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Abstract We offer a new and robust model of the emergence and persistence of coop-
eration when interactions are anonymous, the population is well mixed, and evolution
selects strategies according to material payoffs. The model has a Prisoner’s Dilemma
structure, but with an outside option of non-participation. The payoff to mutual coop-
eration is stochastic; with positive probability, it exceeds that from cheating against a
cooperator. Under mild conditions, mutually beneficial cooperation occurs in equilib-
rium. This is possible because the non-participation option holds down the equilibrium
frequency of cheating. Dynamic properties of the model are investigated theoretically
and through simulations based on replicator dynamics.
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1 Introduction

Studies of animal behaviour have found many practices which create collective ben-
efits at some apparent cost or risk to individual participants. Examples include alarm
calls, food-sharing, grooming, and participation in inter-group warfare. One of the
most fundamental problems in evolutionary biology since Darwin (1859) has been to
explain how such forms of cooperation evolve by natural selection.An analogous prob-
lem in economics has been to look for explanations of cooperative human practices,
such as the fulfilment of market obligations, the provision of public goods through
voluntary contributions, and the management of common property resources, that are
consistent with the traditional assumption of individual self-interest.1 Many differ-
ent theories have been proposed by biologists and economists as possible solutions.
Among the mechanisms that have been modelled are direct and indirect reciprocity,
kin selection, group selection, and the ‘green beard’ mechanism. (For an overview of
these mechanisms, see Nowak (2006). Tomasello (2014) provides a comprehensive
account of why and how cooperation may have evolved among early humans. His
hypothesis is that early humans were forced by ecological circumstances into more
cooperative modes of life, and this led to the evolution of ways of thinking that were
directed towards coordination with others to achieve joint goals.) Some economists
have combined biological and economic modes of explanation, hypothesising that
human cooperation in the modern world is a product of genetically hard-wired traits
that evolved by natural selection to equip Homo sapiens for life in hunter-gatherer
societies. In some versions of this hypothesis, those traits act as equilibrium selection
devices in the modern ‘game of life’ (e.g. Binmore 1994, 1998); in others, they can
generate non-selfish behaviour in modern societies (e.g. Boyd et al. 2005; Bowles and
Gintis 2011).

However, a recent trend in biology has been to question whether such sophisticated
explanations are always necessary. Many forms of apparently cooperative behaviour
have been found to be forms of mutualism: the ‘cooperating’ individual derives suf-
ficient direct fitness benefit to make the behaviour worthwhile, and any effect on the
fitness of others is incidental (e.g. Clutton-Brock 2002, 2009; Sachs et al. 2004). The
Snowdrift game (Sugden 1986), in which equilibrium involves cooperation by one
player and free-riding by the other, is increasingly used in biology as a model of such
behaviour. In this paper, we present a newmodel of the evolution of cooperation which
fits with this trend of thought.

Ourmethodological approach treats the biological and economic problems of coop-
eration as isomorphic to one another. That is, we hypothesise that the emergence and
reproduction of human cooperative practices are governed by evolutionary mecha-
nisms that are distinct from, but structurally similar to, those of natural selection.
Candidate mechanisms include trial-and-error learning by individuals, imitation of

1 In parallel with attempts to explain human cooperation in terms of self-interest, there is a large literature
in economics in which cooperation is explained as a product of non-selfish motivations, such as altruism,
preferences for equality, fairness or welfare-maximisation, team reasoning, or intrinsic desires to cooperate.
Without denying the existence of such motivations, we think it is useful to investigate the explanatory power
of the self-interest assumption.
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successful neighbours, and cultural selection through inter-group competition. Analy-
ses which use this approach may be both informed by and informative to theoretical
biology. For example, Sugden’s (1986) analysis of the emergence of social norms was
inspired by the earlier work of theoretical biologists, but it developed new models (in
particular, the Snowdrift andMutual Aid games) which have since been widely used in
biology (e.g. Leimar and Hammerstein 2001; Nowak and Sigmund 2005). The model
that we present in this paper can be interpreted as a representation either of natural
selection or of trial-and-error human learning.

Our modelling strategy is distinctive in that it uses three assumptions which in
combination rule out most of the mechanisms that feature in existing theories of coop-
eration. Specifically, we assume that interactions are anonymous, that evolution takes
place in a large, well-mixed population, and that the evolutionary process selects
strategies according to their material payoffs. The assumption of anonymity excludes
mechanisms based on reputation, reciprocity or third-party punishment. The assump-
tion ofwellmixedness excludesmechanisms of group or kin selection. The assumption
that selection is for material payoffs excludes mechanisms which postulate non-selfish
preferences as an explanatory primitive. Working within the constraints imposed by
these assumptions, we are able to generate a simple and robust model of cooperation.

Our model adapts the familiar framework of a Prisoner’s Dilemma that is played
recurrently in a large population. We introduce two additional features, which we
suggest can be found in many real-world cases of potentially cooperative interaction,
both for humans and for other animals.

