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Abstract Chateauneuf and Faro (J Math Econ 45:535–558, 2009) axiomatize a
weighted version of maxmin expected utility over acts with nonnegative utilities,
where weights are represented by a confidence function. We argue that their represen-
tation is only one of many possible, and we axiomatize a more natural form of maxmin
weighted expected utility. We also provide stronger uniqueness results.
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1 Introduction

Maxmin expected utility (MMEU), axiomatized by Gilboa and Schmeidler (1989),
is one of the best-studied alternatives to subjective expected utility (SEU) maximiza-
tion (Savage 1954). Its compatibility with ambiguity-averse preferences makes it an
attractive descriptive decisionmodel, in light of experimental evidence (e.g., the Allais
Paradox, Allais 1953 and the Ellsberg Paradox, Ellsberg 1961) showing that intuitive
decisions may violate the ambiguity neutrality, or “independence”, property implied
by the SEU model. In the (multiple priors) MMEU decision model, there is a set of
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possible probability distributions over the state space, each giving rise to a (potentially
different) expected utility value for each object of choice. An MMEU decision maker
chooses an option that maximizes the minimum of such expected utility values.

However, even MMEU may be too restrictive a model for representing reasonable
decision-making. For example, Chateauneuf and Faro (2009) (henceforth CF) point
out thatMMEUdoes not allow “attraction for smoothing an uncertain act with the help
of a positive constant act”, a property that is intuitively reasonable and is demonstrated
in Example 5.2.

To deal with this, CF consider a “weighted” version of maxmin expected utility
(Gilboa andSchmeidler 1989). Recall that in theMMEUmodel, beliefs are represented
by a set of probabilitymeasures over the state space. The distributions that are in the set
are viewed as the possible distributions over the states. However, sometimes it makes
sense to treat some distributions as “more likely” than other distributions, rather than
just separating the distributions into two groups (“possible” and “impossible”). CF
provide a method of treating distributions differently, by assigning a confidence value
to each distribution.

Others have independently studied similar models. Klibanoff et al. (2005) propose
a model of decision making that associates weights with probability measures, but
makes decisions based on a “weighted” expected utility function. Maccheroni et al.
(2006) study a model of decision making where additive, instead of multiplicative,
weights are associated with probability measures. Hayashi (2008) considers a model
of expected regret minimization where the regret associated with each state is taken to
a positive power before the expectation is taken. In a previous workHalpern and Leung
(2012), we have also considered associating multiplicative weights with probability
measures in expected regret minimization. Others have also proposed and studied
approaches of representing uncertainty that are similar to weighted probabilities (see,
e.g., de Cooman 2005; Moral 1992; Walley 1997).

In theCFmodel, a high confidence value on a probabilitymeasure can be interpreted
as the probability measure being “significant” or “likely to be the correct distribution”,
while a low confidence value on a probability measure is interpreted as the probability
measure being insignificant or unlikely to be the correct distribution. These confidence
values are used to scale the expected utilities of the acts in away that reflects the relative
significance of each probability measure. Since larger weights should always magnify
the influence of a distribution, one must restrict to either nonnegative or nonpositive
utilities. CF choose to restrict to nonnegative utilities, and they multiply the expected
utilities by the multiplicative inverse of the associated confidence value. The maxmin
expected utility criterion is then used to compare utility acts based on these “weighted”
expected utilities. In this paper, we use the termweight to refer to the final real number
by which wemultiply the expected utilities. In the CFmodel, the weight is obtained by
taking the multiplicative inverse of the confidence value. Multiplying by the inverse
ensures that probability measures with low confidence have a smaller effect, since they
are less likely to give the minimum expected utility. This generalization of the maxmin
expected utility decision rule allows for a “smoothing” effect. Instead of simply being
in or out of the set of probability measures considered possible, probability measures
now have finer weights associated with them.
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However, CF also introduce a numerical confidence threshold α0 > 0; a probability
measure is “discarded” (i.e., ignored) if its confidence value is below this threshold
α0. This threshold affects the resulting behavior of the decision model, as captured
by the axioms characterizing the decision model. Having this threshold seems to
be incompatible with the intuition behind weights. If a probability measure has low
weight, we should perhaps take it less seriously than the one with high weight, but
there seems to be no good reason to ignore it altogether. Therefore, we define a simpler
version of the decision rule where there is no threshold α0. This simplified decision
rule is characterized by removing one of the CF axioms.

Another problem with the CF approach is that of using the multiplicative inverse of
the confidence value as the weight on the expected utilities. This choice seems rather
arbitrary. Why not use the square of the inverse? We show that any monotonically
decreasing transformation that maps (0, 1] onto R

+ (the nonnegative reals) satisfies
the same axioms. Although all these transformations are characterized by the same
axioms, different transformations may lead to quite different decisions.

It is not clear which transformation function is the “right” one. There is no com-
pelling argument for using 1

x rather than, say, 1
x2
. Our axiomatization leads to some

important observations:

1. What is important is the composition t ◦ φ of the transformation function t and the
confidence function φ, not the confidence function itself nor the transformation
function itself; it is the composition that determines the preferences.

2. Confidence values have no cardinal meaning: a confidence value of 1
2 can have the

same meaning as a confidence value of 1
3 if the transformation t changes.

Moreover, as our results show, the confidence value and the transformation interact.
In our earlier work on minimax weighted expected regret (Halpern and Leung 2012),
wewere able to get a strong uniqueness result in the context of regret bymultiplying the
probability measure by the weight. That is, instead of considering the set of probability
measures and the associated weights separately, we consider what we called subprob-
ability measures, which are probability measures “scaled” by a weight in [0, 1]. By
looking at these subprobability measures, we were able to find natural properties to
ensure the uniqueness of the representation. Here, we show that by multiplying the
probability measure by the weight, we can get a uniqueness result analogous to that
for regret.

With weighted regret, there is no need to apply a transformation to the confidence
values. The weights are simply the confidence values. Equivalently, the identify func-
tion is a valid transformation for weighted regret. We show that for maxmin weighted
expected utility, if we restrict to nonpositive utilities instead of nonnegative utilities,
we can also take the transformation to be the identity function. That is, we can just
multiply the expected utilities by a confidence value without applying any transfor-
mations. We then replace the axiom saying that there is a worst outcome with one
saying that there is a best outcome. This results in essentially the same representation
theorem.

The rest of this paper is organized as follows. Section 2 sets up some preliminary
definitions. Section 3 presents the CF model and some of their results. Section 4
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considers a generalization of the CF model. Section 5 presents a simpler model and
provides a representation theorem. Proofs are collected in the appendices.

2 Formal definitions

In this section, we provide definitions that will be used to present the CF results,
as well as to develop our new results. We restrict to what is known in the literature
as the Anscombe–Aumann (AA) framework (Anscombe and Aumann 1963), where
outcomes are restricted to lotteries. This framework is standard in the decision theory
literature; axiomatic characterizations of SEU (Anscombe and Aumann 1963) and
MMEU (Gilboa and Schmeidler 1989) have been obtained in the AA framework.

We assume that the state space S is associated with a sigma algebra, and we let
�(S) denote the set of all probability distributions on S. Given a set X (which we view
as consisting of prizes or outcomes), a lottery over X is just a probability distribution
on X with finite support. Let �(X) be the set of all lotteries. In the AA framework,
the set of outcomes is �(X). So, now acts are functions from the state space S to
�(X). (Such acts are sometimes called Anscombe–Aumann acts.) We denote the set
of all acts by F . The technical advantage of considering such a set of outcomes is
that we can consider convex combinations of acts. If f and g are acts, define the act
α f + (1 − α)g to be the act that maps a state s to the lottery α f (s) + (1 − α)g(s).

Given a utility function U on prizes in X , the utility of a lottery l ∈ �(X) is just
the expected utility of the prizes obtained, that is,

u(l) =
∑

{x∈X : l(x)>0}
l(x)U (x).

This makes sense since l(x) is the probability of getting prize x if lottery l is played.
The expected utility of an act f with respect to a probability p on states is then just
u( f ) = ∫

S u( f (s))dp, as usual.

3 CF maxmin expected utility with confidence functions

The CF approach is formalized as follows. Let φ : �(S) → [0, 1] be a confidence
function on the probability measures, and let u be a utility function on lotteries over
X with values in R

+ (all instances of R+ in this paper include 0). Let Lα0φ denote
the set {p ∈ �(S) : φ(p) ≥ α0} for α0 ∈ (0, 1].
Definition 3.1 Define �+,α0

φ so that

f �+,α0
φ g ⇔ min

p∈Lα0φ

1

φ(p)

∫

S
u( f )dp ≥ min

p∈Lα0φ

1

φ(p)

∫

S
u( f )dp.

The superscript + on �+,α0
φ indicates that the preference is defined for nonnegative

utilities. Note that, according to Definition 3.1, a probability measure that has a con-
fidence value (according to φ) lower than α0 is simply discarded. The analogy to
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maxmin expected utility of Gilboa and Schmeidler (1989) is that the probability mea-
sure is not in the belief set. Indeed, if α0 = 1, then the CF approach essentially reduces
to maxmin expected utility.

CF call confidence functions satisfying the following properties regular* fuzzy sets.

Definition 3.2 The set of regular* fuzzy sets consists of all mappings φ : �(S) →
[0, 1] satisfying the following properties:

(a) φ is normal: {p ∈ �(S) : φ(p) = 1} �= ∅.

(b) φ is weakly* upper semi-continuous: {p ∈ �(S) : φ(p) ≥ α} is weakly* closed
for all α ∈ [0, 1].

(c) φ is quasi-concave:

∀β ∈ [0, 1](φ(βp1 + (1 − β)p2) ≥ min{φ(p1), φ(p2)}).

One role of regular* fuzzy sets in the CF representation is that the condition pro-
vides a canonical representation. That is, every preference order satisfying appropriate
axioms can be represented by some utility function, some α0 > 0, and some regular*
fuzzy φ. Moreover, there is a φ∗ within the set of regular* fuzzy sets generating these
preferences such that φ∗ is maximal in the sense that for every probability measure p,
φ∗ assignsweakly larger confidence to p than every other regular* fuzzy set generating
these preferences.

