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Abstract This paper has a twofold scope. The first one is to clarify and put in evidence
the isomorphic character of two theories developed in quite different fields: on one
side, threshold logic, on the other side, simple games. One of the main purposes in
both theories is to determine when a simple game is representable as a weighted
game, which allows a very compact and easily comprehensible representation. Deep
results were found in threshold logic in the sixties and seventies for this problem.
However, game theory has taken the lead and some new results have been obtained
for the problem in the past two decades. The second and main goal of this paper
is to provide some new results on this problem and propose several open questions
and conjectures for future research. The results we obtain depend on two significant
parameters of the game: the number of types of equivalent players and the number of
types of shift-minimal winning coalitions.

Keywords Simple games · Weighted games · Characterization of weighted games ·
Trade robustness · Invariant-trade robustness

1 Introduction

The study of switching functions goes back at least to Dedekind’s work (1897), in
which he determined the exact number of simple games with four or fewer players.
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Since that time these structures have been investigated in a variety of different contexts
either theoretically (Golomb 1959; Hammer et al. 1981; Hammer and Holzman 1992;
Hammer et al. 2000; Bohossian and Bruck 2003) in the context of Boolean functions
or because of their numerous applications: neural networks (Anthony and Holden
1994), simple games (Neumann and Morgenstern 1944; Isbell 1956, 1958; Peleg
1968), threshold logic (Elgot 1961; Chow 1961; Gabelman 1961; Hu 1965; Muroga
1971), hypergraphs (Reiterman et al. 1985), coherent structures (Ramamurthy 1990),
learning theory (Littlestone 1988), complexity theory (Beimel and Weinreb 2006),
and secret sharing (Simmons 1990; Tassa 2007; Beimel et al. 2008). Several books on
neural networks have studied these structures: Parberry (1994), Roychowdhury et al.
(1994), Siu et al. (1995), Picton (2000).

Logic gates, switching functions or Boolean functions can be thought of as simple
games, with weighted games playing the role of threshold functions. To the best of our
knowledge the first work linking threshold logic and simple games is due to Dubey
and Shapley (1979) and a compact study encompassing knowledge in both fields is
due to Taylor and Zwicker (1999).

As an example for a switching function or a simple game one may consider the
process of coordination of the weekend activities of a family. Assume that the family
consists of the parents Ann and Bob and their children Claire and Dylan. A proposal
is accepted if at least one of the parents and at least one of the children agrees, while
each person can either agree or disagree. The underlying decision rule can be modeled
as a simple game.1 A compact way to represent a simple game is by using weights for
each player such that a proposal is accepted if and only if the weight sum of its sup-
porters meets or exceeds a given quota (or threshold). If such a representation exists,
the simple game is called a weighted game. In our example no weighted representation
exists, since the coalitions of the parents and of the children cannot push through a
proposal, while they can if they split differently in coalitions of size two.2 However,
every simple game can be written as the intersection of some weighted games. The
Lisbon voting rules of the EU Council provide a non-weighted real-world example
where quite a few weighted games are needed in such a representation. See Kurz and
Napel (2016) for the details.

Oneof themost fundamental questions in all of the above-mentioned areas is to char-
acterize which monotonic switching functions (simple games) are weighted threshold
functions (weighted games). In threshold logic, this is known as the linear separability
problem. This question has also been posed in other research fields by using different
terminologies, which are essentially equivalent. Three different treatments to solve
this problem have been considered.

The first consists in studying the consistency of a system of inequalities. Each
inequality is formed by the inner product of two vectors: a non-negative integer vector
of weights which represents the unknown variables and the vector formed by the
subtraction of a true vector (winning coalition) minus a false vector (losing coalition).

1 The minimal winning coalitions are given by {A, C}, {A, D}, {B, C}, and {B, D}, see Sect. 2 for the
definitions.
2 Using the notation from Sect. 3, 〈{A, C}, {B, D} | {A, B}, {C, D}〉 is a trading transform, which certifies
non-weightedness.
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The system is formed by considering all possible subtractions of true and false vectors.
If the switching function is a threshold function, then each inequality must be positive
and the system of inequalities is consistent. A theorem on the existence of solutions for
systems of linear inequalities was given in Chvátal (1983). Linear programming is also
a useful tool as shown in Kurz and Tautenhahn (2013) and Freixas and Kurz (2014b).

The second treatment, very close to the previous one, is a geometric approach
based on the existence of a separating hyperplane that separates true vectors from
false vectors. This procedure is elegant but not very efficient in practice. A use of the
geometrical approach can be found in Einy and Lehrer (1989). Houy and Zwicker
(2014) proposes a variant of it.

The idea behind the third approach lies in the consideration of exchanges among
vectors and the possibility to convert some true vectors into false vectors, no matter
the number of vectors involved in these exchanges. The early works of Elgot (1961)
and Chow (1961), reexamined for simple games in Taylor and Zwicker (1992), are the
central point of thiswork.The class of threshold functions admits a structural character-
ization, the asummability property, that is both natural and elegant. Some of the deepest
results on this subject were obtained in the area of threshold logic during two decades
from the fifties to the seventies by Chow, Elgot, Gabelman andWinder, as reported by
Hu (1965), and continued by Muroga (1971) and Muroga et al. (1961, 1962, 1970).

The interpretation of Taylor and Zwicker for the asummability condition in terms of
trades among coalitions in Taylor and Zwicker (1992) together with the work in Taylor
and Zwicker (1995) stimulated the interest for the problem of characterizing weighted
games within simple games. In their book (Taylor and Zwicker 1999) they adapted,
for simple games, the most important results of threshold logic in relation to the linear
separability problem. In particular, their property of trade-robustness is equivalent to
the property of asummability. However, trade-robustness is more transparent in the
theoretical context of voting since it gives rise to some intuitions concerning the idea of
trading players among coalitions. Freixas andMolinero (2009) propose a relaxation of
trade-robustness for complete simple games and called it invariant-trade robustness,
which is less costly in terms of the length of the corresponding certificates. In this
paper we deduce some new results using this property.

As mentioned before, each simple game can be represented as an intersection of
weighted games, which allows a compact representation when the minimum number
of required weighted games for representing the game is small. This number is called
the dimension of the simple game, which can be large, see e.g. Kurz et al. (2016),
where the worst asymptotic case has been determined via a connection to coding
theory. If the dimension is small, e.g. power indices can in general be more simply and
efficiently computed. Here we treat the extreme case of dimension 1, i.e., we consider
the relevant issue whether a given simple game (switching function) is weighted and
propose some new characterizations.

The organization of the paper is as follows: the necessary basic terminology of
simple games is reviewed in Sect. 2. Section 3 recalls the main general results on the
characterization of weighted games within the class of simple games, and it identifies
the analogue terminologies used in threshold logic and simple games. The problem
of the characterization of weighted games can be restricted to the class of complete
games. A parametrization result for classifying them, up to isomorphisms, which will
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be intensively used in the next sections, is recalled in Sect. 4. Sections 5, 6 and 7 provide
new results on the characterization of weighted games. Cases for which 2-invariant
trade robustness is conclusive are presented in Sect. 5. m-invariant trade robustness is
studied in Sect. 6, while Sect. 7 gives some numerical and experimental data. Several
questions and conjectures are proposed for future research in Sect. 8. In Sect. 9 we
draw a conclusion.

2 Terminology in the context of voting simple games

Simple games or binary voting systems can be viewed as models of voting systems in
which a single alternative, such as a bill or an amendment, is pitted against the status
quo. A simple game G is a pair (N ,W) in which N = {1, 2, . . . , n} is the set of
players or voters and W is a collection of subsets of N that satisfies (1) N ∈ W , (2)
∅ /∈ W and (3) the monotonicity property: S ∈ W and S ⊆ T ⊆ N implies T ∈ W .

Any set of voters is called a coalition, and the set N is called the grand coalition.
Members of N are called players or voters, and the subsets of N that are in W are
called winning coalitions.

The intuition here is that a set S is a winning coalition if and only if the bill or
amendment passes when the players in S are precisely the ones who voted for it. A
subset of N that is not inW is called a losing coalition. Aminimal winning coalition is a
winning coalition all of whose proper subsets are losing. Amaximal losing coalition is
a losing coalition all of whose proper supersets are winning. Because of monotonicity,
any simple game is completely determined by its set of minimal winning coalitions,
which is denoted by Wm or by its set of maximal losing coalitions, which is denoted
hereLM . A voter a ∈ N is null if a does not belong to any minimal winning coalition.
A player a ∈ N has veto if a belongs to all winning coalitions.

Before proceeding,wepresent two real-world examples of simple games (seeTaylor
and Pacelli 2008 for a thorough presentation of these two examples).

Example 2.1 The United Nations Security Council. The voters in this system are the
15 countries that make up the Security Council, five of which are permanent members,
whereas the other ten are non-permanent members. Passage requires a total of at least
nine of the fifteen possible votes, subject to a veto due to a no vote from any one of
the five permanent members. This model ignores abstention. For a treatment of this
example, considering the possibility of abstention, we refer the reader to Freixas and
Zwicker (2003).

Example 2.2 The System to amend the Canadian Constitution. Since 1982, an amend-
ment to the Canadian Constitution can become law only if it is approved by at least
seven out of the ten Canadian provinces, subject to the proviso that the approving
provinces have, among them, at least half of Canada’s population. It was first stud-
ied in Kilgour (1983). An old census (in percentages) for the Canadian provinces
was as follows: 1. Ontario (34%), 2. Quebec (29%), 3. British Columbia (9%), 4.
Alberta (7%), 5. Saskatchewan (5%), 6. Manitoba (5%), 7. Nova Scotia (4%), 8. New
Brunswick (3%), 9. Newfoundland (3%), 10. Prince Edward Island (1%).

For example, observe that coalitions (from now on we use abridgments to denote
the provinces):
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X1 = {Que, BC, Alb, Sas, Man, N S, N B} and X2 = {Ont, Sas, Man, N S, N B,

New f, P E I } are minimal winning coalitions because they both have exactly 7
provinces and their total population surpasses the 50%. Instead, coalitions:
Y1 = {Ont, Que, Sas, Man, N S, N B} and Y2 = {BC, Alb, Sas, Man, N S, N B,

New f, P E I } are both losing because Y1 does not have 7 or more members and Y2
does not reach the 50% of the total Canada’s population.

A fundamental subclass of simple games are the classes of weighted simple games
and complete simple games. A simple game G = (N ,W) is said to be weighted if
there exists a “weight function” w : N → R≥0 and a “quota” q ∈ R>0 such that a
coalition S is winning precisely when the sum of the weights of the players in S meets
or exceeds the quota. Any specific example of such a weight function w : N → R

and quota q are said to realize G as a weighted game. A particular realization of a
weighted simple game is denoted as [q;w1, . . . , wn].