The first additional feature is that participation in the game is voluntary. One of the
restrictive properties of the Prisoner’s Dilemma is that, in any given interaction, an
individual must act either pro-socially (the strategy of cooperation) or anti-socially
(the strategy of defection or cheating, which allows a cheater to benefit at the expense
of a cooperator). There is no opportunity to be simply asocial. We add an asocial
strategy, that of opting out of the interaction altogether. Of course, if the only difference
between anti-social and asocial behaviour was that asocial individuals did not benefit
when their co-players chose to cooperate, asociality would be a dominated strategy. It
is an essential part of our model that if both players cheat, both are worse off than if
they had opted out of the interaction.2

The second additional feature is that the payoff that each player receives if they
both cooperate is subject to random variation. Before choosing his (or her, or its)
strategy, each player knows his own cooperative payoff, but not the other player’s.
With non-zero probability, the payoff from mutual cooperation is greater than that
from cheating against a cooperator. Thus, there are circumstances in which it would
be profitable for a player to cooperate if he were sufficiently confident that the other
player would cooperate too. Crucially, however, it is never common knowledge that the
payoffs are such that mutual cooperation is a Nash equilibrium. In our model, players
receive no information at all about the realisation of the random component of their

2 In some simplified models of the Prisoner’s Dilemma, each player makes an independent decision about
whether to incur a fixed cost to confer a larger fixed benefit on the other player; payoffs in the four possible
outcomes are defined as sums of these costs and benefits. Because we want to distinguish between cheating
and non-participation, our model does not have this additivity property.
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co-players’ cooperative payoff. This is obviously an extreme assumption; we use it
only as a modelling simplification. In real interactions, players often have some such
information. [For example, explanations of animal behaviour in asymmetric contests
often depend on the assumption that both contestants recognise some feature of the
game which signals which of them is more likely to attach the higher value to the
disputed resource (Maynard Smith and Parker 1976).] But the main qualitative results
of our model require only that each player has some private information about his own
payoffs such that, with non-zero probability, a player may know that cooperation is
a non-dominated strategy for him without knowing whether the same is true for the
other player.3

As an illustration of the kind of interaction that our model represents, we offer
the following variant of Rousseau’s (1755/1998, p. 36) story of hunting in a state of
nature. Two individuals jointly have the opportunity to invest time and energy to hunt
a deer. The hunters can succeed only by acting on a concerted plan out of sight of one
another. A hunt begins only if both individuals agree to take part. Each can then cheat
by unilaterally pursuing a smaller prey, which the other’s deer hunting tends to flush
out and make easier to catch. The anticipated benefit of deer hunting to an individual,
conditional on the other’s not cheating, can be different for different individuals and
on different occasions. Sometimes, but not always, this benefit is sufficiently low that
unilateral cheating pays off.

As a more modern illustration, consider two individuals who make contact through
the internet. One of them is offering to sell some good which has to be customised to
meet the specific requirements of the buyer; the other is looking to buy such a good.
If they agree to trade, each individual invests resources in the transaction (exchanging
information, producing and dispatching the good, sending payment). Each may have
opportunities to gain by deviating from the terms of the agreement. Sometimes, but
not always, the benefit of completing the transaction is sufficiently low that unilateral
cheating pays off.

We will show how the interaction of voluntary participation and stochastic payoffs
can induce cooperation. Of course, it is well known that voluntary participation can
facilitate cooperation when players can distinguish between more and less cooper-
ative opponents. If such distinctions are possible, voluntary participation can allow
cooperators to avoid interacting with cheats. This can sustain cooperation without the
need for informationally and cognitively more demanding strategies of reciprocity or
punishment—an idea that can be traced back to Smith’s (1763/1978, pp. 538–539)
analysis of trustworthiness among traders in commercial societies. But such mecha-
nisms are ruled out by our anonymity assumption.

In our model, voluntary participation facilitates cooperation by a different route.
Because would-be cheats have the alternative option of non-participation, and because
non-participation is the best response to cheating, the equilibrium frequency of
cheating is subject to an upper limit. If cheating occurs at all, the expected pay-
off from cheating cannot be less than that from non-participation. Thus, for any

3 The gamewould be very different (and rather trivial) if all payoffs were common knowledge. In that case,
there would be a Nash equilibrium in which there was no cheating and in which each player cooperated if
and only if both players gained more from mutual cooperation than from cheating against a cooperator.
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given frequency of cooperation, the frequency of cheating is self-limiting. The
underlying mechanism is similar to that of the Lotka–Volterra model of interaction
between predators and prey: the size of the predator population (the frequency of
cheating) is limited by the size of the prey population (the frequency of coopera-
tion).

Clearly, however, this mechanism can support cooperation only if, when the fre-
quency of cheating is sufficiently low, some players choose to cooperate. This could
not be the case if, as in the Prisoner’s Dilemma, cooperation was always a weakly
dominated strategy. In our model, random variation in the payoff from mutual coop-
eration ensures that players sometimes find it worthwhile to cooperate, despite the
risk of meeting a cheat. The players who cooperate are those for whom the benefit
of mutual cooperation is sufficient to compensate for this risk. Because cooperators
are self-selecting in this way, the average payoff in the game is greater than the pay-
off to non-participation. In other words, despite the presence of cheats, beneficial
cooperation occurs.

As a first step in developing an evolutionary model, we begin (in Sect. 2) by
presenting our variant of the Prisoner’s Dilemma as a one-shot game and identi-
fying its symmetric Bayesian Nash equilibria. We show that, provided the upper
bound of the distribution of cooperative benefit is not too low, the game has at
least one such equilibrium in which beneficial cooperation occurs. In Sect. 3, we
investigate some comparative-static properties of equilibria in this game. We show
that as the distribution of cooperative benefit becomes more favourable, the max-
imum frequency of cooperation that is sustainable in equilibrium increases. In
Sect. 4, we examine the dynamics of the model, using simple analytical meth-
ods. In Sect. 5, we supplement this analysis by computer simulations based on
replicator dynamics. Our analysis shows that, in the neighbourhood of ‘interior’
equilibria in which some but not all players choose non-participation, the dynam-
ics are similar to those of predator–prey models. Depending on the payoffs of the
game, interior equilibria may be locally stable (with evolutionary paths spiralling
in from a large zone of attraction) or unstable (with evolutionary paths spiralling
out and ending at an equilibrium of non-participation). In Sect. 6, we discuss the
contribution that our model can make to the explanation of cooperative behav-
iour. We show that, despite sharing some features of existing biological models of
mutualism and voluntary participation, our model isolates a distinct causal mecha-
nism.