CF consider the following axioms. In the axioms, the acts f and g are viewed as
being universally quantified; given an outcome x ∈ X , we write x∗ to denote the
constant act that maps all states to the outcome x .

Axiom 1 (a) (Transitivity): f � g � h ⇒ f � h.

(b) (Completeness): f � g or g � f.
(c) (Nontriviality): f  g for some acts f and g.

Axiom 2 (Monotonicity). If ( f (s))∗ � (g(s))∗ for all s ∈ S, then f � g.

Axiom 3 (Continuity). For all f, g, h ∈ F , the sets {α ∈ [0, 1] : α f + (1 − α)g �
h}, {α ∈ [0, 1] : h � α f + (1 − α)g} are closed.
Axiom 4 (Worst independence).There exists aworst outcome x ∈ X such that f � x∗
for every f ∈ F . Moreover,

f ∼ g ⇒ α f + (1 − α)x∗ ∼ αg + (1 − α)x∗.

Axiom 4 is reminiscent of Gilboa and Schmeidler’s 1989 C-independence axiom of
MMEU; C-independence is stronger in the sense that the independence property needs
to hold not only for x∗, but all other constant acts as well.

Axiom 5 (Independence on constant acts).

∀x, y, z ∈ X

(
x∗ ∼ y∗ ⇔ 1

2
x∗ + 1

2
z∗ ∼ 1

2
y∗ + 1

2
z∗

)
.

123



586 J. Y. Halpern, S. Leung

Axiom 5 is a weaker version of the more common independence axiom for constant
acts, where instead of 1

2 mixtures, all convex mixtures of the constant acts are allowed.
CF chose to present this weaker axiom, since it was shown by Herstein and Milnor
1953 that Axioms 1, 3 and 5 are sufficient to satisfy the premises of the von-Neumann–
Morgenstern theorem, which says that there is an expected-utility representation for
preferences over constant acts. While we could have used the more standard/stronger
versions of the continuity and independence axioms, to make comparisons easier, we
use the versions used by CF.

Axiom 6 (Ambiguity aversion).

f ∼ g ⇒ p f + (1 − p)g � g.

Ambiguity aversion says thatwhen there are two equally good alternatives, the decision
maker prefers to hedge between these two alternatives. Ambiguity aversion is also
sound for MMEU (Gilboa and Schmeidler 1989).

Axiom 7 (Bounded attraction for certainty).There exists δ ≥ 1 such that for all f ∈ F
and x, y ∈ X:

x∗ ∼ f ⇒ 1

2
x∗ + 1

2
y∗ � 1

2
f + 1

2

(
1

δ
y∗ +

(
1 − 1

δ

)
x∗

)
.

As CF point out, Axiom 6 implies that if an agent is indifferent between an act
f and a constant act x∗, then she could strictly prefer the convex combination of
f with a constant act y∗ to the combination of x∗ and y∗. In particular, if we let
y∗ = x∗, then Axiom 6 implies that p f + (1− p)y∗ � x∗ = px∗ + (1− p)y∗ for all
p ∈ [0, 1]. CF explain that Axiom 7 imposes a bound on the affinity for smoothing out
an uncertain act with a constant act. Continuing with our example and letting x∗ = 0∗
(assuming that outcomes are numbers), Axiom 7 implies that 12 x

∗+ 1
2 y

∗ � 1
2 f + 1

2δ y
∗

for some fixed δ specified by Axiom 7. The fact that there exists a δ > 1 such that
1
2 x

∗ + 1
2 y

∗ � 1
2 f + 1

2δ y
∗ follows from monotonicity. The power of Axiom 7 comes

from the fact that there is a single δ ≥ 1, such that this preference holds for all
x, y ∈ X , and f ∈ F .

The Bounded Attraction for Certainty axiom in the CF representation captures the
lower bound α0 in the model. Recall that if the confidence value of a probability
measure is less than α0, then that measure is considered “impossible”, or ignored.
CF show that the δ in the Bounded Attraction for Certainty axiom can be taken to be
1
α0

in the representation. δ is roughly interpreted as an upper bound on how much the
mixing of a constant act to an act canmake the act more preferable.We essentially take
α0 = 0 all probability measures into account, regardless of their weight, as long as the
weight is positive. Since weighted regret already says that regret due to probability
measures with low confidence is not taken seriously, there seems to be no reason to
ignore probability measures of low confidence altogether. In any case, since we take
α0 = 0, we would expect decision rule to satisfy an unbounded version of attraction
for certainty. Our representation theorem shows that such an axiom is not needed to
characterize maxmin weighted expected utility.

CF prove the following representation theorem:
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Theorem 3.3 (CF representation Theorem Chateauneuf and Faro 2009). A binary
relation � on F satisfies Axioms 1–7 if and only if there exists a unique nonconstant
function u : X → R

+, such that ux∗ = 0, unique up to positive linear transformations,
a minimal confidence level α0 ∈ (0, 1], and a regular* fuzzy set φ : �(S) → [0, 1]
such that �=�+,α0

φ .

Note that although CF guarantee the existence of a representation with a regular*
fuzzy set, the confidence function does not necessarily need to be regular* fuzzy to
satisfy Axioms 1–7. For example, if there are two states, s1 and s2, pi is the point
mass on state si for i ∈ {1, 2}, φ(p1) = φ(p2) = 1, and φ(p) = 0 for all other
probability measures p, then φ is not a regular* fuzzy set, since it is not quasi-concave.

Nevertheless, �+, 12
φ is determined by maxmin expected utility and thus must satisfy

Axioms 1–7, because Axioms 1–7 are strictly weaker than the axioms for maxmin
expected utility (Gilboa and Schmeidler 1989).

4 t-Maxmin weighted expected utility

In this section, we consider a generalization of the CF approach, which we call the t-
maxmin weighted decision rule. The t-maxmin weighted rule applies a monotonically
decreasing transformation function t to the confidence values and thenuses themaxmin
criterion on expected utilities multiplied by the transformed confidence values. The
CF decision rule is the special case of the t-weighted maxmin decision rule, where
t (x) = 1

x .
Let φ : �(S) → [0, 1] be a confidence function, t : (0, 1] → R

+ be a transforma-
tion function, and u be a nonnegative utility function.

Definition 4.1 (t-maxmin weighted expected utility). Define �+,α0
t,φ , so that

f �+,α0
t,φ g ⇔ min

p∈Lα0φ
t (φ(p))

∫

S
u(g)dp ≥ min

p∈Lα0φ
t (φ(p))

∫

S
u( f )dp.

The threshold value α0 affects the preferences �+,α0
φ only if it is larger than the

smallest confidence value. That is, let α∗
0(φ) = max{α0, inf p∈�(S) φ(p)}. It is easy to

see that, for all 0 < α ≤ α∗
0(φ), we have �+,α

φ =�+,α∗
0 (φ)

φ .

Theorem 4.2 shows that it is not necessary to use the transformation t (x) = 1
x

to map confidence values into weights with which expected utilities are multiplied.
Other functions, such as t (x) = 1

x2
, represent the same class of preference orders.

However, there are some constraints on the allowed transformation functions t , since
we need to “simulate” 1

φ(p) with t (φ′(p)). In addition to being strictly decreasing

(a property of t (x) = 1
x ), the condition that there exists some β > 0 such that

[β, β/α∗
0(φ)] ⊆ range(t) guarantees that we can “simulate” 1

φ(p) with t (φ′(p)) for
some φ′ and α′

0. Continuity guarantees that we can find a preimage φ′(p) for every
value in the range of t .
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Theorem 4.2 For all measurable spaces (S, �), consequences X, nonnegative utility
functions u, confidence functions φ : �(S) → [0, 1], thresholds α0 > 0 and strictly
decreasing, continuous transformation functions t : (0, 1] → R

+, such that there
exists some β > 0 and [β, β/α∗

0(φ)] ⊆ range(t), there exists α′
0 > 0 and φ′ such that

�+,α0
φ =�+,α′

0
t,φ′ ;

also, if φ is regular* and t (1) = β, then φ′ is regular*.

Theorem 4.2 highlights another perspective of the t-weighted maxmin expected
utility representation. In addition to viewing φ : [0, 1] as a confidence function which
is transformed and then applied to probability measures, we can also view t (φ(p)) as
a weight applied to the probability measure p. In this paper, we use the term weight
to refer to a value in R

+ with which the expected probability is multiplied, while the
term confidence refers to a value in [0, 1] in the sense used by Chateaneuf and Faro.
In the theorem statement (and later in the paper), we takeU+ to denote a nonnegative
utility function.

A corollary of Theorem 4.2 is a representation theorem for the CF axioms, that is,
Axioms 1–7. Theorem 4.3 requires that t (1) > 0, since if t (1) ≤ 0 and the confidence
function is normal, then the preferenceswill be trivial. Theorem4.3 provides a stronger
uniqueness result than Theorem 3.3.

Theorem 4.3 Let t : (0, 1] → R
+ be a continuous, strictly decreasing function with

t (1) > 0 and limx→0+ t (x) > c for c ∈ R
+. For all X, U+, S, α0 > 0, and φ, if

U+ is nonconstant and α∗
0(φ) ≥ c, then the preference order �+,α0

t,φ satisfies Axioms
1–7, with δ = c

t (1) in Axiom 7. Conversely, if the preference order � on the acts in F
satisfies Axioms 1–7 with t (1)δ ≤ c in Axiom 7, then there exists a nonnegative utility
function U+ on X, a threshold α0 > 0, and a confidence function φ : �(S) → [0, 1]
such that φ is regular* fuzzy, t ◦φ has convex upper support, and�=�+,α0

t,φ . Moreover,
U+ is unique up to positive linear transformations, and if S is finite, there is a sense
in which φ is unique (see Theorem 5.5).