For instance, [k;
n

︷ ︸︸ ︷

1, . . . , 1] for some k = 1, . . . , n is a feasible realization for a
weighted game in which all players are symmetric; here the game is called a k-out-of-n
simple game.A realizationofExample2.1 is [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
where 7 is the weight for a permanent member and 1 the weight for a non-permanent
member. Instead, Example 2.2 cannot be represented as a weighted game. Indeed, if
the game was weighted we would have w(X1) > w(Y1) and w(X2) > w(Y2), i.e.,

w2 + (w3 + · · · + w8) > (w1 + w2) + (w5 + · · · + w8) and

w1 + (w5 + · · · + w10) > (w3 + · · · + w10).

After simplification we obtain w3 + w4 > w1 and w1 > w3 + w4, which is a
contradiction. In these inequalities, w1 represents, the weight for Ontario, the most
populated province; w2 represents, the weight for Quebec, the second most populated
province, and so on.

It is quite intuitive to observe that a permanent member has more influence than
a non-permanent member in the voting systems described in Example 2.1. The same
occurs in Example 2.2 where any of the two big provinces are more influential than
any other of the remaining eight provinces. The “desirability relation” represents a
way to make more precise the idea, that a particular voting system may give to one
voter more influence than another. Isbell already used it in Isbell (1958).

Let G = (N ,W) be a simple game, and let a and b be two voters. Player a is said
to be at least as desirable as b as coalitional partner if for every coalition S such that
a /∈ S and b /∈ S, S ∪ {b} ∈ W implies S ∪ {a} ∈ W . If, moreover, there exists a
coalition T such that a /∈ T and b /∈ T , T ∪ {a} ∈ W and T ∪ {b} /∈ W , then a is
(strictly) more desirable than b. Finally, a and b are said to be equally desirable if a
is at least as desirable as b and the converse is also true. The notations a � b, a 
 b,
and a ∼ b, respectively, stand for the following: a is at least as desirable as b, a is
strictly more desirable than b, and a and b are equally desirable. It is straightforward
to check that∼ is an equivalence relation and that the desirability relation� is a partial
ordering of the resulting equivalence classes.
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A simple game G = (N ,W) is complete (or linear) if the desirability relation is
a complete preordering. Note that every weighted game is complete, since for any
realization it holds that wa ≥ wb implies a � b. But the converse is not true as
Example 2.2 shows.

In a complete simple game we may decompose N into a collection of subsets,
called classes, N1 > N2 > · · · > Nt forming a partition of N . Those classes should
be the equivalence classes ordered by desirability, i.e., if a ∈ Np and b ∈ Nq , then
p = q if and only if a ∼ b and, p < q if and only if a 
 b. Two parameters are
of fundamental importance in our study. One of them is the number of equivalence
classes, t , in a complete game, i.e., a measurement of heterogeneity. In Example 2.1
we have N1 > N2 where N1 is formed by the five permanent members and N2 for the
non-permanent ones, while in Example 2.2 we have N1 > N2, where N1 is formed
by the two big provinces and N2 for the other eight provinces. Thus, in both examples
t = 2.

To define the second fundamental parameter for our study we need another defini-
tion. Given a simple game, a shift-minimal winning coalition S is a minimal winning
coalition such that (S \ {a}) ∪ {b} is losing whenever a 
 b with a ∈ S and b /∈ S.
Note that a coalition of seven members in Example 2.2 containing both, Quebec and
Ontario, is a minimal winning coalition but it is not shift-minimal winning, since a
replacement of a big province in the coalition for a province not belonging to the
coalition still leaves the new coalition winning. Analogously, a shift-maximal losing
coalition S is a maximal losing coalition such that (S \ {b})∪{a} is winning whenever
a 
 b with b ∈ S and a /∈ S.

Two shift-minimal winning coalitions, S and T , are said to be equivalent coalitions
if T can be obtained from S by any sequence of one-to-one exchanges of equally
desirable voters. If the game is complete we can consider the parameter r which is the
maximal number of non-equivalent shift-minimal winning coalitions.

Observe that the complete game from Example 2.1 has
(

10
4

)

= 210 minimal

winning coalitions which are also shift-minimal winning coalitions, each consisting of
all five permanent members and four arbitrary non-permanent members. However, all
of them are equivalent in the previous sense. Thus, for Example 2.1 the two parameters
we lay stress on are r = 1 and t = 2.

The simple game fromExample 2.2 has 112minimalwinning coalitions, 56 of them
formed by one of the two big provinces and six other provinces, which are also shift-
minimal winning coalitions. The game has 56 additional winning coalitions formed by
the two big provinces and five other provinces, but these are not shift-minimal winning
coalitions. The 56 shift-minimal winning coalitions are equivalent among them in the
previous sense. Thus, for Example 2.2 the two parameters we lay stress on again are
r = 1 and t = 2. The case r = 1 is considered in Sect. 5.1 and the case t = 2 in
Sect. 5.2.
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3 Some results on the characterization of weighted games

We introduce a notion of trades among coalitions, which is natural in game theory and
in economic applications, see Taylor and Zwicker (1999) for motivating examples.
Suppose G = (N ,W) is a simple game. Then a trading transform is a coalition
sequence 〈X1, . . . , Xk |Y1, . . . , Yk〉 of even length satisfying the following condition:

|{i : a ∈ Xi }| = |{i : a ∈ Yi }| for all a ∈ N .

The Xs are called the pre-trade coalitions and theY s are called the post-trade coalitions.
A k-trade for a simple game G is a trading transform 〈X1, . . . , X j |Y1, . . . , Y j 〉 with
j ≤ k. The simple game G is k-trade robust if there is no trading transform for which
all the Xs are winning in G and all the Y s are losing in G. If G is k-trade robust for
all k ∈ N, then G is said to be trade robust.

Loosely speaking, G is k-trade robust if a sequence of k or fewer (not necessarily
distinct) winning coalitions can never be rendered losing by a trade.

Theorem 3.1 (Theorem 2.4.2 in Taylor and Zwicker 1999, see also Taylor and
Zwicker 1992) Let G = (N ,W) be a simple game. Then, G is weighted if and
only if G is trade robust.

This result is equivalent to the one given by Elgot (1961) and Chow (1961) in threshold
logic. Instead of the notation of trade robustness, these authors used an equivalent
condition of asummability of vectors. If we are restricted to complete simple games
and only allow pre-trades of shift-minimal winning coalitions, then we may refer to
the property of invariant-trade robustness instead of trade robustness and Theorem 3.1
can be reformulated in an equivalent way:

Theorem 3.2 (Theorem 4.7 in Freixas and Molinero 2009) Let G = (N ,W) be a
complete simple game. Then, G is weighted if and only if G is invariant-trade robust.

As seen in Example 2.2 the trading transform 〈X1, X2|Y1, Y2〉 certifies a failure of
2-invariant-trade robustness and, therefore, this complete simple game is notweighted.
It is also trivial to see that the simple game described in Example 2.1 is invariant-trade
robust and, therefore, weighted.

Suppose G = (N ,W) is a simple game. Then, G is said to be swap robust if a
one-for-one exchange between two winning coalitions can never render both losing.
Thus, swap robustness differs from trade robustness in two ways: the trades involve
only two coalitions, and the exchanges are one-for-one. That is to say, swap robustness
considers m-trades of the following type: m = 2 and 〈X1, X2|X1 \{a}, X2 ∪{a}〉with
a ∈ X1 and a /∈ X2. It is fairly easy to generate simple games that are not swap robust.
The following theorem is a characterization of complete simple games:

Theorem 3.3 (Proposition 3.2.6 in Taylor and Zwicker 1999) G is a complete simple
game if and only if G is swap robust.

Clearly, non-complete games are not 2-invariant trade robust. In fact, it is always
possible to find two shift-minimal winning coalitions which convert into losing coali-
tions after a one-for-one exchange. Thus, the difficulty of the problem of determining
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when a given simple game is weighted can be focused exclusively on the class of
complete games. To obtain significant results it is helpful to have a compact and
manageable presentation of these games.

If, in a complete game, the number of the equivalence classes is lower than the
number of players, i.e., t < |N |, we have such a presentation. Indeed, Carreras and
Freixas (1996) provide a classification theorem for complete simple games, here The-
orem 4.2, that allows to enumerate all these games up to isomorphism by listing the
possible values of certain invariants. An advantage of using the classification theo-
rem is that it usually allows to work with a smaller number of vectors than would be
required with minimal winning coalitions. In the next section we introduce a notion
of trade-robustness based on these invariants.

As the basic game theoretic notions for simple games, which we use in this paper,
have already been introduced,we provide two brief lists of language analogies between
these notions to the fields of threshold logic or Boolean algebra in next subsection.
These analogies allow the easy translation of the results from one field to the other.
In particular, this list will be useful for scholars in threshold logic to be aware of the
new results we find in this paper and the questions and conjectures we propose to be
studied.

3.1 A list of analogies in the context of threshold logic

For the sake of simplicity, clarity, and for being coherent with the historical studies,
we write the notions in the language of Boolean algebra (very similar to that of neural
networks or threshold logic). Tables 1 and 2 contain the main equivalences. The list
is not exhaustive. Throughout the rest of the paper we exclusively deal with simple
games and refer to these two tables for direct analogies of the results we find and the
questions and conjectures we pose.

4 Symmetries and a parametrization of complete simple games

For t < |N | types of voters we can represent coalitions in a more compact way.
Let (N ,W) be a simple game and N1, . . . , Nt be a partition of the player set into

Table 1 Variables and vectors versus players and coalitions

Variable or node Player or voter

Irrelevant variable Null player

Essential variable Vetoer

Vector Coalition

True vector Winning coalition

False vector Losing coalition

Minimal true vector Minimal winning coalition

Maximal false vector Maximal losing coalition

Shift-minimal true vector Shift-minimal winning coalition
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Table 2 Types of functions versus types of simple games

Switching function Non-monotonic (simple) game

Monotonic switching function (Monotonic) simple game

Threshold function Weighted game

k-out-of-n switching function k-out-of-n simple game

Regular function Complete game

k-summable Not k-trade robust

k-asummable k-trade robust

k-invariant summable Not k-invariant trade robust

k-invariant asummable k-invariant trade robust

t equivalence classes of voters cf. Sect. 2. A coalition type (or coalition vector) is a
vector s = (s1, . . . , st ) ∈ (N∪{0})t with 0 ≤ si ≤ |Ni | for all 1 ≤ i ≤ t .We say that a
coalition S ⊆ N has type s if si = |S∩Ni | for all 1 ≤ i ≤ t . A coalition type s is called
winning if the coalitions of that type are winning. Analogously, the notions of minimal
winning, shift-minimal winning, losing, maximal losing and shift-maximal losing are
translated similarly for coalitional types. So, the simple game from Example 2.1 can
be described by the unique minimal winning coalition type (5, 4) which represents all
coalitions with 5 permanent members and 4 non-permanent members, and the simple
game from Example 2.2 can be described by the unique minimal winning coalition
type (1, 6) which represents all coalitions with 1 big province and 6 small provinces.