2 The model: equilibrium properties

In this section and in Sect. 3, we present our game in one-shot form and analyse
its equilibrium properties. This is a game for two players 1 and 2. For each player
i ∈ {1, 2} , the benefit xi that he gains if both players cooperate is an independent
realisation of a random variable X whose distribution f (.) is continuous with support
[xmin, xmax]. Each player knows his own benefit but not that of the other player. Given
this knowledge, he plays a game with three pure strategies: to cooperate (C), to cheat
(D), or not to participate (N). The payoff matrix is shown in Table 1.

123



506 S. Beraldo, R. Sugden

Table 1 Payoff matrix for the
game

Player 1 Player 2

N C D

N 0, 0 0, 0 0, 0

C 0, 0 x1, x2 –b, a

D 0, 0 a, –b –c, –c

xmax > a > xmin ≥ 0; b > c > 0.

The essential features of the game are contained in the structure of best responses.4

The condition xmax > a > xmin implies that either C or D (but not N) may be the
better response toC, depending on the relevant player’s realisation of X . The condition
b > c implies that, as in the Prisoner’s Dilemma, D is better than C as a response to
D. Given that the payoff to N is normalised to zero, a > 0 implies that cheating gives
a higher payoff than non-participation if the opponent cooperates; c > 0 implies that
the opposite is the case if the opponent cheats. No assumption is made about whether
a − b (i.e. the net benefit of an interaction in which one player cooperates and the
other cheats) is positive, zero or negative. It is easy to imagine real-world applications
(such as our example of internet trading) in which any of these possibilities would be
plausible.5 The condition xmin ≥ 0 (which is not essential for our main results) implies
that players are never worse off from mutual cooperation than from non-participation.

We now consider symmetric Bayesian Nash equilibria (SBNE) of the game.
Although our formal analysis in this section and in Sect. 3 treats the game as one-shot,
our ultimate concern is with SBNEs as possible stationary points in an evolutionary
process in a well-mixed population.

We will say that a pure strategy (N, C or D) is played in a given equilibrium if
and only if the unconditional probability with which it is played is non-zero. Some
significant properties of SBNE hold for all parameter values. First, there is a non-
participation equilibrium in which only N is played; in this equilibrium, players’
payoffs are zero and unilateral deviations lead to neither gain nor loss. Second, there
is no SBNE in which C is played butD is not. (Against an opponent who might play C
but will not playD, i’s best response playsDwhen xi < a.) Third, there is no SBNE in
whichD is played but not C. (Against an opponent who might playD but will not play
C, N is the unique best response.) Thus, only two types of equilibrium participation
are possible. Depending on the parameter values, there may be an interior equilibrium
in whichN,D andC are all played; and there may be a boundary equilibrium in which
D and C are played but not N.

4 Provided that this best response structure is maintained, themain implications of themodel are preserved.
It is not essential that the payoff from playing C against C is stochastic and that all other payoffs are not;
but there must be some random variation in the payoffs, such that the best reply to C is sometimes C and
sometimes D.
5 In our game, unlike the ‘additive’ Prisoner’s Dilemma games described in Footnote 2, the sign of a − b
imposes no constraints on whether the payoff from playing C against C is greater or less than that from
playing D against D.
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Since the only information on which a player can condition his strategy choice is
private to that player, and given the assumed properties of f (.), any SBNE can be
described by the values of two variables. The variable β ∈ [xmin, xmax] is defined
such that each player i chooses C if and only if xi ≥ β. The variable π ∈ [0, 1]
is the probability that each player i chooses D, conditional on xmin < xi < β. In
the non-participation equilibrium, β = xmax and π = 0. In an interior equilibrium,
xmin < β < xmax and 0 < π < 1. In a boundary equilibrium, xmin < β < xmax and
π = 1.

We now analyse these equilibria. Consider any player i facing an opponent whose
strategy is described by (β, π), in an interaction in which xi = β. Let VN , VD, VC
and VM be the expected payoffs to player i from playing N, D, C andM, respectively,
where M is the mix of D with probability π and N with probability (1 − π). Let
g(x) ≡ F(x)/[1 − F(x)], where F(.) is the cumulative of f (.). It is straightforward
to derive the following expressions:

VN = 0 (1)

VD = [1 − F(β)]a − F(β)πc (2)

VC = [1 − F(β)]β − F(β)πb (3)

VM = πVD. (4)

In analysing equilibrium, it is convenient to work in a (β, π) space defined by
xmin ≤ β ≤ xmax and π ≥ 0. Notice that this space includes points at which π > 1.
Although such points have no interpretation within our model, Eqs. (1)–(4) above
define VN , VD, VC , and VM for all values of π . This allows us to define the loci
of points in this (β, π) space at which the mathematical equations VN = VD and
VC = VM are satisfied, and then to characterise equilibria in terms of these loci,
imposing the inequality π ≤ 1 as an additional constraint. This method of analysis is
useful in simplifying the proofs of our results.

First, consider the locus of points in the (β, π) space at which VN = VD . Any
interior equilibrium must be a point on this ND locus, with 0 < π < 1; any boundary
equilibrium must be a point at which VN ≤ VD and π = 1. By (1) and (2), this locus
is determined by:

VD ≥ (or <)VN ⇔ a/πc ≥ (or <)g(β). (5)

This is a continuous and downward-sloping curve which includes the point (xmax, 0)
and is asymptotic to β = xmin. It divides the (β, π) space into three regions: the set
of points on the locus, at which VN = VD; the set of points inside the locus (that is,
below and to the left), at which VN < VD; and the set of points outside the locus (that
is, above and to the right), at which VN > VD .