Proof That �+,α0
t,φ satisfies Axioms 1–7 follows from Theorems 3.3 and 4.2, since

�+,α0
t,φ =�+,α′

0
φ′ for some α′

0 and φ′, and �+,α′
0

φ′ satisfies Axioms 1–7.
Proving the converse also involves Theorems 3.3 and 4.2. If a preference order

satisfies Axioms 1–7, then by Theorem 3.3 there exists a CF representation. Moreover,
the α0 in the construction of the representation in CF’s proof of Theorem 3.3 is equal
to 1

δ
, where δ is the number in Axiom 7. Also, recall that α0 ≤ α∗

0 . Therefore, if
limx→0+ t (x) > t (1)δ and t (1) > 0, then for β = t (1), we have [β, β/α∗

0(φ)] ⊆
[β, βδ] ∈ range(t) over the domain (0, 1]. By Theorem 4.2, we can conclude that
there exists a t-weighted maxmin expected utility representation.

The uniqueness claim follows from Theorem 5.5 below, which requires only
Axioms 1–6. ��

It is well known that for MMEU and regret, the preference order determined by
a set P of probability measures is the same as that determined by the convex hull
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of P . Thus, to get uniqueness, Gilboa and Schmeidler 1989 consider only convex
sets of probability measures. In Halpern and Leung (2012), we show that a set of sub-
probability measures determine the sameminimaxweighted expected regret (MWER)
preferences as its convex hull. Proposition 4.5 shows that the generalized probability
measures behave in much the same way as the probability measures in MMEU and
the sub-probability measures in MWER.

Given a set V of generalized probabilities, define the relation �V by taking

f �V g ⇔ inf
p∈V

∫

S
u( f )dp ≥ inf

p∈V

∫

S
u(g)dp.

It is not difficult to see thatwe can convert back and forth between the upper support of a
weighting function and theweighting function itself. Therefore,we lose no information
by looking at the upper support of a weighting function.

Proposition 4.4 �V
α0
t◦φ

=�+,α0
t,φ .

Proof

f �V
α0
t◦φ

g iff inf
p′∈V α0

t◦φ

∫

S
u( f )dp′ ≥ inf

p′∈V α0
t◦φ

∫

S
u(g)dp′

iff inf{q:q=t (φ(p))p,φ(p)>α0}

∫

S
u( f )dq ≥ inf{q:q=t (φ(p))p,φ(p)>α0}

∫

S
u(g)dq

iff inf{p:φ(p)>α0}
t (φ(p))

∫

S
u( f )dp ≥ inf{p:φ(p)>α0}

t (φ(p))
∫

S
u( f )dp

iff f �+,α0
t,φ g,

if φ(p) is lower semi-continuous. ��
Recall that, given a set V in a mixture space, Conv(V ) = {αx + (1− α)y : x, y ∈

V, α ∈ [0, 1]} is the convex hull of V .

Proposition 4.5 If V, V ′ are sets of generalized probability measures andConv(V ) =
Conv(V ′), then �V=�V ′ .

Proof It suffices to show that V represents the same preferences as Conv(V ). Let V
be a set of generalized probability measures. Given β ∈ [0, 1], p1, p2 ∈ V , and an act
f ∈ F , we have

β

∫
u( f )dp1 + (1 − β)

∫
u( f )dp2 ≥ min

{∫
u( f )dp1,

∫
u( f )dp2

}
.

This means that βp1+ (1−β)p2 can be added to V without changing the preferences,
as required. ��
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4.1 Impact of the threshold

In the following example, we examine howAxiom 7 qualitatively affects the weighted
maxmin expected utility preferences.

Example 4.6 Suppose there are two states: S = {s0, s1}. Consider the confidence
function φ defined by φ(p) = √

p(s1). Like CF, we let t (x) = 1
x , and let α0 > 0 be a

fixed threshold value. Let �+,α0
φ be the resulting preference relation. Let f be an act

such that u( f (s0)) = 0 and u( f (s1)) = 1. Let c∗ be a constant act with utility c > 0.
Then we have that

f �+,α0
φ c∗ ⇔ inf

{p:√p(s1)≥α0}
√
p(s1) ≥ c.

This means that f is strictly preferred to all constant acts c∗ with c < α0, but is
considered strictly worse than all constant acts c∗ with c > α0.

Now compare this to the preference order obtained by considering the same confi-
dence function c and weight function t , but with no threshold on the confidence. Then
we have that

f �+
φ c∗ ⇔ inf

p∈�(S)

√
p(s1) ≥ c.

Since minp∈�(S)

√
p(s1) = 0, this means that f is strictly worse than all constant acts

c with c > 0. Clearly, imposing a threshold has a nontrivial impact on the preference
order.

We can also show how CF’s Axiom 7 is violated by �+
φ . Suppose that the worst

outcome in this example (i.e., x) is 0. If there is no threshold (or, equivalently, if
α0 = 0), then f ∼ 0∗. Thus, Axiom 7 implies that, for some fixed ε > 0, for all
outcomes y, we have that 1

2 y
∗ � 1

2 f + εy∗. However,

1
2 y

∗ �+,0
φ

1
2 f + εy∗

iff y
2 ≥ inf p∈�(S)

(
1√
p(s1)

(
p(s1)

( 1
2 + εy

) + (1 − p(s1))εy
))

= inf p∈�(S)

(
εy√
p(s1)

+ 1
2

√
p(s1)

)
.

It is easy to see that

inf
p∈�(S)

(
εy√
p(s1)

+ 1

2

√
p(s1)

)
= √

2εy,

which means that for all y < 8ε, we have that 1
2 y ≺ 1

2 f + εy, contradicting Axiom 7.
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5 Maxmin weighted expected utility

5.1 Removing the threshold

As discussed in the previous section, it does not seem natural to discard probability
measures if their confidence values do not meet some fixed threshold α0 > 0. We can
naturally extend the definition of t-weighted maxmin expected utility to remove the
threshold α0.

Definition 5.1 (t-maxmin weighted expected utility without α0). Define �+
t,φ so that

f �+
t,φ g ⇔ inf{p:φ(p)>0} t (φ(p))

∫

S
u(g)dp ≥ inf{p:φ(p)>0} t (φ(p))

∫

S
u( f )dp.

Clearly, �+,α0
t,φ =�+

t,φ′ where φ′(p) = φ(p), if φ(p) ≥ α0 and φ′(p) = 0 if φ(p) <

α0. Thus, �+
t,φ is at least as expressive as �+,α0

t,φ .

Ifwe considerCF’s preference order�+
φ without a thresholdα0, then asExample 5.2

below shows, Axiom 7 no longer holds.

Example 5.2 Let S = {s1, s2}. Let the constant act 1̃ have constant utility 1, so that
the minimumweighted expected utility of 1̃ is 1 as long as φ is normal. Let pc ∈ �(S)

be the measure such that pc(s1) = c for c ∈ [0, 1]. Let φ be a confidence function on
�(S), such that the confidence value for pc ∈ �(S) is

φ(pc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if c ≥ 1
2

1
21

, if c ∈ [ 18 , 1
2 )

1
22

, if c ∈ [ 1
32 ,

1
8 )

. . .

1
2n , if c ∈

[
1

22n+1 ,
1

22n−1

)
, for n ∈ N.

Clearly, φ is normal, since φ(p 1
2
) = 1. It is also easy to see from the definition

that φ is weakly* upper semi-continuous. Lastly, to check quasi-concavity, note that
a function which is nondecreasing up to a point and is nonincreasing from that point
on is quasi-concave. Therefore, φ is quasi-concave.

We describe the utility of an act f on a state space S = {s1, . . . , sn} using a
utility profile with the format (u( f (s1)), . . . , u( f (sn))). Consider the sequence of
acts { fn}n≥1 with utility profiles as follows:

f1 =
(
2,

2

7

)

f2 =
(
4,

4

31

)
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f3 =
(
8,

8

127

)

. . .

fn =
(
2n,

2n

22n+1 − 1

)
.

Suppose, by way of contradiction, that there is a fixed δ ∈ R such that �+
φ satisfies

Axiom 7. In Appendix 2, we show that for all n ≥ 1, fn ∼+
φ 1̃.

Now, let m̃ be a constant act with constant utility m. The act 1
2 fn + 1

2δ δ̃ has utility

2n−1 + 1
2 in state s1 and utility 2n−1

22n+1−1
+ 1

2 in state s2. If c ∈ [ 1
22m+1 ,

1
22m−1 ) for

m ≥ 1, then the weighted expected utility of 1
2 fn + 1

2δ δ̃ with respect to pc is at least
2n−m−2 + 2m−2. This means that if n ≥ 4 + 2 log2 δ, then the minimum weighted
expected utility of 1

2 fn + 1
2δ δ̃ is strictly greater than δ. The details are worked out in

Appendix 2.
On the other hand, theminimumweighted expected utility of 1

2 1̃+ 1
2 δ̃ is

1
2 (1+δ) < δ

for δ ≥ 1. Thus, 1
2 fn + 1

2
1
δ
δ̃ +

t,φ
1
2 1̃+ 1

2 δ̃ for sufficiently large n, violating Axiom 7

with x∗ = 0̃. Although Axiom 7 is violated, it is easy to see that Axioms 1–6 hold.
Indeed, as we show that we can get a representation theorem for Axioms 1–6.

5.2 Maxmin weighted expected utility

It is useful to think of the CF model not as probability measures accompanied by
confidence values, but rather as a set of “super-probability measures.” By super-
probability measure we mean that by multiplying a probability measure by a positive
scalar in [1,∞), we get a scaled positive vector whose components may sum up
to more than 1. A super-probability measure is therefore a nonnegative vector whose
components sum to at least 1. This notion is analogous to the sub-probability measures
used in our previous work on minimax weighted expected regret (Halpern and Leung
2012), where a sub-probability measure is a nonnegative vector whose components
sum to at most 1. Intuitively, a sub-probability measure is obtained by multiplying
a probability measure by a scalar weight that is at most 1. We are also interested in
sets containing both super- and sub-probability measures. We will call these sets of
generalized probability measures.

