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Abstract Savage denied that Bayesian decision theory applies in large worlds. This
paper proposes a minimal extension of Bayesian decision theory to a large-world con-
text that evaluates an event E by assigning it a numberπ(E) that reduces to an orthodox
probability for a class of measurable events. The Hurwicz criterion evaluates π(E)

as a weighted arithmetic mean of its upper and lower probabilities, which we derive
from the measurable supersets and subsets of E . The ambiguity aversion reported in
experiments on the Ellsberg paradox is then explained by assigning a larger weight to
the lower probability of winning than to the upper probability. However, arguments
are given here that would make anything but equal weights irrational when using the
Hurwicz criterion. The paper continues by embedding the Hurwicz criterion in an
extension of expected utility theory that we call expectant utility.

Keywords Bayesian decision theory · Expected utility · Non-expected utility ·
Upper and lower probability · Hurwicz criterion · Alpha-maximin

1 Preview

Bayesian decision theory was created by Savage (1954) in his ground-breaking Foun-
dations of Statistics. He emphasizes that the theory is not intended for universal
application, observing that it would be “preposterous” and “utterly ridiculous” to
apply the theory outside what he calls a small world (Savage 1954, p. 16). It is clear
that Savage would have regarded the worlds of macroeconomics and finance as large,
but it is not so clear just how complex or surprising a world needs to be before he
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342 K. Binmore

would have ceased to count it as small. Nor does he offer anything definitive on how
rational decisions are to be made in a large world.1

In recent years, a substantial literature has developed that offers various proposals
on how to extend Bayesian decision theory to at least some kinds of large worlds. This
paper offers another theory of the same kind that deviates more from the Bayesian
orthodoxy than my book Rational Decisions (Binmore [2009, Chapter 9]) but remains
only aminimal extension of the standard theory. It should be emphasized that the paper
only discusses rational behavior, which may or may not reflect how people behave in
practice.

1.1 Decision problems

A decision problem can be modeled as a function

D : A × B → C,

where A is a space of feasible actions, B is a space of possible states of theworldwhose
subsets are called events, and C is a space of consequences that we assume contains a
best outcomeW and a worst outcome L. Each action is assumed to determine a finite
gamble G of the form

G =
P1 P2 P3 · · · Pm

E1 E2 E3 · · · Em

(1)

in which E = {E1, E2, . . . , Em} is a partition of the belief space B, and the prizePi is
understood to result when the event Ei occurs. Different symbols P i for a prize need
not represent different outcomes of a gamble. It is taken for granted that the order
in which the columns of (1) appear is irrelevant, and that it does not matter whether
columns with an empty Ei are inserted or deleted.

We follow the standard practice of assuming that the decisionmaker has a preference
relation � defined on whatever set G of gambles need to be considered. If � satisfies
sufficient rationality (or consistency) postulates, it can be described by aVonNeumann
and Morgenstern (VN & M) utility function u : G → R. It is usually assumed that
the gamble G whose prizes are all P can be identified with P . The standard VN&M
utility function U : C → R of the orthodox theory can then be identified with the
restriction of u to C . The assumptions of Bayesian decision theory then allow u(G)

to be expressed as the expected utility:

1 Savage (1954) own candidate is the minimax regret criterion. Manski (2013) offers a vigorous defense
of this proposal, but it seems to me a non-starter for a theory of rational decision because it fails to satisfy
the Independence of Irrelevant Alternatives.
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A minimal extension of Bayesian decision theory 343

u(G) =
m∑

i=1

U (Pi ) p(Ei ) , (2)

where p is a (subjective) probability measure.

1.2 Non-expected utility

As in other generalizations of Bayesian decision theory, we replace the subjective
probability p(E) by a less restrictive notion that we denote by π(E). As with p(E)

in the orthodox theory, π(E) is defined as the utility u(S) of the simple gamble S that
yieldsW if the event E occurs and otherwise yieldsL. The surrogate probability π(E)

need not be additive, but we do not call it a non-additive probability to avoid confusion
with Schmeidler (1989, 2004) well-known theory. The utility u(G) similarly fails to
reduce to an expected utility of the form (2), but we make no use of the Choquet
integral.

The version of Savage’s sure-thing principle offered as Postulate 5 generalizes
the linear expression (2) to a multivariate polynomial in the quantities xi = U (Pi )

(i = 1, 2, . . .m). We refer to this extension of expected utility as expectant utility for
the reasons given in Sect. 4.4.

Because we confine attention to minimal extensions of the Bayesian orthodoxy, it is
easy tomake assumptions that tip the theory back into Bayesianism. Postulate 8 is such
an assumption. If it is imposed on all gambles in G, then π must be a probability and
we recover the expected utility formula (2). However, Sect. 6 argues against imposing
Postulate 8 in a large-world context. Instead, a classM ofmeasurable events is defined
using the criterion that gambles constructed only from events inM satisfy Postulate 8.
The restriction of π to M then satisfies the requirements of a probability, and so we
denote it by p. We then say that the events in M are not only measurable, but have
been measured. Requiring that expected utility should be maximized for gambles
constructed only from events in M imposes restrictions on the coefficients of the
multivariate polynomial representation of expectant utility (Sect. 6.1).
Ambiguity versus uncertainty There is more than one way of interpreting unmea-
sured events in this model. The more orthodox assumes that the decision maker would
be able to assign a subjective probability to all unmeasured events if better informed,
but her ignorance prevents her settling on a particular value of this probability. This
ambiguity interpretation needs to be compared with the wider uncertainty interpreta-
tion, which allows that it may be intrinsically meaningless to assign probabilities to
some unmeasured sets. The model of this paper is intended to be applicable even with
the uncertainty interpretation.

1.3 Hurwicz criterion

The work outlined in Sect. 1.2 is prefixed by asking how a surrogate probability
π(E) might be constructed from p on the assumption that all the decision-maker’s
information has already been packaged in the subjective probabilities she has assigned
to the measured events in M. All that she can then say about an event E is that it
has outer measure p(E) and inner measure p(E) (Sect. 2.2). Following Good (1983),
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Halpern and Fagin (1992), and Suppes (1974) and others, we identify p(E) with the
upper probability of E and p(E) with its lower probability.