The notion of a trading transform for coalitions can be transferred to coalitional
types for vectors.

4.1 Coalitional types

Let G = (N ,W) be a simple game and N1, . . . , Nt be a partition into t equiv-
alence classes of players. A vectorial trading transform for G is a sequence
〈x1, . . . , x j |y1, . . . , y j 〉 of coalition types of even length such that

j
∑

i=1

xi,k =
j

∑

i=1

yi,k for all 1 ≤ k ≤ t. (1)

The definition of a vectorial trading transform means that for each component
1 ≤ k ≤ t , the sum of the k components for the xs coincide with the sum of the k
components for the ys.

A vectorial m-trade is a vectorial trading transform with j ≤ m such that the xi s
are winning and after trades, as described in (1), convert into yi s.

A given m-trade can easily be converted into a vectorial m-trade. The following
lemma shows that the converse is also true, i.e., each given vectorial m-trade can be
converted into an m-trade.
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Lemma 4.1 For each pair of vectors a = (a1, . . . , ar ) ∈ N
r
>0, b = (b1, . . . , bs) ∈

N
s
>0 with

∑r
i=1 ai = ∑s

i=1 bi and m = max (maxi ai ,maxi bi ), there exist two
sequences of sets A1, . . . , Ar ⊆ {1, . . . , m} and B1, . . . , Bs ⊆ {1, . . . , m} with |Ai | =
ai , |Bi | = bi and

|{i : j ∈ Ai }| = |{i : j ∈ Bi }|

for all j ∈ {1, . . . , m}.
Proof W.l.o.g. we assume a1 ≥ · · · ≥ ar and b1 ≥ · · · ≥ bs . We prove the statement
by induction on σ = ∑r

i=1 ai . For σ = 1 we have r = s = a1 = b1 = m = 1 and
can choose A1 = B1 = {1}. We remark that the statement is also true for σ = 0, i.e.,
where r = s = 0.

If there exist indices i, j with ai = b j , then we can choose Ai = {1, . . . , ai },
B j = {1, . . . , b j = ai } and apply the induction hypothesis on (a1, . . . , ai−1, ai+1,

. . . , ar ) and (b1, . . . , b j−1, b j+1, . . . , bs).
In the remaining cases we assume w.l.o.g. a1 = m and b1 < m. Now let l be the

maximal index with al = m. Since
∑r

i=1 ai = ∑s
i=1 bi we have s ≥ l. So, we can

consider the reduction to (a1 − 1, . . . , al − 1, al+1, . . . , ar ) and (b1 − 1, . . . , bl −
1, bl+1, . . . , bs), where we possibly have to remove some zero entries and the max-
imum entry decreases to m − 1. Let A′

1, . . . , A′
r , B ′

1, . . . , B ′
s ⊆ {1, . . . , m − 1}

be suitable coalitions (allowing A′
i = ∅ or B ′

i = ∅ for the ease of notation).
Adding player m to the first l coalitions in both cases yields the desired sequences of
coalitions. ��

The construction in Lemma 4.1 for each equivalence class of voters separately
converts a vectorial m-trade into an m-trade. Also for vectorial m-trades we may
assume that thewinning coalition types areminimalwinning or that the losing coalition
types are maximal losing. Since the number of coalition types is at most as large as
the number of coalitions we can computationally benefit from considering vectorial
m-trades if the number of types of voters is less than the number of voters.

4.2 A parametrization of complete simple games

In a complete simple game G = (N ,W) we have a strict ordering between two voters
of different equivalence classes. This ordering entails a hierarchy among voters. Some
studies on allowable hierarchies can be found in Bean et al. (2008), Freixas and Pons
(2010), Friedmanet al. (2006).Asbefore,wedenote by N1 > · · · > Nt the equivalence
classes which form the unique partition of N where a 
 b for all a ∈ Ni and b ∈ N j

with i < j . Let n = (n1, . . . , nt ) where ni = |Ni | for all i = 1, . . . , t . Consider

�(n) = {s ∈ (N ∪ {0})t : n ≥ s},

where ≥ stands for the ordinary componentwise ordering, that is, a ≥ b if and only
if ak ≥ bk for every k = 1, . . . , t , and also consider the weaker ordering � given by
comparison of partial sums, that is,
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a � b if and only if
k

∑

i=1

ai ≥
k

∑

i=1

bi for k = 1, . . . , t.

If a � b we say that a dominates b.

The couple (�(n),�) is a distributive lattice and possesses a maximum (respec-
tively, minimum) element, namely n = (n1, . . . , nt ) (resp. 0 = (0, . . . , 0)). As
abbreviations we use a 
 b for the cases where a � b but a �= b and a �� b for
the cases where neither a � b nor b � a.

The interpretation of a � b is as follows: if b is a winning coalitional vector and
a � b, then also a is winning. Similarly, if a is losing then b is losing too for all a � b.

A winning coalitional vector a such that b is losing for all a 
 b is called shift-
minimal winning. Similarly, a losing coalition type b such that a is winning for all
a 
 b are called shift-maximal losing. Each complete simple game can be uniquely
described by either its set of shift-minimal winning coalition types or its set of shift-
maximal losing coalition types.

Based on this insight, Carreras and Freixas (1996, pp. 148–150) provided a classifi-
cation theorem for complete simple games that allow to enumerate all these games up
to isomorphismby listing the possible values of certain invariants. Indeed, to each com-
plete simple game (N ,W) one can associate the vector n ∈ N

t as defined above and
the list of shift-minimal winning coalitional vectors: m p = (m p,1, m p,2, . . . , m p,t )

for 1 ≤ p ≤ r .
Recall that two simple games (N ,W) and (N ′,W ′) are said to be isomorphic if

there exists a bijective map f : N → N ′ such that S ∈ W if only if f (S) ∈ W ′.

Theorem 4.2 (Theorem 4.1 in Carreras and Freixas 1996) (a) Given a vector n ∈ N
t

and a matrix M whose rows m p = (m p,1, m p,2, . . . , m p,t ) for 1 ≤ p ≤ r satisfy the
following properties:

(i) 0 ≤ m p ≤ n for 1 ≤ p ≤ r;
(ii) m p �� mq if p �= q (i.e., m p and mq are not �-comparable);
(iii) if t = 1, then m1,1 > 0; if t > 1, then for every k < t there exists some p such

that

m p,k > 0, m p,k+1 < nk+1;

and
(iv) M is lexicographically ordered by partial sums, if p < q either m p,1 > mq,1 or

there exists some k ≥ 1 such that m p,k > mq,k and m p,i = mq,i for i < k.

Then, there exists a complete simple game (N ,W) associated to (n,M).
(Theorem 4.2 in Carreras and Freixas 1996) (b) Two complete games (N ,W) and
(N ′,W ′) are isomorphic if and only if n = n′ and M = M′.

The pair (n,M) is referred to as the characteristic invariants of game (N ,W).
The authors prove that these parameters determine the game in the sense that one is
able to define a unique up to isomorphism complete simple game which possesses
these invariants. The characteristic invariants allow us to count and generate all these
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games for small values of n. Other applications of the characteristic invariants are to
considerably reduce the calculus of some solutions, as values or power indices, of
the game (see e.g., Freixas and Puente 1998 for the nucleolus Schmeidler 1969) or
to study whether a game admits a representation as a weighted game by studying the
consistency of a system of inequalities as we will see below.

If matrixM has only one row, r = 1, i.e. a unique shift-minimal coalitional vector,
then the characteristic invariants reduce to the couple (n, m) with

1 ≤ m1 ≤ n1

1 ≤ mk ≤ nk − 1 if 2 ≤ k ≤ t − 1,

0 ≤ mt ≤ nt − 1,

where the first subindex in matrix M is omitted. It is said, see Freixas and Puente
(1998), that (n, m) is a complete game with minimum.

We sketch here how to obtain the characteristic invariants (n,M) for the complete
game from winning coalitions and reciprocally.

Given a simple game (N ,W), for each coalition S we consider the vector or coali-
tional type

s = (|S ∩ N1| , . . . , |S ∩ Nt |),

in �(n) where Ni are the equivalence classes with N1 > · · · > Nt . The vector n is
(|N1| , . . . , |Nt |). The rows of matrixM are those s such that any S is a shift-minimal
winning coalition in the lattice (�(n),�). Observe that each vector of indices that
�-dominates a row of M corresponds to winning coalitions.

Conversely, given (n,M) the game (N ,W) can be reconstructed, up to isomor-
phism, as follows: the cardinality of N is n = ∑t

i=1 ni , the elements of N are
denoted by {1, 2, . . . , n}. The equivalent classes of (N ,W) are N1 = {1, . . . , n1},
N2 = {n1 + 1, . . . , n1 + n2}, and so on.

Each S ⊆ N with vector s = (|S ∩ N1| , . . . , |S ∩ Nt |) is a winning coalition if
s � m for some m being a row of M. Hence, the set of winning coalitions is

W = {S ⊆ N : s � m p, where m p is a row of M}.

Notice that a winning vector is a vector r such that the coalition representative R is
winning. In particular, the shift-minimal winning coalitions are those with a vector
being a row of M. Precisely,

Ws = {S ⊆ N : s = m p for some p = 1, . . . r}.

Analogously, one can define the coalitional types of shift-maximal losing coalitions
which can be written as rows in a matrix Y lexicographically ordered, as requested
also for M, to preserve uniqueness. These coalitional types are the maximal vectors
which are not �-comparable among them.
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Some particular forms of the pair (n,M) reveal the presence of players being either
vetoers or nulls. For instance, if m p,t = 0 for all p = 1, . . . , r the game has nt null
players. If m p,1 = n1 for all p = 1, . . . , r the game has n1 vetoers.

