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Abstract The main goal of this paper is to investigate which normative requirements,
or axioms, lead to exponential and quasi-hyperbolic forms of discounting. Exponen-
tial discounting has a well-established axiomatic foundation originally developed by
Koopmans (Econometrica 28(2):287–309, 1960, 1972) and Koopmans et al. (Econo-
metrica 32(1/2):82–100, 1964) with subsequent contributions by several other authors,
including Bleichrodt et al. (J Math Psychol 52(6):341–347, 2008). The papers by
Hayashi (J Econ Theory 112(2):343–352, 2003) and Olea and Strzalecki (Q J Econ
129(3):1449–1499, 2014) axiomatize quasi-hyperbolic discounting. The main con-
tribution of this paper is to provide an alternative foundation for exponential and
quasi-hyperbolic discounting, with simple, transparent axioms and relatively straight-
forward proofs. Using techniques by Fishburn (The foundations of expected utility.
Reidel Publishing Co, Dordrecht, 1982) and Harvey (Manag Sci 32(9):1123–1139,
1986), we show that Anscombe and Aumann’s (Ann Math Stat 34(1):199–205, 1963)
version of Subjective Expected Utility theory can be readily adapted to axiomatize the
aforementioned types of discounting, in both finite and infinite horizon settings.
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186 N. Anchugina

1 Introduction

The axiomatic foundation of intertemporal decisions is a fundamental question in
economics and generates considerable research interest. Despite the fact that a number
of possible ways of discounting have appeared in the literature so far, two types have
been predominantly used: exponential discounting, first introduced by Samuelson
(1937), and quasi-hyperbolic discounting (Phelps and Pollak 1968; Laibson 1997).
The important question to be answered is which axioms allow us to say that the
preferences of a decision-maker can be represented using the discounted utility model
with exponential or quasi-hyperbolic discount functions? Existing axiom systems for
intertemporal decisions address this question. These systems can be roughly divided
into two main groups: those with preferences over deterministic consumption streams
and those with preferences over stochastic consumption streams.

The first group has been the leading approach in the area, both for exponential and
quasi-hyperbolic functions. In this framework, a consumption set is endowed with
topological structure, and Debreu’s (1960) theorem on additive representation is a key
mathematical tool.

Koopmans’ result for exponential discounting with deterministic consumption
streams (Koopmans 1960, 1972; Koopmans et al. 1964) remains the most well known.
A revised formulation of Koopmans’ result was proposed by Bleichrodt et al. (2008),
using alternative conditions on preferences. A similar approach was also suggested by
Harvey (1986). The axiomatic foundation of exponential discounting for the special
case of a single dated outcome was presented by Fishburn and Rubinstein (1982).

In a non-stochastic framework with a discrete time space, quasi-hyperbolic dis-
counting has been axiomatized byOlea and Strzalecki (2014).1 Building onBleichrodt
et al. (2008) they provide three alternative sets of axioms. Olea and Strzalecki’s axiom-
atization will be discussed in more detail in Sect. 6.

All the axiomatization systems mentioned above are formulated for infinite con-
sumption streams. The finite horizon case has rarely been discussed. For exponential
discounting, however, it can be found in Fishburn (1970).

The second group of axiomatic systems considers stochastic consumption streams.
To obtain an additive form, the fundamental representation theorem of von Neumann
andMorgenstern (vNM) (1947) is used. The application of this approach to exponential
discounting was given by Epstein (1983). A consumption stream is considered to be an
outcome of a lottery. The axiomatization of quasi-hyperbolic discounting by Hayashi
(2003) builds on Epstein’s (1983) axiom system. BothHayashi and Epstein axiomatize
preferences over infinite stochastic consumption streams.

In this paper, we work with preferences over streams of consumption lotteries,
i.e., a setting in which there is a lottery in each period of time. In other words, we
restrict Epstein and Hayashi’s framework to product measures. This framework allows
us to apply Anscombe and Aumann’s (1963) result from Subjective Expected Utility
Theory. The main advantage of this method is that it gives an opportunity to construct

1 Pan et al. (2015) have recently provided a generalization of quasi-hyperbolic discounting to continuous
time. The proposed generalization is called two-stage exponential discounting. An axiomatic foundation
for this discount function is given for single dated outcomes.
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the discussed functional forms of discounting in a simplerway. Importantly, the present
work establishes a unified treatment of exponential and quasi-hyperbolic discounting
in both finite and infinite settings. With Fishburn (1982) and Harvey (1986) as the key
sources of technical inspiration, our approach requires relatively simple axioms and
facilitates proofs that are relatively straightforward.

2 Preliminaries

Assume that the objectives of a decision-maker can be expressed by a preference
order � on the set of alternatives Xn , where n may be ∞. Think of these alternatives
as dated streams, for time periods t ∈ {1, 2, . . . , n}.2 We say that a utility function
U : Xn → R represents this preference order, if for all x, y ∈ Xn , x � y if and only
if U (x) ≥ U (y).

We assume that X is a mixture set. That is, for every x, y ∈ X and every λ ∈ [0, 1],
there exists xλy ∈ X satisfying:

• x1y = x ,
• xλy = y(1 − λ)x ,
• (xμy)λy = x(λμ)y.

Since X is amixture set, the set Xn is easily seen to be amixture set under the following
mixture operation: xλy = (x1λy1, . . . , xnλyn), where x, y ∈ Xn and λ ∈ [0, 1].

The utility function u : X → R is called mixture linear if for every x, y ∈ X we
have u(xλy) = λu(x) + (1 − λ)u(y) for every λ ∈ [0, 1].

The binary relation � on Xn induces a binary relation (also denoted �) on X in the
usual way: for any x, y ∈ X the preference x � y holds if and only if (x, x, . . . , x) �
(y, y, . . . , y).

The function U is called a discounted utility function if

U (x) =
n∑

t=1

D(t)u(xt ),

for some non-constant u : X → R and some D : N → Rwith D(1) = 1. The function
D is called the discount function. If u is mixture linear (and non-constant), then the
function U is called a discounted expected utility function.

There are two types of discount functions which are commonly used in modeling
of time preferences:

• Exponential discounting: D(t) = δt−1, where δ ∈ (0, 1) is called a discount factor.
• Quasi-hyperbolic discounting:

2 It should also be mentioned that our setting considers a discrete time space. A continuous time framework
can be found, for example, in the above-mentioned paper by Fishburn and Rubinstein (1982) and in a
generalized model of hyperbolic discounting introduced by Loewenstein and Prelec (1992). Harvey (1986)
analyses discrete sequences of timed outcomes with a continuous time space.
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D(t) =
{

1 if t = 1,
βδt−1 if t ≥ 2.

for some δ ∈ (0, 1) and β ∈ (0, 1].
The important characteristic of quasi-hyperbolic discounting is that it exhibits

present bias. Present bias means that delaying two consumption streams from present
(t = 1) to the immediate future (t = 2) can change the preferences of a decision-maker
between these consumption streams.

The results of the recent experiments by Chark et al. (2015) show that decision-
makers are decreasingly impatient within the near future; however, they discount the
remote future at a constant rate. In other words, present bias may extend over the
present moment (t = 1) to the near future t > 2, with a constant discount factor from
some period T . This gives a further generalization of quasi-hyperbolic discounting,
which we call semi-hyperbolic discounting:

D(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if t = 1,
t−1∏

i=1

βiδ if 1 < t ≤ T,

δt−T
T−1∏

i=1

βiδ if t > T .

