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Abstract For every 2-personbargainingproblem, theNashbargaining solution selects
a point that is “between” the relative (or normalized) utilitarian point and the relative
egalitarian (i.e., Kalai–Smorodinsky) point. Also, it is “between” the (non-normalized)
utilitarian and egalitarian points. I improve these bounds. I also derive a new char-
acterization of the Nash solution which combines a bounds property together with
strong individual rationality and an axiom which is new to Nash’s bargaining model,
the sandwich axiom. The sandwich axiom is a weakening of Nash’s IIA.

Keywords Bargaining · Bounds · Egalitarianism · Nash bargaining solution ·
Sandwich axiom · Utilitarianism

1 Introduction

A (2-person) bargaining problem is a compact and convex set S ⊂ R
2+ that contains

0 ≡ (0, 0) and satisfies S ∩ R
2++ �= ∅. The set S is interpreted as a menu of available

utility pairs, out of which the two players (bargainers) need to chose a single point.
If they agree on x then player i ends up with the utility payoff xi , and failing to
reach agreement leads to the implementation of the status quo payoffs—0; since S ∩
R
2++ �= ∅, there are strict incentives to avoid disagreement. LetB denote the collection

of all bargaining problems. A bargaining domain is a non-empty subset D ⊂ B,
and a solution (on D) is any function σ : D → R

2 that satisfies σ(S) ∈ S for all
S ∈ D.
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The best-known solution in the literature is the Nash solution, N (due to Nash
(1950)), which assigns to each problem S the point x ∈ S that maximizes the payoffs-
product, x1 · x2. Other solutions that will be referred to in the sequel are the egalitarian
solution and the utilitarian solution.

The egalitarian solution, E , which was introduced into the bargaining literature and
axiomatized by Kalai (1977a), assigns to each problem S the intersection point of its
Pareto frontier and the 45◦ line. Denote this point by E(S) ≡ (e(S), e(S)); that is,
e(S) is the maximum payoff that can be provided to both players simultaneously in the
problem S. For a comprehensive problem S, the point E(S) maximizes min{x1, x2}
over x ∈ S.1

A utilitarian solution, by contrast, maximizes the utility sum over S. In general, this
sum may be maximized at multiple points of S, hence there are multiple utilitarian
solutions, but they only differ in their tie-breaking among utility-sum maximizers; a
generic such solution will be denoted by U .

Utilitarianism and egalitarianism are basic principles of distributive justice (see,
among many others, Fleurbaey et al. (2008)). The utilitarian philosophy takes the sum
of the individual utilities to be society’s utility; by contrast, the egalitarian philosophy,
the most prominent representative of which in the twentieth century is John Rawls,
puts the emphasis on advancing the welfare of society’s worst-off members. Thus, U
and E are the formal expressions of these competing principles in the context of the
bargaining model.

Both utilitarianism and egalitarianism are based on interpersonal utility compar-
isons (Elster and Roemer 1991); for instance, if utilities are not comparable, then their
summation bears no ethical significance. Unfortunately, however, even if utilities are
comparable in principle, they may not be comparable in practice. To be specific, the
bargaining model does not contain any information about the nature of the utility num-
bers described by any point x ∈ S. Therefore, without out-of-the-model information
about the meaning of utilities, the solutions U and E do not necessarily implement
their respective underlying philosophies.

A natural reaction to this difficulty is to adopt suitable normalizations. In particular,
a relative utilitarian solution (Dhilon and Mertens 1999; Pivato 2009; Segal 2000;
Sobel 2001) assigns to each S a maximizer of x1

a1(S)
+ x2

a2(S)
over x ∈ S, where

ai (S) ≡ max{si : s ∈ S} (a(S) is called the ideal point of S); the aforementioned sum
may be maximized at multiple points—each such point is called a relative utilitarian
point—hence there are multiple relative utilitarian solutions; a generic such solution
will be denoted by RU.Relative egalitarianism is expressed by theKalai–Smorodinsky
solution, K S, due to Kalai and Smorodinsky (1975), which assigns to each S the
point λa(S), where λ is the maximum possible. The solutions K S and RU are the
normalized versions of E andU , respectively.Mathematically, this normalization finds
its expression in the fact that, as opposed to E and U , K S and RU are scale invariant
solutions, meaning that for every S and every pair of positive linear transformations

1 S is comprehensive if x ∈ S and 0 ≤ y ≤ x implies that y ∈ S. Vector inequalities: u Rv iff ui Rvi for
both i , for each R ∈ {>,≥}. Comprehensiveness captures the idea of utility-free disposal.
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Egalitarian–utilitarian bounds in Nash’s bargaining problem 429

l = (l1, l2) the solution σ satisfies σ(l ◦ S) = l ◦ σ(S) (the solution N is also scale
invariant).2

In broad terms, the subject of this paper is the relationships between the solutions
in {E, U, K S, RU } on the one hand, and N on the other hand. To the best of my
knowledge, the first result in the literature about a non-trivial such relationship is the
following, due to Cao (1982). Cao proved that for every comprehensive problem S for
which the relative utilitarian point is unique, the point N (S) is “between” RU (S) and
K S(S). That is,

Ni (S) ≥ min{RUi (S), K Si (S)} ∀i = 1, 2. (1)

Say that a solution, σ , satisfies Cao’s bounds, if it satisfies the counterpart of (1); that
is, σ satisfies Cao’s bounds if the following is true for every problem S whose relative
utilitarian point is unique:

σi (S) ≥ min{RUi (S), K Si (S)} ∀i = 1, 2.

