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Abstract Multi-winner elections, for example, the election of members to a com-
mittee, are now quite common, and include the interesting subclass of elections with
a variable number of winners, or VNW elections. In VNW elections, voters deter-
mine how many winners there are, as well as which candidates win. Common VNW
elections include elections to bestow honorary status, such as enshrinement in a hall
of fame, and elections to determine a shortlist of, say, job candidates for interviews.
Such elections are VNW elections whenever the number of winners is not speci-
fied in advance. Multi-winner elections are often conducted by adapting standard
procedures for single-winner elections. Approval balloting is particularly appropri-
ate for multi-winner elections, as every ballot, and the set of winners, are subsets
of the set of all candidates. Many methods of counting approval ballots appropriate
to VNW elections are reviewed and illustrated, and their properties—desirable and
undesirable—discussed.

Keywords Approval voting · Multi-winner elections · VNW elections ·
Hall of fame election · Net approval

1 Introduction

Multi-winner elections seem to be increasingly common, perhaps reflecting greater
computational capabilities and the ubiquity of the internet as much as the growth of
democracy. Multi-winner elections are used to populate committees, select papers for
conferences, and determine times to meet and topics to be added to an agenda. Many
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procedures are available for multi-winner elections, including generalizations of plu-
rality voting ranging from single non-transferable vote through cumulative voting to
single transferable vote, and well as various forms of list-based proportional represen-
tation (Tideman 2016).1 As well, many single-winner election procedures based on
scores, such as Borda Count and Range Voting, are easy to adapt to the multi-winner
context.

Among the latter group are procedures using approval balloting, that is, a voter’s
ballot indicates the candidates approved by the voter. Approval ballots are natural for
multi-winner elections because every ballot, and the winners, are all subsets of the
set of all candidates. For a general review of multi-winner election procedures using
approval balloting, see Kilgour (2010).

This paper concerns elections carried out with approval ballots, which may be
unrestricted or restricted in the sense that not all subsets of candidates can be specified
on an approval ballot—a ballot for a “forbidden” subset is considered spoiled, and
discarded. Ballot restrictions are common in committee, or fixed number of winners
(FNW), elections. A committee election or k-election is an election to select a set of
k candidates, where k is fixed in advance. In committee elections carried out with
approval balloting, it is not uncommon to require that each voter approves at most k
candidates.

Plurality voting can be viewed as approval balloting with the severe restriction that
each voter may approve only one candidate. While plurality voting is not common in
k-elections with k > 1, the procedures discussed here nonetheless apply to it. More
generally, ballot restrictions do not alter procedures for counting ballots, although
they may affect voters’ strategies, and therefore the results of the election. Moreover,
Ratliff and Saari (2014) suggest that ballot restrictions alone are unlikely to be suffi-
cient to guarantee that the elected committee will satisfy “diversity” constraints.

Ballot restrictions are limitations on the possible ballots that may be cast; equally,
theremaybe limitations on the possible sets ofwinners of the election. Such restrictions
are expressed by specifying the admissible sets, or sets of candidates that could win
the election. Admissibility is often used to impose distributional requirements on the
winning set, for example, the admissible sets may contain only sets with at least one
man and at least one woman, or must contain a representative of each subdivision
of an organization. Admissibility is certainly relevant to FNW or k-elections, where
every admissible set must contain exactly k candidates. For a discussion of procedures
based on approval balloting for FNW elections, see Kilgour and Marshall (2012).

Themain concern here is the development of procedures for approval elections with
a Variable Number ofWinners, or VNW elections, where the admissible sets are not all
of the same size. In a VNW election, the voters determine not just which candidates
win, but also how many winners there are. Common examples include elections to
bestow honorary status, such as enshrinement in a hall of fame, or to screen a larger set
of candidates to determine a smaller set which it is practical to examine more closely.
An example of the latter process is the determination of a shortlist of job candidates

1 Note that themulti-winner elections studied here do not include elections designed to produce proportional
representation.

123



Approval elections with a variable number of winners 201

who will be invited to an interview. Note that distributional requirements, represented
by admissibility conditions, may also also apply to a VNW election.