We use SH(T ) to denote this discount function (for given δ, β1, . . . , βT−1). This form
of discounting was previously applied to model the time preferences of a decision-
maker in a consumption-savings problem (Young 2007). Our SH(T ) specification
is not quite the same as the notion of semi-hyperbolic discounting used in Olea and
Strzalecki (2014). They apply the term to any discount functionwhich satisfies D(t) =
δt−T D(T ) for all t > T (for some T ). This class includes SH(T ), but is wider.
The possibility of generalizing quasi-hyperbolic discounting was earlier suggested by
Hayashi (2003). The form of the discount function he proposed is:

D(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if t = 1,
t−1∏

i=1

β ′
i if 1 < t ≤ T,

δt−T
T−1∏

i=1

β ′
i if t > T .

By substituting δβt = β ′
t for all t ≤ T − 1 it is not difficult to see that semi-hyperbolic

discounting SH(T ) coincides with the form suggested by Hayashi (2003). It is worth
mentioning that he does not provide an axiomatization of this form of discounting,
pointing out that this case is somewhat complicated. In our framework, however,
the axiomatization of semi-hyperbolic discounting can be obtained as a relatively
straightforward extension of the axiomatization of quasi-hyperbolic discounting.
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The evidence of Chark et al. (2015) on extended present bias suggests the follow-
ing restrictions on the coefficients in SH(T ): β1 < β2 < · · · < βT−1. In our version
of SH(T ) we will impose the weaker requirements β1 ≤ β2 ≤ · · · ≤ βT−1, and
βt ∈ (0, 1] for all t ≤ T − 1 and δ ∈ (0, 1). Imposing these restrictions gives some
advantages, as it can be immediately seen that exponential and quasi-hyperbolic dis-
counting are the special cases of semi-hyperbolic discounting: SH(1) is the exponential
discount function, whereas SH(2) is the quasi-hyperbolic discount function.

Finally, another possible generalization of quasi-hyperbolic discounting for single
dated outcomes was offered by Pan et al. (2015). The discount function they use is
called two-stage exponential (TSE) discounting:

D(t) =
{

αt if t ≤ λ,

( α
β
)λβ t if t > λ,

where t ∈ [0, T ], α, β ∈ [0, 1], and λ ∈ [0, T ] is called a switch point. The key
characteristics of TSE discounting are that it has a constant discount factor α before a
switch point λ and a constant discount factor β after a switch point λ. The coefficient
( α
β
)λ is included to guarantee the continuity of the discount function. TSE discounting

is given for continuous time. Note, however, that TSE discounting can be viewed as
an alternative generalization of quasi-hyperbolic discounting and it is distinctively
different from semi-hyperbolic discounting.

3 AA representations

We say that the preference order � on Xn has an Anscombe and Aumann (AA)
representation, if for every x, y ∈ Xn :

x � y if and only if
n∑

t=1

wt u(xt ) ≥
n∑

t=1

wt u(yt ),

where u : X → R is non-constant and mixture linear and wt ≥ 0 for each t with at
least onewt > 0.We also say that the pair (u,w) provides an AA representation for�.

A pre-condition for obtaining discounting in an exponential or quasi-hyperbolic
form is additive separability. In the framework of preferences over streams of lotteries,
Anscombe and Aumann’s (1963) theorem provides axioms which give an additively
separable representationwhen n < ∞. Anscombe andAumann formulated their result
for acts rather than temporal streams. Here, states of the world are replaced by time
periods.

3.1 Finite case (n < ∞)

For n < ∞ the following axioms are necessary and sufficient for anAA representation:
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190 N. Anchugina

Axiom F1 (Weak order) � is a weak order on Xn .
Axiom F2 (Non-triviality) There exist some a, b ∈ X such that

(a, a, . . . , a) � (b, b, . . . , b).

Axiom F3 (Mixture independence) x � y if and only if xλz � yλz for every
λ ∈ (0, 1) and every x, y, z ∈ Xn .
Axiom F4 (Mixture continuity) For every x, y, z ∈ Xn the sets {α : xαz � y} and
{β : y � xβz} are closed subsets of the unit interval.
Axiom F5 (Monotonicity) For every x, y ∈ Xn if xt � yt for every t then x � y.

Theorem 1 (AA) The preferences � on Xn satisfy axioms F1–F5 if and only if there
exists an AA representation (u,w) for � on Xn. Moreover, (u′,w′) is another AA
representation for � on Xn if and only if there are some A > 0, some B and some
C > 0 such that u′ = Au + B and w′ = Cw.

The proof of the theorem for the general mixture set environment can easily be
constructed by combining the arguments in Fishburn (1982) and Ryan (2009). Evi-
dently, the key axiom here is the condition of mixture independence. It is a strong
axiom which imposes an additive structure.

3.2 Infinite case (n = ∞)

Anscombe and Aumann’s result may be extended to the infinite horizon case. One
possible extension is given by Fishburn (1982). However, we give a slightly modified
version which incorporates ideas from Harvey (1986).

Fix some x0 ∈ X . We refer to the same x0 throughout the rest of the paper. A
consumption stream x is called ultimately x0-constant if there exists T such that
x = (x1, . . . , xT , x0, x0, . . .). Note the difference between this term and the related
notion of an “ultimately constant” stream in Bleichrodt et al. (2008) and Olea and
Strzalecki (2014), which does not fix the value at which consumption is ultimately
constant. Let XT be the set of ultimately x0-constant consumption streams of length
T . Denote the union of the sets XT over all T as X∗. Let X∗∗ be the union of X∗ and
all constant streams. It is not hard to see that both X∗, X∗∗ ⊂ X∞ are mixture sets.

We must mention that the fixed x0 serves two purposes: first, it will be needed
to state the convergence axiom; and second, it allows us to define the class X∗ of
ultimately x0-constant streams in a way that makes them a strict subset of the usually
defined class. Since some of the axioms only restrict preferences over X∗∗ this second
aspect confers some advantages.

Axiom I1 (Weak order) � is a weak order on X∞.
Axiom I2 (Non-triviality) There exist some a, b ∈ X such that a � x0 � b.

Axiom I2 implies that x0 is an interior point with respect to preference. It restricts
both � and the choice of the fixed element x0.

Axiom I3 (Mixture independence) x � y if and only if xλz � yλz for every
λ ∈ (0, 1) and every x, y, z ∈ X∗∗.
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A simple framework for the axiomatization... 191

Axiom I4 (Mixture continuity) For every x, z ∈ X∗∗ and every y ∈ X∞ the sets
{α : xαz � y} and {β : y � xβz} are closed subsets of the unit interval.
Axiom I5 (Monotonicity) For every x, y ∈ X∞: if xt � yt for every t then x � y.

We have applied a weaker version of the monotonicity axiom in comparison with the
interperiod monotonicity used by Fishburn. However, Axiom I5 is sufficient to obtain
an AA representation.

For the statement of the next axiomwe need to introduce some notation. Let [a]k =
(x0, . . . , x0, a, x0, . . .) where a ∈ X is in the kth position. Using this notation, we
state the following axiom:

Axiom I6 (Convergence) For every x = (x1, x2, . . .) ∈ X∞, every x+, x− ∈ X
and every k:
• if [x+]k � [xk]k there exists T+ ≥ k such that

x � x+
k,T for all T ≥ T+,

where x+
k,T = (x1, x2, . . . , xk−1, x+, xk+1, . . . , xT , x0, x0, . . .);

• if [x−]k ≺ [xk]k there exists T− ≥ k such that

x � x−
k,T for all T ≥ T−,

where x−
k,T = (x1, x2, . . . , xk−1, x−, xk+1, . . . , xT , x0, x0, . . .).