Adhering to Cao’s bounds can be interpreted as respecting a minimal degree of both
(relative) utilitarianism and egalitarianism.

In a recent paper (Rachmilevitch 2014), I showed that the fact that N satisfies Cao’s
bounds can be strengthened: it was proved in that paper that the following is true for
any comprehensive problem S whose utilitarian point, U (S), is unique:

Ni (S) ≥ min{Ui (S), e(S)} ∀i = 1, 2. (2)

Inequality (2) implies (1) in the following sense: for every problem S such thatU (l◦S)

is unique for every rescaling l, (2) implies (1). To see why, consider such an S. Apply
to it a transformation l such that a1(S′) = a2(S′), where S′ = l ◦ S. By assumption (2)
holds for S′, and therefore (1) holds for it as well, because on normalized problems—
problems the ideal point ofwhich is on the 45◦-line—there is no difference between the
normalized and non-normalized versions of egalitarianism and utilitarianism. Since
(1) holds for S′ it also holds for S, because (1) involves only scale-invariant solutions.

Say that a solution, σ , satisfies the EU bounds, if it satisfies the counterpart of (2);
that is, σ satisfies the EU bounds if the following is true for every problem S whose
utilitarian point is unique:

σi (S) ≥ min{Ui (S), e(S)} ∀i = 1, 2.

Cao’s bounds and the EU bounds bring about two questions:

• Can N be axiomatized on the basis of these bounds?
• Can the bounds be improved for N?

In Rachmilevitch (2014), I derived an axiomatization of N on the basis of the EU
bounds (on the domain of comprehensive problems, N is the unique scale-invariant
solution that respects them), and I showed that for any S for which RU (S) �= K S(S),

2 The function li is a positive linear transformation if li (t) ≡ αi t for some αi > 0. A pair of such
transformations, l = (l1, l2), is also called a rescaling.
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430 S. Rachmilevitch

the part of S’s Pareto frontier that ranges between RU (S) and K S(S) can be narrowed
to a smaller range in which N (S) is guaranteed to lie. In particular, it was shown that,
in certain senses, N (S) is closer to RU (S) than it is to K S(S).

In the present paper, I derive analogous results: I characterize N on the basis of
Cao’s bounds and I show that the EU bounds can be tightened in a way that lends
formal meaning to “N is closer to U than it is to E .”

The characterization of N involves an axiom which is new to the literature, the
sandwich axiom. This axiom requires that for every triple of nested problems, S ⊂
V ⊂ T , if σ(S) = σ(T ) = x , then σ(V ) = x . This axiom is a weakening of Nash’s
(1950) independence of irrelevant alternatives (IIA), which requires σ(S) = σ(T )

whenever σ(T ) ∈ S ⊂ T .3 The typical justification for IIA is that if the agreement
σ(T ) is “revealed by the solution” to be superior to any alternative in (T \{σ(T )}),
then it is obviously superior to any alternative in (S\{σ(T )}); in particular, whether the
alternatives in (T \S) are available for choice is irrelevant as long as σ(T ) is available.
Along similar lines, the sandwich axiom, when applied to a triple S ⊂ V ⊂ T , can
be interpreted as follows: if the alternatives in (T \S) were proved to be irrelevant,
then those in (T \V ) are surely irrelevant. Namely, the sandwich axiom requires that
a subset of irrelevant alternatives be a set of irrelevant alternatives.

The Nash solution has a well-known generalization: σ is an asymmetric Nash
solution if there is a β ∈ (0, 1) such that σ(S) maximizes xβ

1 · x1−β
2 over x ∈ S, for

every S. This solution was first axiomatized by Kalai (1977b), on the basis of an axiom
list that contains IIA. I show that in this axiomatization, IIA can be weakened to the
sandwich axiom.

The rest of the paper is organized as follows. Section 2 formally defines several
important bargaining domains; Sect. 3 contains the axiomatization of the Nash solu-
tion and other results that are related to the sandwich axiom (among them is the
just-mentioned axiomatization of the asymmetric Nash solution); Sect. 4 is dedicated
to the improvement of the EU bounds—an improvement which is based on a cer-
tain “more-utilitarian-than” ordering of EU bounds respecting bargaining solutions;
in Sect. 5, alternative “more-egalitarian/utilitarian-than” orderings of solutions are
studied.

2 Bargaining domains

Two important bargaining domains are (1) the grand domain, B, and (2) the domain
of comprehensive problems, hereafter denoted by C.

One of the simplest domains is the domain of polytopes in R
2+ that contain 0.

Denote this domain by P . This domain can serve to model a variety of finite 2-person
strategic-form games (with public randomization).