Now consider the locus of points at which VC = VM . Every equilibrium must
be a point on this CM locus, with either π = 0 (the non-participation equilibrium),
0 < π < 1 (an interior equilibrium), or π = 1 (a boundary equilibrium). Combining
equations (2)–(4), this locus is determined by:

VC ≥ (or <)VM ⇔ (β − πa)/[π(b − πc)] ≥ (or <)g(β). (6)
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This is a continuous curve which includes the points (xmin, xmin/a) and (xmax, 0) and
has the property that π < 1 when β ≤ a. It divides the (β, π) space into three regions:
the set of points on the locus, at which VC = VM ; the set of points inside the locus, at
which VC > VM ; and the set of points outside the locus, at which VM > VC .

Propositions (5) and (6) together imply the following result about the relative posi-
tions of the two loci:

if VD = VN and β < xmax and π > 0 then VC ≥ (or <)VM ⇔ β ≥ (or <)ab/c.

(7)

The loci intersect at the non-participation equilibrium (xmax, 0). If xmax ≤ ab/c, there
is no other intersection and hence no interior equilibrium.6 This case is illustrated in
Fig. 1a. (The loci are shown by the curves ND and CM; N is the non-participation
equilibrium. Sections of these loci which pass above π = 1 are drawn in grey dots to
signify that these points have no interpretation within the model. The arrows refer to
the dynamic analysis, whichwill be presented in Sect. 4.) If instead xmax > ab/c, there
is exactly one other intersection, at β = ab/c. There are now three alternative cases.

In the first case, illustrated in Fig. 1b, this intersection is at π < 1. This intersection,
denoted I, is an interior equilibrium, defined by β = ab/c, π = a/g(ab/c).7 These
values of β and π imply that the probability with which C is played, conditional on
participation in the game (i.e. conditional onN not being played) is c/(a+c), ensuring
that VD = 0. (Equivalently, the frequencies with which C and D are played are in
the ratio c:a.) There may also be boundary equilibria; these occur if the CM locus
intersects the line π = 1 to the left of the ND locus.

In the second case, the loci intersect at π > 1. Because the CM locus is continuous,
and because xmin/a < 1, there must be at least one value of β in the interval a < β <

ab/c at which the CM locus intersects the line π = 1. Any such point is a boundary
equilibrium. This case is illustrated in Fig. 1c; B is a boundary equilibrium. In the
third case (not illustrated), the loci intersect exactly at π = 1. Then this intersection
is a boundary equilibrium. In this case, there may be other boundary equilibria.

The foregoing argument establishes:

Result 1 If xmax > ab/c, there is at least one (interior or boundary) equilibrium with
0 < π ≤ 1 and xmin < β < xmax.

In other words, provided the upper tail of the distribution of cooperative benefit is not
too short, there is at least one equilibrium in which both C and D are played.

We now consider players’ payoffs in such equilibria. Let V *(β, π ) be the ex ante
expected payoff to any player i , prior to the realisations of the random variable X ,
given that i and his opponent play according to β and π . We will call V ∗(β, π) the
value of the game conditional on (β, π).

The following results are derived in the Mathematical Appendix:

6 In this case, it is possible that the CM locus intersects the line π = 1, creating boundary equilibria.
However, this would require a high proportion of the probability mass of f (X) to be between a and xmax,
despite the fact that xmax ≤ ab/c.
7 The equilibrium value of π can be derived from (2) using the fact that, in an interior equilibrium, VD = 0.
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Fig. 1 Equilibria and dynamics.
a Non-participation the only
equilibrium. b An interior
equilibrium. c A boundary
equilibrium

a

b

c
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Result 2 In every interior and boundary equilibrium, the value of the game is strictly
positive.

Result 3 Suppose there are two equilibria, (β, π), (β ′, π ′), such that β < β ′. Then
V ∗(β, π) > V ∗(β ′, π ′).

Result 2 establishes that in every interior and boundary equilibrium, cooperative
activity creates positive net benefits relative to the benchmark of non-participation,
despite the non-zero probability of cheating. If there are multiple equilibria, one of
these is distinguished by its having the lowest value of β. (Since there can be no more
than one interior equilibrium, no two equilibria have the same value of β.) Result 3
establishes that this is the equilibrium at which the value of the game is greatest. We
will call this the highest-value equilibrium.

3 The model: comparative statics

The frequency of cooperative behaviour that can be sustained in equilibrium depends
on the distribution of cooperative benefit X . To keep the exposition simple, we analyse
the effect of a rightward shift from one distribution F to an unambiguously superior
distribution G when there is no change in the support [xmin, xmax]. That is, for all
xmin < z < xmax,G(z) < F(z). The values of all other parameters are held constant.

Using (5) it can be shown that if some point (β, π) is on the ND locus for the
distribution F , it is inside the corresponding locus for G. Similarly, using (6), if some
point (β, π) is on the CM locus for the distribution F , it is inside the corresponding
locus for G. Thus, an improvement in the distribution of cooperative benefit moves
both loci outwards. Figure 2 illustrates the effects of a shift in the distribution from F
[inducing the loci ND(F) and CM(F)] to G [inducing the loci ND(G) and CM(G)].

As this diagram shows, if the game has interior equilibria for both distributions,
those equilibria have the same value of β, namely ab/c, but the G equilibrium has a
higher value of π . Since G(ab/c) < F(ab/c) and the frequencies with which C and
D are played are in the fixed ratio c:a, both C and D are played with higher frequency

Fig. 2 Effects of a shift in the
distribution of cooperative
benefit
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in the G equilibrium than in the F equilibrium. More intuitively, the relationship
between cooperation and cheating is analogous to that between prey and predator. If
the distribution of cooperative benefit becomes more favourable, a higher frequency
of cooperation is induced; but the more cooperation there is, the more cheating can be
sustained.