The Hurwicz criterion (Hurwicz 1951; Chernoff 1954; Milnor 1954; Arrow and
Hurwicz 1972) expresses π(E) as a weighted arithmetic mean of p(E) and p(E):

π(E) = (1 − α) p(E) + α p(E) (0 ≤ α ≤ 1) . (3)

The ambiguity aversion reported in experiments on the Ellsberg paradox is some-
times explained by taking α < 1

2 in Eq. (3). Ambiguity-loving behavior then
corresponds to α > 1

2 and ambiguity neutrality to α = 1
2 . However, Theorem 3

suggests that, when upper and lower probabilities are identified with outer and inner
measures, only α = 1

2 is viable.
Alpha-maximin Equation (3) assigns a utility to any simple gamble. With the ambi-
guity interpretation, there is a natural extension called α-maximin to the case of a
general gamble G. One first computes the expected utility of G for all probability
distributions that are not excluded by the decision-maker’s information. The utility of
G is then taken to be a weighted arithmetic mean of the infimum and supremum of
this set of expected utilities. Arguments for this conclusion are given by Ghirardato
et al. (2002) and Klibanoff et al. (2005). My earlier work (Binmore 2009) assumes
the same extension of the simple Hurwicz criterion to the general case, but the theory
offered in Sect. 5 of the current paper is not consistent with α-maximin.

2 Unmeasured sets

The type of large-world scenario to which the theory offered in this paper is intended
to apply is reviewed in Sect. 4. Earlier sections examine a particular functional form
for a surrogate probability π(E) in order to prepare the ground.

2.1 Measure and probability

A (sigma) algebraM of measurable subsets of a state space B is defined to be closed
under complements and countable unions.We deviate slightly from the standard defin-
ition in allowingM to be empty, noting thatM �= ∅ implies {∅, B} ⊆ M. In proving
theorems, we assume that B is a finite set, so that proving something for the finite case
also proves it for the countable case. We stick with the countable definitions because
our results all extend to the infinite case when appropriate continuity assumptions are
made.

A probability measure p on M is a countably additive function p : M → [0, 1]
for which p(∅) = 0 and p(B) = 1. When a probability measure p on M has been
identified, we say that the events inM have been measured. We shall useN to denote
a larger algebra of unmeasured sets—events for which an extension of p from M to
N may never be identified.
What kind of probability?At least three concepts of probability can be distinguished
(Gillies 2000). Probabilities can be objective (long-run frequencies), subjective (in the
sense of Savage), or epistemic (logical degrees of belief). All the probabilities of this
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paper are either objective or subjective, on the understanding that when an objective
probability is available—as with roulette wheels or dice—the decision-maker’s sub-
jective probability coincides with its objective probability. We have nothing to say
about the epistemic or logical probabilities (credences) used in attempts to solve the
general problem of scientific induction.
Casino example Unmeasured sets are usually only mentioned when studying
Lebesgue measure, where the emphasis is on the paradoxes that they can engender.
However, there is nothing paradoxical about following example.

A blind anthropologist from Mars finds herself at a roulette table in Monte Carlo.2

The only betting is on low = {1, 2, . . . , 18 } or high = {19, 20, . . . , 36 }. She hears
the croupier saying various things but only his announcements of low or high seem
relevant because only then does she hear the clink of chips being transferred. She
therefore restricts her attention to the two events in the collection S = {low,high}
that we would regard as a knowledge partition of our state space B = {1, 2, . . . , 36}
(Binmore 2009, p. 140). Eventually, she attaches subjective probabilities to these
events, which we take to be p(low) = p(high) = 1

2 .
A new player now enters the casino and starts betting on odd = {1, 3, . . . , 35}

or even = {2, 4, . . . , 36}. Our Martian therefore refines her partition to S ′ =
{E1, E2, E3, E4}, where E1 = odd ∩ low, E2 = odd ∩ high, E3 = even ∩ low,
and E4 = even ∩ high. This paper studies her decision problem at this point, before
she has had the opportunity to formulate subjective probabilities for the events in her
new knowledge partition.

The decision maker’s algebra of measured sets is U = {∅, low,high, B}, where
low = E1 ∪ E2 and high = E3 ∪ E4. She also distinguishes a larger algebra V
containing some unmeasured sets, which consists of all unions of the elements of the
partition {E1, E2, E3, E4}of B. For example, E1 and E2∪E4 = even are unmeasured.
She does not recognize the algebraW of all subsets of B because she is unaware that
we regard the state space as B. The gambles in the set G she wishes to study are
therefore only those that can be constructed from events in V .

If the decision maker never needs to revise her knowledge partition again, she will
not go wrong by proceeding as though her state space was simply {E1, E2, E3, E4}.
We are in a similar situation when we restrict attention to the algebraW of all subsets
of the state space B = {1, 2, . . . , 36}.Why not take B to be the set of all physical states
that determine where the roulette ball stops? Why not all possible quantum states of
the universe? In brief, our choice of state space is a matter of modeling convenience.
Hausdorff’s paradox Vitali proved that some sets of points on a circle are not
Lebesgue measurable.3 Lebesgue measure—which is countably additive—can be
extended as a finitely additive rotation-invariant measure to all subsets of the cir-
cle. But no similar escape is available when the circle is replaced by a sphere (whose
group of rotational symmetries is non-Abelian). Hausdorff showed that a sphere can

2 European roulette has no 00. Bets on low or high remain on the table when 0 occurs.
3 Vitali’s argument needs the Axiom of Choice, without which all sets on the circle can be taken to be
Lebesgue measurable (assuming “inaccessible cardinals” exist—Solovay 1970). But to deny the Axiom of
Choice would seem to deny the ethos that led Savage to insist on the relevance of large worlds by assuming
that our current formalism is adequate to describe anything that nature might throw at us.
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be partitioned into three disjoint sets, A, B, and C , each of which can not only be
rotated onto either of the other two, but also—paradoxically—onto the union of the
other two (Wagon 1985).4 The ambiguity interpretation of Sect. 1.3 cannot then easily
be sustained because a rotation-invariant extension π of Lebesgue measure would
have to satisfy π(A ∪ B) = π(A) = π(B). Hausdorff’s three sets are therefore more
than unmeasured—they cannot be measured in a manner consistent with Lebesgue
measure.