The Pareto frontier of S is P(S) ≡ {x ∈ S : (y ≥ x)&(y ∈ S) ⇒ y = x}. In
the next Section, I will consider bargaining domains D that satisfy the following two
conditions:

3 The sandwich axiom resembles (but is not identical to) Weak WARP of choice theory; see Manzini and
Mariotti (2007). I thank Kemal Yildiz for pointing this out to me.
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Egalitarian–utilitarian bounds in Nash’s bargaining problem 431

• (I) (P ∩ C) ⊂ D.
• (II) ∀S ∈ D, ∀x ∈ S ∩ R

2++: ∃V ∈ D such that V ⊂ S and P(V ) = {x}.
(I) and (II) are weak conditions. In particular, they are satisfied by any of the domains
mentioned above: B, C, and P .4 There are, however, economically meaningful bar-
gaining domains that do not satisfy conditions (I) and (II). For example, the domain
of comprehensive problems with a Pareto frontier that has strict curvature is such a
domain (this domain violates both (I) and (II)).5

Another domain that will be referred to in the sequel is the domain of straight lines,
L ≡ {conv{0, v} : v > 0}. Though problems in L may be viewed as degenerate,
and they are usually not considered in the literature, they enjoy a straightforward
interpretation: these are problems inwhich the parties’ interests are completely aligned.
An example of a work on bargaining in which these problems play an important role
can be found in Anbarci (2002).

3 The characterization

A solution σ satisfies strong individual rationality (due to Roth 1977), if σ(S) > 0
for all S.

Theorem 1 LetD be a bargaining domain that satisfies (I)–(II) and let σ be a solution
on D. Then σ satisfies Cao’s bounds, strong individual rationality, and the sandwich
axiom if and only if it is the Nash solution.

Theorem 1 will be proved on the basis of the following lemma, for the statement of
which the following axiom (due toAnbarci 1998) and definition are needed. A solution
onD, σ , satisfies midpoint outcome on a linear frontier (MOL) if for every triangular
S ∈ D, σ(S) = 1

2a(S). This axiom is a weakening of midpoint domination (due to
Sobel 1981), which requires σ(S) ≥ 1

2a(S) for all S ∈ D.

Lemma 1 Let D be a bargaining domain that satisfies (I)–(II) and let σ be a solution
onD. Then, if σ satisfies Cao’s bounds, strong individual rationality, and the sandwich
axiom, then it satisfies MOL.

Proof LetD and σ be as above and let S ≡ conv{0, (1, 0), (0, k)} ∈ D, where k > 1.
I will prove that σ(S) = ( 12 ,

k
2 ).

Case 1: σ(S) ∈ P(S).
Let t ≡ σ1(S). Since σ(S) ∈ P(S), it is enough to prove that t = 1

2 . Assume by
contradiction that t �= 1

2 .
Case 1.1: t < 1

2 . For a small ε > 0, consider Sε ≡ {s ∈ S : s1 ≤ 1 − ε}. By
(I), Sε ∈ D. In the problem Sε the relative utilitarian point is unique—RU (Sε) =
(1 − ε,−k(1 − ε) + k). Also, K S(Sε) ∼ K S(S) = ( 12 ,

k
2 ) for all small ε’s. The

4 That each of these three domains satisfies (I) is obvious; P satisfies (II) because it contains straight lines
and C satisfies (II) because it contains rectangles.
5 However, Theorem 1 extends to this domain by a standard continuity argument.
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combination of strong individual rationality and condition (II) implies that there is a
V ∈ D such that V ⊂ S and P(V ) = {σ(S)}. For a sufficiently small ε, V ⊂ Sε . By
Cao’s bounds σ(V ) = σ(S), and therefore, by the sandwich axiom, σ(Sε) = σ(S).
Therefore, Cao’s bounds are not satisfied, as σ1(Sε) = t < min{K S1(Sε), 1 − ε} =
min{K S1(Sε), RU1(Sε)}.
Case 1.2: t > 1

2 . For a small ε > 0, let S′
ε ≡ {s ∈ S : s2 ≤ k − ε}. By arguments ana-

logous to the ones from Case 1.1, it follows that Cao’s bounds are not satisfied on S′
ε .

Case 2: σ(S) /∈ P(S). Let T ≡ θ S, where θ ∈ (0, 1) is the unique number such that
σ(S) ∈ P(T ). Such a θ ∈ (0, 1) exists, because, by individual rationality, σ(S) > 0.
By (I), T ∈ D. It follows from Case 1 that σ(T ) = 1

2a(T ) = ( θ
2 , θk

2 ). Moreover, I
argue that σ(T ) = σ(S). To see this, note that by condition (II) there is a V ′ ∈ D
such that V ′ ⊂ T and P(V ′) = {σ(S)}. By Cao’s bounds, σ(V ′) = σ(S). Since V ′
satisfies V ′ ⊂ T it follows from the sandwich axiom that σ(T ) = σ(S).

Next, I argue that θ > 1
2 . To see this, consider the point on P(S) whose first coor-

dinate equals θ : v∗ ≡ (θ,−kθ + k). Note that if θ ≤ 1
2 , then the rectangle whose

Pareto frontier is {v∗}, call it R, satisfies T ⊂ R ⊂ S. Since, as we just noted in the
previous paragraph, σ(T ) = σ(S), the sandwich axiom implies that σ(R) = σ(S)

and therefore σ(R) = σ(T ). However, by Cao’s bounds it follows that σ(R) = v∗.
This is a contradiction, as σ1(R) = v∗

1 = θ is inconsistent with σ1(R) = σ1(T ) = θ
2 .

Therefore, θ > 1
2 .

Let l ≡ conv{v∗, (0, θk)}. Let Q be the (unique) comprehensive problem such that
P(Q) = l; namely, Q = conv({0, (θ, 0)} ∪ l). By (I), Q ∈ D. Note that T ⊂ Q ⊂ S.
Therefore, by the sandwich axiom, σ(Q) = σ(S) = σ(T ).