We address how to design procedures for an approval VNW election. To simplify
the presentation, we will assume that any subset is admissible, as it is easy to modify
our conclusions to fit other cases. First we review the simple approval procedure, and
discuss its application to VNW elections. Then we collect some other procedures that
are appropriate to VNW elections and discuss some of their properties.

2 Approval voting and multi-winner elections

First, we set the terminology and notation for approval voting in a single-winner
election (Brams and Fishburn 1978, 1983). Suppose that there are m > 1 candidates
and n > 1 voters. Denote the set of all voters by V and denote the set of all candidates
by C = {C1,C2, . . . ,Cm}. (Sometimes we will refer to candidate C j as candidate j .)

In approval voting, each voter is asked to name all candidates he or she approves.
For i ∈ V , voter i’s ballot, Vi ⊆ C, is voter i’s response to this request. Both Vi = ∅
and Vi = C are possible, but both mean that voter i is in fact not participating in the
election, so we will assume that Vi is a non-empty, proper subset of C. Then (Vi )i∈V
is called the ballot profile; the set of all possible ballot profiles is the set of all possible

assignments of a subset of C to each member of V , denoted P = (
2C

)V
.

Table 1 shows Example 1, an election conducting using approval balloting, with
four voters and three candidates. One voter votes for C1 only, two vote for C1 and C2
(but not C3), and one votes for C1 and C3 (but not C2).

Example 1 Ballot Profile ({1}, {1, 2}, {1, 2}, {1, 3}).
Beginning with a ballot profile, the winner under approval voting is determined

from the candidates’ approval scores. The approval score of candidate C j ∈ C is

x j = |{i ∈ V : C j ∈ Vi }|. (1)

Thus, candidate Ch’s approval score equals the number of voters who approve Ch .
Candidate C j ∈ C is a approval winner, or winner under approval voting, iff

x j ≥ xh for all Ch ∈ C. (2)

In other words, the approval winners are the candidates withmaximum approval score.
Of course, a tie occurs when two or more candidates obtain this maximum score.

In Example 1, the approval scores (vote counts) are x1 = 4, x2 = 2, x3 = 1. Table 2
shows the approval scoring of Example 1. In Example 1, it is clear that the unique
approval winner (score shown in boldface) is C1.

Table 1 Example 1:
n = 4,m = 3

Voter 1 2 3 4

Ballot C1 C1C2 C1C2 C1C3

123



202 D. M. Kilgour

Table 2 Approval Scoring of
Example 1

Candidate C1 C2 C3

Approval Score 4 2 1

Most approaches to approval balloting are based on the use of (1) to convert the
ballot profile to a vote count vector x = (x1, x2, . . . , xm) ∈ Z

m . The total number of
votes cast in the election is X (x) = X = ∑m

j=1 x j . For Example 1, x = (4, 2, 1) and
X = 7. We assume throughout that x j > 0 for all C j ∈ C; in other words, we drop
any candidate who received no votes, so that the vote count vector is x ∈ Z

m+.
We are interested in multi-winner rather than single-winner elections. Specifically,

the election will be won not by a candidate but by a subset of candidates, W ⊆ C.
Often, it is desired to elect a set of candidates that satisfies some “diversity” conditions.
As demonstrated byRatliff and Saari (2014), ballot restrictions cannot be guaranteed to
produce a winning subset that satisfies the same restrictions. A solution, suggested by
Fishburn and Pekeč (2004), is to specify all possible winning subsets of candidates,
called admissible sets. The list of admissible sets is denoted A ⊆ 2C , and we can
assume that |A| > 1. Note thatA can be considered to be a parameter of the election,
like the number of voters, n, and the number of candidates, m.

If the election is conducted to select a committee with k members, where k is a
positive integer, and there are no other restrictions, then the admissible sets are

Ak = {S ⊆ C:|S| = k}.