2.2 Inner and outer measure

Aminimal extension of Bayesian decision theory should only use information already
packaged in the subjective probabilities assigned to measured events. Ideally, the
surrogate probability of a unmeasured event E should therefore depend only on its
inner measure p(E) and its outer measure p(E). The outer measure of E is the
infimum of the measures p(F) of all measured supersets F of E . Its inner measure is
the supremum of the measures p(F) of all measured subsets F of E . The inner and
outer measures of a measured set are equal.

In the casino example, p (E1) = 0 and p (E1) = 1
2 . In Hausdorff’s paradox,

p (A) = 0 and p (A) = 1 (Binmore 2009, p. 177).
It follows from their definitions that p is subadditive and p is superadditive. If M

is measured, it is also true that p(M ∩ E) + p(M ∩ ∼E) = p(M). Thus,

p(E) + p(∼E) = 1 . (4)

Inner measures are seldom mentioned in modern measure theory, which uses the
Carathéodory criterion:

p(E ∩ M) + p(E ∩ ∼M) = p(E) (5)

for all E (measurable or not) to define the measurable sets M in an expansion M∗
of M. For (5) to hold for our measured sets, we would need to assume that such an
expansion has already been carried out. A dual treatment in terms of inner measures
shows that (5) also holds with p replaced by by p (Halmos 1950).
Lotteries A gamble in which all the events that determine the prizes are measured is
called a lottery. Roulette wheels and dice are examples in which the probabilities are
objective. A lottery determined by just two events H and T will be called a weighted
coin. We write p(H) = h and p(T ) = t .

We allow gambles G in which the prizes P i are lotteries. It is then important to
remember that the assumption of Bayesian decision theory sometimes known as the
replacement axiom will not be available. So it will not necessarily be true that the
decision maker is indifferent between G and the gamble obtained by exchanging a
prize that is a lottery by another independent prize with the same Von Neumann and

4 His theorem has a countable set of exceptional points, but the later work of Banach and Tarski perfected
his result on the way to proving their even more spectacular paradox.
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Morgenstern utility. We nevertheless follow Anscombe and Auman (1963) in taking
for granted VN&M’s theory of rational decision under risk:

Postulate 1 Some version of the Von Neumann and Morgenstern theory of rational
decision under risk applies to lotteries whose prizes are gambles in G.

Postulate 1 implies that each gamble G has a VN&M utility u(G) that we systemati-
cally normalize so that u(L) = 0 and u(W) = 1.
Independence We take devices like weighted coins or roulette wheels to be the norm
for lotteries by requiring that each lottery be independent of everything else in the
model. Where it is necessary to be precise, we can tack a new lottery space L onto
the state space, so that B is replaced by L × B. Our strong independence requirement
is then operationalized by endowing L × B with the product measure constructed
from the probability measures defined on L and B. In the finite case, this is done by
first constructing all “rectangles” of the form S × T , where S and T are measured
sets in L and B. The measured sets in L × B itself are the finite unions of all such
rectangles, which can always be expressed as the union of disjoint rectangles. The
product measure on L × B is then defined to be the sum of the products p(S) p(T )

for all rectangles S × T in such a union of disjoint rectangles. (The countable case is
not much harder).

The reason for rehearsing this standard construction of a product measure is to
clarify why it is easy to work out the inner and outer measures of sets like (H ×
E) ∪ (T × F) when E and F are possibly unmeasured sets in B, and H and T are the
possible outcomeswhen aweighted coin is tossed.Because of our strong independence
assumption that all lotteries are independent of all measured sets in B, we have, for
example, that

p({H × E} ∪ {T × F}) = h p(E) + t p(F) , (6)

p({H × E} ∪ {T × F}) = h p(E) + t p(F) . (7)

3 Simple gambles

We now pursue the implications of Postulate 1 for simple gambles of the form:

S = L W

∼ E E
, (8)

where ∼E is the complement of the set E in the state space B.
With the normalization u(L) = 0 and u(W) = 1, we can extend a probability p

given on an algebra M of measured sets to a surrogate probability π defined on a
larger algebra N of possibly unmeasured sets by writing

π(E) = u(S).
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348 K. Binmore

To exploit this definition,we need to link the assumptions of Postulate 1 (about lotteries
with gambles as prizes) with the methodology for calculating inner and outer measure
reviewed in Sect. 2.2. The next postulate does so by allowing a compound gamble to
be treated merely as a complicated way of writing a gamble of the form (1).5

Postulate 2 The procedure by means of which a gamble is implemented is irrelevant.

It follows from Postulate 2 that the gambles

M =
L W

∼(H × E) H × E
; N =

L
L W

∼E E

∼H H

(9)

have the same utility. Using Postulate 1 to evaluate the lottery N, we have that

π(H × E) = p(H)π(E) . (10)

3.1 Hurwicz criterion

Suitably adapted versions of the axiom systems given byMilnor (1954) and Klibanoff
et al. (2005) identify π(E) as defined above with the Hurwicz criterion of (3). This
section offers further arguments leading to the same conclusion. Theorem 3 suggests
that only the ambiguity-neutral version of the Hurwicz criterion is viable for a rational
decision maker. Other considerations favoring the case α = 1

2 are mentioned later.

Example 2 What happens in the casino example when π is given by the Hurwicz
criterion? Because π = p on U , we have that π(∅) = 0, π(B) = 1, and π(low) =
π(high) = 1

2 . For events in V , π(Ei ) = 1
2α, π(∼Ei ) = 1

2 (1 + α), and π(F) = α

when F has two elements but is not low or high. In the Hausdorff paradox, π(A) =
π(B) = π(C) = π(A ∪ B) = π(B ∪ C) = π(C ∪ A) = α.