Using the well-known fact that any weighted game admits normalized represen-
tations, where i ∼ j if and only if wi = w j , we will consider from now on,
w = (w1, . . . , wt ), the vector of weights to be assigned to the members of each
of the t equivalence classes. Using normalized representations a weighted game may
be expressed as [q;w1(n1), . . . , wt (nt )] in which repetition of weights is indicated
within parentheses and q stands for the quota or threshold. However, these parentheses
will be omitted provided that n = (n1, . . . , nt ) is a known vector. A complete simple
game, (N ,W), is weighted if and only if there is a vector w = (w1, . . . , wt ), such
that w1 > · · · > wt ≥ 0, which satisfies the system of inequalities

(m p − αq) · w > 0 for all p = 1, 2, . . . , r, q = 1, . . . , s

where r is the number of rows ofM, s the number of rows of Y , and αq are the rows
of Y .

Only for n ≥ 6 there are complete simple games which are not weighted.

Example 4.3 (a) (Example 2.1 revisited) The characteristic invariants for this example
are n = (5, 10) and M = (5 4). Thus,

W = {(5, x) ∈ �(5, 10) : x ≥ 4}
Wm = Ws = {(5, 4)}

Note also that Y =
(

5 3
4 10

)

whose rows are the shift-maximal coalitional types.

As shown, this game is weighted. In the next section we will show that to prove
this it suffices to verify k-invariant trade robustness, where k is 2.

(b) (Example 2.2 revisited) The characteristic invariants for this example are n =
(2, 8) and M = (1 6). Thus,

W = {(x, y) ∈ �(2, 8) : x ≥ 1 and x + y ≥ 7}
Wm = {(2, 5), (1, 6)}
Ws = {(1, 6)}

Note also that Y =
(

2 4
0 8

)

whose rows are the shift-maximal coalitional types.

Note that Example 2.2 is not 2-invariant trade robust since the coalitional type
trading transform 〈(1, 6), (1, 6)|(2, 4), (0, 8)〉 is a certificate for it. Hence, the
game is not weighted.

4.3 Two parameters for complete simple games

As previously remarked, two parameters for a complete simple game are significant for
our studies: r the number of rows ofM or number of shift-minimal coalitional vectors
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and t the number of equivalence classes of players in the game. The conditions thatM
must fulfill are described in Theorem 4.2. The question we pose here is the following:
are there some values for r and t for which 2-invariant trade robustness is conclusive?
The purpose of Sect. 5 is to prove that the posed question has an affirmative answer
for either r = 1 (no matter the value of t) or t = 2 (no matter the value of r ), while in
Sect. 6 we investigate the remaining cases.

Let us remark that the number of complete and weighted games as a function of |N |
up to isomorphisms has been determined for these two parameters. We use below the
notations cg(n, �, r), cg(n, t, �), wg(n, �, r), and wg(n, t, �) depending on whether
we consider complete or weighted games or parameter r or parameter t . The first
(trivial) exact counting establishes the number of k-out-of-n simple games. Each of
such games admits [k; 1, 1, . . . , 1

︸ ︷︷ ︸

n

] as a weighted representation where k ∈ {1, . . . , n}.

As t = 1 implies r = 1 we have cg(n, 1, �) = wg(n, 1, �) = n.
For r = 1, we have cg(n, �, 1) = 2n − 1 (see Freixas and Puente 2008) complete

simple games with minimum with n players up to isomorphism and the number of
weighted games with minimum, wg(n, �, 1), is given by

wg(n, �, 1) =
⎧

⎨

⎩

2n − 1, if n ≤ 5
n4 − 6n3 + 23n2 − 18n + 12

12
, if n ≥ 6

cf. Freixas and Kurz (2014a).
For t = 2 we have the nice formula cg(n, 2, �) = F(n + 6) − (n2 + 4n + 8)

(cf. Freixas et al. 2012) where F(n) are the Fibonacci numbers which constitute a
well-known sequence of integer numbers defined by the following recurrence relation:
F(0) = 0, F(1) = 1, and F(n) = F(n −1)+ F(n −2) for all n > 1. Quite curiously
the addition of trivial voters, as null voters or vetoers, in complete games with two
equivalence classes formed by non-trivial voters, give new larger Fibonacci sequences
(cf. Freixas and Kurz 2013). Up to now there is not a known formula for wg(n, 2, �)

although it has been proved in Freixas and Kurz (2014b) that wg(n, 2, �) ≤ n5
15 +4n4.

Concerning general enumeration for simple, complete andweighted games it should
be said that in the successive works by Muroga et al. (1961, 1962, 1970) the number
of such games was determined up to eight voters. Only the numbers of complete and
weighted games for n = 9 voters have been determined since then, cf. Freixas and
Molinero (2010) for the number of complete games for n = 9 and cf. Kartak et al.
(2015), Kurz (2012) for the number of weighted games for n = 9. An asymptotic
upper bound for weighted games is given in Keijzer et al. (2014) and an asymptotic
lower bound for complete games in Peled and Simeone (1985).

5 Cases for which the test of 2-invariant trade robustness is conclusive

Note first that each simple game with a unique equivalence class of voters, t = 1,
is anonymous (symmetric), and thus weighted. Non-complete games are not swap
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robust and, therefore, they are obviously not weighted. Hence, we can limit our study
to complete simple games.

Prior to study them, let us consider the null effect on invariant trade robustness of
removing either null or veto players in a given complete simple game. Since adding
and removing null players does not change a coalition from winning to losing or the
other way round, we can state the following:

Lemma 5.1 Let G be a complete simple game and G ′ be the game arising from G by
removing its null players. With this we have that G is m-invariant trade robust if and
only if G ′ is m-invariant trade robust.

And a similar result, not as immediate, concerns veto players.

Lemma 5.2 Let G be a complete simple game and G ′ be the game arising from G by
removing its veto players. If G ′ is a simple game, then G is m-invariant trade robust
if and only if G ′ is m-invariant trade robust.

Proof If veto players are present, then each winning coalition of a simple game must
contain all veto players. So, in any m-trade every involved losing coalition must also
contain all veto players. Let G = (N ,W) be a simple game, where ∅ �= V ⊆ N is
the set of veto players. If V = N the game G is the unanimity game and, therefore,
weighted. Otherwise, we can consider G ′ = (N ′,W ′), where N ′ = N\V and N ′ ⊇
S ∈ W ′ if and only if S ∪ V ∈ W . If ∅ ∈ W ′, then the players in N\V are nulls
in G ′ and the game is indeed weighted. Otherwise, G ′ is a simple game too. If G is
complete, then G ′ is complete too, see, e.g. Freixas and Kurz (2013). Given anm-trade
for G ′, we can obtain an m-trade for G by adding V to all coalitions. For the other
direction removing all veto players turns an m-trade for G into an m-trade for G ′. ��

5.1 The 2-invariant characterization for r = 1

Theorem 5.3 Each complete simple game G with r = 1 shift-minimal winning coali-
tion type is either weighted or not 2-invariant trade robust.

Proof Due to Lemmas 5.1 and 5.2 we can assume that G contains neither nulls nor
vetoers, since also the number of shift-minimal winning coalition types is preserved
by the transformations used in the respective proofs.

For t ≥ 3 types of players let the invariants of G be given by n = (n1, . . . , nt )

and M = (

m1 . . . mt
)

, where we abbreviate the unique shift-minimal winning
coalitional vector by m. From the conditions of the general parametrization theorem
in Carreras and Freixas (1996) we conclude 1 ≤ m1 ≤ n1, 0 ≤ mt ≤ nt − 1, and
1 ≤ mi ≤ ni − 1 for all 1 < i < t . If m1 = n1, then G contains veto players, and
if mt = 0, then G contains null players (cf. Freixas and Kurz 2013). So, we have
1 ≤ mi ≤ ni − 1 for all 1 ≤ i ≤ t in our situation. We can easily check that a =
(m1−1, m2+1, m3+1, m4, . . . , mt ) and b = (m1+1, m2−1, m3−1, m4, . . . , mt )

are losing. Thus, 〈m, m | a, b〉 is a 2-trade and G is not 2-invariant trade robust.
For t = 2 types of players let the invariants of G be given by n = (n1, n2)

and M = (

m1 m2
)

, where again we abbreviate the unique shift-minimal winning
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coalitional vector by m. From the conditions of the general parametrization theorem
in Carreras and Freixas (1996) we conclude 1 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2 − 1. If
m1 = n1, then G contains veto players, and if mt = 0, then G contains null players.
So, we have 1 ≤ mi ≤ ni − 1 for all 1 ≤ i ≤ 2 in our situation.

If 2 ≤ m2 ≤ n2 − 2, then a = (m1 − 1, m2 + 2) and b = (m1 + 1, m2 − 2) are
losing. Thus, 〈m, m | a, b〉 is a 2-trade and G is not 2-invariant trade robust.

If m2 = 1 or m2 = n2 − 1, then both games are weighted.

Indeed, if m2 = 1, then Y =
(

m1 0
m1 − 1 n2

)

, and the weights (w1, w2) = (n2, 1)

may be assigned to players in each class, respectively, so that a quota ofm1 ·w1+w2 =
m1 · n2 + 1 separates weights of winning and losing coalition types.

If m2 = n2 − 1, then Y =
(

c1 c2
m1 − 1 n2

)

, where c1 = min(n1, m1 + n2 − 2) and

c2 = max(m1 + n2 − 2 − n1, 0).
Now, we have two subcases to consider:
If c1 = n1 a solution is (w1, w2) = (n1 − m1 + 2, n1 − m1 + 1) with quota

q = m1 · w1 + (n2 − 1) · w2 = m1 · (n1 − m1 + 2) + (n2 − 1) · (n1 − m1 + 1).
If c1 = m1 + n2 − 2, then c2 = 0 and a solution is (w1, w2) = (n2, n2 − 1) with

quota q = m1 · w1 + (n2 − 1) · w2 = m1 · n2 + (n2 − 1)2. ��
So, complete simple games with r = 1 have the property that they are either

weighted or not 2-invariant trade robust. Note that with r = 1 weighted games are
only feasible for t ≤ 4.

Now we are going to see that this characterization for 2-invariant trade robustness
is also true for t = 2.

5.2 The 2-invariant characterization for t = 2

Freixas and Molinero (2009) prove that there is a sequence of complete simple games
Gm with three types of equivalent voters, i.e., t = 3, and three types of shift-minimal
winning types, i.e., r = 3, such that Gm is m-invariant trade but not (m + 1)-invariant
trade robust for each positive integer m. Moreover, they state in Conjecture 6.1 of their
paper that any complete game with t = 2 types of equally desirable voters is either
weighted or not 2-invariant trade robust. In this subsection we prove this conjecture.
Prior to stating the result let us introduce some characterizations for weightedness that
will be used in the sequel. The definition of a weighted game can be rewritten to a
quota-free variant:

Lemma 5.4 Let G = (N ,W) be a simple game. Then, G is weighted ⇐⇒ there
are n nonnegative integers w1, . . . , wn such that

∑

i∈S

wi >
∑

i∈T

wi (2)

for all S ∈ W and all T ∈ L.