If the game has boundary equilibria for both distributions, the highest-value G
equilibrium must be to the left of the highest-value F equilibrium. (This can be seen
by considering the effect of an outward shift of the CM locus in Fig. 1c.) Thus, the
former equilibrium induces a higher frequency of cooperation than the latter.

The following general result is proved in the Appendix:

Result 4 Suppose xmax > ab/c and let F , G be two distributions of X such that G
is rightward of F . Then in the highest-value G equilibrium, the frequency of cooper-
ation and the value of the game are both strictly greater than in the highest-value F
equilibrium.

Thus, as the distribution of cooperative benefit becomes progressively more
favourable, the maximum sustainable frequency of cooperation increases.8 Increases
in cooperation are associated with increases in cheating until the frequency of non-
participation falls to zero.

4 The model: dynamics

Wenow embed our game in an evolutionary process.We consider a finite population of
potential players, sufficiently large to legitimate the use of the law of large numbers.
In each of a long series of periods, individuals from this population are randomly
and anonymously matched to play the game. Since we are presenting an evolutionary
analysis, we do not define any concept of ‘lifetime’ utility that players maximise.
Instead, we assume that, at the population level, behaviour gravitates towards whatever
pattern of play is currently payoff-maximising for individuals, given the behaviour of
the population as a whole.

In this section, we present a simple dynamic analysis that can be represented in
the (β, π) space of Fig. 1. For the purposes of this analysis, β and π are interpreted
as descriptions of the mix of strategies played in the population at any given time:
β ∈ [xmin, xmax] is the critical value of X such that C is chosen by any player i if and
only if xi ≥ β, and π ∈ [0, 1] is the relative frequency of D choices among players
for whom xi < β. We assume that β and π evolve independently. (In a biological
application, this is equivalent to assuming that β and π are determined by distinct
sets of genes.) Thus, the direction of change of β depends on the relative values of
VC and VM : β tends to increase (respectively: decrease) if VM > VC (VM < VC ).
The direction of change of π depends on the relative values of VD and VN : π tends
to increase (decrease) if VD > VN (VD < VN ). This gives the dynamics shown in
phase-diagram form in Fig. 1.

8 This comparative-static property is compatible with evidence that in both human and non-human interac-
tion, the level of cooperation is greater, the higher the payoffs to cooperation (Clutton-Brock 2002; Capraro
et al. 2014).
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In the case shown in Fig. 1a, the dynamics in the neighbourhood of the non-
participation equilibrium (N) are cyclical. At the level of generality at which we are
working, it is not possible to determine whether this equilibrium is locally stable, but
it has a non-empty zone of attraction, including at least all points at which β = xmax.
In the cases shown in Fig. 1b, c, the non-participation equilibrium is locally unstable.
(In these cases, all paths from points close to N but below the ND locus lead away
fromN, and must eventually pass through or to the left of the interior equilibrium I. As
in the case shown in Fig. 1a, N has a non-empty zone of attraction.) However, in states
in which almost all players choose non-participation, selection pressure is weak, and
so the dynamics shown in the diagrams might work very slowly in the region close to
N.

It is clear from Fig. 1b that, in the neighbourhood of an interior equilibrium, the
dynamics exhibit cyclical or spiralling paths. Described in terms of the evolution of
the frequencies of the three strategies N, C and D, these paths are similar to those of
the Rock–Paper–Scissors game. (The frequency of cooperation is greatest towards the
left of the diagram, where the value of β is low. From there, evolutionary paths lead
towards the top right, where the values of β and π are both high, and the frequency of
cheating is greatest. From there, paths lead towards the bottom right, where β is high
and π is low, and the frequency of non-participation is greatest. And from there, paths
lead back towards the left. If paths spiral outwards, they may lead into the zone of
attraction of the non-participation equilibrium.) These paths resemble predator–prey
interactions, cheats acting as predators and cooperators as prey.

If the CM locus cuts the line π = 1 at a point where β < ab/c, this point is a
boundary equilibrium. If, as in the case shown in Fig. 1c, points to the left of this
equilibrium are outside the locus, the equilibrium is locally stable. Not all boundary
equilibria have this property, but whenever the ND and CM loci intersect at π > 1,
there must be at least one locally stable boundary equilibrium.

5 Simulations

In this section, we briefly illustrate some basic features of our theoretical model by
means of computer simulations. Using a simple deterministic replicator dynamics, we
analyse the evolution of β and π over time, and the associated relative frequencies
pN , pC and pD with which strategies N, C and D respectively are played. Further
details are provided in the “Mathematical Appendix”.9

In applying replicator dynamics to our game, we cannot treat N-players, C-players
and D-players as distinct sub-populations which replicate separately. This is because,
in ourmodel, players’ decisions about whether or not to cooperate in any given interac-
tion are conditioned on the relevant realisation of the random variable X . Our method
is to assume that at any given time t , all players are characterised by the same (β, π)

pair. In replicator dynamics, the growth rate of the population fraction using a given

9 In a preliminary version of this paper, we presented simulations based on a stochastic evolutionary
process in which selection acted directly on β and π . However, as a referee suggested, themain evolutionary
properties of our model can be conveyed more simply through replicator dynamics.
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Table 2 Type and stability
properties of interior equilibria

Value of c Interior equilibrium properties

c ≤ 1.33 No interior equilibrium

1.33 < c < 1.66 Improper node, unstable

c = 1.66 Proper node, unstable

1.66 < c < 2.3094 Spiral node, unstable

c = 2.3094 Hopf bifurcation occurs

2.3094 < c < 2.4 Spiral node, asymptotically stable

c ≥ 2.4 No interior equilibrium

strategy is proportional to the difference between the current payoff of that strategy
and the weighted average of the current payoffs of all strategies, each strategy being
weighted by the relative frequency with which it is played (Taylor and Jonker 1978).
For the purposes of our analysis, we define the current payoff to each strategy as the
expected payoff to any player i from choosing that strategy, conditional on the current
values of pN , pC and pD and conditional on xi being equal to the current value of β.
At each time t , the rates of change of pN , pC and pD are determined by the replicator
equations; these changes are then implemented through changes in β and π . This
method allows mathematically tractable simulations while conserving the essential
features of the dynamics described theoretically in Sect. 4.10