Minimal information For a minimal extension of Bayesian decision theory, π(E)

should depend only on the information packaged in p(E) and p(E). We build this
requirement into the next postulate together with some regularity assumptions. In this
postulate, D = {(x, y) : 0 ≤ x ≤ y ≤ 1 }.
Postulate 3 There exists an increasing function v : D → R that is homogeneous of
degree 1 and continuously differentiable on D with the property that for all events E
in N ,

π(E) = v( p (E), p (E) ) . (11)

5 Postulate 2 does not say that the way the gamble (1) itself is structured is irrelevant, otherwise it would
conflict with our later denial of Postulate 8.
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A function v is homogeneous of degree 1 if v(zx, zy) = zv(x, y) (0 ≤ z ≤ 1). This
property is justified by (10), whose left side is v(p(H)p (E), p(H)p (E)) and whose
right side is p(H)v(p (E), p (E)).

Theorem 1 Postulates 1, 2 and 3 imply the Hurwicz criterion (3).

Proof By Postulate 3, we can differentiate (10) partially with respect to x . Cancel a
factor of z and then take the limit as z → 0+ to obtain v1(x, y) = v1(0, 0).6 Similarly,
v2(x, y) = v2(0, 0). Integrating these equationswith the boundary conditionv(0, 0) =
0 yields the theorem with 1 − α = v1(0, 0) and α = v2(0, 0). �
Postulate 3a As Postulate 3 with v additive instead of homogeneous.

We defend the assumption that v is additive by appealing to the Carathéodory
criterion (5) and its dual, in which inner measure replaces outer measure. When these
hold, any π given by the Hurwicz criterion satisfies

π(E ∩ M) + π(E ∩ ∼M) = π(E) (12)

for any measured event M . Theorem 2 provides a converse.

Theorem 2 Postulates 1, 2 and 3a imply the Hurwicz criterion (3).

Proof Given that v(x1 + x2, y1 + y2) = v(x1, y1) + v(x2, y2), we have v(x, y) =
v(x, 0) + v(0, y). The continuously differentiable functions v(x, 0) and v(0, y) are
each additive, and hence7 v(x, 0) = βx and v(0, y) = γ y. Appealing to the additivity
of v again, β = γ. �

3.2 Ambiguity neutrality

The next postulate is always true when E is a measured event and it would therefore
seem inevitable with the ambiguity interpretation (which says that although we may
not know how to measure a set, it nevertheless has a measure). However, the postulate
implies that only the ambiguity-neutral Hurwicz criterion is viable in our setting.

Postulate 4 Given any three independent tosses of a weighted coin in which the out-
comes H1, H2, and H3 each occur with probability h:

L W

∼H1 H1

L W

∼H2 H2

∼E E

∼
L W

∼H3 H3

L W

∼H3 H3

∼E E

6 All limits in Postulate 3 are taken from within D. If (0, 0) were excluded from the set D, the theorem
would fail as v(x, y) = x1−α yα would remain a possibility.
7 f (x + y) = f (x) + f (y) implies f ′(x + y) = f ′(x). So f ′(y) = f ′(0) and f (y) = f ′(0)y.
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Theorem 3 Postulates 1, 2, and 4 imply the arithmetic Hurwicz criterion with α = 1
2 ,

provided that events can be found with any lower and upper probabilities.

Proof By (4), the VN&M utility of the left-hand side of Postulate 4 is

π({H1 × ∼E} ∪ {H2 × E}) = v(h(1 − P) + hp, h(1 − p)h + hP),

where p = p(E) and P = p(E). The utility of the right-hand side is

π({H3 × ∼E} ∪ {H3 × E}) = π(H3 × B) = π(H3) = h.

Writing � = P − p, it follows that

v(h(1 − �), h(1 + �)) = h.

The equations x = h(1 − �) and y = h(1 + �) define a bijection φ : (0, 1)2 → Do

provided that enough unmeasured sets E exist to ensure that each value of � in (0, 1)
is available. So for all (x, y) in the interior Do of the domain D of v,

v(x, y) = 1
2 (x + y).

This proof of the Hurwicz criterion does not depend on the smoothness of v, �
Example 3 Applying the Hurwicz criterion with α = 1

2 in the casino example, we
find that π is a probability measure that extends p from U to V . This is an unusual
result. For example, if we replace V byW , then π({i}) = 1

4 for all i , so that π({1}) +
π({2}) + · · · + π({36}) = 9 �= 1 = π({1, 2, . . . , 36}). However, (4) implies that it is
always true that the Hurwicz criterion with α = 1

2 satisfies8

π(E) + π(∼E) = 1 . (13)

4 Philosophy

Having offered a concrete example of a possible functional form for the surrogate
probability π , it is now necessary to consider how this or another π might fit within an
extension of expected utility theory. To this end, this section reviews the philosophical
basis of the enterprise.

4.1 Aesop’s principle

The assumptions of most rationality theories take for granted that it would be irrational
for a decision maker to allow her preferences over the prizes in C , her beliefs over the

8 The identity does not hold if E is unmeasured and α �= 1
2 , because π(E) + π(∼E) = 1 implies that

1 = (1− α)p + αP + (1− α)(1− P) + α(1− p) = 1+ (2α − 1)(P − p), where p and P are the lower
and upper probabilities of E .
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A minimal extension of Bayesian decision theory 351

states in B, and her assessment of what actions are available in A to depend on each
other. Aesop’s story of the fox and the grapes is one of a number of fables in which
he makes this point (Binmore 2009, pp. 5–9).

We follow the standard practice of assuming that enough is known about the choices
that a rational decision maker would make when faced with various decision problems
and that it is possible to summarize them in terms of a (revealed) preference relation
� defined over the set of all gambles. In doing so, it is taken for granted that the action
space A currently available does not alter the decision-maker’s view on whether an
action a that yields the gamble G would be preferred to an action b that leads to the
gamble H. We are then free to focus on ensuring that the decision-maker’s preferences
over C do not influence her beliefs over B and that her beliefs over B do not influence
her preferences over C . In Bayesian decision theory, this requirement is reflected by
the separation of preferences and beliefs into utilities and probabilities in the expected
utility formula (2).
States of mind Economists sometimes say that people prefer umbrellas to ice-
creams on rainy days but reverse this preference on sunny days. Introducing such
“state-dependent preferences” is harmless in most applications, but when founda-
tional issues are at stake, it is necessary to get round such apparent violations of
Aesop’s principle somehow. The approach taken here is to identify the set C with
the decision-maker’s states of mind rather than with physical objects. An umbrella
in an unreformed consequence space is then replaced by the two states of mind that
accompany having an umbrella-on-a-sunny-day or having an umbrella-on-a-rainy-
day.