Moreover, we can use a single weight for equivalent players, i.e., a common weight
wi for each voter p ∈ Ni where Ni is an equivalence class of players according to
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the desirability relation. If the game is complete we have a total order among the
equivalence classes, N1 > · · · > Nt . Assume from now on t = 2 so that N1 �= ∅
and N2 �= ∅ is a partition of N . By Wv we denote the set of winning coalition types
and by Lv the set of losing coalition types. For instance, (x, y) ∈ Wv means that all
coalition S ⊆ N such that |S ∩ N1| = x and |S ∩ N2| = y is winning. With this,
Lemma 5.4 can be rewritten as follows:

Lemma 5.5 Let G = (N ,W) be a complete simple game with two types of voters.
Then, G is weighted ⇐⇒ there are two integers w1, w2 ≥ 0 such that

[(x, y) − (x ′, y′)] · (w1, w2) > 0 (3)

for all (x, y) ∈ Wv and all (x ′, y′) ∈ Lv and “·” stands here for the inner product.

For the proof of the theorem for t = 2 two special parameters of a complete simple
game will play a key role so that we give even another reformulation of Lemma 5.4:

Lemma 5.6 Let G = (N ,W) be a complete simple game with two types of voters.
Then, G is weighted ⇐⇒ there are two integers w1, w2 ≥ 0 such that

w2 > Mw1 and w1 > Pw2, (4)

where

M = max
(x,y)∈Wv, (x ′,y′)∈Lv : x ′≥x

x ′ − x

y − y′

and

P = max
(x,y)∈Wv, (x ′,y′)∈Lv : x ′<x

y′ − y

x − x ′

fulfill 0 ≤ M < 1 and P ≥ 1.

Proof Let (x, y) ∈ Wv and (x ′, y′) ∈ Lv . If x ′ ≥ x , then x + y > x ′ + y′, so that
y − y′ > x ′ − x ≥ 0. Thus, M is well defined and we have 0 ≤ M < 1. Also P
is well defined, since we assume x ′ < x in its definition. For r = 2 in matrix M in
Theorem 4.2 we conclude the existence of a shift-minimal winning type (a, b) with
a > 0 and b < |N2|, i.e., (a − 1, b + 1) is losing. Thus, we have P ≥ (b+1)−b

a−(a−1) = 1.
It remains to remark that all inequalities of the definition of a weighted game are

implied by the ones in (4). ��
Corollary 5.7 Let G = (N ,W) be a complete simple game with two types of voters.
Using the notation from Lemma 5.6, we have

G is weighted ⇐⇒ M P < 1. (5)

We still need an additional technical trivial lemma.
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Lemma 5.8 Let s, u ∈ R≥0 and t, v ∈ R>0. If t > v and s
t ≥ u

v
, then we have

s−u
t−v

≥ s
t .

Let us finally prove the result of this subsection, which was previously stated as
Conjecture 6.1 in Freixas and Molinero (2009, page 1507).

Theorem 5.9 Let G = (N ,W) be a complete simple game with two types of voters.
Then, G is weighted if and only if G is 2-invariant trade robust.

Proof The direct part is immediate since G being weighted implies G satisfies m-
invariant trade robustness for all m > 1. For the other part we start by proving that
if G is a complete simple game with t = 2 types of voters and G is 2-invariant trade
robust, then it is 2-trade robust.

Let 〈(a1, b1), (a2, b2) | (u1, v1), (u2, v2)〉 be a 2-trade of G such that (a1, b1) and
(a2, b2) are minimal winning. If both coalition types are shift-minimal, we have fin-
ished. In the remaining cases we construct a 2-trade with one shift-minimal winning
coalition type more than before. W.l.o.g. we assume that (a1, b1) is not shift-minimal,
so that we consider the shift to (a1 − 1, b1 + 1). If u1 ≥ 1 and v1 ≤ n2 − 1 then we
can replace (u1, v1) by the losing coalitional vector (u1 − 1, v1 + 1). By symmetry
the same is true for (u2, v2). Thus, for the cases, where we can not shift one of the
losing vectors, we have

(u1 = 0 ∨ v1 = n2) ∧ (u2 = 0 ∨ v2 = n2) .

(1) u1 = 0, u2 = 0:
Since u1 + u2 = a1 + a2 we have a1 = a2 = 0. Since (0, b1), (0, b2) are
winning and (0, v1), (0, v2) are losing, we have min(b1, b2) > max(v1, v2),
which contradicts b1 + b2 = v1 + v2.

(2) v1 = n2, v2 = n2:
Since b1 + b2 = v1 + v2 we have b1 = b2 = n2. Since (a1, n2), (a2, n2) are
winning and (u1, n2), (u2, n2) are losing, we have min(a1, a2) > max(u1, u2),
which contradicts a1 + a2 = u1 + u2.

(3) u1 = 0, v2 = n:
Since u1 + u2 = a1 + a2 we have a2 ≤ u2. Comparing the winning coalitional
vector (a2, b2) with the losing vector (u2, n2), yields b2 > n2, which is not
possible.

(4) u2 = 0, v1 = n:
Similar to case (3).

Thus, a shift of one of the losing vectors is always possible, if not both winning vectors
are shift-minimal.

According to Theorem 3.1 it remains to prove that for t = 2 it is not possible for
G to be 2-trade robust but not weighted.

Let (a, b) and (a′, b′) be two winning vectors, (c, d) and (c′, d ′) be two losing
vectors such that

M = c − a

b − d
and P = d ′ − b′

a′ − c′ , (6)
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where we assume that the vectors are chosen in such a way that both c − a and d ′ − b′
are minimized. We remark a′ − c′ > 0, d ′ − b′ > 0, b − d > 0 and c − a ≥ 0. The
latter inequality can be strengthened to c − a > 0, since c − a implies M = 0 and
M P < 1, which is a contradiction to the non-weightedness of G.

Corollary 5.7 implies M P ≥ 1, so that

c − a

b − d
≥ a′ − c′

d ′ − b′ . (7)

With this, we have only the following three cases:

(a) c − a ≥ a′ − c′ and b − d ≤ d ′ − b′.
(b) c − a > a′ − c′ and b − d > d ′ − b′.
(c) c − a < a′ − c′.

If c−a = a′ −c′ then we have b−d ≤ d ′ −b′ according to Inequality (7), i.e., we are
in case (a). If c − a > a′ − c′ then either case (a) or case (b) applies. The remaining
cases are summarized in (c).

(a) Since c + c′ ≥ a + a′ and d + d ′ ≥ b + b′, we can delete convenient units of
some coordinates of (c, d) and (c′, d ′) to obtain two well-defined losing vectors
satisfying (c′′, d ′′) ≤ (c, d) and (c′′′, d ′′′) ≤ (c′, d ′) with c′′ + c′′′ = a + a′ and
d ′′ + d ′′′ = b + b′. Thus, 〈(a, b), (a′, b′) | (c′′, d ′′), (c′′′, d ′′′)〉 certifies a failure
of 2-trade robustness.

(b) Consider (c′′, d ′′) = (a+a′−c′, b+b′−d ′). Since a′−c′ > 0 and c−a > a′−c′
we have a < c′′ < c. Since b−d > d ′ −b′ and d ′ −b′ > 0 we have d < d ′′ < b.
Thus, (c′′, d ′′) is a well-defined coalition type. Assuming that (c′′, d ′′) is winning,
we obtain

c − c′′

d ′′ − d
=

>0
︷ ︸︸ ︷

c − a − (

>0
︷ ︸︸ ︷

a′ − c′)
b − d
︸ ︷︷ ︸

>0

− (d ′ − b′
︸ ︷︷ ︸

>0

)

Lemma 5.8≥ c − a

b − d
= M,

using b − d > d ′ − b′ and Inequality (7). Since c − c′′ < c − a we have either a
contradiction to themaximality of M or theminimality of c−a. Thus, (c′′, d ′′) has
to be losing and 〈(a, b), (a′, b′) | (c′, d ′), (c′′, d ′′)〉 certifies a failure of 2-trade
robustness.

(c) With c −a < a′ − c′ Inequality (7) implies d ′ −b′ > b −d. Consider (a′′, b′′) =
(c+c′−a, d +d ′−b). Since c−a > 0 and c−a < a′−c′ we have c′ < a′′ < a′.
Since d ′ − b′ > b − d and b − d > 0 we have b′ < b′′ < d ′. Thus, (a′′, b′′) is a
well-defined coalition type. Assuming that (a′′, b′′) is losing, we obtain

b′′ − b′

a′ − a′′ =

>0
︷ ︸︸ ︷

d ′ − b′ − (

>0
︷ ︸︸ ︷

b − d)

a′ − c′
︸ ︷︷ ︸

>0

− (c − a
︸ ︷︷ ︸

>0

)

Lemma 5.8≥ d ′ − b′

a′ − c′ = P
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using c − a < a′ − c′ and Inequality (7). Since b′′ − b′ < d ′ − b′ we have
either a contradiction to the maximality of P or the minimality of d ′ − b′. Thus,
(a′′, b′′) has to be winning and 〈(a, b), (a′′, b′′) | (c, d), (c′, d ′)〉 certifies a failure
of 2-trade robustness. ��

Let us have a look at Example 2.2 again. We have already observed that
this game is not weighted. Nevertheless it can be represented as the intersection
[7; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ∩ [12; 6, 6, 1, 1, 1, 1, 1, 1, 1, 1], i.e., there are only two
types of provinces—the large ones, Ontario and Quebec, and the small ones, see
Freixas et al. (2012). Indeed the game is complete and the minimal winning vectors
are given by (2, 5) and (1, 6). The maximal losing vectors are given by (2, 4), (1, 5),
and (0, 8), so that we have M = 1

2 and P = 3. These values are uniquely attained by
the coalition types (1, 6), (2, 5) and (2, 4), (0, 8). Thuswe are in case (c) of the proof of
Theorem 5.9 and determine the winning coalitional vector (a′′, b′′) = (1, 6). Indeed,
〈(1, 6), (1, 6) | (2, 4), (0, 8)〉 certifies a failure of 2-trade robustness. We remark that
our previous argument for non-weightednesswas exactly of this formand that the coali-
tion type (1, 6) is shift-minimal. Let us finally conclude this subsection by recalling
that Theorem 5.9 establishes that a complete game with 2 types of voters is weighted
if and only it is 2-invariant trade robust. Checking that property requires fewer com-
putations than 2-trade robustness, which was proved in Herranz (2011) to be sufficient
for testing weightedness.