Any election with A ⊆ Ak is a k-election.
A scoring rule for an election is a function f :A −→ R. (The scoring rule also

depends on the ballot profile or the vote count vector, but that dependence is suppressed
in this notation.) The scoring rule f assigns to the admissible set A ∈ A the value
f (A), which is taken to measure the appropriateness of A as the set of winners of the
election (given the underlying ballot profile). We define S ∈ A to be a winning subset
under scoring rule f (·) iff

f (S) ≥ f (T ) for all T ∈ A. (3)

In other words, a winning subset under a scoring rule is any admissible set with
maximum score.

For example, (1) can be generalized to an Approval Scoring rule. The approval
score of an admissible set S ∈ A is

fAV(S) =
∑

i∈V
|S ∩ Vi |. (4)

In words, the approval score of a subset is the total number of times that a voter
approved a member of that subset. Note that substituting S = {C j } into (4) produces
fAV(C j ) = x j , so that (4) generalizes (1). It follows that (3) is equivalent to (2)
when f (·) = fAV(·) and A = A1 .
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Approval elections with a variable number of winners 203

Table 3 Example 1 as a
2-election: n = 4,m = 3, k = 2

Admissible subset C1C2 C1C3 C2C3

Approval Score 6 5 3

Note that (4) implies that ballot restrictions, such as a ceiling on the number of
candidates a voter may approve, are irrelevant to the calculation of approval scores.
Therefore, (3) can be used to determine the winner(s) without regard to possible
ballot restrictions, which we will ignore in any calculations based on approval scores.
Nonetheless, we recall that ballot restrictions may well affect voters’ strategies and,
therefore, election results.

Treating Example 1 as a 2-election with admissible setA2 (any 2-subset may win)
produces the approval scores shown in Table 3. The unique winning subset is {C1,C2}.

Our objective is to study multi-winner elections that are not k-elections. In such
elections, A contains sets of different cardinalities. Below, we will assume that every
subset of candidates is admissible, i.e., A = 2C , to avoid the need to verify that a
subset is admissible before declaring it a winner.

Table 4 shows how Example 1 changes whenA = 2C , i.e., any subset of candidates
may win. Observe that the unique winner is {C1,C2,C3}.

Example 1 considered as a VNW election demonstrates why approval scoring can-
not be recommended in VNW elections—larger subsets automatically attain higher
scores. This bias toward larger subsets implies that C, the set of all candidates, is
always a winner of a VNW election with approval scoring—in fact, our assumption
that every candidate receives at least one vote implies that C is the unique winner.

What we have just observed is really a simple form of linearity: the score for a
set equals the sum of the scores of its non-overlapping subsets. Formally, a scoring
rule f (·) is additive if whenever S1, S2 ∈ A and S1 ∩ S2 = ∅, then f (S1 ∪ S2) =
f (S1) + f (S2) (Kilgour 2010). If f (·) is additive, then f (S) = ∑

j∈S f ( j) (where
f ( j) = f ({ j})), which explains why such a scoring rule is sometimes called
candidate-wise (Kilgour and Marshall 2012).

3 Net scoring procedures for VNW elections

Many procedures that are appropriate for VNW elections conducted with approval
balloting will be described later in this report but Approval Scoring is not among
them, because of its bias toward larger subsets. However, this bias is easy to correct,
as noted by Kilgour (2010), who proposed the Net Approval Score:

fNAV(S) =
∑

i∈V
|S ∩ Vi | − |S ∩ V c

i | (5)

Table 4 Example 1 as a VNW election: n = 4,m = 3,A = 2C

Admissible subset ∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

Approval Score 0 4 2 1 6 5 3 7
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Table 5 Example 1: n = 4,m = 3,A = 2C , Net Approval Scoring

Admissible subset ∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

Net Approval Score 0 4 0 −2 4 2 −2 2

where V c
i is the complement of Vi . The Net Approval Score of a set can be interpreted

as the total number of approvals of members of that set reduced by the total number
of disapprovals, where disapproving a candidate means not voting for him or her.

Comparison of Table 5 (Net Approval Scoring) and Table 4 (Approval Scoring)
makes it clear howNet Approval Scoring corrects the bias of Approval Scoring toward
larger subsets. Under Net Approval Scoring, the two sets {C1} and {C1,C2} both
receive score 4 ({C1} has four approvals and no disapprovals, while {C1,C2} has six
approvals and two disapprovals). Thus, both are winners, i.e., they are tied.