4.2 Consistency

If your betting behavior satisfies Savage (1954) axioms, his theory of subjective prob-
ability deduces that you will act as though you believe that each subset of B has a
probability.

Savage’s axioms are consistency requirements. Everybody would doubtless agree
that rational decisions should ideally be consistent with each other, but should the
ideal of consistency necessarily take precedence over everything else? Physicists, for
example, know that quantum theory and relativity are inconsistent where they overlap,
but they live with this inconsistency rather than abandon the accurate predictions that
each theory provides in its own domain.

Savage understood that consistency is only one desideratum for a theory of rational
decision. In identifying rationality with consistency, he therefore restricted the range
of application of his theory to small worlds in which intelligent people might be able
to bring their original confused judgments about the world into line with each other by
modifying their beliefs when they find they are inconsistent. Luce and Raiffa (1957,
p. 302) summarize Savage’s views as follows:

Once confronted with inconsistencies, one should, so the argument goes, modify
one’s initial decisions so as to be consistent. Let us assume that this jockeying—
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352 K. Binmore

making snap judgments, checking upon their consistency,modifying them, again
checking on consistency etc—leads ultimately to a bona fide, prior distribution.

I agree with Savage that, without going through such a process of reflective introspec-
tion, there is no particular virtue in being consistent at all. But if the world in which
we are making decisions is large and complex, how could such a process be carried
through successfully? (Binmore 2009, pp. 128–134)
Achieving consistency Calling decision makers rational does not automatically make
them consistent. Working hard at achieving consistency is surely part of what ratio-
nality should entail. But until somebody invents an adequate theory of how this should
best be done, we have to get by without any model of the process that decision makers
use to convert their unformalized “gut feelings” into a consistent system of subjective
probabilities.

It seems obvious that a rational decision maker would do best to consult her gut
feelingswhen she hasmore evidence rather than less. For each possible future course of
events, she should therefore ask herself, “What subjective probabilities would my gut
come up with after experiencing these events?” In the likely event that these posterior
probabilities turn out to be inconsistent with each other, she should then reassess her
initial snap judgments until her posterior probabilities are massaged into consistency.
After themassaging is over, the decisionmaker would then be invulnerable to surprise,
because shewouldalready have taken account of the impact that any future information
might have on whatever internal process determines her subjective beliefs.

The end-product of such a massaging process will be a set of consistent posterior
probabilities. According to Savage’s theory, their consistency implies that they can
all be formally deduced from the same prior distribution using Bayes’ rule, which
therefore becomes nothing more in this story than a book-keeping tool that saves
the decision maker from having to remember all her massaged posterior probabilities.
But the mechanical process of recovering the massaged posteriors from the prior using
Bayes’ rule should not be confused with the (unmodeled) massaging process bymeans
of which the prior was originally distilled from the unmassaged priors. Taking account
of the massaging process therefore reverses the usual story. Instead of beginning with
a prior, the decision-maker’s subjective input ends with a prior.
Handling surprises Shackle (1949) emphasizes that surprises—events that the deci-
sion maker has not anticipated might occur or be relevant—are unavoidable in
macroeconomics. The same goes for other large worlds, notably the world of sci-
entific endeavor. So what does a rational person do when unable to carry through the
small-world process of massaging her way to consistency?

To answer this question in full is beyond the ambition of this paper. Its formalism is
only relevant when a decision maker who has gradually put together a small world in
which orthodoxBayesian decision theory hasworkedwell in the past is first confronted
with a surprise that leads her to pay attention to features of her environment that hitherto
seemed irrelevant. It is by no means guaranteed, but as she gains more experience she
may eventually create a new small world—larger than before but still small—in which
Bayesian decision theory will again apply. But right now, all she has is the information
packaged in her old small world and the brute fact that she has been taken by surprise
by an event of whose possibility she had not previously taken account.
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4.3 Knowledge

Arrow (1971), p. 45 tells us that each state in B should ideally be “a description of the
world so complete that, if true and known, the consequences of every action would
be known.” But as Arrow and Hurwicz (1972) explain, “How we [actually] describe
the world is a matter of language, not of fact. Any description of the world can be
made finer by introducing more elements to be described.” This paper follows both
these prescriptions by assuming that the space B of states of the world in any decision
problem D : A × B → C is complete but not fully known to the decision maker. We
also assume the same of the space C of states of the decision-maker’s mind.

How can Bayesian decision theory work if the decision maker does not know
what decision problem she is facing? One possibility is that the decision-maker’s past
experience has taught her what issues seem worth paying attention to in the context
of her current problem. This experience will equip her with a (finite) sequence of
questions to ask about the world around her and her own feelings. These questions
determine a partition S of B and a partition T of C . The decision-maker’s knowledge
after asking her questions then reduces to specifying inwhich element of each partition
the actual states lie (Binnmore 2009, p. 358). As long as the sets {E1, E2, . . . , Em}
and {P1,P2, . . .Pm} in gambles (1) that arise in her decision problem are always
coarsenings of the partitions S and T , it is then irrelevant whether she knows anything
else about the spaces B and C .

In moving away from Bayesian decision theory, it will matter that this approach
determines the partitions S and T independently of all decision problems that are
currently envisaged. It will then not be appropriate to start a decision analysis with a
simplification of the gamble G of (1) that coarsens the partition E by replacing Ei and
E j by Ei ∪ E j when they yield the same prize. Other considerations aside, to do so
is potentially to violate Aesop’s principle by allowing what happens in C to influence
how B is structured. In Bayesian decision theory, it turns out that this violation does
not matter (Theorem 5), but we are working outside this theory.