Our convergence axiom differs from Axiom B6, that was used by Fishburn:

Axiom B6 For some x̂ ∈ X , every x, y ∈ X∞ and every λ ∈ (0, 1):
• if x � y, then there exists T such that (x1, . . . , xn, x̂, x̂, . . .) � xλy for all
n ≥ T ;

• if x ≺ y, then there exists T such that (x1, . . . , xn, x̂, x̂, . . .) � xλy for all
n ≥ T .

Instead, Axiom I6 adapts ideas from Harvey (1986).3 Axiom I6 is more appealing
for our purposes as it not only guarantees the convergence of the AA representation,
but also allows us to relax two axioms, mixture independence and mixture continuity,
which are no longer required to hold on all of X∞.

We thus obtain the following representation:

Theorem 2 (Infinite AA) The preferences � on X∞ satisfy axioms I1–I6 if and only
if there exists an AA representation (u,w) for� on X∞. Moreover, (u′,w′) is another
AA representation for� on X∞ if and only if there are some A > 0, some B and some
C > 0 such that u = Au′ + B and w = Cw′.

The proof of Theorem 2 is given in the Appendix. It combines elements of the
arguments in Fishburn (1982), Harvey (1986) and Ryan (2009).

3 It is worthmentioning that Fishburn’smotivation for the convergence axiomB6 looks somewhat contrived
in the context of acts (Fishburn 1982, p. 113). However, it becomes very natural in the context where states
of the world are re-interpreted as periods of time.
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192 N. Anchugina

4 Discounted utility: finite case (n < ∞)

4.1 Exponential discounting

Recall that a preference � on Xn is represented by an exponentially discounted utility
function if there exists a non-constant function u : X → R and a parameter δ ∈ (0, 1)
such that

U (x) =
n∑

t=1

δt−1u(xt ).

If u is mixture linear (and non-constant), then we say that the pair (u, δ) provides an
exponentially discounted expected utility representation.

Based on Theorem 1 it is easy to obtain such a representation. To do so, an adjust-
ment of non-triviality and two additional axioms—impatience and stationarity—are
required.

Axiom F2′ (Essentiality of period 1) There exist some a, b ∈ X and some x ∈ Xn

such that (a, x2, . . . , xn) � (b, x2, . . . , xn).

Axiom F6 (Impatience) For all a, b ∈ X if a � b, then for all x ∈ Xn

(a, b, x3, . . . , xn) � (b, a, x3, . . . , xn).

AxiomF7 (Stationarity) Thepreference (a, x2, . . . , xn) � (a, y2, . . . , yn)holds if
and only if (x2, . . . , xn, a) � (y2, . . . , yn, a) for every a ∈ X and every x, y ∈ Xn .

It is not hard to see that essentiality of each period t follows from the essentiality
of period 1 and the stationarity axiom.

Now the following result can be stated:

Theorem 3 (Exponential discounting) The preferences � on Xn satisfy axioms F1,
F2′, F3–F7 if and only if there exists an exponentially discounted expected utility rep-
resentation (u, δ) for � on Xn. Moreover, (u′, δ′) is another exponentially discounted
expected utility representations for � on Xn if and only if there are some A > 0 and
some B such that u = Au′ + B and δ = δ′.

Proof It is straightforward to show that the axioms are implied by the representation.
Conversely, suppose the axioms hold. Note that non-triviality follows from essentiality
of period 1 and monotonicity.

By Theorem 1 we, therefore, know that � has an AA representation (u,w). Define
�′ on Xn−1 as follows:

(x1, . . . , xn−1) �′ (y1, . . . , yn−1) ⇔ (x0, x1, . . . , xn−1) � (x0, y1, . . . , yn−1).

Then �′ is represented by:

U ′(x) = w2u(x1) + · · · + wnu(xn−1).
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A simple framework for the axiomatization... 193

Next, define �′′ on Xn−1 as follows:

(x1, . . . , xn−1) �′′ (y1, . . . , yn−1) ⇔ (x1, . . . , xn−1, x0) � (y1, . . . , yn−1, x0).

Then �′′ is represented by:

U ′′(x) = w1u(x1) + · · · + wn−1u(xn−1).

According to stationarity, these preferences are equivalent
(
�′≡�′′)with two different

AA representations (U ′ andU ′′). Preference orders �′≡�′′ satisfy the AA axioms on
Xn−1. Recall that wt are unique up to a scale. Hence, wt+1 = δwt for some δ > 0
and it follows that

wn = δwn−1 = δ2wn−2 = · · · = δn−twt = · · · = δn−1w1.

Since all periods are essential it is without loss of generality to set w1 = 1. Then we
obtain the following representation for � on Xn :

U (x) =
n∑

t=1

δt−1u(xt ), where δ > 0.

Since impatience holds: if a � b, then

(a, b, x3, . . . , xn) � (b, a, x3, . . . , xn).

From the representation it follows that:

u(a) + δu(b) > u(b) + δu(a),

or, equivalently,

(1 − δ)(u(a) − u(b)) > 0.

As u(a) > u(b) , it is possible to conclude that δ ∈ (0, 1).
We now prove the uniqueness part of the theorem. Suppose that (u, δ) and (u′, δ′)

both provide exponentially discounted expected utility representations for � on Xn .
We need to show that u = Au′ + B for some A > 0 and δ = δ′. Indeed, since (u, δ)

and (u′, δ′) both provide AA representations for � it follows that u = Au′ + B for
some A > 0 and some B, and there is some C > 0 such that δt−1 = C(δ′)t−1 for all
t . Taking t = 1 we obtain C = 1, and hence δ = δ′. The sufficiency of the uniqueness
conditions follows by routine arguments. ��
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194 N. Anchugina

4.2 Semi-hyperbolic discounting

A preference � on Xn has an SH(T ) discounted utility representation if there exists
a non-constant function u : X → R and parameters β1 ≤ β2 ≤ · · · ≤ βT−1, and
βt ∈ (0, 1] for all t ≤ T −1 and δ ∈ (0, 1) such that the following function represents
�:

U (x) = u(x1) + β1δu(x2) + β1β2δ
2u(x3) + · · · + β1β2 · · ·βT−2δ

T−2u(xT−1)

+ β1β2 · · · βT−1

n∑

t=T

δt−1u(xt ).

If u is mixture linear (and non-constant), then the function U is called an SH(T )

discounted expected utility representation. In this case, we say that (u,β, δ) provides
an SH(T ) discounted expected utility representation, where β = (β1, β2, . . . , βT−1).

To obtain this form of discounting, a number of modifications to the set of axioms
is required. A stronger essentiality condition should be used:

Axiom F2′′ (Essentiality of periods 1, . . . , T ) There exist some a, b ∈ X and
some x ∈ Xn such that for every t = 1, . . . , T :

(x1, x2, . . . , xt−1, a, xt+1, . . . , xn) � (x1, x2, . . . , xt−1, b, xt+1, . . . , xn).

The impatience axiom, which is used to guarantee δ ∈ (0, 1), should be restated
for the periods T and T + 1:

Axiom F6′ (Impatience) For every a, b ∈ X if a � b, then for every x ∈ Xn :

(x1, . . . , xT−1, a, b, xT+2, . . . , xn) � (x1, . . . , xT−1, b, a, xT+2, . . . , xn).