In fact, any scoring rule that is biased toward larger subsets can be converted to a
corresponding net scoring rule that corrects this bias. If the scoring rule f (·) is written
in the form f (S, V1, V2, . . . , Vn), then the corresponding net scoring rule is defined by

fNet(S) = f (S, V1, V2, . . . , Vn) − f (S, V c
1 , V c

2 , . . . , V c
n ).

The idea is to regard not voting for a candidate as disapproving the candidate, and
reducing total approvals by total disapprovals.

Some scoring rules, such as approval, are additive, an important property because it
speeds up calculation. It is easy to verify that if a scoring rule is additive, then so is its
associated net scoring rule. For example, NetApproval is additive; the scores in Table 5
can be obtained from the candidate scores fNet(1) = 4, fNet(2) = 0, fNet(3) = −2.

Many other scoring rules have a natural bias toward larger subsets, which can be
corrected using a net version. For example, Satisfaction Approval Voting (Brams and
Kilgour 2014) is based on the Satisfaction Approval Score

fSAV(S) =
∑

i∈V

|S ∩ Vi |
|Vi | ,

with the convention that a fraction equals zero if its denominator is zero. In Satisfac-
tion Approval, approval votes are downweighted according the number of candidates
approved of by the voter. As an example, see Table 6 for Example 1 considered as a
VNW election. It is clear that Satisfaction Approval is biased toward larger subsets.

Table 6 Example 1 as SAV and NSAV VNW elections

Admissible subset ∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

SAV Score 0 2.5 1 0.5 3.5 3 1.5 4

NSAV Score 0 2.5 −0.5 −2 2 0.5 −2.5 0
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The Net Satisfaction Approval Score is defined as

fNSAV(S) =
∑

i∈V

|S ∩ Vi |
|Vi | − |S ∩ V c

i |
|V c

i |

The use of this score is also shown in Table 6. It is noteworthy that both SAV and
NSAV are additive.

Other scoring rules for which a net versionmight be appropriate are the satisfaction-
related scoring rules Capped Satisfaction Approval (CSA) and Modified Satisfaction
Approval (MSA) defined by

fCSA(S) =
∑

i∈V

|S ∩ Vi |
|S| ; fMSA(S) =

∑

i∈V

|S ∩ Vi |
min{|S|, |Vi |} ,

with the usual convention that a fraction equals zero if its denominator is zero (see
Kilgour and Marshall 2012 for details). It might be argued that CSA scoring is not
biased in favour of larger subsets, because the size of the subset appears in the denom-
inator. Nonetheless, the Net versions of these scoring rules, called NCSA and NMSA,
respectively, are of interest, and are applied to Example 1 in Table 7.

Another set of scoring procedures identified by Kilgour and Marshall (2012) are
the Generalized Approval Procedures. A rep sequence is a non-decreasing sequence
of real numbers r(0) = 0, r(1), r(2), . . . where r( j) represents the contribution to the
score of a subset from a voter’s ballot that has j elements in common with the subset.

Table 7 Example 1 scored with various procedures

Admissible subset ∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

AV Score 0 4 2 1 6 5 3 7

NAV Score 0 4 0 −2 4 2 −2 2

SAV Score 0 2.5 1 0.5 3.5 3 1.5 4

NSAV Score 0 2.5 −0.5 −2 2 0.5 −2.5 0

CSA Score 0 4 2 1 3 2.5 1.5 2.33

NCSA Score 0 4 0 −2 2 1 −1 −0.33

MSA Score 0 4 2 1 3.5 3 1.5 4

NMSA Score 0 4 0 −2 2 0.5 −2.5 0

PAV Score 0 4 2 1 5 4.5 3 5.5

NPAV Score 0 4 0 −2 4 2 −2 2

REP-1 Score 0 4 2 1 4 4 3 4

NREP-1 Score 0 4 0 −2 2 1 −2 0

REP-2 Score 0 0 0 0 2 1 0 3

NREP-2 Score 0 0 0 0 2 1 −1 2

MT Score 0 4 2 1 4 4 3 3

SMT Score 0 4 2 1 2 1 0 3
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Specifically, for the rep sequence r = r(0), r(1), r(2), . . ., the rep score is

fr (S) =
∑

i∈V
r(|S ∩ Vi |).