Our simulations use the parameter values a = 3, b = 4, xmin = 0 and xmax = 9;
the distribution of X over the interval [xmin, xmax] is assumed to be uniform. We
investigate the dynamics at different values of c, with particular emphasis on values in
the interval [1.33, 2.4] in which interior equilibria occur. (If c ≤ 1.33, xmax ≤ ab/c,
and so the CM and ND loci intersect only at the non-participation equilibrium; if c ≥
2.4, the loci intersect at π ≥ 1.) Intuitively, increases in c (that is, increases in the cost
incurred by each player when both cheat) reduce the rewards from cheating and so
favour cooperation.

Irrespective of the value of c, the non-participation equilibrium is unstable under
replicator dynamics. (Since C is the best response to every non-degenerate mix of
C and N, any path starting at a point at which π = 0 and xmax > β > xmin must
move away from the non-participation equilibrium along the line π = 0.) However,
there are also paths that converge to the non-participation equilibrium. (Since N is the
best response to every non-degenerate mix of N and D, any path starting at a point at
which β = xmin and 1 > π > 0 must have this property.) The stability properties of
interior equilibria are less immediately obvious. It turns out that, as c varies, there are
qualitative changes in the dynamics associated with interior equilibria.

Table 2 reports the type and stability properties of the interior equilibriumat different
values of c. This equilibrium is unstable for 1.33 < c < 2.3094 but asymptotically
stable for 2.3094 < c < 2.4. At c = 2.3094 there is a Hopf bifurcation (see the
“Mathematical Appendix” for details).

10 The main difference between the two ways of modelling the dynamics relates to states in which at least
one of pN , pC and pD is equal to zero (i.e. where β = xmin, β = xmax, π = 0 or π = 1). In replicator
dynamics, a strategy that is not played in any one period is never played, irrespective of its payoffs. Since
our main concern in this section is with interior equilibria, this difference is not particularly significant.
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Figure 3 shows the dynamics at different values of c. In Fig. 3a, c = 1 and the
CM and ND loci intersect only at the non-participation equilibrium. Paths that start
close to the non-participation equilibrium but below the CM locus initially move
away from that equilibrium, but then approach it from above ND locus; all paths
converge asymptotically to the β = xmax line. As c increases (Fig. 3b, c) the general
picture does not change until the Hopf bifurcation occurs: paths that start close to the
interior equilibrium eventually approach the non-participation equilibrium. But after
this bifurcation, paths that start below the ND locus spiral in to the interior equilibrium
(Fig. 3d). The implication is that there is a range of parameter values for which a stable
interior equilibrium exists and has a large zone of attraction.

6 Discussion

We do not intend to claim that our model represents the mechanism that underlies
human and animal cooperation. There is no good reason to suppose that cooperation
is a single phenomenon with a unified causal explanation. We find it more plausible to
view cooperation as a family of loosely related phenomena which may have multiple
causes. We offer our model as a stylised representation of one mechanism by which
cooperation might emerge and persist.

Our model is unusually robust in that it assumes only materially self-interested
motivations and applies to anonymous, well-mixed populations. In claiming this as
a merit of the model, we do not deny that individuals sometimes act on pro-social
motivations. It has long been known that experimental subjects often cooperate in
non-repeated and anonymous Prisoner’s Dilemmas (Sally 1995).

Nor do we deny that many recurrent cooperative interactions are between individ-
uals who are known to one another, or that populations of potential cooperators are
often structured into clusters of individuals who interact mainly with their neighbours.
Each of these factors can contribute to the explanation of cooperation in particular
environments. Nevertheless, theories that depend on non-anonymity, or on population
structures taking particular forms, have restricted domains of application. And since
self-interest is a very common and reliable motivation, models which assume only
self-interest can be expected to be particularly robust.

As an illustration of how theories with less robust assumptions can be restricted
in their application, we consider the currently much-discussed hypothesis of altruis-
tic punishment (Fehr and Gächter 2000; Gintis et al. 2005). The key insight is that
multilateral cooperation can be sustained in equilibrium if individuals have low-cost
options of punishing one another, and if even a relatively small proportion of individ-
uals have relatively weak preferences for punishing non-cooperators. However, the
general effectiveness of this mechanism depends on the cost of punishing being low
relative to the harm inflicted, and on the absence of opportunities for punishees to
retaliate (Herrmann et al. 2008; Nikiforakis 2008); and it requires that at least some
individuals have non-selfish preferences for punishing. Such preferences might be
sustained by cultural group selection in hunter-gatherer economies, where groups are
small and inter-group warfare is frequent, but these conditions are not typical of the
modern world; even among hunter-gatherers, biological group selection of altruistic
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punishment would be frustrated by inter-group gene flow (Boyd et al. 2005). Altru-
istic punishment should be understood as a mechanism that can sustain cooperation
in specific types of environment, not as the solution to the problem of explaining
cooperation. We claim no more than this for our own model.

We have said that our model is in the same spirit as some recent work by biologists,
which finds apparently cooperative behaviour to be directly beneficial to the individual
cooperator (see Sect. 1 above). But, as we now explain, the explanatory principles used
by these biologists are not the same as those exhibited in our model.