The generalization requires relaxing the axiom of stationarity to stationarity from
period T .

Axiom F7′ (Stationarity from period T ) The preference

(x1, . . . , xT−1, a, xT+1, . . . , xn) � (x1, . . . , xT−1, a, yT+1, . . . , yn)

holds if and only if

(x1, . . . , xT−1, xT+1, . . . , xn, a) � (x1, . . . , xT−1, yT+1, . . . , yn, a)

for every a ∈ X and every x ∈ Xn .

The axiom of present bias (Olea and Strzalecki (2014), Axiom 10) for the preference
order on X∞ involves trade-offs between two periods {1, 2}.

Axiom (Present Bias (Olea and Strzalecki (2014), Axiom 10)) For every
a, b, c, d, e ∈ X such that a � c, b ≺ d, for all x ∈ X∞:

if (e, a, b, e, . . .) ∼ (e, c, d, e, . . .), then (a, b, e, . . .) � (c, d, e, . . .).
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A simple framework for the axiomatization... 195

The present bias axiom can be described as follows. Suppose there are two equivalent
consumption streams one of which has larger consumption at t = 2 but smaller con-
sumption at t = 3 than the other, with consumptions at other periods being equal. Then
if the consumption at period t = 1 is removed from both streams and both streams
are shifted forward by one period, a decision-maker will prefer the stream with the
bigger consumption at t = 1 but smaller consumption at t = 2, thus valuing present
consumption (t = 1) more highly. In our framework, this axiom can be adapted to the
finite case and extended so that present bias may arise between any periods {t, t + 1},
where t ≤ T . Suppose that there are two identical consumption streams that differ
only in values at periods {t, t + 1}, where t ≤ T . Early bias between {t, t + 1} means
that if the first stream has a bigger level of consumption at period t but smaller level
of consumption at period t + 1 than the second stream, then shifting the consumption
at period t − 1 to the last period and shifting all consumption from period t onwards
forward by one period changes the preference in favour of the first consumption
stream.

Axiom F8 (Early bias) For every a, b, c, d ∈ X such that a � c, b ≺ d, for all
x ∈ Xn and every t ≤ T if

(x1, . . . , xt−1, a, b, xt+2, . . . , xn) ∼ (x1, . . . , xt−1, c, d, xt+2, . . . , xn), then

(x1, . . . , xt−2, a, b, xt+2, . . . , xn , xt−1) � (x1, . . . , xt−2, c, d, xt+2, . . . , xn , xt−1).

The early bias axiom is also referred to as the extended present bias axiom.

Theorem 4 (Semi-hyperbolic discounting) The preferences � on Xn satisfy axioms
F1, F2′′, F3, F4, F5, F6′, F7′, F8 if and only if there exists an SH(T ) discounted
expected utility representation (u,β, δ) for � on Xn. Moreover, (u′,β ′, δ′) is another
SH(T ) discounted expected utility representation for � on Xn if and only if there are
some A > 0 and some B such that u = Au′ + B and δ = δ′, β = β ′.

Proof It can be easily seen that the axioms are implied by the representation. Suppose
that the axioms hold. As for Theorem 3, the conditions of AA representation are
satisfied, so it follows that � has an AA representation (w, u). Define �′ on Xn−T as
follows:

(x1, . . . , xn−T ) �′ (y1, . . . , yn−T )

⇔ (x0, . . . , x0, x1, . . . , xn−T ) � (x0, . . . , x0, y1, . . . , yn−T ).

Then �′ is represented by:

U ′(x) = wT+1u(x1) + · · · + wnu(xn−T ).

Next, define �′′ on Xn−T as follows:

(x1, . . . , xn−T ) �′′ (y1, . . . , yn−T )

⇔ (x0, . . . , x0, x1, . . . , xn−T , x0) � (x0, . . . , x0, y1, . . . , yn−T , x0).
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Then �′′ is represented by:

U ′′(x) = wT u(x1) + · · · + wn−1u(xn−T ).

According to stationarity from period T , the preferences are equivalent
(
�′≡�′′)with

two different AA representations (U ′ and U ′′).
Preference orders�′≡�′′ satisfy theAAaxioms on Xn−T . Recall thatwt are unique

up to a scale. Hence, as essentiality holds for all t (which follows from Axiom F2′ and
Axiom F7′), we have wt+1 = δwt for some δ > 0 and hence

wn = δwn−1 = δ2wn−2 = · · · = δn−twt = · · · = δn−TwT .

Therefore, wt = δt−TwT for all t ≥ T + 1. We, therefore, obtain the following
representation for �:

U (x) = w1u(x1) + · · · + wT−1u(xT−1) + wT

n∑

t=T

δt−T u(xt ).

Because of the essentiality of the first period and uniqueness of u up to affine trans-
formations, the function

Û (x) = u(x1) + w2

w1
u(x2) + · · · + wT−1

w1
u(xT−1) + wT

w1

n∑

t=T

δt−T u(xt ),

provides an alternative representation for�which will be used instead ofU (x) further
in the proof.

Note that

w3

w1
= w3

w2
· w2

w1
,

· · · ,

wT

w1
= wT

wT−1
· wT−1

wT−2
· . . . · w2

w1
.

Let γt−1 = wt
wt−1

for all t ≤ T . Therefore,

w2

w1
= γ1,

w3

w1
= γ1γ2,

· · · ,

wT

w1
= γ1γ2 . . . γT−1.
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With this notation:

Û (x) = u(x1) + γ1u(x2) + · · · + γ1 · · · γT−2u(xT−1) + γ1 · · · γT−1

n∑

t=T

δt−T u(xt ).

It is necessary to show that γt−1 = βt−1δ with βt−1 ∈ (0, 1] for all t ≤ T .
Suppose that t = T . Choose a, b, c, d ∈ X such that u(b) < u(d), u(a) > u(c)

and

γ1 · · · γT−1u(a) + γ1 · · · γT−1δu(b) = γ1 · · · γT−1u(c) + γ1 · · · γT−1δu(d). (1)

Since essentiality is satisfied for each period we can rearrange the equation (1):

δ = u(a) − u(c)

u(d) − u(b)
. (2)

From (1) it also follows that

(x1, . . . , xT−1, a, b, xT+2, . . . , xn) ∼ (x1, . . . , xT−1, c, d, xT+2, . . . , xn),

Therefore, by the early bias axiom:

(x1, . . . , xT−2, a, b, xT+2, . . . , xn, xT−1)

� (x1, . . . , xT−2, c, d, xT+2, . . . , xn, xT−1).

Thus, we obtain:

γ1 · · · γT−2u(a) + γ1 · · · γT−1u(b) ≥ γ1 · · · γT−2u(c) + γ1 · · · γT−1u(d).

Since the essentiality condition is satisfied for each period we can rearrange this
inequality:

γT−1 ≤ u(a) − u(c)

u(d) − u(b)
. (3)

Comparing (2) to (3), we conclude that δ ≥ γT−1, therefore, γT−1 = βT−1δ, where
βT−1 ∈ (0, 1].