Thus, the score of a subset S equals r(1) times the number of voters who voted for
one member of S plus r(2) times the number of voters who voted for two members of
S plus . . ..

It is easy to see that theApproval Score fAV(·) is the rep score based on the sequence
(0, 1, 2, 3, . . .), that is, r( j) = j . The Proportional Approval Score (Simmons 2001)
is the rep score based on the rep sequence (0, 1, 1 + 1

2 , 1 + 1
2 + 1

3 , . . .), that is,

r( j) = ∑ j
k=1

1
k , for j ≥ 1. Another family of rep sequences are the p-representative

sequences, defined for parameter p > 0 by

r( j) =
{
0 if j < p

1 if j ≥ p

Thus, the rep score based on the p-representative sequence counts a subset as repre-
senting a voter whose ballot has at least p candidates in common with the subset. A
subset counts 1 if it represents a voter in this sense, and 0 otherwise. In the tables, the
Proportional Approval voting rule is called PAV, and any p-Representative procedure
is called REP-p.

Fishburn and Pekeč (2004) provided a generalization of the REP-p (or p-
representative) procedures in another direction. An REP-p winner can be defined
as any subset S that maximizes

|{i ∈ V : |S ∩ Vi | ≥ p}| ,

that is, the score of S equals the number of voters who approve of at least p members
of S. The generalization suggested by Fishburn and Pekeč (2004) was to define a
function, called the threshold function, t :2C −→ Z+ and to define the score of S as
the number of voters who approve of at least t (S) members of S. The threshold t (S)

should satisfy 1 ≤ t (S) ≤ |S| and t (S1) = t (S2) if |S1| = |S2|. Thus, the threshold
score of a subset S would equal

|{i ∈ V : |S ∩ Vi | ≥ t (S)}| .

Twospecific threshold procedures have appeared in the literature, and seemappropriate
for approval VNW elections

MT: t (S) = |S|
2

and SMT: t (S) = |S| + 1

2
,

called the Majority Threshold and the Strict Majority Threshold, respectively. The
idea is that a majority, or a strict majority, of the elected subset should be supported
by the maximum number of voters.
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Table 8 Example 1: Ballot distances

Ballot Admissible sets

∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

1 1 0 2 2 1 1 3 2

12 2 1 1 3 0 2 2 1

12 2 1 1 3 0 2 2 1

13 2 1 3 1 2 0 2 1

MSUMc 7 3 7 9 3 5 9 5

MMAXc 2 1 3 3 2 2 3 2

TheGeneralized Approval procedures (including approval), the satisfaction-related
procedures, and the threshold procedures, are applied to Example 1 in Table 7. Where
a net version seems appropriate, it is indicated by a preceding “N”.

4 Centralization procedures for VNW elections

The centralization procedures suggested by Kilgour et al. (2006) and Brams et al.
(2005) constitute another set of scoring procedures that apply to VNW approval elec-
tions. Because a possible winning subset and a ballot are subsets of the set of all
candidates, one can measure the distance between them using Hamming distance (the
number of elements—in this case, candidates—in exactly one of the two subsets).
Thus, for each possible winning subset, the distances to each ballot can be deter-
mined. The idea of a centralization procedure is to identify a subset that minimizes
these distances. While these procedures can be viewed as scoring procedures, it is
noteworthy that in general a winning subset has minimum, rather than maximum,
distance.

Table 8 illustrates the set of distances associated with each possible winning subset
using the ballots from Example 1. According to the count-based minisum procedure
MSUMc, a winning subset is one that minimizes the sum of the distances from the
subset to all ballots. According to the count-based minimax procedure MMAXc, a
winning subset is one that minimizes the maximum distance from the subset to any
ballots. Table 8 applies both of these procedures to Example 1. Selected subsets are
indicated in boldface; as Kilgour (2010) noted, theMinisum Count (MSUMc) and Net
Approval (NAV) procedures are very different, but they always produce exactly the
same winning sets.

