (II) or (ZU) is equivalent to the following prop-
erty:

Definition 12 (Neutrality) A social updating rule F satisfies Neutrality (N) iff for any
belief states S1 = 〈S, p1〉, S2 = 〈S, p2〉 and any belief states S ′

1 = 〈S′, p′
1〉 and

S ′
2 = 〈S′, p′

2〉, both based on S′ ⊆ S, for any A1, A2 ∈ S′,

if p1(A1) = p2(A2) and p′
1(A1) = p′

2(A2) then

F(p1, p
′
1)(A1) = F(p2, p

′
2)(A2)

Neutrality corresponds to ‘Strong Setwise Function Property’ in McConway (1981)
and to ‘Strong Label Neutrality’ in Wagner (1982). To these known conditions, we
add a new one, which is nothing but the social version of the invariance condition
considered in Sect. 2.

Definition 13 (Invariance under embedding) A social updating rule F is invariant
under embeddings (IE), iff for any belief states S = 〈S, p〉, S ′ = 〈S′, p′〉 T = 〈T, q〉
and T ′ = 〈T ′, q ′〉, with S′ ⊆ S and T ′ ⊆ T , any function f which is an embedding
from S to T and whose restriction to S′ is an embedding from S ′ to T ′ is also an
embedding from F(S,S ′) to (T , T ′).

In other words, if an updating rule F is invariant under embedding, then we obtain
the following commuting diagram:

S,S ′ f

F

T , T ′

F

F(S,S ′) f
F(T , T ′)

Theorem 2 If F is a restricted social rule, the following are equivalent for belief
states with at least three atoms:

(i) F = FW
λ for some λ

(ii) F satisfies (N)
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(iii) F satisfies (MP) and (ZU)
(iv) F satisfies (EI) and (ZU)
(v) F satisfies (EI) and (II)
(vi) F satisfies (MP) and (II)
(vii) F satisfies (IE)14

Proof The equivalences between (i), (ii) and (iii) are proven by McConway (1981)
(Theorems 3.2 and 3.3). The equivalences between (i), (ii), (iv) and (v) are proven
by Wagner (1982). (Theorems 1, 2 and 415) The equivalence between (vi) and (i)–(v)
follows from the previous equivalences and the fact proven byMcConway (1981) that
(MP) is equivalent to (EI). All we need to show is that (IE) implies one of the previous
properties and is implied by another.
(vii) implies (vi) This follows from the following two facts: First, (IE) implies
(II), since every isomorphism is an embedding. Second, (IE) implies (MP). Let S,
S ′ with S′ a sub-algebra of S, and an algebra T on � with S′ ⊆ T ⊆ S or
T ⊆ S′ ⊆ S. There is an obvious embedding f from ST = 〈T ∩ S, pT 〉 to
S = 〈S, p〉 and from S ′T = 〈T ∩ S′, p′T 〉 to S ′ = 〈S′, p′〉. (IE) implies that
F(p, p′)( f (A)) = F(pT , p′T )(A), for all A ∈ T ∩ S and thus that F(p, p′)T (A) =
F(pT , p′T )(A), for all A ∈ T .
(i) implies (vii) Let the belief states S = 〈S, p〉, S ′ = 〈S′, p′〉 T = 〈T, q〉 and
T ′ = 〈T ′, q ′〉, and a function f which is an embedding from S to T and (whose
restriction to S′ ⊆ S is) an embedding from S ′ to T ′. We have to show that f is also
an embedding from 〈S, FW

λ (p, p′)〉 to 〈T, FW
λ (q, q ′)〉. More specifically, we have

to show that probabilities are preserved by the updating rule. Let A ∈ S. Clearly,
FW

λ (p, p′)(A) = (1 − λ) · p(A) + λ · p′(A) = (1 − λ) · q( f (A) + λ · q ′( f (A)) =
FW

λ (q, q ′)( f (A)). ��
Incidentally, the proof that (vii) implies (vi) shows how invariance under embedding
breaks down into a formality component, captured by invariance under isomorphism,
and a locality component, captured by the marginalization property.