6 Further invariant trade characterizations

We have seen in the previous section that complete simple games with t = 2 or r = 1
have the property that they are either weighted or not 2-invariant trade robust.

For other combinations of r and t it is interesting to ascertain which is themaximum
integer m such that m-invariant trade robustness for the given game with parameters r
and t guarantees that it is weighted. Note first that t = 1 implies r = 1 so that the pairs
(r, t) = (r, 1) for r > 1 are not feasible. The results in the previous section allow us
to conclude that for (r, t) = (1, t)with t arbitrary or for (r, t) = (r, 2)with r arbitrary
such an m is given by 2.

The existence of a sequence of complete games being m-invariant trade robust but
not (m + 1)-invariant trade robust is proven for m ≥ 4 by using complete games with
parameters (r, t) = (3, 3) in Freixas and Molinero (2009). This sequence of games is

uniquely characterized by n = (2, m, m − 1) and M =
⎛

⎝

2 0 1
1 0 m − 1
0 m m − 2

⎞

⎠. We wonder

what is happening for the remaining cases of the parameters r and t .
Consider first the smallest case: (r, t) = (2, 3).

Proposition 6.1 For m ≥ 3 the sequence of complete simple games uniquely charac-

terized by n = (2, m, m) and M =
(

2 0 1
1 1 m − 1

)

is (m − 1)-invariant trade robust

but not m-invariant trade robust.
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Proof For brevity we set w1 = (2, 0, 1) and w2 = (1, 1, m − 1). The maximal losing
coalition types are given by l1 = (2, 0, 0), l2 = (1, 0, m), l3 = (1, 1, m − 2), and
l4 = (0, m, m). Since m ·w2 = 1 · l1 + (m −2) · l2 +1 · l4, the game is not m-invariant
trade robust.

Now assume that there are non-negative integers a, b, c, d, e, f with a + b =
c + d + e + f > 0 and

a · w1 + b · w2 ≤ c · l1 + d · l2 + e · l3 + f · l4.

We conclude

2a + b ≤ 2c + d + e, (8)

b ≤ e + m · f , and (9)

a + (m − 1) · b ≤ (m − 1) · (d + e + f ). (10)

Assuming f = 0, we conclude b ≤ e from Inequality (9), so that we have a ≥ c + d
due to a + b = d + e + f . Inequality (8) then yields a = c, b = e, and d = 0.
By inserting this into Inequality (10), we conclude c = e = 0, which contradicts
d + e + f > 0. Thus, we have f ≥ 1.

Inequality (8) yields c ≥ a + f ≥ 1. Assuming b ≤ d + e + f we conclude a ≥ c
from a + b = d + e + f , which is a contradiction to c ≥ a + f and f ≥ 1. Thus, we
have b ≥ d + e + f + 1.

Inequality (10) yields
d + f − e

m − 1
− a ≥ 1, (11)

so that d + f ≥ m − 1. Since c ≥ 1, we have c + d + e + f ≥ m, i.e., the game is
(m − 1)-invariant trade robust. ��

We remark that the smallest complete simple game with t = 3, r = 2 being 3-
invariant trade robust, but not 4-invariant trade robust, is given by n = (2, 2, 3) and

M =
(

2 1 0
1 0 3

)

, as already observed in Freixas and Molinero (2009). A certificate

for a failure of 4-invariant trade robustness is given by 〈w1, w1, w2, w2; l1, l1, l1, l2〉,
where w1 = (2, 1, 0), w2 = (1, 0, 3), l1 = (2, 0, 1), and l2 = (0, 2, 3). The smallest
complete simple game with t = 3, r = 2 being 4-invariant trade robust, but not
5-invariant trade robust, is attained by Proposition 6.1 for m = 5.

Proposition 6.2 For m ≥ 3 the sequence of complete simple games uniquely charac-

terized by n = (2, m, m) and M =

⎛

⎜

⎜

⎝

2 1 0
2 0 2
1 0 m
0 m m − 1

⎞

⎟

⎟

⎠

is m-invariant trade robust but

not (m + 1)-invariant trade robust.

Proof For brevity we set w1 = (2, 1, 0), w2 = (2, 0, 2), w3 = (1, 0, m), and w4 =
(0, m, m − 1). The maximal losing coalition types are given by l1 = (2, 0, 1), l2 =
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(1, 0, m − 1), l3 = (1, 1, m − 3), l4 = (0, m, m − 2), and l5 = (0, m − 1, m). Since
(m − 1) · w1 + 2 · w3 = m · l1 + 1 · l5, the game is not (m + 1)-invariant trade robust.

Now assume that there are non-negative integers a1, a2, a3, a4, b1, b2, b3, b4, and
b5 with

∑4
i=1 ai = ∑5

i=1 bi > 0 and

k =
4

∑

i=1

ai · wi ≤
5

∑

i=1

bi · li . (12)

It suffices to consider the cases where k ≤ m. We conclude

2a1 + 2a2 + a3 ≤ 2b1 + b2 + b3, (13)

a1 + ma4 ≤ b3 + m(b4 + b5) − b5, and (14)

2a2 + ma3 + (m − 1)a4 ≤ b1 + (m − 1)

(

5
∑

i=2

bi

)

− 2b3 − b4 + b5. (15)

Let us first assume a4 = 0. Using Inequality (12) and Inequality (13) we obtain

a3 ≥ b2 + b3 + 2b4 + 2b5. (16)

Inserting this into Inequality (15) yields after rearranging

2a2 + b2 + 3b3 + (m + 2)b4 + mb5 ≤ b1. (17)

Since k ≤ m, we have b4 = b5 = 0. (For k = m + 1 we have the solution b1 =
m, b2 = b3 = b4 = 0, b5 = 1, a1 = m − 1, a3 = 2, and a2 = a4 = 0.)
With this, Inequality (14) simplifies to b3 ≥ a1 and Inequality (15) simplifies to
b1 + (m − 1)b2 + (m − 3)b3 ≥ 2a2 + ma3. Twice the first plus the second inequality
gives

b1 + (m − 1)b2 + (m − 1)b3 ≥ 2a1 + 2a2 + ma3. (18)

Inserting Inequality (12) yields

− b1 + (m − 3)(b2 + b3) ≥ (m − 3)a3 + a3. (19)

Using Inequality (16) we conclude a3 = b1 = 0. Using Inequality (16) again, we
conclude b2 = b3 = 0, which is a contradiction to k = b1 + b2 + b3 + b4 + b5 > 0.
Thus, we have a4 ≥ 1 in all cases.

2m − 2 times Inequality (13) plus twice Inequality (14) plus Inequality (15) minus
3m − 2 times Inequality (12) yields

ma1 + ma2 + b2 + b3 + a4 ≤ (m − 1)b1.

Since a4 ≥ 1 and b1 ∈ Z≥0, we have b1 ≥ 1.
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3m −4 times Inequality (13) plus 4 times Inequality (14) plus twice Inequality (15)
minus 6m − 4 times Inequality (12) yields

ma3 ≥ 2a4 + 2b1 + (m − 2)b2 + (m − 2)b3.

Since a4, b1 ≥ 1 and a3 ∈ Z≥0, we have a3 ≥ 1.
m − 3

2 times Inequality (13) plus Inequality (14) plus Inequality (15) minus 2m −2
times Inequality (12) yields

a2 + a3
2

+ a4 ≤ −b2
2

− 3b3
2

+ b5. (20)

Since a3, b4 ≥ 1 and b5 ∈ Z≥0, we have b5 ≥ 2.
k = a1+a2 +a3+a4 ≤ m plus m times Inequality (13) plus Inequality (15) minus

2m + 1 times Inequality (12) yields

2a2 − (m + 1)a4 ≤ −2b2 − 4b3 − (m + 3)b4 − (m + 1)b5 + m. (21)

Since b5 ≥ 2 and a4 ∈ Z≥0, we have a4 ≥ 2.
From Inequality (20) and a2, b2, b3 ≥ 0 we conclude b5 ≥ a3

2 + a4, so that
b5 ≥ a4 + 1 due to a3 ≥ 1 and b5 ∈ Z≥0. From Inequality (21) and a2, b2, b3, b4 ≥ 0
we conclude (m + 1)a4 ≥ (m + 1)b5 − m. Inserting b5 ≥ a4 + 1 finally yields the
contradiction (m + 1)a4 ≥ (m + 1)a4 + 1. ��

We remark that the proof of Proposition 6.2 looks rather technical and complicated
at first sight. However, the underlying idea is very simple. We have to show that the
parametric ILP given by inequalities (12)–(15) and 9 non-negative integer variables
a1, . . . , a4, b1, . . . , b5 has a minimum value of m + 1 for the target function a1 +
a2 + a3 + a4. By relaxing the integrality conditions we obtain a corresponding linear
program. Minimizing a suitable variable yields a fractional lower bound that can be
rounded up. The corresponding dual multipliers are used to conclude the respective
lower bounds directly.

Conjecture 6.3 For each r ≥ 5, i.e. at least 5 coalitional types of shift-minimal
winning coalitions, there exists a sequence

(

Gr
m

)

m≥3 of complete simple games, such
that Gr

m is m-invariant trade robust but not (m + 1)-invariant trade robust.

Proposition 6.4 Let G = (n,M) be a complete simple game with t types of voters
and r shift-minimal winning coalition types, being m-invariant trade robust, but not
(m + 1)-invariant trade robust for some m > 1. Then, there exists a complete simple
game G ′ with t + 1 types of voters and r shift-minimal winning coalition types, which
is m-invariant trade robust, but not (m + 1)-invariant trade robust.