Proximity weighting adds a further refinement to centralization procedures. Each
distinct ballot is weighted according to the number of times it is cast and according
to its distance from other ballots, so as to downweight extreme ballots. If the possible
ballots are denoted B1, B2, . . . B2m , if ballot h is cast ch times, and if D(·, ·) denotes
Hamming distance, then the proximity weight of ballot k is

ρk = ck∑
h chD(Bk, Bh)
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Table 9 Example 1: Proximity procedures

Ballot Weight Admissible sets

∅ C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3

1 0.333 1 0 2 2 1 1 3 2

12 0.667 2 1 1 3 0 2 2 1

13 0.20 2 1 3 1 2 0 2 1

MSUMp 2.067 0.867 1.933 2.867 0.733 1.667 2.733 1.533

MMAXp 1.334 0.667 0.667 2.001 0.40 1.334 1.334 0.667

For Example 1, the three ballots cast are 1, 12, and 13, with counts 1, 2, and 1,
respectively. The proximity weights are 1

3 ,
2
3 , and 1

5 , respectively. Table 9 shows the
application of the proximity-based minisum procedure MSUMp and the proximity-
based minimax procedure MMAXp to Example 1.

5 Next r procedures

The Next Two Rule is probably the simplest procedure proposed for VNW approval
elections that is not based on scoring (Brams and Kilgour 2012). We introduce Next
Two as a member of the more general Next r family of procedures for VNW approval
elections, which are defined for r = 2, 3, . . . ,m − 1. The input to a Next r rule is
the vote count vector x = (x1, x2, . . . , xm) ∈ Z

m+. To simplify the expressions, we
assume that the candidates have been renamed, if necessary, in order that

x1 ≥ x2 ≥ · · · ≥ xm

For example, x1 is the number of votes received by the leading candidate. As usual,
we assumeA = 2C . In a Next r rule, the set of winning candidates will be of the form
{C1,C2, . . . ,C j }. Thus, the winning set, denoted Nr (x) = {1, 2, . . . , j}, will contain
the j highest scoring candidates, for some j satisfying 1 ≤ j ≤ m.

Fix r such that 2 ≤ r < m. Then the Next r Rule is defined formally as follows:

Next r Rule: The set of winning candidates is Nr (x) = {1, 2, . . . , j} where j is the
minimum value of k satisfying both 1 ≤ k < m and

xk >

min{k+r,m}∑

h=k+1

xh (6)

if such a value of k exists; otherwise, j = m.

Thus, the winners as determined by the Next r rule consist of candidate j and all
preceding candidates, where, if (6) can be satisfied, j is the first candidate to receive
more votes than the total of the next r candidates, if j is relatively small (i.e., j satisfies
j ≤ m − r ), or than all remaining candidates, if j is large (i.e., j > m − r ). If (6)
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cannot be satisfied, then j = m, which means that the set of all candidates, C, is the
winning set. A necessary condition for (6) to fail for all values of k < m, and hence
for Nr (x) = C is xm−1 = xm , since otherwise xm−1 > xm , which implies that (6) is
satisfied by k = m − 1, and possibly by some smaller value of k.

For Example 1, with x = (4, 2, 1), the unique Next 2 winner is {1}, since C1’s total
approval vote exceeds the total for C2 and C3. But consider

Example 2 m = 3, x = (4, 3, 2), in which 3 candidates receive 4, 3, and 2 votes,
respectively.

In Example 2, the unique Next 2 winner is {1, 2}. More examples illustrating the Next
r rule appear below.

It is easy to verify that a Next r procedure never produces a tie. Any winning can-
didate must have a strictly greater vote count than every losing candidate. In addition,
if 2 ≤ r < s ≤ m − 1, then Nr (x) ⊆ Ns(x). For example, the Next 2 winners are
always a subset of the Next 3 winners. The Next m − 1 Rule is also called the All
Remaining Rule, and can be written NAR(x) = Nm−1(x).