Theorem 2 says in particular that weighted averaging is the only restricted social
updating rule which satisfies invariance under embedding. Putting this together with
Theorem 1, we get a straightforward characterization of extended weighted averaging.

Theorem 3 Let F be an unrestricted social rule. The following are equivalent:

(i) F is EFW
λ for some λ

(ii) F satisfies (IE)

Proof The proof is a simple combination of the proofs for Theorems 1 and 2. ��

14 We have formulated (IE) in a fully general form which applies to unrestricted rules. This is not needed
for the present Theorem, which deals with restricted rules (dealing with total inputs, that is cases where
S = S′ and T = T ′).
15 Actually, (ZU) is not implied by (N) in Wagner’s framework. The implication holds, however, in
McConway’s and ours. This is because the empty set is among the considered events. Thus, as soon as
there is 0-unanimity towards some arbitrary event A, the updated degree of belief must be zero in virtue of
(N).
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Thus, the very same requirements of locality and formality which are captured by
invariance under embedding characterize Jeffrey conditioning alone (as an individual
updating rule), weighted averaging alone (as a restricted social updating rule) and their
combination (as an unrestricted social updating rule). However, it should be said that
invariance under embedding does not play exactly the same role in both cases. In the
case of Jeffrey conditioning, invariance under isomorphism is almost sufficient: if the
algebra already has some nice properties, such as fullness, as used by Teller (1973),
or equiprobability of atoms, as used in Sect. 2, embeddings are superfluous. In the
case of weighted averaging, the appeal to embeddings is more crucial, and cannot be
short-circuited by similar assumptions. Embeddings are needed to guarantee that the
posterior of the agent for a given even is determined by her prior for that event and
the other agent’s prior. Also, the global properties are not quite the same. Whereas
Jeffrey conditioning is rigid, weighted averaging, as is well known, does not preserve
independence.

5 Geometric averaging and invariance

If invariance is to be recognized as a natural constraint on updating rules, the fact
that it forces the use of arithmetic means and bans other kind of means is rather
worrisome. Geometric averaging, for example, is a rather much praised alternative
to (linear) weighted averaging, and one may wonder why it ends up being ruled
out by the invariance requirement. After all, is invariance under embedding captures
(informational) frugality, why should geometric averaging turn out to be less frudal
than arithmetic averaging? The answer is that a lot depends on the framework: when
prior beliefs are represented by means of a probability distribution fixing the absolute
value of the probability of each event, invariance does end up forcing arithmeticmeans.
But should one choose another way to represent probabilistic beliefs, different things
happen. Building on earlier work by Gilardoni (2002), we show that some invariance-
type condition can also shed some light on geometric averaging.

In order to ensure the well-definedness of geometric averaging, we will restrict the
domain of our updating rules to D′′ = {(〈S, p〉, 〈S′, p′〉) : (i) S′ ⊆ S, and (ii) p is
regular}.16

Definition 14 The rule of geometric averaging FG
λ : D′′ → S is a social rule for total

inputs (only) defined for atoms W ∈ At (S) by

FG
λ (p, p′)(W ) = p′(W )λ × p(W )1−λ

∑

W ′∈At (S)

p′(W ′)λ × p(W ′)1−λ

It is well known that geometric averaging does not satisfy eventwise independence
(EI) because of the normalization factor c = 1 /

∑

W ′∈At (S)

p′(W ′)λ × p(W ′)1−λ. This

implies (and it can be easily shown by a numerical example) that it does not satisfy

16 p is said to be regular if it assigns non-zero probabilities to all non-empty events.
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invariance under embedding (IE) either. Interestingly, however, Gilardoni (2002) for-
mulates and studies a condition of independence for ratios of atomic probabilities,
which leads to geometric averaging and is defined as follows: Let an algebra S and
At (S) its set of atoms. The conditional oddsOS : At (S)×At (S) → (0,∞) associated
with a belief state S = 〈S, p〉 are defined for all W,W ′ ∈ At (S) as

OS(W,W ′) = p(W )

p(W ′)

We may describe a belief state by taking conditional odds as primitive. Instead of
requiring independence of (absolute) probabilities, one may require independence of
conditional odds. This means that the conditional odds of the updated probability
OF(S,S ′)(W,W ′) depend only on the conditional odds OS(W,W ′) and OS ′(W,W ′).