Claim 1 K S1(Q) > θ
2 .

Proof of Claim 1 Every point (x, y) ∈ l satisfies the equation:

y = − k

θ
(2θ − 1)x + θk.

Therefore, the point K S(Q) = (x, y) satisfies6:

− k

θ
(2θ − 1) + θk

x
= k.

Solving this equation gives x = K S1(Q) = θ2

3θ−1 . Therefore, Claim 1 is proved, as
θ2

3θ−1 > θ
2 follows from 1 > θ . ��

Claim 2 RU (Q) = v∗.

Proof of Claim 2 The point RU (Q) is the solution to the following optimization prob-

lem: maximize x
θ

+ − k
θ
(2θ−1)x+θk

θk over x ∈ [0, θ ]. This is equivalent to maximizing

6 The LHS is the ratio of payoffs, and the RHS is the ratio of the ideal point’s components.
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x
θ

− x
θ2

(2θ − 1) = x( 1
θ2

− 1
θ
). Since the term is parentheses is strictly positive the

optimum is obtained at x = θ . Therefore, RU (Q) = v∗.
By theClaims andCao’s bounds, σ1(Q) > θ

2 , in contradiction to σ1(Q) = σ1(T ) =
σ1(S) = θ

2 . ��
Proof of Theorem 1 Obviously N satisfies strong individual rationality and the sand-
wich axiom (because it satisfies IIA), and by Cao (1982) it satisfies the bounds.
Conversely, let σ be a solution that satisfies the three axioms. Let S ∈ D. By
(II), let V ∈ D be such that V ⊂ S and P(V ) = {N (S)}, and let T ≡
conv{0, (2N1(S), 0), (0, 2N2(S))}. By (I), T ∈ D. By Lemma 1, σ(T ) = N (S).
By Cao’s bounds, σ(V ) = N (S). Since V ⊂ S ⊂ T , the sandwich axiom implies
σ(S) = N (S). ��
The axioms in Theorem 1 are independent. The solution K S satisfies Cao’s bounds
and strong individual rationality, but not the sandwich axiom. The solution E satisfies
the sandwich axiom and strong individual rationality on C, but not Cao’s bounds. To
see that strong individual rationality is indispensable, let� ≡ {x ∈ R

2+ : x1+ x2 ≤ 1}
be the unit simplex, letD∗ be an arbitrary domain that contains� and satisfies (I)-(II),
and consider the following solution on D∗, σ ∗: σ ∗ coincides with N on D∗\{�} and
σ ∗(�) = (1, 0). It is not hard to check that σ ∗ satisfies the sandwich axiom and Cao’s
bounds, and σ ∗ �= N .

The proof of Theorem 1 is based on an idea which is due to Moulin (1983), and
that has also been utilized by Anbarci (1998). Moulin (1983) characterized the Nash
solution on the basis of IIA and midpoint domination, and Anbarci (1998) showed
that midpoint domination can be weakened to MOL, and the characterization would
still go through. It is worth noting that in both of these results IIA cannot be weakened
to the sandwich axiom. To see this, note that the midpoint solution, m(S) ≡ 1

2a(S),
satisfies the sandwich axiom and midpoint domination.

It is easy to see that the sandwich axiom is implied by IIA, and that the converse
implication does not hold.One can construct various solutions that satisfy the sandwich
axiom but not IIA. Below is such solution; for its description, the following definitions
are needed. Given S, let A(S) denote the area of S. Let p(S) ≡ A(S)

1+A(S)
, and consider

the solution that assigns to each problem S the point (
A(S)

1+A(S)
e, 1

1+A(S)
e), where e is

the maximum possible. It is easy to check that this solution, call it σ A, satisfies the
sandwich axiom but violates IIA, for example, on the domain C ∪ L.

On the abovementioned domain, the solution σ A is neither weakly Paretian nor
strongly individually rational, since it assigns the origin to every straight line (σ is
weakly Paretian if σ(S) ∈ W P(S) ≡ {x ∈ S : y > x ⇒ y /∈ S} for all S). This
is no coincidence: on any domain that contains L, if a weakly Paretian and strongly
individually rational solution satisfies the sandwich axiom then it also satisfies IIA.

Proposition 1 Let D be a bargaining domain that contains L and let σ be a weakly
Paretian and strongly individually rational solution on D. Then σ satisfies the sand-
wich axiom if and only if it satisfies IIA.

Proof It suffices to prove that under the abovementioned assumptions, the sandwich
axiom implies IIA. Let D and σ be as above and let S ⊂ T be two problems in D
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such that x ≡ σ(T ) ∈ S. Let V ≡ conv{0, x}. By strong individual rationality x > 0,
therefore V ∈ L ⊂ D. By weak Pareto, σ(V ) = x . Since V ⊂ S, the sandwich axiom
implies σ(S) = x . Therefore, IIA is satisfied. ��
Proposition 1 implies that if one restricts attention to weakly Paretian and strongly
individually rational solutions, then the sandwich axiomand IIAdiffer only ondomains
that do not contain L. Such domains are standard in bargaining theory (e.g., C).

Neither axiom can be dispensed with in Proposition 1. For example, the midpoint
solution satisfies the sandwich axiom and strong individual rationality, but not IIA.
The solution that assigns to S the point (a1(S), 0) if a1(S) ≤ a2(S) and assigns to it
(0, a2(S)) otherwise satisfies the sandwich axiom and weak Pareto, but not IIA.