6 First majority procedures

Another non-scoring rule, apparently first discovered as a consequence of a system
of axioms is the First Majority Rule (Kilgour 2016). Like the Next r Rules, its only
input is the vote count vector, x = (x1, x2, . . . , xm). For any m > 1 and any x ∈ Z

m+,
recall that X (x) = ∑m

j=1 x j , so that X (x) is the total number of approvals when the
vote count vector is x . Again like the Next r rules, the set of winning candidates under
First Majority will be of the form {C1,C2, . . . ,C j }. In other words, the winning set,
denoted NFM (x) = {1, 2, . . . , j}, will contain the j highest scoring candidates, for
some j satisfying 1 ≤ j ≤ m.

First Majority Rule: NFM (x) = (1, 2, . . . , j) where

j = min

{

k :
k∑

h=1

xh >
X (x)

2
and xk > xk+1

}

.

Thus, FM(x) consists of the smallest possible set of top-scoring candidates that
receives, in total, more than half of all votes and such that every candidate not in the set
receives fewer votes than any candidate in the set. For Example 1, with x = (4, 2, 1),
we have NFM(x) = {1}. For Example 2, with x = (4, 3, 2), we have NFM(x) = {1, 2}.

Again, it is easy to verify that the First Majority rule never produces a tie. Any
winning candidate must have a strictly greater vote count than any losing candidate.
In addition, NFM(x) ≤ NAR(x), that is the set of First Majority winners is never
larger than the set of All Remaining winners. The examples below provide additional
illustrations of the First Majority Rule and the Next r Rules. Note that all examples
havem = 5 candidates. For brevity, we write NFM(x) = {1, 2, . . . ,FM(x)}, Nr (x) =
{1, 2, . . . , nr (x)}, and NAR(x) = {1, 2, . . . ,AR(x)}
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Example 3 x = (40, 20, 19, 12, 9) FM(x) = 2, n2(x) = 1, n3(x) = AR(x) = 4

Example 4 x = (25, 20, 20, 20, 15) FM(x) = 4, n2(x) = 1, n3(x) = AR(x) = 4

Example 5 x = (24, 20, 20, 18, 18) FM(x) = 3, n2(x) = n3(x) = AR(x) = 5

7 Conclusions

Approval ballots are natural for multi-winner elections, and there are many ways to
base a multi-winner election on approval ballots. Variable Number ofWinners (VNW)
elections are of course multi-winner elections, but not all of the procedures used for
multi-winner approval elections are appropriate. Many of them, such as elections to
the Baseball Hall of Fame, are based on restricted ballots (a maximum on the number
of candidates who may be supported) and scoring thresholds (a minimum score for
election) (National Baseball Hall of Fame BBHOF 2015). Since such restrictions
and thresholds are essentially arbitrary, one might ask for an “intrinsic” procedure
to identify the winner of a VNW election. This paper has reviewed several such
procedures, and shown how other multi-winner approval procedures such as Approval
(AV) andSatisfactionApproval (SAV) can be converted into procedures that are natural
to VNW elections, and in particular do not rely on arbitrary restrictions or thresholds.

Some properties, both representational and computational, have been suggested
here, but the analysis of properties, and development of procedures that meet them, is
left for others. For instance, the recently proposed property “justified representation”
in FNW elections has been shown to be achieved uniquely by Proportional Approval
Voting (PAV) (Aziz et al. 2015); it is unknown whether the property carries over in any
sense to the Net version, NPAV, in VNW elections. One attempt to axiomatize VNW
election is Kilgour (2016). Similarly, computational properties of procedures have
barely been mentioned here; indeed many of the procedures described here are known
to be computationally hard. There is much work to be done to find good procedures
for VNW elections, and to characterize them

More broadly, VNWelections are ametaphor for the integration of preference infor-
mation or decision recommendations which are important in many contexts, including
democracies and group decision processes, as well as in engineering, computer sci-
ence, and biology. A better understanding of VNW elections may provide new tools
that can be used in many different fields.
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