Definition 15 (Ratio atomwise independence) A social updating rule F satisfies ratio
atomwise independence (RAI) iff for any belief states S1 = 〈S, p1〉, S ′

1 = 〈S, p′
1〉,

S2 = 〈S, p2〉 and S ′
2 = 〈S, p′

2〉, for any W,W ′ ∈ At (S),

if OS1(W,W ′) = OS2(W,W ′) and OS ′
1
(W,W ′) = OS ′

2
(W,W ′), then

OF(S1,S ′
1)

(W,W ′) = OF(S2,S ′
2)

(W,W ′)

Geometric averaging satisfies ratio atomwise independence. Gilardoni (2002) proves
that ratio atomwise independence and invariance under automorphism (also known as
“Weak Label Neutrality”), together with a condition of monotonicity and a condition
of preservation of unanimity, implies geometric averaging (Proposition 3.4). It turns
out that we may define a suitable notion of invariance (that we shall call “Invariance
under Ratio-Embedding”) which plays with respect to ratio atomwise independence,
invariance under automorphism and geometric averaging the same role as the one
played by IE with respect to eventwise independence, invariance under automorphism
andweighted averaging (see Theorem2). Specifically, we shall show that (i) invariance
under ratio-embedding implies ratio atomwise independence and invariance under
automorphism (and, more generally, under isomorphism), and thus that (ii) invariance
under ratio-embedding (modulo the conditions of monotonicity and preservation of
unanimity) implies geometric averaging.

Definition 16 (Ratio-embedding) Let S = 〈S, p〉 and S ′ = 〈S′, p′〉 be two belief
states. f : S → S′ is a ratio-embedding if it is an injective map between S and S′ such
that

• f (B ∪ C) = f (B) ∪ f (C) and f (B) = f (B) (preservation of set-theoretic
operators), and

• for all W,W ′ ∈ At (S) ∩ f −1(At (S′)), OS(W,W ′) = OS ′( f (W ), f (W ′))
(preservation of ratio of probabilities of atoms)

Note that this definition of ratio-embedding requires the preservation of ratios of atoms
only when the images of atoms of S are themselves atoms of S ′.
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Definition 17 (Invariance under ratio-embedding) A social updating rule F satisfies
invariance under ratio-embedding (IRE), iff, for any belief states S1 = 〈S1, p1〉,S ′

1 =
〈S′

1, p
′
1〉, S2 = 〈S2, p2〉, S ′

2 = 〈S′
2, p

′
2〉 with S′

1 ⊆ S1 and S′
2 ⊆ S2, any function

f which is a ratio-embedding from S1 to S2 and whose restriction to S′ is a ratio-
embedding from S ′

1 to S ′
2, is also a ratio-embedding from F(S1,S ′

1) to F(S2,S ′
2).

Theorem 4 Geometric averaging satisfies invariance under ratio-embedding.

Proof Let the belief states S1 = 〈S1, p1〉, S ′
1 = 〈S′

1, p
′
1〉, S2 = 〈S2, p2〉, S ′

2 =
〈S′

2, p
′
2〉. Assume that the function f is a ratio-embedding from S1 to S2 and that its

restriction to S′
1 is a ratio-embedding from S ′

1 to S ′
2. Let W,W ′ ∈ f −1(At (S2)).

OFG
λ (S1,S ′

1)
(W,W ′) = FG

λ (p1, p′
1)(W )

FG
λ (p1, p′

1)(W
′)

= p′
1(W )λ × p1(W )1−λ

p′
1(W

′)λ × p1(W ′)1−λ

= OS ′
1(W,W ′)λ × OS1(W,W ′)1−λ

Similarly,

OFG
λ (S2,S ′

2)
( f (W ), f (W ′)) = FG

λ (S2,S ′
2)(W )

FG
λ (S2,S ′

2)(W
′)

= p′
2( f (W ))λ × p2( f (W ))1−λ

p′
2( f (W

′))λ × p2( f ((W ′))1−λ

= OS ′
2
( f (W ), f (W ′))λ × OS2( f (W ), f (W ′))1−λ

By assumption, OS2( f (W ), f (W ′)) = OS1(W,W ′) and OS ′
2
( f (W ), f (W ′)) =