Similar considerations apply to the partition T of C , but a second point is more
important. Our story makes a prize P i into a set of states of the mind rather than a
deterministic object like an umbrella or an ice-cream. The decision maker will pre-
sumably not regard the states of mind in P i as being far apart or she would not have
packaged them into the same element of the partition T , but there will necessarily
be some ambiguity, not only about which state of mind in P i will actually be real-
ized, but also about its possible dependence on the current state of the world. Such a
potential violation of Aesop’s principle may be a source of uncertainty that needs to
be incorporated somehow into the theory of how she makes decisions.

4.4 Expectant utility

Wehave discussed howa rational decisionmakermight construct a decision problem to
which Bayesian decision theory applies. But what happens if her Bayesian updating is
interrupted by a surprising event—something she did not anticipate when constructing
her current system of consistent subjective probabilities? She might then be led to
recognize that questions she did not ask previously (because they did not occur to
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her or she thought them irrelevant) now need to be asked. Having asked them, her
new knowledge can be described with new partitions S ′ and T ′ of B and C that are
refinements of her old partitions S and T .

This paper intervenes at the stage when she has formulated the newly refined par-
titions, but before she has acquired enough further information to assign consistent
subjective probabilities to the members of the new partition of B to supplement the
subjective probabilities already established for the members of the old partition. The
events she can describe using her old partition will be identified with the algebra M
of measured subsets of B. The events for which she needs the new partition will be
unmeasured. The step to this new partition corresponds to introducing a new algebra
N that refines M. The casino example of Sect. 2.1 illustrates how this might work
withM = U and N = V .

The next section proposes assumptions that replace expected utility in these new
circumstances by a generalization that we call expectant utility. The terminology is
intended to suggest that the notion is a temporary expedient requiring refinement as
further information is received.

5 General postulates for gambles

This section offers a substitute for orthodox expected utility theory. The more inter-
esting theorems depend on the following result of Keeney and Raiffa (1975).

5.1 Separating preferences

The following result applies to a consequence space C that can be factored so that
C = C1 × C2. The prizes in C then take the form (P,Q), where P is a prize in C1
andQ is a prize in C2. We say that a preference relation � on C evaluates C1 and C2
separately if and only if it is always true that

(P,Q) ≺ (P,Q′) implies (P ′,Q) � (P ′,Q′);
(P,Q) ≺ (P ′,Q) implies (P,Q′) � (P ′,Q′).

If the consequence spaces C , C1, and C2 are, respectively, replaced in this definition
by the sets of all lotteries over these outcome spaces, the separation requirement is sur-
prisingly strong.When� can be represented by a VN&Mutility function u : C → R,
Binmore (2009, p. 175) obtains the multinomial expression

u = A u1u2 + B u1(1 − u2) + C u2(1 − u1) + D(1 − u1)(1 − u2) , (14)

where the functions u1 : C1 → R and u2 : C2 → R can be regarded as normalized
VN&M utility functions on C1 and C2. The constants in (14) are A = u(W1,W2),
B = u(W1,L2), C = u(L1,W2), and D = u(L1,L2).

The generalization of (14) to the case when C can be factored into m components
instead of 2 presents no new difficulty. For example, the expression for m = 4 has
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sixteen terms of which a typical term is

u(W1,L2,L3,W4) u1(1 − u2)(1 − u3)u4.

The general formula for u(P1, . . . ,Pm) is the following multinomial expression in
which x1 = u1(P1), x2 = u2(P2), . . . xm = um(Pm):

∑1

i1=0
· · ·

∑1

im=0
u
(
X i1
1 , . . . ,X im

m

)
yi11 . . . , yimm , (15)

where

X i
j =

{
L j if i = 0
W j if i = 1

and yij =
{
x j if i = 0
1 − x j if i = 1

.

Separating preferences involving gambles The preceding results on separating pref-
erences are now applied to gambles over lotteries using the following version of
Savage’s sure-thing principle.

Postulate 5 For all gambles with lotteries as prizes:

L1 · · · Li · · · Lm

E1 · · · Ei · · · Em
≺

L1 · · · Ki · · · Lm

E1 · · · Ei · · · Em

implies
K1 · · · Li · · · Km

E1 · · · Ei · · · Em
�

K1 · · · Ki · · · Km

E1 · · · Ei · · · Em

Applying Postulate 5 to any particular gamble G, we find that u(G) can be written
in the form of Eq. (15), where the (normalized) utility function ui is used to evaluate
the i th prize in the gamble G. The next postulate—justified by Aesop’s principle—
removes the dependence of ui on Ei . It says that it only matters what you get and not
how you get it.

Postulate 6 The utility functions ui are the same for all non-empty events Ei in all
gambles G.

We can therefore writeU (P) = ui (P) for any non-empty event Ei and so recover the
VN&M utility function

U : C → R

of Sect. 1. Theorem 4 then replaces the standard expected utility formula (2).

Theorem 4 For a fixed partition E , Postulates 1, 5, and 6 imply

u(G) =
∑1

i1=0
· · ·

∑1

im=0
u

(
X i1
1 , . . . ,X im

m

)
yi11 . . . yimm , (16)

123



356 K. Binmore

where

X i
j =

{
L if i = 0
W if i = 1

and yij =
{
U (P j ) if i = 0
1 −U (P j ) if i = 1

.

Theorem 4 leaves much room for maneuver in assigning values to the coefficients
of Eq. (16). The next postulate is a minimal restriction.

Postulate 7 For a fixed partition E , successively replacing occurrences of L byW in
u(L,L, . . .L) never decreases the decision-maker’s utility.

Postulate 7 allows the decision maker to be so pessimistic that she regards any
possibility of losing as equivalent to always losing, so that only the coefficient
u(W,W, . . . ,W) = 1 in Eq. (16) is non-zero. In this case, u(G) = x1x2 . . . xm ,
where xi = U (P i ). Alternatively, the decision maker may be so optimistic that
she regards any possibility of winning as equivalent to always winning so that
all the coefficients in (16) are 1 except for u(L,L, . . . ,L) = 0. In this case,
u(G) = 1 − (1 − x1)(1 − x2) . . . (1 − xm).