Proof Let m̃1, . . . , m̃r denote the rows of M. If G contains nulls, i.e., if m̃i
t = 0 for

all 1 ≤ i ≤ r , we set m̂i
j = m̃i

j , m̂i
t = 1, m̂i

t+1 = 0, n̂ j = n j , n̂t = 2, and n̂t+1 = nt

for all 1 ≤ j ≤ t − 1, 1 ≤ i ≤ r . Otherwise we set m̂i
j = m̃i

j , m̂i
t = 1, n̂ j = n j , and

n̂t+1 = 2 for all 1 ≤ j ≤ t , 1 ≤ i ≤ r .
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Table 3 W: weighted; –: not
possible; 2-I-T-R: either
weighted or not 2-invariant trade
robust; ∞-I-T-R: there are
games that are not m-invariant
trade robust for all m; NW: not a
weighted game; conjectured
values in bold face

r t

1 2 3 4 ≥5

1 W 2-I-T-R 2-I-T-R 2-I-T-R NW

2 – 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R

3 – 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R

4 – 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R

≥5 – 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R

With this, we choose G ′ = (̂n,M′), where M′ is composed of the r rows
m̂1, . . . , m̂r . We can easily check that G ′ is indeed weighted. Let l = (l1, . . . , lt+1)

be a losing coalitional vector in G ′. If G contains no nulls, then (l1, . . . , lt ) is a losing
vector in G. Otherwise, (l1, . . . , lt−1, lt+1) is a losing coalitional vector in G. Thus,
a possible certificate for the failure of m-invariant trade robustness for G ′ could be
converted into a certificate for the failure of m-invariant trade robustness for G by
deleting the (t − 1)th or t th column of the corresponding vectors—a contradiction.
Similarly, we can convert a certificate for the failure of (m +1)-invariant trade robust-
ness for G into a certificate for the failure of (m + 1)-invariant trade robustness for G ′
by inserting ones into the (t − 1)th or t th column of the corresponding vectors. ��

The same proof is literally valid in the case of trade robustness:

Proposition 6.5 Let G = (n,M) be a complete simple game with t types of voters
and r shift-minimal winning coalition types, being m-trade robust, but not (m + 1)-
trade robust for some m > 1. Then, there exists a complete simple game G ′ with t + 1
types of voters and r shift-minimal winning coalition types, which is m-trade robust,
but not (m + 1)-trade robust.

With these results at hand we may prove that larger classes of games according
to parameters r and t never reduce the largest failures of invariant-trade robustness.
Table 3 summarizes the invariant trade robust test to be used for a game to determine
whether this is weighted. Looking at this table we conclude that 2-invariant trade
robustness is conclusive exactly for the cases determined in Sect. 5 (conjectured values
are printed in bold face), while for others there is no combination of r and t for which
some m > 2 be enough to ensure that the game is weighted.

In words, if one wishes to study the class of complete games with a given pair
(r, t) then 2-invariant trade robustness is a very powerful tool to check weightedness
for t ≤ 2 and r = 1, but for the rest of combinations (r, t) we need to look at
trade-robustness, which is the purpose of the next section.

7 Further trade characterizations

It is well known that all simple games with up to 3 voters are weighted while there are
non-weighted simple games for n ≥ 4 voters. Restricting the class of simple games to
swap robust simple games, i.e. complete simple games, one can state that up to 5 voters
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each such game is weighted while for n ≥ 6 voters there are non-weighted complete
simple games. Going over to 2-invariant trade robustness does not help too much. As
shown in Freixas and Molinero (2009), precisely 3 of the 60 non-weighted complete
simple games with n = 6 voters are 2-invariant trade robust but not 3-invariant trade
robust. For the classical trade robustness the same authors have shown that all 2-trade
robust complete simple games with up to seven voters are weighted. By an exhaustive
enumeration we have shown that the same statement is true for n = 8 voters, i.e.,
there are exactly 2 730 164 weighted games and the remaining 13 445 024 complete
simple games are not 2-trade robust. As shown in Gvozdeva and Slinko (2011), there
are complete simple games with n = 9 voters, which are 3-trade robust but not 4-trade
robust. The corresponding example, belonging to a parametric family, consists of nine
different types of players, i.e., no two players are equivalent.

If the number t of types of players is restricted we can obtain tighter weighted
characterizations. For t = 1 the games are alwaysweighted and for t = 2weightedness
is equivalent with 2-trade robustness (or 2-invariant trade robustness for complete
simple games). Based on this characterization one can computationally determine the
number of complete simple games with two types of voters which are either weighted,
i.e. 2-invariant trade robust, or not weighted, i.e. not 2-invariant trade robust. In Freixas
et al. (2012) this calculation was executed for n ≤ 40 voters. It turns out that the
fraction of non 2-invariant trade robust complete simple games quickly tends to 1.
An exact, easy-to-evaluate, and exponentially growing formula for the number of
complete simple games with two types of voters is proven in Freixas et al. (2012),
Kurz and Tautenhahn (2013). From the upper bound n5/15 + 4n4, see Freixas and
Kurz (2014b), for the number of weighted games with two types of voters, we can
conclude that this is generally true. We remark that it is not too hard to compute the
number of 2-invariant trade robust complete simple games with t = 2 for n ≤ 200,
see Freixas and Kurz (2013), so that we abstain from giving a larger table.

For t = 3 types of voters we have checked by an exhaustive enumeration that up to
n = 10 voters each complete simple game is either weighted or not 2-trade robust. For

n = 11 voters we have the four examples given by n = (3, 3, 5),M1 =
(

2 2 3
1 2 5

)

,

M2 =
(

1 1 2
0 1 4

)

, M3 =

⎛

⎜

⎜

⎝

3 3 0
3 0 4
2 3 2
0 3 5

⎞

⎟

⎟

⎠

, and M4 =

⎛

⎜

⎜

⎝

3 0 0
2 0 2
0 3 1
0 0 5

⎞

⎟

⎟

⎠

, which are all

2-trade robust but not 3-trade robust. This resolves an open problem from Freixas and
Molinero (2009). We have computationally checked all complete simple games with
three types of voters, i.e. t = 3, and up to 17 voters, i.e. |N | ≤ 17, see Table 4. It
seems that the number of games which are 2-trade robust but not 3-trade robust grows
rather slowly. Indeed, up to 17 players every 3-trade robust game is weighted.

For t = 4 types and n = 9 voters there are several complete simple games which
are 2-trade robust but not 3-trade robust, e.g. the one given by n = (1, 2, 3, 3) and
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Table 4 Classification of complete simple games with three types of up to 17 voters

n #CG #WG #N-2T #N-3T

3 0 0 0 0

4 6 6 0 0

5 50 50 0 0

6 262 256 6 0

7 1114 976 138 0

8 4278 3112 1166 0

9 15, 769 8710 7059 0

10 58, 147 22, 084 36, 063 0

11 221, 089 51, 665 169, 420 4

12 886, 411 113, 211 773, 186 14

13 3, 806, 475 234, 649 3, 571, 788 38

14 17, 681, 979 463, 872 17, 218, 019 88

15 89, 337, 562 879, 989 88, 457, 385 188

16 492, 188, 528 1, 610, 011 490, 578, 137 380

17 2, 959, 459, 154 2, 852, 050 2, 956, 606, 348 756

Parameters: size (n), number of complete simple games (#CG), number of weighted simple games (#WG),
number of non 2-trade robust complete simple games (#N-2T ), number of non 3-trade, but 2-trade, robust
complete simple games (#N-3T )

M =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 1 0
0 2 0 1
0 1 2 0
0 1 1 2
0 0 3 2

⎞

⎟

⎟

⎟

⎟

⎠

. For t = 4 and n = 10 there are already 120 complete simple

games which are 2-trade robust but not 3-trade robust.
The next cases to look at are t = 3 and r = 2. For both cases we have already

presented examples which are 2-trade robust but not 3-trade robust.
In the next section we state a conjecture and ask for several questions related to the

problem in relation with the two parameters r and t of a complete game.

8 Open problems

Still we found no example with 3 types of voters which is 3-trade robust but not 4-trade
robust.

Question 8.1 Is every 3-trade robust complete simple game with t = 3 types of voters
weighted?

Question 8.2 Is every 3-trade robust complete simple game with r = 2 shift-minimal
winning coalition types weighted?

As a first step into the direction of these two questions, we have looked at the
intersection of both classes, i.e., complete simple games with t = 3 and r = 2. The
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game corresponding to the previously presented matrices M1 and M2 for n = 11
voters are of this type and can be generalized:

Lemma 8.3 For each k1, k2, k3, l ∈ N the games uniquely characterized by n1 =
(n1, n2, n3), M1 =

(

n1 − (l + 1) n2 − 1 n3 − (l + 2)
n1 − 2(l + 1) n2 − 1 n3

)

, where n1 = 3 +
k1 + 2l, n2 = 3 + k2, n3 = 5 + k3 + 2l, and n2 = (n1, n2, 5 + 2l), M2 =
(

l + 1 1 l + 2
0 1 2(l + 2)

)

are 2-trade robust but not 3-trade robust.

We skip the easy but somewhat technical and lengthy proof. Having the nice
parametrization at hand, we can easily state the corresponding generating function,
whose coefficients in the resulting power series serve to count the number of those
games, where the exponent denotes the number of players:

x11
(

1

(1 − x)3(1 − x4)
+ 1

(1 − x)2(1 − x4)

)

= x11(2 − x)

(1 − x)3(1 − x4)

We deduce that asymptotically there are n3
24 + O(n2) such games.3

Conjecture 8.4 All 3-trade robust complete simple games with t = 3 and r = 2 are
weighted. Additionally, the 2-trade robust but not 3-trade robust games are exactly
those from Lemma 8.3.

By an exhaustive enumeration we have checked Conjecture 8.4 up to n = 20
voters. From the previous results it is not clear whether a small number of types or
shift-minimalwinning coalition types allows to restrict the check ofm-trade robustness
to a finite m.

Question 8.5 For which values of t does a sequence Gk of complete simple games
with t types of voters exist such that Gk is k-trade robust but not (k + 1)-trade robust
for all k ≥ 2?

Question 8.6 For which values of r does a sequence Gk of complete simple games
with r shift-minimal winning coalition types exist such that Gk is k-trade robust but
not (k + 1)-trade robust for all k ≥ 2?

Any progress concerning answers for either the conjecture or the questions posed
would be of interest. In Table 5 we combine the results from Sect. 5 with the questions
of this section. For r = 2 or t = 3 we have not found any example being 3-trade
robust but not weighted, but this should be checked formally and become a conjecture
for future work (in Table 5 it appears in black).

3 There is no connection to the efficient computation of power indices. In general, generating functions are
just a theoretical tool from enumerative combinatorics in order to compute exact formulas for recurrence
relations.
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Table 5 W: weighted; –: not possible; 2-I-T-R: either weighted or not 2-invariant trade robust; 3-T-R for
small values of n all games are either weighted or not 3-trade robust—still a conjecture; NW: not a weighted
game; ?: it is not known if some m > 2 suffices to assert that m-trade robustness implies weighted

r t

1 2 3 4 ≥5

1 W 2-I-T-R 2-I-T-R 2-I-T-R NW

2 – 2-I-T-R 3-T-R 3-T-R 3-T-R

3 – 2-I-T-R 3-T-R ? ?

4 – 2-I-T-R 3-T-R ? ?

≥5 – 2-I-T-R 3-T-R ? ?