Analogously, suppose that t = T − 1. Choose a′, b′, c′, d ′ ∈ X such that u(b′) <

u(d ′), u(a′) > u(c′) and

γ1 · · · γT−2u(a′) + γ1 · · · γT−1u(b′) = γ1 · · · γT−2u(c′) + γ1 · · · γT−1u(d ′), (4)

where the last equality can be rewritten as follows (since essentiality is satisfied):

γT−1 = u(a′) − u(c′)
u(d ′) − u(b′)

. (5)
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Then (4), early bias and essentiality of each period imply that

γT−2 ≤ u(a′) − u(c′)
u(d ′) − u(b′)

. (6)

It follows from (5) and (6) that γT−2 ≤ γT−1. Therefore, γT−2 = β ′
T−2γT−1, where

β ′
T−2 ∈ (0, 1]. Recall that γT−1 = βT−1δ. Hence,

γT−2 = β ′
T−2βT−1δ = βT−2δ,

whereβT−2 = β ′
T−2βT−1 andβT−2 ∈ (0, 1] as bothβ ′

T−2 ∈ (0, 1] andβT−1 ∈ (0, 1].
Note also that βT−2 ≤ βT−1.

Using the early bias axiom repeatedly for t < T − 1, we obtain γt−1 = βt−1δ with
βt−1 ∈ (0, 1] for all t ≤ T and β1 ≤ β2 ≤ · · · ≤ βT−1. Hence,

Û (x) = u(x1) + β1δu(x2) + β1β2δ
2u(x3) + · · · + β1β2 · · ·βT−2δ

T−2u(xT−1)

+ β1β2 · · · βT−1

n∑

t=T

δt−1u(xt ).

To show that δ ∈ (0, 1) the impatience axiom should be applied. For every a, b ∈ X
if a � b, then for every x ∈ Xn

(x1, . . . , xT−1, a, b, xT+2, . . . , xn) � (x1, . . . , xT−1, b, a, xT+2, . . . , xn).

Then

β1 · · · βT−1δ
T−1u(a)+β1 · · · βT−1δ

T u(b)>β1 · · · βT−1δ
T−1u(b)+β1 · · · βT−1δ

T u(a).

Therefore, due to essentiality of each period:

(1 − δ)(u(a) − u(b)) > 0.

Hence, δ ∈ (0, 1).
We now prove uniqueness. Suppose that (u,β, δ) and (u′,β ′, δ′) both provide

SH(T ) discounted expected utility representations for � on Xn . Let D(t) and D′(t)
be semi-hyperbolic discount functions for given β, δ and β ′, δ′, respectively. Since
(u,β, δ) and (u′,β ′, δ′) both provide AA representations for �, it follows that u =
Au′ + B for some A > 0 and some B, and there is some C > 0 such that D(t) =
C · D′(t) for all t . Taking t = 1 we obtain C = 1, and hence, letting t = 2, 3, . . . , T
we get βtδ = β ′

tδ
′ for all t ≤ T . Finally, letting t = T + 1 we conclude that δ = δ′.

Therefore, β = β ′. The sufficiency of the uniqueness conditions follows by routine
arguments. ��
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5 Discounted utility: infinite case (n = ∞)

5.1 Exponential discounting

Based on the AA representation for the preferences over infinite consumption streams
(Theorem 2), with some strengthening of non-triviality (Axiom I2) and the addition
of a suitable stationarity axiom, discounting functions in an exponential form can be
obtained. The impatience axiom is not needed since convergence (Axiom I6) plays its
role.

Axiom I2′ (Essentiality of period 1) There exist some a, b ∈ X such that [a]1 �
x0 � [b]1.
Axiom I7 (Stationarity) The preference (a, x1, x2, . . .) � (a, y1, y2, . . .) holds if
and only if (x1, x2, . . .) � (y1, y2, . . .) for every a ∈ X and every x, y ∈ X∞.

Theorem 5 (Exponential discounting) The preferences � on X∞ satisfy axioms I1,
I2′, I3–I7 if and only if there exists an exponentially discounted expected utility repre-
sentation (u, δ) for � on X∞. Moreover, (u′, δ′) is another exponentially discounted
expected utility representation for � on X∞ if and only if there are some A > 0, some
B and some C > 0 such that u = Au′ + B and δ = δ′.

Proof The necessity of the axioms is straightforward. The proof of sufficiency fol-
lows the steps of the proof of Theorem 3 with n = ∞. Applying Theorem 2 to the
preferences satisfying the stationarity axiom, we obtain the representation:

U (x) =
∞∑

t=1

δt−1u(xt ),

where δ > 0 and x ∈ X∞.
Next, instead of using the impatience axiom as it is done in the finite case, the

convergence axiom is applied. Take a constant stream a = (a, a, . . .), such that u(a) �=
0. Then,

U (a) =
∞∑

t=1

δt−1u(a) = u(a)

∞∑

t=1

δt−1,

Convergence requires δ < 1. The proof of the uniqueness claims is analogous to
Theorem 3. ��

5.2 Semi-hyperbolic discounting

The extension of semi-hyperbolic discounting to the case where n = ∞ is easily
obtained.

Axiom I2′′ (Essentiality of periods 1, . . . , T ) For some a, b ∈ X we have [a]t �
x0 � [b]t for every t = 1, . . . , T .
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The generalization requires relaxing the axiom of stationarity to stationarity from
period T .

Axiom F7′ (Stationarity from period T ) The preference

(x1, . . . , xT−1, a, xT+1, . . .) � (x1, . . . , xT−1, a, yT+1, . . .)

holds if and only if

(x1, . . . , xT−1, xT+1, . . .) � (x1, . . . , xT−1, yT+1, . . .)

for every a ∈ X , and every x ∈ X∞.

As in the finite case, the addition of the early bias axiom is needed. Consider two
consumption streams that differ only in values at periods {t, t + 1}, where t ≤ T .
Early bias between {t, t + 1} means that if the first stream has more consumption at
period t but less consumption at period t + 1 than the second stream, then dropping
the consumption at t − 1 from both streams and advancing consumption from period
t onwards by one period results in the first consumption stream being preferred to the
second consumption stream.

Axiom I8 (Early bias) For every a, b, c, d ∈ X such that a � c, b ≺ d, and for
all x ∈ X∞ and every t ≤ T

if (x1, . . . , xt−1, a, b, xt+2, . . .) ∼ (x1, . . . , xt−1, c, d, xt+2, . . .), then

(x1, . . . , xt−2, a, b, xt+2, . . .) � (x1, . . . , xt−2, c, d, xt+2, . . .).

Theorem 6 (Semi-hyperbolic discounting) The preferences � on X∞ satisfy axioms
I1, I2′′, I3–I6, I7′, I8 if and only if there exists an SH(T ) discounted expected utility
representation (u,β, δ) for � on X∞. Moreover, (u′,β ′, δ′) is another SH(T ) dis-
counted expected utility representation for � on X∞ if and only if there are some
A > 0 and some B such that u = Au′ + B and δ = δ′, β = β ′.

Proof The necessity of the axioms is obviously implied by the representation. The
proof of sufficiency is analogous to thefinite case.ApplyingTheorem2and stationarity
from period T , we get the representation:

U (x) = w1u(x1) + · · · + wT−1u(xT−1) + wT

∞∑

t=T

δt−T u(xt ).

Next, dividing by w1 > 0 and introducing the notation wt
wt−1

= γt−1 > 0, where
t ≤ T , the representation becomes

Û (x) = u(x1) + γ1u(x2) + · · · + γ1 · · · γT−2u(xT−1) + γ1 · · · γT−1

∞∑

t=T

δt−T u(xt ).