Our last result in this Section concerns the asymmetric Nash solution, which max-
imizes xβ

1 · x1−β
2 over x ∈ S, for some β ∈ (0, 1). Kalai (1977b) characterized this

solution on the basis of weak Pareto, scale invariance, strong individual rationality,
and IIA. Proposition 1 implies the following:

Corollary 1 Let σ be a solution on B. Then σ satisfies weak Pareto, scale invariance,
strong individual rationality, and the sandwich axiom if and only if it is an asymmetric
Nash solution.

Proof Clearly an asymmetric Nash solution satisfies the axioms. Conversely, let σ

be a solution that satisfies them. Then, by Proposition 1, it satisfies IIA. By Kalai’s
(1977b) theorem, σ is an asymmetric Nash solution. ��

4 An improvement of the EU bounds

In what follows, I restrict my attention to problems for which the utilitarian point is
unique.

Define the compromise on utilitarianism at point x given the problem S as the
ratio CU (x |S) ≡ U1(S)+U2(S)

x1+x2
and the compromise on egalitarianism as CE (x |S) ≡

e(S)
min{x1,x2} .

7 If one views both egalitarianism and utilitarianism as appealing principles
of distributive justice, then one would like both of these compromises to be low.
Of course, typically there is a trade-off between the two: setting the compromise on
utilitarianism at its minimum results in a non-trivial compromise on egalitarianism,
and vice versa. In light of this trade-off, we see that it is useful to have a systematic way
to aggregate the compromises: if we could aggregate them into a single measure, then
(under some restrictions on the aggregation method) minimizing this measure would
express the desire of having both compromises low. Consider, then, the following
procedure.

7 The compromise on utilitarianism can be viewed as related to the price of fairness associated with the
solution σ given the problem S (due to Bertsimas et al. 2011), which is defined as the relative reduction in the

utility sum, when compared to the optimal sum: namely, it is given by [U1(S)+U2(S)]−[σ1(S)+σ2(S)]
U1(S)+U2(S)

. Both
of these efficiencymeasures share a similar flavor with the price of anarchy (Koutsoupias and Papadimitriou
(1999)), which assigns to each game the ratio of the maximal utility sum over the utility sum in the worst
Nash equilibrium. Other related concepts include the price of stability (e.g., Anshelevich et al. 2008) and
the price of selfishness (Blocq and Orda 2012).
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Let F be an increasing and symmetric two-argument function. Given S and a
point on its frontier, x , the corresponding compromises are CU (x |S) and CE (x |S),
which the function F aggregates into a single number, namely F(CU (x |S), CE (x |S)).
Different F’s aggregate the compromises in different ways, and if F is such that
F(CU (x |S), CE (x |S)) is minimized at a unique x for every S, then a bargaining
solution results:

σ F (S) ≡ argminx∈S F(CU (x |S), CE (x |S)).

Let F be the set of these F’s such that σ F is a well-defined solution and let:

	 ≡ {σ F : F ∈ F}.

Every solution in 	 satisfies the EU bounds, but not every EU-bounds-respecting
solution is in 	; for example, the Nash solution is not.

Theorem 2 There does not exist an F ∈ F such that σ F = N.

Proof Assume by contradiction that F ∈ F is such that σ F = N . Let S ≡
conv{0, (0, k

2 ), (
1
2 ,

k
2 ), (1, 0)}, where k > 1. For this S, we have that U (S) = N (S) =

( 12 ,
k
2 ) and E(S) = ( k

1+k , k
1+k ). Therefore, CU (N (S)|S) = 1 and CE (N (S)|S) =

k
1+k
1
2

= 2k
1+k . At the egalitarian point, the compromises are CU (E(S)|S) = k+1

2
2k

k+1
=

(k+1)2

4k and CE (E(S)|S) = 1. Since F is symmetric, the fact that N (S) uniquely
minimizes the F-value of the compromises implies that:

F

(
1,

2k

1 + k

)
< F

(
1,

(k + 1)2

4k

)
.

Therefore, since F is increasing:

2k

1 + k
<

(k + 1)2

4k
.

This implies that 8k2 < (k + 1)3, or f (k) ≡ 2k2/3 < k + 1 ≡ g(k). However, note
that f (1) = g(1) and f ′(k)|k=1 = 4

3 > 1 = g′, hence, for k ∼ 1, a contradiction
obtains. ��
In what follows I will give special attention to the following sub-family of 	:

	diff ≡ {σ F ∈ 	 : F is differentiable}.

Below I use the family 	diff to describe a formal sense according to which N is more
oriented towards utilitarianism than towards egalitarianism.

If φ and ψ are two EU-bounds-respecting solutions, then the following holds for
each S:
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436 S. Rachmilevitch

|φ1(S) − U1(S)| ≤ |ψ1(S) − U1(S)| ⇔ |φ2(S) − U2(S)| ≤ |ψ2(S) − U2(S)|.

Namely, either both individual payoffs under φ are closer to the utilitarian payoffs
than the payoffs under ψ , or the other way around. Consequently, it is natural to
label φ as more utilitarian than ψ given S (or ψ as less utilitarian than φ given S) if
|φi (S) − Ui (S)| ≤ |ψi (S) − Ui (S)| for both i = 1, 2. Note that if φ and ψ are two
EU-bounds-respecting solutions, then φ is more utilitarian than ψ given S if and only
if φ1(S) + φ2(S) ≥ ψ1(S) + ψ2(S). If both φ and ψ respect the EU bounds and φ is
more utilitarian than ψ given any S, then φ is simply more utilitarian than ψ .