It is often helpful to consider the set of generalized probability measures supporting
the weighting function. For generalized probability measures p and p′, let p′ ≥ p if
for all s ∈ S, p′(s) ≥ p(s).

Definition 5.3 (Upper Support). The upper support of a nonnegative weighting func-
tion t ◦ φ is the set V t◦φ = {p′ : ∃p(φ(p) > 0 and p′ ≥ t (φ(p)))}.
The upper support of t ◦ φ contains the set of generalized probabilities t (φ(p))p, as
well as all generalized probabilities that are larger. Including these larger generalized
probabilities does not change the underlying preferences of the upper support, since
these larger generalized probabilities will never provide minimum expected utilities.
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Maxmin weighted expected utility: a simpler characterization 593

While adding larger generalized probabilities does not affect the minimum expected
utility, working with the upper support turns out to be technically convenient, as we
shall see.

Define a relation �V t◦φ
by taking

f �V t◦φ
g ⇔ inf

p∈V t◦φ

∫

S
u( f )dp ≥ inf

p∈V t◦φ

∫

S
u(g)dp.

Just as before, we can convert back and forth between the upper support of a weighting
function and the weighting function itself. The proof is analogous to that for Proposi-
tion 4.4 and is left to the reader.

Proposition 5.4 �V t◦φ
=�+

t,φ .

For the results beyond this point, we assume that the state space S is finite, since
we make use of results due to Halpern and Leung (2012), which are proved under the
assumption of a finite state space.

Theorem 5.5 Let t : (0, 1] → R
+ be a strictly decreasing function with t (1) > 0. For

all X, nonconstant U+, S, and normal φ, the preference order �+
t,φ satisfies Axioms

1–6. Furthermore, if t is continuous, limx→0+ t (x) = ∞, and the preference order �
on the acts in F satisfies Axioms 1–6, then there exists a nonnegative utility function
U+ on X and a regular* fuzzy confidence function φ : �(S) → [0, 1], such that t ◦φ

has convex upper support and �=�+
t,φ . Moreover, U+ is unique up to positive linear

transformations, and φ is unique in the sense that if φ′ is such that �+
t,φ′=� and φ′ ◦ t

has convex upper support, then φ = φ′.

Theorem 5.5 characterizes t-maxmin weighted expected utility without the thresh-
oldα0 of CF. By doing so, we show that the lower boundα0 on the confidence orweight
of probabilities is not a crucial part of the characterization of a weighted version of
MMEU. Moreover, we provide a uniqueness result that is in some sense stronger than
that by CF (Chateauneuf and Faro 2009), in that our uniqueness result directly iden-
tifies a “representative” set of beliefs, while the CF construction (Chateauneuf and
Faro 2009) needs to be maximal to be unique. For example, consider a state space S
with two states and the regular* fuzzy set φ such that φ(p) = 1 for all p ∈ �(S).
Consider a second regular* fuzzy set φ′ where φ′(p) = 1

1+mins∈S p(s) . It is not difficult
to check that both sets induce the same maxmin preferences in the Chateaneuf and
Faro representation, since the supports of the two regular* fuzzy sets have the same
convex hull.

The requirement that limx→0+ t (x) = ∞ is necessary to model probability mea-
sures that are arbitrarily close to being “ignored”. This requirement was not necessary
in the representation that made use of a lower bound α0. However, there is another
natural way to relax the constraints on t without introducing a lower bound α0. As we
show in the next section, if instead of restricting to nonnegative utilities, we restrict to
nonpositive utilities, then we can drop the requirement that limx→0+ t (x) = ∞, thus
allowing a larger set of transformation functions.
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5.3 Nonpositive utilities

Although the preceding results provide a relatively simple characterization of t-
weighted maxmin expected utility, we have not yet presented the full picture. In the
preceding results, just as in the CF model (Chateauneuf and Faro 2009), we have
restricted utilities of acts to be nonnegative. It is easy to see why the restriction to
nonnegative utilities was necessary. A larger weight makes positive utilities better, but
negative utilities worse. If we were to allow utilities to range over positive and neg-
ative values, the resulting decision rule would have very different, rather unintuitive
behavior.

It turns out that we can get a simpler decision rule, characterized almost exactly1 by
Axioms 1–6, if we look at nonpositive utilities instead of nonnegative utilities; in this
section, we consider a representation that is restricted to nonpositive utilities, rather
than nonnegative utilities. We use the notation U− to indicate a nonpositive utility
function.

Definition 5.6 (Weighted maxmin representation). Given a confidence function φ :
�(S) → [0, 1] and strictly increasing transformation function t : [0, 1] → R

+, define
�−
t,φ as follows:

f �−
t,φ g ⇔ min

p∈�(S)
t (φ(p))

∑

s∈S
p(s)u( f, s) ≥ min

p∈�(s)
t (φ(p))

∑

s∈S
p(s)u(g, s).

The − superscript on �−
t,φ denotes that the relation is defined on acts with nonposi-

tive utilities. One benefit of using nonpositive utilities instead of nonnegative utilities is
that we no longer need to transform confidence valuesφ(p) in (0, 1] intomultiplicative
weights t (φ(p)) ∈ [0,∞). Instead, because a larger multiplicative confidence value
results in utilities that are more negative, we can simply use the confidence function
as the weights. Equivalently, we can take t to be the identity. Arguably, this is the most
natural choice for t and minimizes concerns regarding which transformation function
to use.

We show that preferences generated by the weighted maxmin representation is
characterized by Axioms 1–6, with Axiom 4 replaced by the following axiom:

Axiom 8 (Best act independence). There exists a best outcome x ∈ X such that
x∗ � f for every f ∈ F . Moreover,

f ∼ g ⇒ α f + (1 − α)x∗ ∼ αg + (1 − α)x∗.

In the case of nonpositive utilities, as in the case of minimax weighted expected
regret (MWER) (Halpern and Leung 2012), it is useful to look at the lower support
V t◦φ formed by the set of sub-probabilities, defined by

V t◦φ = {p′ : ∃p(p′ ≤ t (φ(p))p)}.

1 Because we restrict to nonpositive utilities instead of nonnegative utilities, instead of a worst outcome/act
we now have a best outcome/act. Thus, Axiom 4 no longer holds and is replaced by Axiom 8.
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Theorem 5.7 Let t : [0, 1] → R
+ be a strictly increasing, continuous transformation

such that t (1) > 0 ≥ t (0). For all X, nonconstant U−, S, and regular* fuzzy φ, the
preference order �−

t,φ satisfies Axioms 1–3, 5–6, and 8. Conversely, if a preference
order� on the acts inF satisfiesAxioms 1–3, 5–6, and 8, then there exists a nonpositive
utility function U− on X and a confidence function φ : �(S) → [0, 1] such that φ is
regular* fuzzy, has convex lower support, and �=�−

t,φ . Moreover, U− is unique up
to positive linear transformations, and φ is unique in the sense that if φ′ is such that
�−
t,φ′=� and φ ◦ t has convex lower support, then φ = φ′.

Note that the transformation t in Theorem 5.7 has domain [0, 1] instead of (0, 1).
This is because in a setting with nonpositive utilities, a confidence value of 0 can be
mapped to a weight of 0, contributing nothing to the definition of the preferences.
This is analogous to a measure being ignored in the case of nonnegative utilities.
Furthermore, t is required to be strictly increasing, instead of decreasing, since a
larger multiplier amplifies the significance of a negative utility value. We need that
t (1) > 0, since if t (1) = 0 then the preferences will be trivial. In the second part of
the theorem, we need t (0) ≤ 0 to find a representation for all possible preferences that
satisfy the axioms. For example, suppose the preference� is such that (c, 0) ∼ (c′, 0)
for all c, c′ ∈ R−. Intuitively, this means that the first state is ignored. More precisely,
any probability measure giving positive probability to the first state should be ignored.
If t (0) > 0, then we do not have the representation power to ignore these probability
measures. Therefore, we are unable to find a representation for �.

5.4 The case of general acts

We have considered two different settings, one restricted to nonnegative utilities, and
the other restricted to nonpositive utilities. One might wonder whether a maxmin
weighted expected utility representation could apply to a setting that includes both
positive and negative utilities. Recall that in the case of nonnegative utilities, a large
positive multiplier on the utility decreases the impact of the constraint or weighted
probabilitymeasure,while in the case of nonpositive utilities, a large positivemultiplier
on the utility increases the impact of the constraint or weighted probability measure.
As a result, to have reasonable behavior when dealing with both positive and negative
utilities, the multiplier on a utility value must depend not only on the probability
measure, but also on the utility value itself (whether it is positive or negative).

Acknowledgments The authors thank Leandro Chaves Rêgo and the Theory and Decision reviewers for
their insights and useful comments.

Appendix 1: Proof of Theorem 4.2

Proof of Theorem 4.2 We assume that t is continuous and strictly decreasing, and that
there exists some β > 0 such that [β, β/α∗

0(φ)] ∈ range(t). Recall that α∗
0(φ) =

max{α0,minp∈�(S) φ(p)}.
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Let α′
0 = t−1(

β

α∗
0
) and for all p ∈ �(S), let φ′(p) = t−1(

β
φ(p) ). It is easy to see

that, for all acts f, g,

min
p∈Lα0φ

1

φ(p)

∫

S
u( f )dp ≥ min

p∈Lα0φ

1

φ(p)

∫

S
u(g)dp

iff min
{p:φ(p)≥α′

0}
β

φ(p)

∫

S
u( f )dp ≥ min

{p:φ(p)≥α′
0}

β

φ(p)

∫

S
u(g)dp

iff min
p∈Lα′

0
φ′ t (φ

′(p))
∫

S
u( f )dp ≥ min

p∈Lα′
0
φ′ t (φ

′(p))
∫

S
u(g)dp,

since for all p ∈ Lα0φ,

β

φ(p)
= t

(
t−1

(
β

φ(p)

))
= t (φ′(p)).