123



A simple framework for the axiomatization... 201

Using essentiality of each period and the early bias axiom repeatedly, we demon-
strate that γt−1 = βt−1δ with βt−1 ∈ (0, 1] for all t ≤ T and β1 ≤ β2 ≤ · · · ≤ βT−1.
Therefore,

Û (x) = u(x1) + β1δu(x2) + β1β2δ
2u(x3) + · · · + β1β2 · · ·βT−2δ

T−2u(xT−1)

+ β1β2 · · · βT−1

∞∑

t=T

δt−1u(xt ).

Finally, to show that δ ∈ (0, 1), take a constant stream a = (a, a, . . .), such that
u(a) �= 0. Then,

Û (a) = u(a) + β1δu(a) + · · · + β1 · · ·βT−2δ
T−2u(a) + β1 · · · βT−1

∞∑

t=T

δt−1u(a)

= u(a)

(
1 + β1δ + · · · + β1 · · · βT−2δ

T−2 + β1 · · · βT−1

∞∑

t=T

δt−1

)
.

Convergence requires δ < 1.
The proof of the uniqueness claims is analogous to Theorem 4. ��

6 Discussion

A number of axiomatizations of exponential and quasi-hyperbolic discounting have
been suggested by different authors. In fact, all the axiomatizations use different
assumptions and there is no straightforward transformation from one type of dis-
counting to another. In this paper, we provided an alternative approach to get a time
separable discounted utility representation, showing that Anscombe and Aumann’s
result can be exploited as a common background for axiomatizing exponential and
quasi-hyperbolic discounting in both finite and infinite time horizons. In addition, we
demonstrated that the axiomatization of quasi-hyperbolic discounting can be easily
extended to SH(T ).

A key distinguishing feature of our setup is the mixture set structure for X and the
use of the mixture independence condition. An essential question, however, is whether
mixture independence is normatively compelling in a time preference context, because
states are mutually exclusive whereas time periods are not. It is worth mentioning that
the temporal interpretation of the AA framework was also used by Wakai (2009) to
axiomatize an entirely different class of preferences, which exhibit a desire to spread
bad and good outcomes evenly over time.

Commonly, the condition of joint independence is used to establish additive separa-
bility in time preference models. Given A ⊆ T , where T = {1, . . . , n}, and x, y ∈ Xn ,
define xAy as follows: (xAy)t is xt if t ∈ A and yt otherwise. The preference order �
satisfies joint independence if for every A ⊆ T and for every x, x′, y, y′ ∈ Xn :

xAy � x′
Ay if and only if xAy′ � x′

Ay
′.
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Joint independence is used to obtain an additively separable representation by
Debreu (1960), so we will sometimes refer to it as a Debreu-type independence con-
dition. It is known that mixture independence implies joint independence (Grant and
Zandt 2009), but whether joint independence (with some other plausible conditions)
implies mixture independence is yet to be determined.

In fact, we are not the first to use a mixture-type independence condition in the
context of time preferences. Wakai (2009) also does so, though he uses the weaker
form of constant independence introduced by Gilboa and Schmeidler (1989).

A version of the mixture independence condition can also be formulated in a Sav-
age environment (Savage 1954) without objective probabilities, as discussed in Gul
(1992). Olea and Strzalecki (2014) use precisely this version of mixture independence
in one of their axiomatizations of quasi-hyperbolic discounting. For every x, y ∈ X
let us write (x, y) for (x, y, y, . . .) ∈ X∞. Let m(x1, y1) denote some c ∈ X satisfy-
ing (x1, y1) ∼ (c, c). For any streams (x1, x2) and (z1, z2) the consumption stream
(m(x1, z1),m(x2, z2)) is called a subjective mixture of (x1, x2) and (z1, z2). Olea and
Strzalecki’s version of the mixture independence axiom (their Axiom I2) is as follows:
for every x1, x2, y1, y2, z1, z2 ∈ X if (x1, x2) � (y1, y2), then

(m(x1, z1),m(x2, z2)) � (m(y1, z1),m(y2, z2))

and

(m(z1, x1),m(z2, x2)) � (m(z1, y1),m(z2, y2)).

In other words, if a consumption stream (x1, x2) is preferred to a stream (y1, y2), then
subjectively mixing each stream with (z1, z2) does not affect the preference.

In their axiomatization of quasi-hyperbolic discounting Olea and Strzalecki invoke
their mixture independence condition (Axiom 12) as well as Debreu-type indepen-
dence conditions. The latter are used to obtain a representation in the form

x � y if and only if u(x1) +
∞∑

t=2

δt−1v(xt ) ≥ u(y1) +
∞∑

t=2

δt−1v(yt ),

then their Axiom 12 is used to ensure v = βu.4

Hayashi (2003) and Epstein (1983) considered preferences over lotteries over con-
sumption streams. In their framework X∞ is the set of non-stochastic consumption
streams,where X is required to be a compact connected separablemetric space.Denote
the set of probability measures on Borel σ -algebra defined on X∞ as �(X∞). It is
useful to note that our setting is the restriction of the Hayashi and Epstein setup to
product measures, i.e., to�(X)∞ ⊂ �(X∞). The axiomatization systems by Hayashi
and Epstein are based on the assumptions of expected utility theory. The existence of

4 As pointed out above, mixture independence stated for n periods implies joint independence for n periods.
Hence, this raises the obvious question of whether it is possible to use an n-period version of the subjective
mixture independence axiom to obtain a time separable discounted utility representation without the need
for the Debreu-type independence conditions.
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a continuous and bounded vNM utility index U : �(X∞) → R is stated as one of the
axioms. A set of necessary and sufficient conditions for this is provided by Grandmont
(1972), and includes the usual vNM independence condition on �(X∞): for every
x, y, z ∈ �(X∞) and any α ∈ [0, 1], x ∼ y implies αx + (1− α)z ∼ αy + (1− α)z.

Obviously, this independence condition is not strong enough to deliver joint inde-
pendence of time periods, which is why additional assumptions of separability are
needed. Two further Debreu-type independence conditions are required for exponen-
tial discounting:

• independenceof stochastic outcomes in periods {1, 2} fromdeterministic outcomes
in {3, 4, . . .},

• independence of stochastic outcomes in periods {2, 3, . . .} from deterministic out-
comes in period {1}.
To obtain quasi-hyperbolic discounting two additional Debreu-type independence

conditions should be satisfied:

• independenceof stochastic outcomes in periods {2, 3} fromdeterministic outcomes
in periods {1} and {4, . . .},

• independence of stochastic outcomes in periods {3, 4, . . .} from deterministic out-
comes in periods {1, 2}.
It is easy to see that these axioms applied to the non-stochastic consumption streams

are analogous to the Debreu-type independence conditions used in Bleichrodt et al.
(2008) and Olea and Strzalecki (2014).

In summary, to get a discounted utility representation with the discount function
in either exponential and quasi-hyperbolic form separability must be assumed. The
mixture independence axiom appears to be a strong assumption, however, it gives
the desired separability without the need for additional Debreu-type independence
conditions.
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7 Appendix: Proof of Theorem 2

Proof Necessity of the axioms is straightforward to verify. Therefore, we will focus
on the proof of sufficiency.