The following results can be interpreted as improvements of the EU bounds, and
as a formal manifestation of the idea that “the Nash solution is more utilitarian than
egalitarian.”

Theorem 3 There does not exist a solution in 	di f f that is more utilitarian than the
Nash solution.

Proof Let σ F ∈ 	diff and consider the triangle, T , whose boundary is given by the
function y = f (x) = −kx + k, where k > 1. Suppose further that k ∼ 1. For this
problem σ F select a point (t,−kt +k) that minimizes F( k

t (1−k)+k , k
(k+1)min{t,−kt+k} ).

It is well known (and easy to check) that N satisfies MOL, hence N (T ) = ( 12 ,
k
2 ). To

show that σ F (S) lies in between N (S) and E(S), it is enough to show that at t = 1
2

the derivative (wrt t) of F is strictly negative. This derivative is [F1 · −k(1−k)

[t (1−k)+k]2 − F2 ·
k(k+1)

[t (k+1)]2 ], which is indeed negative at t = 1
2 provided that k is close to one. ��

Theorem 4 There exists a solution in 	di f f that is less utilitarian than the Nash
solution.

To prove Theorem 4, it is enough to point to one example of a solution with the desired
properties. Consider then the solution that corresponds to F∗(a, b) ≡ ab. Call it the
minimal product solution, and denote it for short by M P .

The following lemmas establish that (i) M P is a well-defined solution, and (i i) it
is less utilitarian than N .

Lemma 2 F∗ ∈ F . Namely, the minimal product solution, M P, is a well-defined
bargaining solution.

Proof Let S be a problem. Suppose first thatU (S) is to the north-west of E(S). In this
case, M P minimizes U1(S)+U2(S)

x+y · e(S)
x over x ∈ [U1(S), e(S)], where y ≡ max{y′ :

(x, y′) ∈ S}. Namely, it maximizes (x + y)x over this domain. To see that the solution
to this maximization is unique, look at the function (x, y) �→ x2+xy. TheMRS of the
level curves of this function is 2+ y

x , which is continuously decreasing as one moves
from the north-west to the south-east, implying that the level curves are convex, hence
the intersection of the highest level curve and W P(S) is a singleton. The case where
U (S) is to the south-east of E(S) is analogous. ��
Lemma 3 The Nash solution is more utilitarian than the minimal product solution.
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Proof It is enough to prove the above claim for smooth problems: S for which there
is a differentiable and strictly decreasing function f , such that for all (a, b) in the
Pareto frontier of S, b = f (a). Consider such an S, and wlog suppose that U (S)

is to the north-west of E(S). Note that M P minimizes U1(S)+U2(S)
a+ f (a)

· e(S)
a over a ∈

[U1(S), e(S)]. Namely, it maximizes [a + f (a)]a ≡ H(a) over this domain. We
have that H ′(a) = 2a + f (a) + a f ′(a). Since f (N1(S)) + N1(S) f ′(N1(S)) = 0,
H ′(N1(S)) = 2N1(S) > 0; therefore, M P(S) is to the right of N (S). ��
The proofs of Theorems 3–4 rely on differentiability arguments. An interesting and
easily interpretable solution that belongs to	 but not to	diff is the one corresponding
to F(a, b) = max{a, b}. It is easy to check that this solution assigns to every S the
unique x ∈ W P(S) that satisfies the EU bounds and the following constraint:

CU (x |S) = CE (x |S).

I therefore call this solution the equal compromise solution. Denote it by EC . This
solution, as opposed to any solution in 	diff , satisfies midpoint outcome on a linear
frontier, MOL.

Proposition 2 The equal compromise solution EC, which belongs to 	\	di f f, sat-
isfies MOL. By contrast, there does not exist any solution in 	di f f that satisfies MOL.

Proof First, I will prove that EC satisfies MOL. Wlog, consider the triangle T =
conv{0, (1, 0), (0, k)} for some k > 1.An x ∈ W P(T ) takes the form x = (t,−kt+k)

and CU (x |T ) = CE (x |T ) is:

k

t (1 − k) + k
= k

(k + 1) · min{t,−kt + k} .

This equation has two solutions, t = 1
2 and t = k2

1+k2
. It is immediate to check that

CU (( 12 ,
k
2 )|T ) < CU (( k2

1+k2
, k2

1+k2
(1 − k))|T ), therefore EC(T ) = 1

2a(T ).

Now, consider an arbitrary σ F ∈ 	diff . Assume by contradiction that it satisfies
MOLand consider the triangle T whose boundary is given by the function y = f (x) =
−kx + k, where k > 1. The solution σ F selects the point (t,−kt + k) that minimizes
F( k

t (1−k)+k , k
(k+1)min{t,−kt+k} ). Since for such a problem t = 1

2 is strictly in between

the egalitarian and the utilitarian point, the following FOC needs to hold at t = 1
2 :

F1 · −k(1 − k)

[t (1 − k) + k]2 = F2 · k(k + 1)

[t (k + 1)]2 .