Now, we show that if t (1) = β, then φ′ must be a regular* fuzzy set. Since φ is nor-
mal, there exists p∗ such that φ(p∗) = 1. By definition of φ′, φ′(p∗) = t−1(

β
φ(p∗) ) =

t−1(β) = 1, so φ′ is normal.
To show that φ′ is weakly* upper semi-continuous, we must show that the set

Lαφ′ = {p ∈ �(S) : φ′(p) ≥ α} is weakly* closed for α ∈ [0, 1]. In other words, we
have to show that the set Lαφ′ contains all of its limit points, for all α ∈ [0, 1]. Now,
for α = 0, Lαφ′ = �(S) and is closed. So consider the case α > 0.

Recall from our definition of φ′ that φ′(p) = t−1(
β

φ(p) ) for all p. Suppose pn → p.

Observe that β
φ(pn)

is in the domain of t−1 for all n, since [β, β/α∗
0(φ)] ∈ range(t).

Note that for all p, φ′(p) ≥ α if and only if

t−1
(

β

φ(p)

)
≥ α

iff
β

φ(p)
≤ t (α)

iff φ(p) ≥ β

t (α)
,

where t (α) ≥ β since 0 < α ≤ 1, t is monotonically decreasing, and t (1) = β. Since
φ is assumed to be weakly* upper semi-continuous, and φ(pn) ≥ β

t (α)
for all n, we

have φ(p) ≥ β
t (α)

. Therefore, φ′(p) ≥ α, as required.
Finally, to show that φ′ is quasi-concave, let γ ∈ [0, 1]. Using the fact that t is

strictly monotonically decreasing, we have that

φ(γ p1 + (1 − γ )p2) ≥ min(φ(p1), φ(p2))

⇒ β

φ(γ p1 + (1 − γ )p2)
≤ max

(
β

φ(p1)
,

β

φ(p2)

)
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⇒ t−1
(

β

φ(γ p1 + (1 − γ )p2)

)
≥ min

(
t−1

(
β

φ(p1)

)
, t−

(
β

φ(p2)

))

⇒ φ′(γ p1 + (1 − γ )p2) ≥ min(φ′(p1), φ′(p2)).

For the other direction, suppose that t (1) = β and that φ′ is a regular* fuzzy
confidence function. We want to show that φ defined by φ(p∗) = 1

t (φ′(p∗)) is also
regular* fuzzy. The arguments for this direction are analogous to those used to show
the first direction. ��

Appendix 2: Details of Example 5.2

We now show that for all n ≥ 1, fn ∼+
φ 1̃.

Suppose c ∈ [ 1
22m+1 ,

1
22m−1 ). The weighted expected utility of fn with respect to pc

is

2m
[
c2n + (1 − c)

2n

22n+1 − 1

]
, for m ∈ {0, 1, 2, . . .}.

If m = n, note that

2n
[

1

22n+1 2
n + 22n+1 − 1

22n+1

2n

22n+1 − 1

]
= 1.

If m < n, then

2m
[
c2n + (1 − c)

2n

22n+1 − 1

]
≥ 2m

[
1

22m+1 2
n + 22m−1 − 1

22m−1

2n

22n+1 − 1

]

= 2n

2m+1 + 22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1 ≥ 1.

If m > n, then

2m
[
c2n + (1 − c)

2n

22n+1 − 1

]
≥ 2m

[
1

22m+1 2
n + 22m−1 − 1

22m−1

2n

22n+1 − 1

]

= 2n

2m+1 + 22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1 + 22m−1 − 1

2m−1

1

2n+1

≥ 2n

2m+1 + 22m−1

2m+n
− 1

2m+n

≥ 2m−n−1 ≥ 1.
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If c ∈ [ 12 , 1], then the weighted expected utility of fn is

c2n + (1 − c)
2n

22n+1 − 1
≥ c2n ≥ 2n−1.

Therefore, for all n, the minimum weighted expected utility of fn is 1, so fn ∼+
φ 1̃.

Now, let m̃ be a constant act with constant utility m. The act 1
2 fn + 1

2δ δ̃ has utility

2n−1 + 1
2 in state s1 and utility

2n−1

22n+1−1
+ 1

2 in state s2. If c ∈ [ 1
22m+1 ,

1
22m−1 ) form ≥ 1,

then the weighted expected utility of 1
2 fn + 1

2δ δ̃ with respect to pc is

2m
[
c

(
2n−1 + 1

2

)
+ (1 − c)

(
2n−1

22n+1 − 1
+ 1

2

)]

≥ 1

2m+1 (2n−1) + 22m−1 − 1

2m−1

(
1

2

)

≥ 2n−m−2 + 2m−2.

Suppose that n ≥ 4 + 2 log2 δ and δ ≥ 1. If n ≥ m + 2 + log2 δ,

2n−m−2 + 2m−2 > 2log2 δ = δ.

Otherwise, if n < m + 2 + log2 δ, since n ≥ 4 + 2 log2 δ, it follows that m ≥
log2 δ + 2, and

2n−m−2 + 2m−2 > 2log2 δ = δ.

If c ≥ 1
2 , then the weighted expected utility of 1

2 fn + 1
2δ δ̃ with respect to pc is

c

(
2n−1 + 1

2

)
+ (1 − c)

(
2n−1

22n+1 − 1
+ 1

2

)

>
1

2
2n−1 ≥ 1

2
23+2 log2 δ ≥ 22δ2 > δ,

since δ ≥ 1. This means that if n ≥ 4 + 2 log2 δ, the minimum weighted expected
utility of 1

2 fn + 1
2δ δ̃ is strictly greater than δ.

Appendix 3: Proof of Theorem 5.5

We show here that if a family of preferences � satisfies Axioms 1–6, then � can
be represented as maximizing weighted expected utility with respect to a regular
confidence function and a utility function.Wemake use ofmanyof the same techniques
as used in Halpern and Leung (2012). The key differences are highlighted.

First, we establish a von-Neumann–Morgenstern expected utility function over
constant acts. This part follows the CF proof, rather than the proof in Halpern and
Leung (2012).
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Lemma 8.1 If Axioms 1, 3 and 5 hold, then there exists a nonconstant function U :
X → R, unique up to positive affine transformations, such that for all constant acts
l∗ and (l ′)∗,

l∗ � (l ′)∗ ⇔
∑

{y: l∗(y)>0}
l(y)U (y) ≥

∑

{y: l ′(y)>0}
l ′(y)U (y).

Proof As noted by CF, it was shown by Herstein and Milnor (1953) that Axioms 1, 3
and 5 are sufficient to satisfy the premises of the von-Neumann–Morgenstern theorem.

��
Since U is nonconstant, we can choose a U such that the minimum value that it takes
on is 0 (for some constant act), and the maximum value it takes on is at least 1. If c
is the utility of some lottery lc, let l∗c be a constant act such that l∗(s) = lc, so that
u(l∗c ) = c. The following lemma, whose proof is given in Halpern and Leung (2012)
(Lemma 2), follows from Lemma 8.1.

Lemma 8.2 u(l∗c ) ≥ u(l∗c′) iff l∗c � l∗c′; similarly, u(l∗c ) = u(l∗c′) iff l∗c ∼ l∗c′ , and
u(l∗c ) > u(l∗c′) iff l∗c  l∗c′ .

In Halpern and Leung (2012), a slightly different continuity axiom (Axiom 9) is
used.

Axiom 9 (Mixture continuity). If f  g  h, then there exist q, r ∈ (0, 1) such that

q f + (1 − q)h  g  r f + (1 − r)h.

It is not difficult to derive mixture continuity from completeness (Axiom 1) and
Axiom 3. Therefore, from here on, we assume that the preference order satisfies
mixture continuity.

We establish some useful notation for acts and utility acts (real-valued functions
on S). Given a utility act b, let fb, the act corresponding to b, be the act such that
fb(s) = lb(s), if such an act exists. Conversely, let b f , the utility act corresponding to
the act f , be defined by taking b f (s) = u( f (s)). Note that monotonicity implies that
if fb = gb, then f ∼ g. That is, only utility acts matter. If c is real, we take c∗ to be
the constant utility act such that c∗(s) = c for all s ∈ S.

Defining a functional on utility acts

Our proof uses the same technique as that used in Halpern and Leung (2012). Specif-
ically, like Gilboa and Schmeidler 1989, we define a functional I on utility acts such
that the preference order on utility acts is determined by their value according to I
(see Lemma 8.4). Using I , we can then determine the weight of each probability in
�(S) and prove the desired representation theorem.

Recall that u represents � on constant acts and that only utility acts matter to �.
The space of all nonnegative utility acts is the set B+ of real-valued functions b on S
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where b(s) ≥ 0 for all s ∈ S. We now define a functional I on utility acts in B+, such
that for all f, g with b f , bg ∈ B+, we have I (b f ) ≥ I (bg) iff f � g. Let

R f = {α′ : l∗α′ � f }.

If 0∗ ≤ b ≤ 1∗, then fb exists, and we define

I (b) = sup(R fb).

For the remaining utility acts b ∈ B+, we extend I by homogeneity. Let ||b|| =
|maxs∈S b(s)|. Note that if b ∈ B+, then 0∗ ≤ b/||b|| ≤ 1∗, so we define

I (b) = ||b||I (b/||b||).

It is worth noting that while in Halpern and Leung (2012), I was extended from
the nonpositive utility acts to the entire set of real-valued acts to invoke a separating
theorem for Banach spaces, the extension is not performed here. Consequently, we
will be using a different separating hyperplane theorem than in Halpern and Leung
(2012).

Lemma 8.3 If b f ∈ B+, then f ∼ l∗I (b f )
.