At the other extreme, we can recover Bayesian decision theory by choosing the
coefficients in (16) appropriately. In the case when all the elements of E are regarded
as interchangeable—as envisaged by the principle of insufficient reason—it is natural
to propose that a coefficient u in (16) should be set equal to k/m, where k is the
number ofWs in its argument. The formula then collapses to (x1 + x2 +· · ·+ xm)/m,
which is the expected utility of G when all the elements Ei of the partition E are
assigned probability 1/m. What if u = f (k/m), where f : [0, 1] → R is increasing
and continuous? When xi = x (i = 1, 2, . . . ,m), Eq. (16) reduces to

u(G) =
m∑

k=0

f

(
k

m

)[
k
m

]
xk(1 − x)m−k → f (x) as m → ∞

by a theorem of Widder (1941), p. 152.

5.2 Reduction to surrogate probabilities

The next postulate is almost enough to convert the preceding theory into another
foundation for Bayesian decision theory.

Postulate 8 If the same prize P results from multiple events in the partition that
determines prizes in a gamble G, then the new gamble that results from replacing
these events by their union is indistinguishable from G.

The following equation is an example of how Postulate 8 works.

L P P

∼(E ∪ F) E F
= L P

∼(E ∪ F) E ∪ F
. (17)
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Thewording of Postulate 8 is intended to include the requirement that whenTheorem4
is used to work out the expected utility of gambles like those of (17), then it does not
matter whether the partition E is taken to be {∼(E ∪ F), E, F} or {∼(E ∪ F), E ∪ F}.
The strong implications are explored in Sect. 5.3.

Postulate 8 is sometimes assumed without comment, but our notion of expectant
utility dispenses with it in favor of the following weaker version.9

Postulate 9 If the same prize P results from multiple events in the partition that
determines prizes in a gamble G in which all the prizes are either W or L, then the
new gamble that results from replacing these events by their union is indistinguishable
from G.

Postulate 9 is needed to bridge the gap between the surrogate probability π introduced
in Sect. 3 and the more general theory being developed here. For example, in defining
π(E) as u(S), it matters that Postulate 9 implies that

S =
L W

∼E E
=

L L · · · L W

E1 E2 · · · Em−1 E = Em

. (18)

Why surrogate probabilities matter Postulate 9 implies that we can express the
coefficients in the formula (16) for the expectant utility of a gamble as surrogate
probabilities of appropriate events. For example,

u(W,L,W,W,L) = π(E1 ∪ E3 ∪ E4) . (19)

Example 4 We know the surrogate probabilities for all events in the casino example
when the Hurwicz criterion is employed, so we can work out the expectant utility of
any gamble constructed from events in V . In the case of the gamble J in which the
events low and high yield prizes with VN&M utilities x and y,

u(J) = 1
2 x + 1

2 y ,

which is the expected utility of J because p(low) = p(high) = 1
2 . Applying Theo-

rem 4 with E = {E1, E2, E3, E4} to the gamble K in which the events odd and even
yield prizes with VN&M utilities x and y:

9 Postulate 9 does not even imply that a gamble can be identified with P when all the prizes are P . But
whenM �= ∅ and so B is a measured event, this conclusion follows from requiring that Bayesian decision
theory holds for gambles constructed only from measured events.
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u(K) = xy(1 − 2α) + αx + αy .

Unless x = y = 0 or x = y = 1, u(K) < 1
2 x + 1

2 y when α < 1
2 , which can be

seen as a kind of ambiguity aversion. However, only the case α = 1
2 satisfies the

constraints on π listed in Example 6 for the formula of Theorem 4 to be compatible
with the validity of Bayesian decision theory for gambles constructed only from events
in U = {∅, low,high, B}.
Example 5 Consider a gamble G in which the three sets A, B, and C of the Hausdorff
paradox yield prizes with VN&M utilities x , y, and z. Applying α-maximin on the
assumption that all probability distributions are possible yields

u(G) = (1 − α)min{x, y, z} + αmax{x, y, z} .

If we use the Hurwicz criterion in Theorem 4 with E = {A, B,C}, all three sets and
their unions in pairs have the same surrogate probability π = α. Expanding the left
side of the equation (x + 1 − x)(y + 1 − y)(z + 1 − z) = 1, we find that

u(G) = (1 − α)xyz + α{1 − (1 − x)(1 − y)(1 − z)} ,

which is a convex combination of the cases of extreme pessimism and extreme opti-
mism mentioned in Sect. 5.1.

5.3 Expected utility

It is natural to ask under what conditions π is additive.

Postulate 10 The range of U: C → R contains at least three points.

Theorem 5 Postulates 1, 5, 6, 8, and 10 imply that

π(E ∪ F) = π(E) + π(F) ,

for all disjoint events E and F.

Proof Apply Theorem 4 with m = 2 to the right-hand side of (17), whose utility is
therefore x π(E ∪ F), where x = U (P). Apply Theorem 4 with m = 3 to the left-
hand side of (17), whose utility is therefore x2 π(E ∪ F) + x(1− x) {π(E) + π(F)}.
Postulate 8 says that these two quantities are equal, and so

x(1 − x) {π(E ∪ F) − π(E) − π(F)} = 0 .

By Postulate 10, there is a value of x other than 0 or 1 so the theorem follows. �
It is now easy to show that (16) reduces to the standard expected utility formula. For
example, expanding (16) in terms of xi = U (P i ) when m = 3, the coefficient of x1 is
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π(E1). The coefficient of x1x2 is π(E1 ∪ E2) − π(E1) − π(E2) = 0. The coefficient
of x1x2x3 is

1 − π(E1 ∪ E2) − π(E1 ∪ E2) − π(E1 ∪ E2) + π(E1) + π(E2) + π(E3) = 0 .

Only the coefficients of the linear terms can therefore be non-zero. We quote the
general result as a theorem:

Theorem 6 Postulates 1, 5, 6, 8, and 10 imply that

u(G) =
m∑

i=1

π(Ei )U (P i ) .