Since t = 1
2 is a point at which the compromises on utilitarianism and egalitarianism

are equal and since F is symmetric, it follows that F1 = F2 at that point. This implies
the contradiction −1 = 1. ��
The fact that EC satisfies MOL together with the (easily checked) fact that EC(S) is
strictly in between E(S) andU (S)whenever E(S) �= U (S) implies that EC is neither
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more nor less utilitarian than the Nash solution. To see this, consider again the triangle
T = conv{0, (1, 0), (0, k)} where k > 1. Let T ′ ≡ {s ∈ T : s2 ≤ k

2 }; for this problem
N (T ′) = U (T ′) = ( 12 ,

k
2 ), and EC(T ′) is to the south-east of this point, hence EC

is less utilitarian than N given T ′. On the other hand, for T ′′ ≡ {s ∈ T : s1 ≤ 1
2 },

we have that the Nash and utilitarian points are unchanged relatively to the original
T—N (T ′′) = ( 12 ,

k
2 ) and U (T ′′) = (0, k)—and the point EC(T ′′) is strictly in

between them, so EC is more utilitarian than N given T ′′. Note that on T ′′, the Nash
solution coincides with the lexicographic extension of E—the highest feasible point
that dominates E according to the standard partial order onR2. As the following result
shows, this is a manifestation of a more general principle: if EC is more utilitarian
than N given some problem S, then there is a bound on “how far” N (S) can be from
E(S).

Proposition 3 Let S be such that EC is more utilitarian than N given S. Then the
following holds for each i ∈ {1, 2}:

Ni (S) ≥
[
min{a1(S), a2(S)}
max{a1(S), a2(S)} ·

(√
2 − 1

2

)
+ 1

2
− min{a1(S), a2(S)}

a1(S) + a2(S)

]
· e(S).

Proposition 3 implies that if S is such that a1(S) ∼ a2(S), then the equal compromise
solution can be more utilitarian than the Nash solution given S only if both of the Nash
payoffs realize a fraction no smaller than 0.91 of the egalitarian payoff.

Proof of Proposition 3 Let S be such that EC is more utilitarian than N given
S. Wlog, suppose that U (S) is to the north-west of E(S) and that U1(S) <

EC1(S) < N1(S) ≤ e(S). This means that the compromise on utilitarianism
at n ≡ N (S) is greater than the compromise on egalitarianism at that point.
Therefore,

u∗

n1 + n2
≥ e(S)

n1
, (3)

where u∗ ≡ U1(S)+U2(S). By Theorem 2 fromBertsimas et al. (2011), we know that
u∗−(n1+n2)

u∗ ≤ 1 − X , where X ≡ [ min{a1(S),a2(S)}
max{a1(S),a2(S)} · (

√
2 − 1

2 ) + 1
2 − min{a1(S),a2(S)}

a1(S)+a2(S)
].

Hence 1 − n1+n1
u∗ ≤ 1 − X . Therefore, n1+n2

u∗ ≥ X , or X−1 ≥ u∗
n1+n2

. Combining this

inequality with (3) yields X−1 ≥ e(S)
n1

, and so n1 = min{N1(S), N2(S)} ≥ X · e(S),
as desired. ��

The solution EC illustrates the “integrability problem” associated with the family 	:
it may very well be that two functions in F induce different orders on the plane, but,
nevertheless, give rise to the same solution. For example, by definition EC = σ F

for F(a, b) = max{a, b}, but it is also true that EC = σ G , for G(a, b) = |a − b|. I
conjecture that such an integrability problem does not arise if one restricts attention
to the family 	diff ; that is, my conjecture is that if F, G ∈ F are both differentiable,
then σ F = σ G .
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5 Alternative orderings of solutions

Below I present alternative methods for ordering solutions in terms of their utilitari-
anism and egalitarianism. I restrict my attention to smooth problems with a distinct
utilitarian and egalitarian points: those S ∈ B such that:

• W P(S) = {(x, f (x)) : x ∈ [0, M]} where f is a strictly concave and differen-
tiable function, and

• U (S) �= E(S).

Also, I restrict my attention to Pareto optimal solutions.
Fix a problem S as above and consider the following function, �α : [0, M] → R:

�α(x) ≡ x + f (x) − α|max{x, f (x)} − min{x, f (x)}|.

Let σ be a solution such that σ(S) �= E(S). Then there is a unique α = ασ (S) ∈ R

such that σ(S) maximizes �α .8 The higher is α the greater is the importance which is
assigned by the solution to promoting egalitarianism—namely, the equality of payoffs.
If σ is a utilitarian solution it attaches no importance whatsoever to this equality, and
α = 0. For a general, not-necessarily-utilitarian σ , the number α need not be zero,
and, informally speaking, the further it is from zero, the further is σ from utilitarianism
(given S).

If U (S) is to the north-west of E(S), then α = ασ (S) satisfies the following FOC:

− f ′(σ1(S)) = 1 + α

1 − α
. (4)

It is easy to see from (4) that α = 0 corresponds to σ(S) = U (S). Moreover, if
σ(S) �= U (S) and σ satisfies the EU bounds, then α > 0 and a higher α means closer
proximity to E(S).9 The case where U (S) is to the south-east of E(S) is analogous;
thus, for brevity, and wlog, from here on I will consider only smooth S’s such that
U (S) is to the north-west of E(S).

The above analysis gives rise to the following definition, which applies to any pair
of EU-bounds-respecting solutions, φ and ψ : φ is more egalitarian than ψ if for any
S such that αφ(S) and αψ(S) are well defined, it is true that αφ(S) ≥ αψ(S).