One of the fundamental features of our model is that the cooperative behaviour it
describes is reciprocally beneficial. By this, we mean the following. Such cooperation
is not simply a unilateral action by one individual which, intentionally or unintention-
ally, confers benefits on another; it is the composition of cooperative actions by two
or more individuals, the combined effect of which is to benefit each of them. In other
words, each cooperator benefits from his action only if this action is reciprocated by
one or more other individuals. In the absence of enforceable promises, reciprocally
beneficial cooperation requires at least one individual to choose a cooperative action
without assurance that others will reciprocate. In our model, any player who chooses
to cooperate incurs a risk of loss, which is realised if his opponent cheats. One might
think (as we are inclined to do) that reciprocal benefit is a hallmark of genuine, as
opposed to apparent, cooperation (see also Sachs et al. 2004; West et al. 2007). In bio-
logical models of mutualism, cooperation is not reciprocally beneficial, in the sense
we have defined.

In the Snowdrift game, which is often used to model apparently cooperative animal
behaviour, cooperation and cheating are best responses to one another. In the original
story, two drivers are stuck in the same snowdrift. Both drivers have shovels, and so
each can choose whether or not to dig. If either driver digs a way out for his own car,
the other can drive out too. Each would rather be the only one to dig than remain stuck.
This defines a game with Chicken payoffs; in a pure-strategy Nash equilibrium, one
driver digs and the other free-rides (Sugden 1986). Such an equilibrium is not a case
of reciprocally beneficial behaviour.

Clutton-Brock (2009) offers the Soldier’s Dilemma as a model of mutualism in
biology. In this game, a patrol of soldiers is ambushed by the enemy. Soldiers who fire
back attract incoming fire and increase their chance of being killed. By firing back,
however, each individual reduces the probability that the patrol will be overrun. The
gain from this may be such that from an individual’s perspective there is no dilemma
at all: firing back may give the best chance of individual survival, irrespective of
what the others do. A biological equivalent to this game (or perhaps to Snowdrift)
can be found in the behaviour of certain birds and mammals, such as Arabian bab-
blers and meerkat, which feed in predator-rich environments. Individuals of these
species go on sentinel duty once they have fed for long enough to be close to satiation
(Clutton-Brock et al. 1999). In these games, cooperation is chosen either as a dominant
strategy or as a best response to other players’ non-cooperation; it is not reciprocally
beneficial.

In the story of the Soldier’s Dilemma, it would be natural to assume that cooper-
ation would be a dominant strategy only if the number of soldiers in the patrol was
relatively small, so that each of them received a significant share of the total benefit
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created by his own cooperative action. Hauert et al. (2002) present a model which can
be understood as a version of the Soldier’s Dilemma in which the size of the patrol
is endogenous. This is an n-player model of voluntary contributions to a public good,
but with an outside option of non-participation. A player who takes the outside option
receives a small positive payoff σ with certainty, but forgoes any share in the benefits
of the public good. Players who participate can either cooperate (contribute to the
public good) or cheat (not contribute). Each cooperator incurs a cost of 1 and creates
a benefit of r (where 1 < r < n and r > σ + 1), which is divided equally between all
participants. This game has no pure-strategy Nash equilibrium. (If all of one’s oppo-
nents take the outside option, the best response is to cooperate; if they all cooperate,
the best response is to cheat; if they all cheat, the best response is the outside option.)
There is a unique symmetrical mixed-strategy Nash equilibrium in which the expected
payoff to all three strategies is σ . More intuitively, in equilibrium the expected num-
ber of participants in each game is sufficiently small that cooperation and cheating
are equally profitable. Replicator dynamics have the Rock–Paper–Scissors cyclical
pattern.

There are some similarities between Hauert et al.’s model and ours: both models
include a non-participation option, and both induce mixed-strategy equilibria with
predator–prey characteristics. However, Hauert et al.’s model differs from ours in two
significant ways. First, the mechanism that induces cooperation works through vari-
ation in the number of participants in the cooperative activity. For this reason, the
model cannot represent cooperative activities which require a fixed number of partic-
ipants. In particular, it cannot represent activities which inherently involve just two
individuals—as, for example, most forms of market exchange do. Second, because
the costs and benefits of contributing to the public good are non-stochastic, the
expected payoffs to cooperation, cheating and non-participation are equal in equi-
librium. Thus, although some cooperative activity takes place in equilibrium, this
activity generates no net benefit relative to non-participation: it is not reciprocally
beneficial.

We suggest that our analysis provides a stylised but essentially realistic account
of a mechanism by which reciprocally beneficial cooperation can emerge and persist
in anonymous, well-mixed populations in which strategies are selected according to
their material payoffs. Using two simple components—voluntary participation and
stochastic payoffs—that have not previously been put together, we have constructed
a robust general-purpose model of cooperation.

We are conscious that, for some theoretically-oriented economists, the mechanism
we have described may seem rather prosaic. For decades, the Prisoner’s Dilemma
has been used as the paradigm model of cooperation problems, and the problem of
explaining cooperation in that game has been treated as a supreme theoretical chal-
lenge. Viewed in that perspective, a modelling strategy which relaxes the assumption
that cooperation is always a dominated strategy may seem too easy. But we share
the view of Worden and Levin (2007) that many real-world cooperation problems
are less intractable than the Prisoner’s Dilemma. Neglecting these cases results in an
incomplete body of theory and fosters unwarranted pessimism about the possibility
of spontaneous cooperation.
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Mathematical appendix

Proof of Result 2 Let (β, π) be any interior or boundary equilibrium, and consider any
player i . With probability F(β), xi < β and i plays N orD. In an interior equilibrium,
VD = VN = 0. In a boundary equilibrium, VD ≥ VN = 0 and N is not played. In
either case, i’s expected payoff is equal to VD and is non-negative. With probability
1 –F(β), xi ≥ β and i plays C. If xi = β, i is indifferent between C and D and the
expected payoff is again VD . If xi > β, i plays C; his expected payoff (conditional
on xi > β) exceeds that in the xi = β case by [1 – F(β)](xi –β); here 1 – F(β)

represents the probability that i’s opponent plays C. Hence:

V ∗(β, π) = VD + [1 − F(β)] E [max(xi − β, 0)] , (8)

where E is the expectation operator. Since VD ≥ 0 and β < xmax, the value of
V ∗(β, π) is strictly positive.