Proof Suppose that b f ∈ B+ and, by way of contradiction, that l∗I (b f )
≺ f . If f ∼ l∗0 ,

then it must be the case that I (b f ) = 0, since I (b f ) ≥ 0 by definition of sup, and
f ∼ l∗0 ≺ l∗ε for all ε > 0 by Lemma 8.2, so I (b f ) < ε for all ε < 0. Therefore,
f ∼ l∗I (b f )

. Otherwise, since b f ∈ B+, by monotonicity, we must have l∗0 ≺ f ,

and thus l∗0 ≺ f ≺ l∗I (b f )
. By mixture continuity, there is some q ∈ (0, 1) such that

q · l∗0 + (1 − q) · l∗I (b f )
∼ l(1−q)I (b f )  f , contradicting the fact that I (b) is the least

upper bound of R f .

If, on the other hand, l∗I (b f )
 f , then l∗I (b f )

 f � l∗c , where the existence of l∗c
is guaranteed by Axiom 4. If f ∼ l∗c , then it must be the case that I (b f ) = c. This is
because I (b f ) ≥ c, since l∗c � l∗c , and I (b f ) ≤ c since for all c′ > c, l∗c′  f ∼ l∗c .

Otherwise, l∗I (b f )
 f  l∗c , and by Axiom 3, there is some q ∈ (0, 1) such that

q · l∗I (b f )
+ (1− q)l∗c ≺ f . Since q I (b f )+ (1− q)c > I (b f ), this contradicts the fact

that I (b f ) is an upper bound of R f . Therefore, it must be the case that l∗I (b f )
∼ f .

��
We can now show that I has the required property.

Lemma 8.4 For all acts f, g such that b f , bg ∈ B+, f � g iff I (b f ) ≥ I (bg).

Proof Suppose that b f , bg ∈ B+. By Lemma 8.3, l∗I (b f )
∼ f and g ∼ l∗I (bg). Thus,

f � g iff l∗I (b f )
� l∗I (bg), and by Lemma 8.2, l∗I (b f )

� l∗I (bg) iff I (b f ) ≥ I (bg). ��
We show that the axioms guarantee that I has a number of standard properties. The

proof of each property is analogous to its counterpart in Halpern and Leung (2012),
but here we deal with nonnegative utility acts, as opposed to nonpositive utility acts.

123



Maxmin weighted expected utility: a simpler characterization 601

Lemma 8.5

(a) If c ≥ 0, then I (c∗) = c.
(b) I satisfies positive homogeneity: if b ∈ B+ and c > 0, then I (cb) = cI (b).
(c) I is monotonic: if b, b′ ∈ B+ and b ≥ b′, then I (b) ≥ I (b′).
(d) I is continuous: if b, b1, b2, . . . ∈ B+, and bn → b, then I (bn) → I (b).
(e) I is superadditive: if b, b′ ∈ B+, then I (b + b′) ≥ I (b) + I (b′).

Proof For part (a), if c is in the range of u, then it is immediate from the definition
of I and Lemma 8.2 that I (c∗) = c. If c is not in the range of u, then since [0, 1]
is a subset of the range of u, we must have c > 1, and by definition of I , we have
I (c∗) = |c|I (c∗/|c|) = c.

For part (b), first suppose that ||b|| ≤ 1 and b ∈ B+ (i.e., 0∗ ≤ b ≤ 1∗). Then
there exists an act f such that b f = b. By Lemma 8.3, f ∼ l∗I (b). We now consider
the case that c ≤ 1 and c > 1 separately. If c ≤ 1, by Worst Independence, c fb +
(1 − c)l∗0 ∼ cl∗I (b) + (1 − c)l∗0 . By Lemma 8.4, I (bcfb+(1−c)l∗0 ) = I (bcl∗I (b)+(1−c)l∗0 ).
It is easy to check that bcfb+(1−c)l∗0 = cb, and bcl∗I (b) + (1 − c)l∗0 = cI (b)∗. Thus,
I (cb) = I (cI (b)∗). By part (a), I (cI (b)∗) = cI (b). Thus, I (cb) = cI (b), as desired.

If c > 1, there are two subcases. If ||cb|| ≤ 1, since 1/c < 1, by what we
have just shown I (b) = I ( 1c (cb)) = 1

c I (cb). Cross multiplying, we have that
I (cb) = cI (b), as desired. If ||cb|| > 1, by definition, I (cb) = ||cb||I (bc/||cb||) =
c||b||I (b/||b||) (since bc/||cb|| = b/||b||). Since ||b|| ≤ 1, by the earlier argument,
I (b) = I (||b||(b/||b||) = ||b||I (b/||b||), so I (b/||b||) = 1

||b|| I (b). Again, it follows
that I (cb) = cI (b).

Now, suppose that ||b|| > 1. Then, I (b) = ||b||I (b/||b||). Again, we have two
subcases. If ||cb|| > 1, then

I (cb) = ||cb||I (cb/||cb||) = c||b||I (b/||b||) = cI (b).

If ||cb|| ≤ 1, by what we have shown for the case ||b|| ≤ 1,

I (b) = I

(
1

c
(cb)

)
= 1

c
I (cb),

so again I (cb) = cI (b).
For part (c), first note that for b, b′ ∈ B+, if ||b|| ≤ 1 and ||b′|| ≤ 1, then the acts

fb and fb′ exist. Moreover, since b ≥ b′, we must have ( fb(s))∗ � ( fb′(s))∗ for all
states s ∈ S. Thus, by monotonicity, fb � fb′ . If either ||b|| > 1 or ||b′|| > 1, let
n = max(||b||, ||b′||). Then, ||b/n|| ≤ 1 and ||b′/n|| ≤ 1. Thus, I (b/n) ≥ I (b′/n),
by what we have just shown. By part (b), I (b) ≥ I (b′).

For part (d), note that ifbn → b, then for all k, there existsnk such thatbn−(1/k)∗ ≤
bn ≤ bn + (1/k)∗ for all n ≥ nk . Moreover, by the monotonicity of I (part (c)), we
have that I (b − (1/k)∗) ≤ I (bn) ≤ I (b + (1/k)∗). Thus, it suffices to show that
I (b − (1/k)∗) → I (b) and that I (b + (1/k)∗) → I (b).

To show that I (b − (1/k)∗) → I (b), we must show that for all ε > 0, there
exists k such that I (b − (1/k)∗) ≥ I (b) − ε. By positive homogeneity (part (b)),
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602 J. Y. Halpern, S. Leung

we can assume without loss of generality that ||b − (1/2)∗|| ≤ 1 and that ||b|| ≤ 1.
Fix ε > 0. If I (b − (1/2)∗) ≥ I (b) − ε, then we are done. If not, then I (b) >

I (b) − ε > I (b − (1/2)∗). Since ||b|| ≤ 1 and ||b − (1/2)∗|| ≤ 1, fb and fb−(1/2)∗
exist. Moreover, by Lemma 8.4, fb  f(I (b)−ε)∗  fb−(1/2)∗ . By mixture continuity,
for some p ∈ (0, 1), we have p fb + (1− p) f(b−(1/2)∗  f(I (b)−ε)∗ . It is easy to check
that bp fb+(1−p) fb−(1/2)∗ = b − ((1 − p)/2)∗. Thus, by Lemma 8.4, fb−((1−p)/2)∗ �
f(I (b)−ε)∗ , and I (b− ((1− p)/2)∗) > I (b)− ε. Choose k such that 1/k < (1− p)/2.
Then, by monotonicity [part (c)], I (b − (1/k)∗) ≥ I (b − ((1− p)/2)∗) > I (b) − ε,
as desired.

The argument that I (b + (1/k)∗) → I (b) is similar and left to the reader.
For part (e), if ||b||, ||b′|| ≤ 1, and I (b), I (b′) �= 0, consider b

I (b) and
b′

I (b′) . Since

I ( b
I (b) ) = I ( b′

I (b′) ) = 1, it follows from Lemma 8.3 that f b
I (b)

∼ f b′
I (b′)

. By ambiguity

aversion, for all p ∈ (0, 1], p f b
I (b)

+(1− p) f b′
I (b′)

� f b
I (b)

. Thus, taking p = I (b)
I (b)+I (b′) ,

I ( b+b′
I (b)+I (b′) ) = 1

I (b)+I (b′) I (b+b′) = I ( I (b)
I (b)+I (b′)

b
I (b) + I (b′)

I (b)+I (b′)
b′

I (b′) ) ≥ I ( b
I (b) ) =

I ( b′
I (b′) ) = 1. Hence, I (b + b′) ≥ I (b) + I (b′).
If either ||b|| > 1 or ||b′|| > 1, and both I (b) �= 0 and I (b′) �= 0, then the result

easily follows by positive homogeneity [property (b)].
If either I (b) = 0or I (b′) = 0, letbn = b+ 1

n
∗
andb′

n = b′+ 1
n

∗
. Clearly, ||bn|| > 0,

||b′
n|| > 0, bn → b, and b′

n → b′
n . By our argument above, I (bn+b′

n) ≥ I (bn)+ I (b′
n)

for all n ≥ 1. The result now follows from continuity. ��

Defining the confidence function

In this section, we use I to define a confidence function φ that maps each p ∈ �(S) to
a confidence value in [0, 1]. The heart of the proof involves showing that the resulting
function φ so determined gives us the desired representation.

Given a confidence function φ, for b ∈ B+, define

WE(b) = inf
p∈P

φ(p)

(
∑

s∈S
b(s)p(s)

)
.

Define

E(b) = inf
p∈P

∑

s∈S
b(s)p(s).

and

Ep(b) =
∑

s∈S
b(s)p(s).
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For each probability p ∈ �(S), define

φt (p) = inf{α ∈ R : I (b) ≤ αEp(b) for all b ∈ B+}, (1)

and let φt (p) = ∞ if the inf does not exist. Note that φt (p) ≥ 1, since Ep((c)∗) =
I ((c)∗) = c for all distributions p and c ∈ R. Moreover, it is immediate from the
definition of φt (p) that φt (p)Ep(b) ≥ I (b) for all b ∈ B+. The next lemma shows
that there exists a probability p where we have equality.

Lemma 8.6 (a) For some distribution p, we have φt (p) = 1.
(b) For all b ∈ B+, there exists p such that φt (p)Ep(b) = I (b).