An alternative approach to measure where a bargaining solution “stands” on an
egalitarianism-to-utilitarianism spectrum, is to consider, given a fixed problem, the
following function, 
β : [0, M] → R:


β(x) ≡ x + f (x) + βmin{x, f (x)}.

8 If σ(S) = E(S) then such an α may not exist. Here is an example of a smooth problem S for which (i)
U (S) �= E(S), and (i i) there does not exist an α such that E(S) maximizes �α . Consider the problem

whose Pareto frontier is {(x, f (x)) : x ∈ [0, 1]}, where f (x) = 2
√
1 − x2. Assume by contradiction that

such an α exists. Since E(S) = ( 2√
5
, 2√

5
), it follows that � ′

α(x) ≥ 0 for x ≤ 2√
5
and � ′

α(x) ≤ 0 for

x ≥ 2√
5
. The first inequality implies α ≥ 3

5 and the second implies α ≤ − 5
3—a contradiction.

9 α < 0 is possible if σ does not respect the EU bounds.
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The objective
 expresses the Rawlsian goal of maximizing the utility of the worst-off
individual (Rawls 1971), which, given that the bargaining problem is comprehensive-
ness, is equivalent to the goal which � expresses.

Let β = βσ (S) be such that σ(S) is the maximizer of 
β . Since the FOC that
corresponds to α = ασ (S) is − f ′(x) = 1+α

1−α
and the FOC that corresponds to β =

βσ (S) is − f ′(x) = 1+ β, we obtain the following 1-to-1 correspondence between α

and β:

β = 2α

1 − α
. (5)

Thus, φ is more egalitarian than ψ if and only if βφ(S) ≥ βψ(S).
A special solution whose α and β are pinned down immediately, and without ref-

erence to any FOC’s, is the average solution, A, which assigns to each smooth S the
maximizer of (x1 + x2) + min{x1, x2} over x ∈ S.10 It is easy to see that A respects
the EU bounds. By definition, βA ≡ 1, and therefore, by (5), αA ≡ 1

3 . Equipped with
this observation, we can turn to the following result.

Proposition 4 The minimal product solution, M P, is more egalitarian than the aver-
age solution, A.

Proof Since αA = 1
3 , what needs to be proved is:

αM P (S) ≥ 1

3
.

Consider then a smooth S such that U (S) is to the north-west of E(S). As we saw
in the proof of Lemma 3, M P maximizes x(x + f (x)), which gives rise to the FOC
2x + f (x)+x f ′(x) = 0. Substituting in the FOC for α = αM P (S) (namely− f ′(x) =
1+α
1−α

) and rearranging we get x( 1−3α
1−α

) = − f (x), and so α > 1
3 . ��

In Rachmilevitch (2014), I showed that N not only respects the EU bounds, but,
moreover, N (S) is between U (S) and A(S) (for every S on which U and A are single-
valued). Combining this result with the analysis developed here implies that, on the
part on S’s frontier which stretches from E(S) to U (S), the point A(S) is between
N (S) and M P(S). Thus, the average point A(S) lies between the point that maximizes
the payoffs-product and the one that minimizes the compromise-product.

Corollary 2 For every S such that {αM P (S), αA(S), αN (S)} are well defined, it is
true that αM P (S) ≥ αA(S) ≥ αN (S).

Proof In view of Proposition 4, only the inequality αA(S) ≥ αN (S) needs to be
proved. This inequality follows from the combination of: (i) the above cited result
from Rachmilevitch (2014), and (i i) Eq. (4). ��
Similarly to the derivation of parameter that measures the importance of the egalitar-
ian/Rawlsian goal, and where a zero value of the parameter means utilitarianism, one

10 Multiplying the abovementioned objective by 1
2 results in a 50–50 average of the utilitarian and egali-

tarian objectives, hence the name of this solution.
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can consider a dual approach, where a zero value of the parameter is associated with
egalitarianism. Specifically, consider, for a fixed S, the function �γ : [0, M] → R:

�γ (x) ≡ min{x, f (x)} + γ (x + f (x)).

Let γ = γσ (S) be the number such that σ(S) maximizes �γ . If φ and ψ are EU-
bounds-respecting solutions, φ is more utilitarian than ψ if for any S such that γφ(S)

and γψ(S) are well defined, it is true that γφ(S) ≥ γψ(S).11

Proposition 5 Let S be a problem and let σ be an EU-bounds-respecting solution. If
βσ (S) and γσ (S) are well defined, then:

γσ (S) = 1

βσ (S)
.

Proof Let S and σ be as above, and suppose that U (S) is to the north-west of E(S).
The FOC associated with �γ is − f ′(x) = 1 + 1

γ
. Combining this with 
β ’s FOC,

1 + β + f ′(x) = 0, we obtain the result. ��
Proposition 5 implies, in particular, that γA ≡ 1. The 1-to-1 relationship between β

and γ motivates the following definition, this paper’s last: an EU-bounds-respecting
solution, σ , is more utilitarian than egalitarian, if γσ (S) ≥ βσ (S) (whenever these
numbers are well defined).

Theorem 5 The Nash solution is more utilitarian than egalitarian.

Proof In Rachmilevitch (2014), it is proved that N satisfies the EU bounds. Then, by
Proposition 5, it is enough to prove that βN ≤ 1. By (5), this is equivalent to αN ≤ 1

3 ,
which was proved in Corollary 2. ��
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