Proof of Result 3 If (β, π) and (β ′, π ′) are both interior and/or boundary equilibria,
Result 3 can be derived from (8) using the fact thatVD is decreasing inβ [an implication
of (2)]. If (β, π) is the non-participation equilibrium, V ∗(β, π) = 0 and so Result 3
follows trivially from Result 2.

Proof of Result 4 Suppose xmax > ab/c. Let (β, π) be the highest-value F equilib-
rium and let (β ′, π ′) be the highest-value Gequilibrium. There are three possibilities.
Case 1: (β, π) and (β ′, π ′) are both interior equilibria. Then β ′ = β = ab/c and
π ′ > π . (This case is illustrated in Fig. 2.) Since G(β ′) < F(β), the frequency of
cooperation is higher in the G equilibrium. Using (8) and the fact that VD = 0 in
every interior equilibrium, it can be shown that the value of the game is strictly greater
in the G equilibrium. Case 2: (β, π) and (β ′, π ′) are both boundary equilibria. Then
(because the CM locus forG lies outside the CM locus for F) β ′ < β and π ′ = π = 1.
Since G(β ′) < F(β), the frequency of cooperation is higher in the G equilibrium.
Using (2), it can be shown that VD is strictly greater in the G equilibrium. Then,
using (8) in relation to the distributions F and G, it can be shown that the value of
the game is strictly greater in the G equilibrium. Case 3: (β, π) is an interior equi-
librium and (β ′, π ′) is a boundary equilibrium. Then β ′ ≤ β and 1 = π ′ > π . Since
G(β ′) < F(β), the frequency of cooperation is higher in the G equilibrium. In the
interior equilibrium, VD = 0. In the boundary equilibrium, VD ≥ 0. Then, using (8),
it can be shown that the value of the game is strictly greater in the G equilibrium.

Mathematical details of replicator-dynamic analysis

As explained in Sect. 5, our simulations assume that, at any given time t , all play-
ers are characterised by the same (β, π) pair. Under this assumption, and given our
assumptions about the distribution of X , the frequency of cooperation and cheating in
the population can be expressed as

pC (t) = 1 − F(β(t)) = xmax − β(t)

xmax
(9)
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and

pD(t) = (1 − pC (t))π(t) =
(

β(t)

xmax

)
· π(t) (10)

respectively. Let

A =
⎡
⎣0 0 0
0 β(t) −b
0 a −c

⎤
⎦

be the payoff matrix of the game and let p(t) = [pN (t), pC (t), pD(t)]′ indicate the
frequencies of the three strategies at t . As explained in Sect. 5, the payoff to each
strategy at t is defined as the expected payoff from that strategy for a player i for
whom xi = β(t). Given this definition, the payoff vector and the average payoff are
given by

(A · p)′ = [0, β(t)pC (t) − bpD(t), apC (t) − cpD(t)]

and

p′Ap = pC (β(t)pC (t) − bpD(t)) + pD(apC (t) − cpD(t))

respectively. In what follows, we drop t to simplify notation.
A standard replicator equation with the gamematrixA induces the following vector

field on the 2-simplex

⎡
⎢⎢⎣
ṗN = pN [− (pC (βpC − bpD) + pD(apC − cpD))]

ṗC = pC [(βpC − bpD) − (pC (βpC − bpD) + pD(apC − cpD))]

ṗD = pD [(apC − cpD) − (pC (βpC − bpD) + pD(apC − cpD))]

⎤
⎥⎥⎦

As pN = 1 − pC − pD , we will consider the simplified dynamical system

[
ṗC

ṗD

]
=

⎡
⎣ F(pC , pD)

G(pC , pD)

⎤
⎦

=
[
pC [(βpC − bpD) − (pC (βpC − bpD) + pD(apC − cpD))]

pD [(apC − cpD) − (pC (βpC − bpD) + pD(apC − cpD))]

]
.

This systemhas both interior and boundary fixed points, depending on the parameter
values. Here we consider only the interior equilibrium. By (2) and (3) in the main text,
this equilibrium is characterised by β∗ = ab

c and π∗ = c·xmax−a·b
b·c .

By (9) and (10), the equilibrium frequencies ofC andD are given by p∗
C = xmax−β∗

xmax

and p∗
D =

(
β∗
xmax

)
· π∗.
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The Jacobian, evaluated at the interior equilibrium, is

J =

⎡
⎢⎢⎢⎣

−63c2 − 216c + 176

3c3
27c2 − 120c + 112

9c2

36c3 − 183c2 + 312c − 176

c4
−9c3 − 75c2 + 168c − 112

3c3

⎤
⎥⎥⎥⎦

with eigenvalues

e1,2 = −3c2 + 16

6c3
±

(3c − 4)
(√

(9c4 + 180c3 − 768c2 + 576c + 256)
)

6c3

and trace

TR = −63c2 − 216c + 176

3c3
− 9c3 − 75c2 + 168c − 112

3c3
.

At c = 2.3094, the trace of the Jacobian matrix J equals zero and a pair of imaginary
eigenvalues, e1,2(I) = ±i0.2402, cross the imaginary axis. This is a degenerate Hopf
bifurcation, i.e. the resulting limit cycle is unstable, as is the case for any bifurcation
of this type in a two-player 3× 3 symmetric game under (continuous-time) replicator
dynamics (Zeeman 1980; on this, see also Ochea 2010, 2013).
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