Proof The proofs of both parts (a) and (b) use a separating hyperplane theorem. If U
is a convex subset of B+, and b /∈ U , then there is a linear functional λ that separates
U from b, that is, λ(b′) < λ(b) for all b′ ∈ U . We proceed as follows.

For part (a), we must show that there exists a probability measure p such that for
all b ∈ B+, we have Ep(b) ≥ I (b). This would show that φt (p) = 1.

Let U = {b′ ∈ B+ : I (b′) ≥ 1}. U is closed (by continuity of I ) and convex (by
positive homogeneity and superadditivity of I ), and (0)∗ /∈ U . Thus, there exists a
linear functional λ such that λ(b′) > λ((0)∗) = 0 for b′ ∈ U . We can assume without
lost of generality that λ(1∗) = 1.

We want to show that λ is a positive linear functional, that is, that λ(b) ≥ 0 if
b ≥ 0∗. Clearly, this holds for b′ such that I (b′) ≥ 1. If b′ ≥ 0∗, I (b′) < 1, and
I (b′) > 0, note that cI (b′) = I (cb′) ≥ 1 for some c ≥ 0. Therefore, I (b′) ≥ 1

c ≥ 0.
If b′ ≥ 0∗ and I (b′) = 0, note that for all c > 0, λ(b′ + c∗) ≥ 0 by the previous case.
Thus, λ(b′) ≥ 0. It follows that λ is a positive functional.

Define the probability distribution p on S by taking p(s) = λ(1s). To see that p is
indeed a probability distribution, note that since 1s ≥ 0 and λ are positive, we must
have λ(1s) ≥ 0. Moreover,

∑
s∈S p(s) = λ(1∗) = 1. In addition, for all b′ ∈ B, we

have

λ(b′) =
∑

s∈S
λ(1s)b

′(s) =
∑

s∈S
p(s)b′(s) = Ep(b

′).

Next, we claim that, for b ∈ B+,

for all c > 0, if I (b) > c, then λ(b) > c. (2)

To see why the claim is true, note that if I (b) ≥ c, then I (b/c) ≥ 1 by positive
homogeneity, so λ(b/c) ≥ 1 and λ(b) ≥ c. Therefore, λ(b) ≥ I (b), as desired.

The proof of part (b) is similar to that of part (a). We want to show that, given
b ∈ B+, there exists p such that φt (p)Ep(b) = I (b). First, consider the case where
||b|| ≤ 1. If I (b) = 0, then there must exist some s such that b(s) = 0; otherwise,
there exists c > 0 such that b ≥ c∗, so I (b) ≥ c. If b(s) = 0, let ps be such that
ps(s) = 1. Then Eps (b) = 0, so part (b) of the Lemma holds in this case.

If ||b|| ≤ 1 and I (b) > 0, let U = {b′ : I (b′) ≥ I (b)}. Again, U is closed and
convex, and b /∈ U , so there exists a linear functional λ such that λ(b′) > λ(b) for
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604 J. Y. Halpern, S. Leung

b′ ∈ U . Since 1∗ ∈ U and we can assume without loss of generality λ(1∗) = 1, we
must have λ(b) < 1.

The same argument as that used in the proof of (a) shows that λ is a positive
functional.

Therefore, λ determines a probability distribution p such that, for all b′ ∈ B+, we
have λ(b′) = Ep(b′). p, of course, will turn out to be the desired distribution. To show
this, we need to show that φt (p) = I (b)/Ep(b). By definition, φt (p) ≥ I (b)/Ep(b).

To show that φt (p) ≤ I (b)/Epb, we must show that I (b)
Ep(b)

≥ I (b′)
Epb′ for all b′ ∈ B+.

Equivalently, we must show that I (b)λ(b′)/λ(b) ≥ I (b′) for all b′ ∈ B+.
Essentially the same argument used to prove (2) also shows that

for all c > 0, if
I (b′)
I (b)

≥ c, then
λ(b′)
λ(b)

≥ c.

In particular, if I (b′)
I (b) ≥ c, then by positive homogeneity, I (b′)

c ≥ I (b), so b′
c ∈ U , and

λ( b
′
c ) > λ(b) and hence λ(b′)

λ(b) ≥ c.
It follows that λ(b′)/(λ(b)) ≥ I (b′)/(I (b)) for all b′ ∈ B+. Thus, I (b)λ(b′)/λ(b)

≥ I (b′) for all b′ ∈ B+, as required.
Finally, if ||b|| > 1, let b′ = b/||b||. By the argument above, there exists a prob-

ability measure p such that φt (p)Ep(b/||b||) = I (b/||b||). Since Ep(b/||b||) =
Ep(b)/||b||, and I (b/||b||) = I (b)/||b||, we must have that φt (p)Ep(b) = I (b). ��

We can now complete the proof of Theorem 5.5. By Lemma 8.6 and the definition
of φt (p), for all b ∈ B+,

I (b) = inf
p∈�(S)

φt (p)Ep(b). (3)

Recall that, by Lemma 8.4, for all acts f, g such that b f , bg ∈ B+, f � g iff I (b f ) ≥
I (bg). Thus, f � g iff

inf
p∈�(S)

(
φt (p)

∑

s∈S
u( f (s))p(s)

)
≥ inf

p∈�(S)

(
φt (p)

∑

s∈S
u(g(s))p(s)

)
.

To get the confidence function φ from φt , note that limx→0+ t (x) = ∞ and t (1) >

0. We let φ(p) = t−1(t (1)φt (p)), with the special case φ(p) = 0 if φt (p) = ∞.
(Note that t (1)φt (p) is in the range of t−1, since φt (p) ≥ 1, t is nonincreasing and
limx→0+ t (x) = ∞.)

Properties of the confidence function

In this section, we show that the confidence function φ that we constructed satisfies
the properties claimed in Theorem 5.5.
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We first show that t ◦ φ = φt has convex upper support. To that end, we show that
if c1 ≥ φt (p1) and c2 ≥ φt (p2), then for all α ∈ (0, 1),

(αc1 p1 + (1 − α)c2 p2) (S) ≥ φt

(
αc1 p1 + (1 − α)c2 p2

(αc1 p1 + (1 − α)c2 p2) (S)

)
.

By the definition of φt , it suffices to show that for all b ∈ B+,

I (b) ≤ (αc1 p1 + (1 − α)c2 p2) (S)E αc1 p1+(1−α)c2 p2
(αc1 p1+(1−α)c2 p2)(S)

(b). (4)

It is easy to see that the inequality holds. Let b ∈ B+. The right-hand side of (4) is
equal to

∑

s∈S
((αc1 p1(s) + (1 − α)c2 p2(s))b(s)) = αc1Ep1(b) + (1 − α)c2Ep2(b)

≥ αφt (p1)Ep1(b) + (1 − α)φt (p2)Ep2(b)

≥ α I (b) + (1 − α)I (b) (by (3))

≥ I (b).

Wenowshow thatφ is regular*. Sincewehave shown that, for some p∗,φt (p∗) = 1,
we have φ(p∗) = t−1(t (1)1) = 1. Therefore, φ is normal.

Secondly, we show that φ is weakly* upper semi-continuous. We show that if
{pn} → p and φ(pn) ≥ α for all n, then φ(p) ≥ α. Suppose for the purpose of
contradiction that φ(p) < α. Then, φt (p) = t (φ(p)) > t (α). By continuity of t ,
φt (pn) = t (φ(pn)) > t (α) for all sufficiently large n, implying that φ(pn) < α,
contradicting the assumption that φ(pn) ≥ α. Therefore, φ(p) ≥ α, as required.

We now show that φ is quasi-concave; that is, φ(βp1 + (1 − β)p2) ≥
min{φ(p1), φ(p2)} for any β ∈ [0, 1]. Since t is strictly decreasing, so is t−1. Thus,
−t−1 is strictly increasing. Moreover, if φt is quasi-convex, then −t−1 ◦ φt is also
quasi-convex. Since the negative of a quasi-convex function is quasi-concave, t−1 ◦φt

is quasi-concave. Therefore, if we show that φt is quasi-convex, this would show that
φ = t−1 ◦ φt is quasi-concave.

Recall from (1) that

φt (p) = inf{α ∈ R : I (b) ≤ αEp(b) for all b ∈ B+}.

If max{φt (p1), φt (p2)} ≤ c for c ∈ R, then for all b ∈ B+, we have

I (b) ≤ cEp1(b),

and

I (b) ≤ cEp2(b).
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Therefore, for all b ∈ B+ and all β ∈ [0, 1], by the linearity of Ep(b) with respect to
the parameter p,

I (b) ≤ cEβp1+(1−β)p2(b).

This means that φt (βp1 + (1 − β)p2) ≤ c. Thus, φt (βp1 + (1 − β)p2) ≤
max{φt (p1), φt (p2)}. Therefore, φt is quasi-convex.

Uniqueness of the representation

In this section, we show that our constructed φ is the only regular* fuzzy confidence
function, such that t ◦φ has convex upper support and such that �+

t,φ=�. Our unique-
ness result is similar in spirit to the uniqueness results of Gilboa and Schmeidler
(1989), who show that the convex, closed, and nonempty set of probability measures
in their representation theorem for MMEU is unique.

The proof of this result, like the proof of uniqueness in Gilboa and Schmeidler
(1989), uses a separating hyperplane theorem to show the existence of acts on which
two different representations must ‘disagree’. The proof presented here is essentially
the same as that used in Halpern and Leung (2012), with only superficial changes to
accommodate our definitions and notation.

Lemma 8.7 For all confidence functions φ′, if �+
t,φ′=� and t ◦ φ′ has convex upper

support, then φ = φ′.

Proof Suppose for contradiction that there exists a regular* fuzzy confidence function
φ′ �= φ, such that t ◦ φ′ has convex upper support, and that �+

t,φ′=�+
t,φ . Consider

the two upper supports V t◦φ and V t◦φ′ . V t◦φ and V t◦φ′ are both closed. To see why,
consider a sequence {pn}n∈N contained in pn ∈ V t◦φ, such that pn → p. We show
that p ∈ V t◦φ , by showing that for some q ∈ �(S), φ(q) > 0 and p ≥ t (φ(q))q.