Step 1. Applying Theorem 1 of Fishburn (1982) to the mixture set X , it follows from
Axioms I1, I3, I4 that there exists amixture linear utility function u preserving the order
on X (unique up to positive affine transformations). Normalize u so that u(x0) = 0.
Note that by non-triviality u(x0) is in the interior of the non-degenerate interval u(X).
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Convert streams into their utility vectors by replacing the outcomes in each period
by their utility values. Define the following order: (v1, v2, . . .) �∗ (u1, u2, . . .) ⇔
there exist x, y ∈ X∞ such that x � y and u(xt ) = vt and u(yt ) = ut for every t .
This order is unambiguously defined because of the monotonicity assumption, i.e., if
xi ∼ x ′

i then (x1, . . . , xi , . . .) ∼ (x1, . . . , x ′
i , . . .).

The preference order �∗ inherits the properties of weak order, mixture indepen-
dence and mixture continuity from �. Note that u(X)∞ is a mixture set under the
standard operation of taking convex combinations: if v,u ∈ u(X)∞ then

vλu = λv + (1 − λ)u for every λ ∈ (0, 1).

Therefore, by Theorem 1 of Fishburn (1982) we obtain a mixture linear representation
U : u(X)∞ → R, where U is unique up to positive affine transformations.

Hence, v �∗ u if and only if U (v) ≥ U (u).

Step 2. Normalize U so that U (0, 0, . . .) = U (0) = 0. Since 0 is in the interior of
u(X), and since U (vλ0) = λU (v) for any v ∈ R

∞ and for every λ ∈ (0, 1), we can
assume that U is defined on R∞.

Mixture linearity of U implies standard linearity of U on R
∞. To prove this, we

need to show that U (kv) = kU (v) for any k and U (v + u) = U (v) + U (u) for any
u, v ∈ R

∞.
As u(X)∞ is a mixture set under the operation of taking convex combinations,

U (vk0) = U (kv + (1 − k)0) = U (kv) = kU (v) for any k ∈ (0, 1). If k > 1 then
U (v) = U ( kk v) = 1

kU (kv). Multiplying both parts of this equation by k, we obtain
U (kv) = kU (v) for all k > 1. Therefore, U (kv) = kU (v) for any k > 0.

To prove that U (v + u) = U (v) + U (u), consider the mixture v 1
2u. By mixture

linearity of U we have:

U

(
v
1

2
u
)

= 1

2
U (v) + 1

2
U (u) = 1

2
(U (v) +U (u)) . (7)

On the other hand, v 1
2u = 1

2v + 1
2u = 1

2 (v + u). Therefore,

U

(
v
1

2
u
)

= U

(
1

2
(v + u)

)
= 1

2
U (v + u) (8)

Comparing (7) and (8), we conclude that U (v + u) = U (v) +U (u).
Finally, note that

U (0) = U (v + (−v)) = U (v) +U (−v) = 0,

hence U (−v) = −U (v). Therefore, if k < 0, then U (kv) = −kU (−v) = kU (v).
For each T , consider the function f : RT → R defined as follows:

f (v1, . . . , vT ) = U (v1, . . . , vT , 0, 0, . . .).

123



A simple framework for the axiomatization... 205

This function is linear on R
T and it satisfies f (0) = 0; therefore,

f (v1, . . . , vT ) =
T∑

t=1

wT
t vt ,

where wT = (wT
1 , . . . , wT

T ). By monotonicity wT
t ≥ 0 for all t ≤ T .

Note thatwT
t = U ([1]t ), where [1]t is the vector with 1 in period t and 0 elsewhere.

It follows that wT
t = wT ′

t for any T and T ′. Hence, there is a vector w ∈ R
∞ such

that U (v1, . . . , vT , 0, 0, . . .) = ∑∞
t=1 wtvt for any (v1, . . . , vT ) ∈ R

T .
Recalling that vt = u(xt ), we obtain

U (u(x1), . . . , u(xT ), 0, 0, . . .) =
T∑

t=1

wt u(xt ) for all x ∈ X∗.

Therefore, for every x, y ∈ X∗ we have x � y if and only if

T∑

t=1

wt u(xt ) ≥
T∑

t=1

wt u(yt ).

By slightly abusing the notation, re-define U so that:

U (x1, . . . , xT , x0, x0, . . .) =
T∑

t=1

wt u(xt ) for all x ∈ X∗.

Hence, U (x) = ∑∞
t=1 wt u(xt ) represents preferences on X∗.

Step 3. Next, we show that U (x1, x2, . . .) converges for any (x1, x2, . . .). Define
UT : X∞ → R as follows:UT (x) = ∑T

t=1 ut (xt ), where ut (xt ) = wt u(xt ). Consider
the sequence of functions U1,U2, . . . ,UT , . . . According to the Cauchy Criterion, a
sequence of functions UT (x) defined on X∞ converges on X∞ if and only if for any
ε > 0 and any x ∈ X∞ there exists T ∈ N such that |UN (x) − UM (x)| < ε for any
N , M ≥ T .

Fix some x ∈ X∞ and ε > 0. Suppose that for some k it is possible to choose x+, x−
such that [x+]k � [xk]k � [x−]k . By Step 2 the preference [x+]k � [xk]k � [x−]k
implies that wk > 0. Therefore, as u is a continuous function, it is without loss of
generality to assume that

uk(x
+) − uk(xk) < ε/2 and uk(xk) − uk(x

−) < ε/2.

It follows that uk(x+) − uk(x−) < ε, or uk(x−) − uk(x+) > −ε. By Axiom I6 there
exist T+ and T− satisfying k ≤ min{T−, T+} such that

x+
k,N � x � x−

k,M , for all N ≥ T+, M ≥ T−.
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Let T ∗ = max{T−, T+}. It is necessary to demonstrate that |UN (x)−UM (x)| < ε for
any N , M ≥ T ∗. If N = M the result is obviously true. If N �= M then it is without
loss of generality to assume that N > M . By the additive representation:

U (x+
k,N ) ≥ U (x−

k,M ).

Expanding

uk(x
+) +

N∑

t=1,t �=k

ut (xt ) ≥ uk(x
−) +

M∑

t=1,t �=k

ut (xt ).

By rearranging this inequality

N∑

t=M+1

ut (xt ) ≥ uk(x
−) − uk(x

+) > −ε.

As N > M ≥ T ∗ it is also true that U (x+
k,M ) ≥ U (x−

k,N ), hence

N∑

t=M+1

ut (xt ) ≤ uk(x
+) − uk(x

−) < ε.

Note that

N∑

t=M+1

ut (xt ) = UN (x) −UM (x).

Hence, |UN (x) − UM (x)| < ε and it follows that U (x) converges by the Cauchy
criterion.

Suppose now that it is not possible to find such k that [x+]k � [xk]k � [x−]k for
some x+, x− ∈ X . If wt = 0 for all t then the result is trivial. Suppose that wt > 0
for some t . Then for every period t for which wt > 0 we have

xt ∈ Xe ≡ {z ∈ X : z � z′ for all z′ ∈ X or z′ � z for all z′ ∈ X}.

For some λ ∈ (0, 1) replace xt with the mixture xtλx0 for each t . Call the resulting
stream x∗. Then

UT (x)−UT (x∗) =
T∑

t=1

ut (xt )−
T∑

t=1

ut (xtλx0) = (1−λ)

T∑

t=1

ut (xt ) = (1−λ)UT (x).