9 Conclusion

This paper looks at the characterization ofweighted games (threshold functions)within
the class of simple games (switching functions). We have tried to gather results and
efforts that have taken place in different areas of study. The new results presented in
this paper have been exposed in the simple game terminology since some significant
advances have been held in this area in the last two decades. To study themain problem
we have restricted ourselves to the class of complete games since non-complete games
are not swap-robust and therefore not weighted.

For complete games the test of trade robustness can be computationally relaxed
to invariant trade robustness. The strongest condition for invariant trade robustness,
2-invariant trade robustness, is conclusive for deciding if a given complete game is
weighted if the complete game has either a unique coalitional type of shift-minimal
winning coalitions or two types of equivalent voters. Larger values for the number of
shift-minimal winning coalitions or for the number of equivalence classes show that
the tests of trade robustness and invariant trade robustness are complementary. We
have found some conspicuous examples of non-weighted games being k-trade robust
(or k′-invariant trade robust for some k′ ≥ k) but not (k + 1)-trade robust (or not
(k′ + 1)-invariant trade robust). We have incorporated a number of open questions in
hopes of others taking up the challenges that we have left over.

Acknowledgements This researchwas partially supported by funds from the SpanishMinistry of Economy
and Competitiveness (MINECO) and from the European Union (FEDER Funds) under Grant MTM2015-
66818-P (MINECO/FEDER).

References

Anthony, M., & Holden, S. (1994). Quantifying generalization in linearly weighted neural networks. Com-
plex Systems, 8, 91–114.

Bean, D., Friedman, J., & Parker, C. (2008). Simple majority achievable hierarchies. Theory and Decision,
65, 285–302.

Beimel, A., Tassa, T., & Weinreb, E. (2008). Characterizing ideal weighted threshold secret sharing. SIAM
Journal on Discrete Mathematics, 22, 360–397.

123



On the characterization of weighted simple games 497

Beimel,A.,&Weinreb, E. (2006).Monotone circuits formonotoneweighted threshold families. Information
Processing Letters, 97, 12–18.

Bohossian, V., & Bruck, J. (2003). Algebraic techniques for constructing minimal weights threshold func-
tions. SIAM Journal on Discrete Mathematics, 16, 114–126.

Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155.
Chvátal, V. (1983). Linear Programming. New York: W.H. Freeman.
Chow, C. (1961). Boolean functions realizable with single threshold devices. In Proceedings of the Institute

of Radio Engineers, Vol. 49 (pp. 370–371).
Dedekind, R. (1897). Über Zerlegungen von Zahlen durch ihre größten gemeinsammen Teiler. Gesammelte

Werke, 1, 103–148.
de Keijzer, B., Klos, T., & Zhang, Y. (2014). Finding optimal solutions for voting game design problems.

Journal of Artificial Intelligence, 50, 105–140.
Dubey, P., & Shapley, L. (1979). Mathematical properties of the Banzhaf power index. Mathematics of

Operations Research, 4, 99–131.
Einy, E., & Lehrer, E. (1989). Regular simple games. International Journal of Game Theory, 18, 195–207.
Elgot, C. (1961). Truth functions realizable by single threshold organs. In AIEE Conference Paper 60-1311

(October), revised November 1960; paper presented at IEEE Symposium on Switching Circuit Theory
and Logical Design.

Freixas, J., & Kurz, S. (2013). The golden number and Fibonacci sequences in the design of voting systems.
European Journal of Operational Research, 226, 246–257.

Freixas, J., & Kurz, S. (2014). Enumerations of weighted games with minimum and an analysis of voting
power for bipartite complete games with minimum. Annals of Operations Research, 222, 317–339.

Freixas, J., & Kurz, S. (2014). On minimum integer representations of weighted games. Mathematical
Social Sciences, 67, 9–22.

Freixas, J., & Molinero, X. (2009). Simple games and weighted games: A theoretical and computational
viewpoint. Discrete Applied Mathematics, 157, 1496–1508.

Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers.
Optimization Methods and Software, 25, 203–215.

Freixas, J., Molinero, X., & Roura, S. (2012). Complete voting systems with two types of voters: Weight-
edness and counting. Annals of Operations Research, 193, 273–289.

Freixas, J., & Pons, M. (2010). Hierarchies achievable in simple games. Theory and Decision, 68, 393–404.
Freixas, J., & Puente, M. A. (1998). Complete games with minimum. Annals of Operations Research, 84,

97–109.
Freixas, J., & Puente,M.A. (2008). Dimension of complete simple gameswithminimum.European Journal

of Operational Research, 188, 555–568.
Freixas, J., & Zwicker, W. (2003). Weighted voting, abstention, and multiple levels of approval. Social

Choice and Welfare, 21, 399–431.
Friedman, J., McGrath, L., & Parker, C. (2006). Achievable hierarchies in voting games. Theory and

Decision, 61, 305–318.
Gabelman, I. (1961). The functional behavior of majority (threshold) elements, Ph.D. dissertation, Electrical

Engineering Department, Syracuse University.
Golomb, S. (1959). On the classification of Boolean functions. IRE Transactions on Circuit Theory, 6,

176–186.
Gvozdeva, T., & Slinko, A. (2011). Weighted and roughly weighted simple games. Mathematical Social

Sciences, 61, 20–30.
Hammer, P., & Holzman, R. (1992). Approximations of pseudoboolean functions; applications to game

theory. ZOR Methods and Models of Operations Research, 36, 3–21.
Hammer, P., Ibaraki, T., & Peled, U. (1981). Threshold numbers and threshold completions. Annals of

Discrete Mathematics, 11, 125–145.
Hammer, P., Kogan, A., & Rothblum, U. (2000). Evaluation, strength and relevance of Boolean functions.

SIAM Journal on Discrete Mathematics, 13, 302–312.
Herranz, J. (2011). Any 2-asummable bipartite function is weighted threshold. Discrete Applied Mathemat-

ics, 159, 1079–1084.
Houy, N., & Zwicker, W. (2014). The geometry of voting power: Weighted voting and hyper-ellipsoids.

Games and Economic Behavior, 84, 7–16.
Hu, S. (1965). Threshold Logic. Berkeley: University of California Press.
Isbell, J. (1956). A class of majority games. Quarterly Journal of Mathematics Oxford Series, 7, 183–187.

123



498 J. Freixas et al.

Isbell, J. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439.
Kartak, V. M., Kurz, S., Ripatti, A. V., & Scheithauer, G. (2015). Minimal proper non-IRUP instances of

the one-dimensional cutting stock problem. Discrete Applied Mathematics, 187, 120–129.
Kilgour, D. (1983). A formal analysis of the amending formula of Canada’s Constitution Act. Canadian

Journal of Political Science, 16, 771–777.
Kurz, S. (2012). On minimum sum representations for weighted voting games. Annals of Operations

Research, 196, 361–369.
Kurz, S., Molinero, X., & Olsen, M. (2016). On the construction of high-dimensional simple games. In

Proceedings of the 22nd European Conference on Artificial Intelligence (pp. 1–13).
Kurz, S., & Napel, S. (2016). Dimension of the Lisbon voting rules in the EU Council: A challenge and

new world record. Optimization Letters, 10, 1245–1256.
Kurz, S., & Tautenhahn, N. (2013). On Dedekind’s problem for complete simple games. International

Journal of Game Theory, 42, 411–437.
Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm.

Machine Learning, 2, 285–318.
May, K. (1952). A set of independent, necessary and sufficient conditions for simple majority decision.

Econometrica, 20, 680–684.
Muroga, S. (1971). Threshold Logic and Its Applications. New York: Wiley-Interscience.
Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics

Computation, 16, 459–472.
Muroga, S., Toda, I., & Takasu, S. (1961). Theory of majority decision elements. Journal Franklin Institute,

271, 376–418.
Muroga, S., Tsuboi, T., & Baugh, R. (1970). Enumeration of threshold functions of eight variables. IEEE

Transactions on Computers C-19(9), 818–825.
Neumann, J. V., &Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: Princeton

University Press.
Parberry, I. (1994). Circuit Complexity and Neural Networks. Cambridge: The M.I.T. Press.
Peled, U., & Simeone, B. (1985). Polynomial-time algorithms for regular set-covering and threshold syn-

thesis. Discrete Applied Mathematics, 12, 57–69.
Peleg, B. (1968). On weight of constant sum majority games. SIAM Journal of Applied Mathematics, 16,

527–532.
Picton, P. (2000). Neural Networks (2nd ed.). Great Britain: The Macmillan Press, Ltd.
Ramamurthy, K. (1990). Coherent Structures and Simple Games. Dordrecht: Kluwer Academic Publishers.
Reiterman, J., Rödl, V., Sinajova, E., & Tuma, M. (1985). Threshold hypergraphs. Discrete Applied Math-

ematics, 54, 193–200.
Roychowdhury, V., Siu, K., & Orlitsky, A. (Eds.). (1994). Theoretical Advances in Neural Computation

and Learning. Stanford, USA: Kluwer Academic Publishers.
Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied Mathe-

matics, 17, 1163–1170.
Simmons, G. (1990). How to (really) share a secret. In Proceedings of the 8th Annual International Cryp-

tology Conference on Advances in Cryptology. Springer, London (pp. 390–448).
Siu, K., Roychowdhury, V., & Kailath, T. (1995). Discrete Neural Computation: A Theoretical Foundation.

New Jersey: Prentice Hall.
Tassa, T. (2007). Hierarchical threshold secret sharing. Journal of Cryptology, 20, 237–264.
Taylor, A. D., & Pacelli, A. (2008). Mathematics and Politics (2nd ed.). New York: Springer.
Taylor, A. D., & Zwicker,W. S. (1992). A characterization of weighted voting. Proceedings of the American

Mathematical Society, 115, 1089–1094.
Taylor, A. D., & Zwicker, W. S. (1995). Simple games and magic squares. Journal of Combinatorial Theory

Series A, 71, 67–88.
Taylor, A. D., & Zwicker, W. S. (1999). Simple Games: Desirability Relations, Trading, and Pseudoweight-

ings. New Jersey: Princeton University Press.

123


	On the characterization of weighted simple games
	Abstract
	1 Introduction
	2 Terminology in the context of voting simple games
	3 Some results on the characterization of weighted games
	3.1 A list of analogies in the context of threshold logic

	4 Symmetries and a parametrization of complete simple games
	4.1 Coalitional types
	4.2 A parametrization of complete simple games
	4.3 Two parameters for complete simple games

	5 Cases for which the test of 2-invariant trade robustness is conclusive
	5.1 The 2-invariant characterization for r=1
	5.2 The 2-invariant characterization for t=2

	6 Further invariant trade characterizations
	7 Further trade characterizations
	8 Open problems
	9 Conclusion
	Acknowledgements
	References