OS ′
1(W,W ′). Thus,

OFG
λ (S2,S ′

2)
( f (W ), f (W ′)) = OFG

λ (S1,S ′
1)

(W,W ′)

Hence f is also a ratio-embedding from F(S1,S ′
1) to F(S2,S ′

2). ��
Theorem 5 Let F be a restricted social updating rule which satisfies invariance under
ratio-embedding. Then

1. F satisfies invariance under isomorphism
2. F satisfies ratio atomwise independence

Proof 1. That IRE implies II follows from the fact that when there is a bijective
(and not only an injective) map between S and S′ which preserves set-theoretic
operators, preservation of absolute probabilities and preservation of conditional
odds become equivalent.
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2. IRE implies ratio atomwise independence. Let S1 = 〈S, p1〉, S ′
1 = 〈S, p′

1〉,
S2 = 〈S, p2〉 and S ′

2 = 〈S, p′
2〉 and W,W ′ ∈ At (S) such that

OS1(W,W ′) = OS2(W,W ′) and OS ′
1
(W,W ′) = OS ′

2
(W,W ′)

Let T be the algebra generated by W , W ′ and a new element W ∗. Let T = 〈T, q〉
where
• q(W ) = p1(W )

• q(W ′) = p1(W ′)
• q(W ∗) = 1 − p1(W ) − p1(W ′)

Note that we have based q(.) on p1(.), but we could have chosen any distribution
such that the ratios of the probabilities of W and W ′ is equal to OS1(W,W ′) =
OS2(W,W ′). T ′ is defined similarly on the basis of p′

1(.). There is an obvious
ratio-embedding (but not an embedding) from T to both Si for i = 1, 2 and from
T ′ to S ′

i . Since by assumption invariance under ratio-embedding holds,

OF(T ,T ′)(W,W ′) = OF(Si ,S ′
i )
(W,W ′)

Thus,
OF(S1,S ′

1)
(W,W ′) = OF(S2,S ′

2)
(W,W ′)

��
From this Theorem and Gilardoni (2002)’s above mentioned characterization of geo-
metric averaging, it follows that invariance under ratio-embedding (together with
monotonicity and preservation of unanimity) also implies geometric averaging.

The next question is how should geometric averaging be extended into an unre-
stricted rule dealing with partial inputs? It can be shown that Jeffrey conditioning does
not satisfy the individual version of invariance under ratio-embedding. Which class
of individual updating rules would remain an open question.

6 Conclusion

In this paper, we have studied social updating, a doxastic processwhichmay be decom-
posed into a “trade-off” stage and an “adjustment” stage. Models of doxastic updating
often consider only one of these stages. We have shown that a single invariance axiom,
which simultaneously captures intuitions of locality and formality, is powerful enough
to axiomatize each stage in isolation, and both in combination as well. Specifically, it
implies weighted averaging for the trade-off stage, Jeffrey conditioning for the adjust-
ment stage and a combination of both for the whole process.

The axiomatization of weighted averaging (as a restricted social rule dealing with
total inputs) by invariance under embedding should come as no surprise for those
familiar with the extant results: the axiom bears close resemblance to neutrality and
marginalization. However, the fact that the same axiom suitably applied also yields
Jeffrey conditioning and thus the completion of weighted averaging by Jeffrey condi-
tioning is probably much less expected. The main lesson to be drawn from our results
is, therefore, that this set of rules form a coherent, unified, package of updating rules.
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Finally, invariance conditions are familiar frommodel theory, and they play a special
role in the philosophy of logic, where it has been argued that invariance characterizes
what it is to be a logical operation. The fruitfulness of invariance in dealing with
updating rules raises intriguing questions. From a conceptual perspective, should we
think of updating rules as logical operations? If we should, does their normative import
stem from their logical status? From a technical perspective, Sect. 5 paves the way
for an extension of the strategy: are there more rational operations which can be
characterized as operations which are invariant under natural transformations of the
structures to which they apply? Could it be that rational operations in general are
nothing but logical operations on doxastic models?
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