We first show that p ≥ t (φ(q))q for some q ∈ �(S). Recall that for all n, there
exists qn ∈ �(S) such that pn ≥ t (φ(qn))qn . Since qn ∈ �(S), qkm → q for some
subsequence {qkm } and q ∈ �(S). Therefore, we have

p = lim
n→∞ pn

≥ lim sup
n→∞

t (φ(qn))qn, since pn ≥ t (φ(qn))qn

= lim
n→∞ sup

m≥n
t (φ(qkm ))qkm

= lim
n→∞ sup

m≥n
t (φ(qkm )) lim

m→∞ qkm

= lim
n→∞ t ( inf

m≥n
φ(qkm )) lim

m→∞ qkm , since t is nonincreasing and continuous

= t (lim inf
m→∞ φ(qkm )) lim

m→∞ qkm , by continuity of t

≥ t (φ(q))q,
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since φ(q) ≥ lim supm→∞ φ(qkm ) ≥ lim infm→∞ φ(qkm ) by upper semi-continuity
of φ, and t is nonincreasing.

It remains to show that φ(q) > 0. To that end, suppose for the purpose of contra-
diction that φ(q) = 0. Then it must be the case that limm→∞ φ(qkm ) = 0, since if
there exists an ε > 0 such that limm→∞ φ(qkm ) ≥ ε, then by upper semi-continuity
of φ it must be the case that φ(q) ≥ ε. Since limx→0+ t (x) = ∞, we have that
limm→∞ t (φ(qkm )) = ∞. However, recall that pn ≥ t (φ(qn))qn for all n. Since,
qn ∈ �(S) and hence does not vanish, pn cannot be a convergent sequence. Hence, it
must be the case that φ(q) > 0.

Therefore, p ∈ V t◦φ , as required, and that V t◦φ is closed. The same argument
shows that V t◦φ′ is closed.

Without loss of generality, let q ∈ V t◦φ′ \V t◦φ . Since V t◦φ and {q} are closed, con-
vex, and disjoint, and {q} is compact, the separating hyperplane theorem (Rockafellar
1970) says that there exists θ ∈ R

|S| and c ∈ R such that

θ · p > c for all p ∈ V t◦φ, and θ · q < c. (5)

By scaling c appropriately, we can assume that |θ(s)| ≤ 1 for all s ∈ S. Now, we
argue that it must be the case that θ(s) ≥ 0 for all s ∈ S (so that θ corresponds to
the utility profile of some act with nonnegative utilities). Suppose that θ(s′) < 0 for
some s′ ∈ S. By (5), θ · p > c for all p ∈ V t◦φ . Let p∗ ∈ V t◦φ be any measure with
φ(p∗) = 1, and let p∗∗ ∈ V t◦φ be defined by

p∗∗(s) =
⎧
⎨

⎩
p∗(s), if s �= s′
|S|max{|c|,maxs′′∈S |p∗(s′′)|}

|θ(s′)| , if s = s′.

We have defined p∗∗ such that p∗∗ ≥ p∗, since for all s ∈ S, p∗∗(s) ≥ p∗(s). To see
how, note that p∗∗(s) = p∗(s) for s �= s′, and p∗∗(s) ≥ maxs′′∈S |p∗(s′′)| ≥ p∗(s)
for s = s′. Therefore, p∗∗ is in V t◦φ .

Our definition of p∗∗ also ensures that θ · p∗∗ = ∑
s∈S p∗∗(s)θ(s) ≤ c, since

∑

s∈S
p∗∗(s)θ(s) =p∗∗(s′)θ(s′) +

∑

s �=s′
p∗∗(s)θ(s)

≤p∗∗(s′)θ(s′) +
∑

s �=s′
|p∗∗(s)|, since |θ(s)| ≤ 1

= − |S|max{|c|,max
s′′∈S

|p∗(s′′)|} +
∑

s �=s′
|p∗∗(s)|

≤−|c| ≤ c.

This contradicts (5), which says that θ · p > c for all p ∈ V t◦φ . Thus, it must be the
case that θ(s) ≥ 0 for all s ∈ S.

Consider the θ given by the separating hyperplane theorem, and let f be an act
such that u ◦ f = θ . f ∼ l∗d for some constant act l∗d . Since V t◦φ and V t◦φ′ as sets of
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generalized probabilities both represent �, and V t◦φ and V t◦φ′ both contain a normal
probability measure,

min
p∈V t◦φ

p · (u ◦ f ) = min
p∈V t◦φ

p · (u ◦ l∗d ) = d = min
p∈V t◦φ′

p · (u ◦ f ).

However, by (5),

min
p∈V t◦φ

p · (u ◦ f ) > c > min
p∈V t◦φ′

p · (u ◦ f ),

which is a contradiction. ��

Appendix 4: Proof of Theorem 5.7

Proof The proof is almost the same as the proof of Theorem 5.5. We point out the
differences, which are mostly straightforward adaptations fromB+ toB−. Lemma 8.1
and Lemma 8.2 hold without change. By Axiom 8, we can assume that the maximum
value that u takes on is 0, and by Axiom 1 we can assume that the minimum is no
greater than −1.

We now define a functional I on utility acts, as before. All occurrences of B+ in the
proof of Theorem 5.5 needs to be replaced byB−, defined by the real-valued functions
b on S where b(s) ≤ 0 for all s ∈ S.

More specifically, let

R f = {α′ : l∗α′ � f }.

If 0∗ ≥ b ≥ (−1)∗, then fb exists, and we define

I (b) = sup(R fb).

For the remaining utility acts b ∈ B+, we extend I by homogeneity, as before.
The analog of Lemma 8.3 for b f ∈ B− follows from analogous arguments used

in the original proof. The case of l∗I (b f )
≺ f , however, is a bit simpler than for the

positive case.

Lemma 9.1 If b f ∈ B−, then f ∼ l∗I (b f )
.

Proof Suppose, by way of contradiction, that l∗I (b f )
≺ f . If f ∼ l∗0 , then I (b f ) ≥ 0

by the definition of I . However, we also have I (b f ) ≤ 0 by Lemma 8.4, so I (b f ) = 0,
and therefore f ∼ l∗I (b f )

, as required. Otherwise, f ≺ l∗0 by monotonicity, so l∗I (b f )
≺

f ≺ l∗0 , which, when taken together with mixture continuity, contradicts the definition
of I . ��

The proof of Lemma 8.4 still holds. The analog of Lemma 8.5 also follows from
similar arguments; we discuss some key differences below.
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Lemma 9.2 (a) If c ≤ 0, then I (c∗) = c.
(b) I satisfies positive homogeneity: if b ∈ B− and c > 0, then I (cb) = cI (b).
(c) I is monotonic: if b, b′ ∈ B− and b ≥ b′, then I (b) ≥ I (b′).
(d) I is continuous: if b, b1, b2, . . . ∈ B−, and bn → b, then I (bn) → I (b).
(e) I is superadditive: if b, b′ ∈ B−, then I (b + b′) ≥ I (b) + I (b′).
Proof For part (b), instead of making use of Axiom 4 (worst independence), we use
Axiom 8 (best independence).

For part (e), note that since I (b) is nonpositive for b ∈ B−, I ( b
I (b) ) is not defined,

unlike in the case of nonnegative utilities. We use the same proof as in Halpern and
Leung (2012): Clearly, I ( b

−I (b) ) = −1. Therefore, f b
−I (b)

∼ f b′
−I (b′)

∼ l∗−1. From

Axiom 6 (ambiguity aversion), taking p = −I (b)
−I (b)−I (b′) , we have

I

( −I (b)

−I (b) − I (b′)
b

−I (b)
+ −I (b′)

−I (b) − I (b′)
b′

−I (b′)

)
≥ I

(
b

−I (b)

)
= −1,

which implies that I (b + b′) ≥ I (b) + I (b′), as required. ��
Wenow use I to define a confidence functionφ.WE,E, andE are defined as before.

For each probability p ∈ �(S), define

φt (p) = sup{α ∈ R : I (b) ≤ αEp(b) for all b ∈ B−}.

Note that φt (p) ≤ 1, since Ep((c)∗) = I ((c)∗) = c for all distributions p and c ∈ R.
Moreover, φt (p) ≥ 0 for all b ∈ B−. The next lemma shows that there exists a
probability p where we have equality. The proof of the lemma is similar to that of
Lemma 8.6, and is left to the reader.

Lemma 9.3 (a) For some distribution p, we have φt (p) = 1.
(b) For all b ∈ B−, there exists p such that φt (p)Ep(b) = I (b).

By Lemma 9.3 and the definition of φt (p), for all b ∈ B−,

I (b) = inf
p∈�(S)

φt (p)Ep(b).

We have f � g

iff inf
p∈�(S)

(
φt (p)

∑

s∈S
u( f (s))p(s)

)
≥ inf

p∈�(S)

(
φt (p)

∑

s∈S
u(g(s))p(s)

)

iff t (1) inf
p∈�(S)

(
φt (p)

∑

s∈S
u( f (s))p(s)

)
≥ t (1) inf

p∈�(S)

(
φt (p)

∑

s∈S
u(g(s))p(s)

)
.

Since t is strictly increasing, t (1) > t (0). Therefore, sinceφt (p) ∈ [0, 1] and t (0) ≤ 0,
t (1)φt (p) is in the range of t , and we can define

φ(p) = t−1(t (1)φt (p)).
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We now have f � g

iff inf
p∈�(S)

(
t (φ(p))

∑

s∈S
u( f (s))p(s)

)
≥ inf

p∈�(S)

(
t (φ(p))

∑

s∈S
u(g(s))p(s)

)
.

Finally, the uniqueness of the representation follows from arguments analogous to
those for nonnegative utilities. ��
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