By rearranging this equation it follows that UT (x∗) = λUT (x). By the previous
argument UT (x∗) converges; therefore, UT (x) converges.
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Step 4. Show that U (x) represents the order on X∞. Suppose that x � y, where
x, y ∈ X∞. If for some k, j it is possible to find x+, y− such that [x+]k � [xk]k and
[y−] j ≺ [y j ] j , then [x+λxk]k � [xk]k for every λ ∈ (0, 1) and [y−μy j ] j ≺ [y j ] j for
every μ ∈ (0, 1). Let x∗ = x+λxk and y∗ = y−μy j for some λ,μ ∈ (0, 1). Denote

x∗
k,N = (x1, . . . , xk−1, x

∗, xk+1, . . . , xN , x0, x0, . . .),

and

y∗
j,M = (y1, . . . , y j−1, y

∗, y j+1, . . . , yM , x0, x0, . . .).

Then by Axiom I6, there exist T−, T+ such that

x∗
k,N � x � y � y∗

j,M

for all N ≥ T+ and for all M ≥ T−. Since x∗
k,N � y∗

j,M and U represents � on X∗
we have:

U (x∗
k,N ) ≥ U (y∗

j,M ).

By Step 3 we know that U (x1, . . . , xk−1, x∗, xk+1 . . .) and U (y1, . . . , y j−1, y∗,
y j+1, . . .) converge, so

U (x1, . . . , xk−1, x
∗, xk+1, . . .) ≥ U (y1, . . . , y j−1, y

∗, y j+1, . . .).

Recall that x∗ = x+λxk and y∗ = y−μy j for some λ ∈ (0, 1) and some μ ∈ (0, 1).
Since λ and μ are arbitrary, it follows that U (x) ≥ U (y).

If it is not possible to find x+, y− such that [x+]k � [xk]k and [y−] j ≺ [y j ] j , then
either wt = 0 for all t , in which case U (x) = U (y); or xt � z′ for all z′ ∈ X and all
t with wt > 0, in which case U (x) ≥ U (y); or z′ � yt for all z′ ∈ X and all t with
wt > 0 in which case U (x) ≥ U (y).

It is worth noting that as x � y implies U (x) ≥ U (y), then by Axiom I2 it follows
that wt > 0 for at least one t . Therefore,

∑∞
t=1 wt > 0. Normalizing by 1/

∑∞
t=1 wt ,

we can assume that
∑∞

t=1 wt = 1.
Next, assume thatU (x) ≥ U (y). Suppose that it is possible tofind k and x+, x− ∈ X

such that x+
k,N � x � x−

k,N for some fixed N . By mixture continuity, the set

{α : x+
k,Nαx−

k,N � x} is closed. By assumption x+
k,N � x, so it follows that α = 1

is included into the set. Analogously, the set {β : x � x+
k,Nβx−

k,N } is closed. In fact,

β = 0 belongs to the set, as x � x−
k,N . Therefore, as both sets are closed, nonempty and

form theunit interval, their intersection is nonempty.Hence, there existsλ such thatx ∼
x+
k,Nλx−

k,N . Note that x
+
k,Nλx−

k,N = (x1, . . . , xk−1, x+λx−, xk+1 . . . , xN , x0, x0, . . .).
Let x+λx− = x∗. Define x∗

k,N = (x1, . . . , xk−1, x∗, xk+1, . . . , xN , x0, x0, . . .).
Therefore, if there exist periods k, j and outcomes x+, x−, y+, y− ∈ X such that
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x+
k,N � x � x−

k,N and y+
j,M � y � y−

j,M for some N and some M , we can find
λ,μ ∈ [0, 1] such that x ∼ x∗

k,N and

y ∼ y∗
j,M = (y1, . . . , y j−1, y

∗, y j+1, . . . , yM , x0, x0, . . .),

where y∗ = y+μy−. We have already shown that if x � y then U (x) ≥ U (y). From
x ∼ x∗

k,N and y ∼ y∗
j,M it, therefore, follows that:

U (x∗
k,N ) = U (x) and U (y∗

j,M ) = U (y).

Hence, from the assumption U (x) ≥ U (y) we obtain:

U (x∗
k,N ) ≥ U (y∗

j,M ).

Recall that U is an order-preserving function on X∗. Thus, x∗
k,N � y∗

j,M . Since x ∼
x∗
k,N and y ∼ y∗

j,M , we obtain x � y.
Suppose now that there is no such k, j or outcomes x+, x−, y+, y− such that

x+
k,N � x � x−

k,N and y+
j,M � y � y−

j,M for some N and some M . Then, using Axiom
I6, we can conclude that either xt ∈ Xe for every t with wt > 0 or yt ∈ Xe for
every t with wt > 0. Assume that there is only an upper bound to preferences; i.e.,
Xe ≡ {z ∈ X : z � z′ for every z′ ∈ X}. Then U (x) ≥ U (y) means that xt ∈ Xe

whenever wt > 0. Therefore, U (x) = U (x), where x = (x, x, . . .) and x ∈ Xe.
Hence, it follows by monotonicity that x � y. In the case when there is only a lower
bound, i.e., x ∈ Xe ≡ {z ∈ X : z′ � z for every z′ ∈ X}, the argument is similar.

Next, suppose that X is preference bounded above and below, i.e., there exist x, x ∈
Xe with x � x � x for every x ∈ X . Assume that U (x) ≥ U (y). We need to
demonstrate that x � y. By monotonicity and continuity there exist λ,μ ∈ [0, 1] such
that x ∼ xλx and y ∼ xμx. Since by assumption U (x) ≥ U (y) and U represents the
preference order on constant streams, we have U (xλx) ≥ U (xμx). By rearranging
this inequality (λ − μ)(U (x) −U (x)), and usingU (x) > U (x) it follows that λ ≥ μ.
Therefore, as x ∼ xλx and y ∼ xμx and λ ≥ μ, we conclude that x � y.

Thus, (w, u) is an AA representation for �.
Step 5.Uniqueness ofwt . Assume that (w′, u′) is anotherAA representation. Then, for
any t we have wt > 0 if and only if w′

t > 0. Consider the set of all constant programs
{x ∈ X∞ : x = (a, a, . . .), where a ∈ X}, which is a mixture set. Applying (w′, u′)
and (w, u) to this set we conclude that u(a) > u(b) if and only if u′(a) > u′(b) for
every a, b ∈ X . By Theorem 1 Fishburn (1982) it implies that u = Au′ + B for some
A > 0 and some B. Hence,

∞∑

t=1

wt u(xt ) ≥
∞∑

t=1

wt u(yt ) if and only if
∞∑

t=1

w′
t u(xt ) ≥

∞∑

t=1

w′
t u(yt ).

For any t, s with t �= s and any x ′, x ′′ ∈ X , let [x ′, x ′′]t,s denote the stream with x ′
in the tth position, x ′′ in the sth position and x0 elsewhere. Fix t, s with wt > 0 and
ws > 0. Using non-triviality, choose some x+, x− ∈ X such that x+ � x−. Define
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x = [x+, x+]t,s, y = [x+, x−]t,s, z = [x−, x−]t,s . From the AA representation it
follows that x � y � z. By continuity of the AA representation there exists λ ∈ (0, 1)
such that y ∼ xλz. Applying the AA representation to y ∼ xλz we obtain

wt u(x+) + wsu(x−) = λ(wt + ws)u(x+) + (1 − λ)(wt + ws)u(x−).

It follows that (1 − λ)wt = λws . Similarly, (1 − λ)w′
t = λw′

s . Therefore, wt/ws =
w′
t/w

′
s . As this is true for any t, s, we obtain that w = Cw′ for some C > 0. The

sufficiency of the uniqueness conditions follows by routine arguments. ��
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