Proof The proof requires looking at the utility of the gamble

Gk =
L P1 P2 · · · Pk

E0 E1 E2 · · · Ek

(20)

in which we eventually take E0 = ∅. By (10), u(G1) = U (P1)π(E1). To prove
Theorem 6 by induction, it is then necessary to show that u(Gk+1) = u(Gk) +
U (Pk+1)π(Ek+1).

Write xi = U (P i ). Theorem 4 says that uk = u(Gk) can be expressed as a
sum of 2k terms, each of which is a product of a coefficient π(S) multiplied by k
factors that are either xi (i ∈ I ) or 1− xi (i /∈ I ), where I runs through all subsets of
{1, 2, . . . k}. The set S is the union of all Ei with i ∈ I . For example, S = E1∪E3 when
I = {1, 3}. Although π(∅) = 0, it is useful to retain the term π(∅) (1−x1) . . . (1−xk)
corresponding to I = ∅.

Next observe that

u(Gk+1) = xk+1vk + (1 − xk+1)uk ,

in which vk is the same as uk except that each coefficient π(S) is replaced by π(S ∪
Ek+1). But Theorem 5 says that π(S ∪ Ek+1) = π(S) + π(Ek+1). Thus

u(Gk+1) = uk + xk+1π(Ek+1) ,

because uk reduces to 1 when each coefficient π(S) is replaced by 1. �
The proof of Theorem 6 also shows that if π is subadditive for events that arise in

G, then

u(G) ≤
m∑

i=1

π(Ei )U (P i ) ,

with the inequality reversed if π is superadditive.
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6 Expectant utility

Maximizing expected utility is the fundamental principle of Bayesian decision the-
ory. To escape this conclusion, we need to deny one of the postulates from which
Theorem 5 follows. We deny Postulate 8. It is then necessary to fix the partition
E = {E1, E2, . . . , Em} of (1) and always to calculate the expected utility of a gamble
in terms of this partition. Example 4 accordingly calculates the utility of the gamble
in which P is won if odd occurs and Q if even occurs by applying Theorem 4 to K
below rather than to L:

K = P Q P Q

E1 E2 E3 E4

; L = P Q

E1 ∪ E3 E2 ∪ E4

.

Why deny Postulate 8? Recall from Sect. 4.2 that the decision maker has been using
Bayesian decision theory in a small worldwhen somethingwhose possibility she failed
to anticipate takes her by surprise. She is then led to ask more questions of the state of
nature, with the result that her old knowledge partitionF is refined to a new knowledge
partition E . Section 4.2 also points out that there will be a similar reassessment of what
counts as a prize—a reassessment she may need to review as she gains experience of
the new world in which she now finds herself. The immediate point is that a modicum
of uncertainty will be built into at least some of the prizes in the new set-up. When the
decision maker looks at the gambles in (17), she may therefore see only two attempts
at representing a whole class of possible gambles. If she is sensitive to uncertainty
(either for or against), she will then have reason to deny that these representations are
necessarily the same.

Although Postulate 8 is now to be denied, we continue to maintain the weaker
Postulate 9. Making this exception may seem more intuitive when L and W are
regarded as extreme states ofmind outside our normal experience, but themajor reason
formaking the assumption is that the approachbeingdevelopedwouldotherwise depart
too much from orthodox Bayesian decision theory to count as minimal. In particular,
wewould not be able to summarize the decision-maker’s attitude to uncertainty simply
in terms of a surrogate probability π .

6.1 Defining measured sets

If Postulate 8 does not always hold, we can use it to define an algebra M so that
the restriction p of π to M is a probability measure on M. We simply look for a
coarsening F of E for which Postulate 8 holds when the gambles considered only
depend on events from F . The collection of all unions of events in F will then serve
as the collection M of measured sets.10

10 Note that we are asking more than that π be a measure on M. In particular, although our standard
normalization of VN&M utility functions ensures that π(∅) = 0 and π(B) = 1 and so π is always a
measure on {∅, B}, it need not be true that {∅, B} ⊆ M. Example 5 is a case in which M is taken to be
empty (Sect. 2.1).
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We thereby create a small world within our model. As in Sect. 4.2, we can imagine
that this small world has been established through the decision-maker’s past experi-
ence, and that she has only just realized that she needs to consider a larger world. In
this larger world, the partition F has to be expanded to E , and therefore, unmeasured
sets now need to be taken into account.

Example 6 The requirement that Bayesian decision theory remains valid for gambles
constructed only from events in the algebra generated byF imposes constraints on the
coefficients of the formula (16). As in (19), these coefficients are the values of π(E)

for all E in the algebra generated by E . In the casino example, F = {low,high}.
We take p(low) = p and p(high) = 1 − p, and ask that (16) with m = 4 reduces
to expected utility for gambles in which low and high yield prizes with respective
VN&M utilities x and y. If the resulting expression is written as a polynomial in two
variables, some of the coefficients must be zero (provided that enough values of x and
y are available). Simplifying a little using the Carathéodory criterion (5), we obtain
that the necessary constraints are

π(∼E1) + π(∼E2) = 2 − p

π(∼E3) + π(∼E4) = 1 + p

π(E1 ∪ E4) + π(E2 ∪ E3) = 1.

The Hurwicz criterion satisfies these constraints if and only if α = 1
2 .

6.2 Refining the fundamental partition?

Without Postulate 8, it matters what is taken as the fundamental partition E of the
state space B. However, one can always refine E to a new partitionD with the help of
any independent lottery L. Simply takeD to be the product of E = {E1, E2, . . . , Em}
and the collection L = {L1, L2, . . . , Ln} of all possible outcomes of L. Does such a
switch of the fundamental partition from E to D alter the expectant utility of gambles
constructed only from events in E? The answer is no for the Hurwicz criterion with
0 ≤ α ≤ 1 because generalizations of (6) and (7) with more than two terms imply that

π({F1 × M1} ∪ · · · ∪ {Fk × Mk}) = π(F1)pM1) + · · · + π(Fk)p(Mk) , (21)

for all Fi in the algebra generated by E and all (measured) Mi in the algebra generated
by L.

7 Conclusion

The paper proposes an extension of Bayesian decision theory that is sufficiently mini-
mal that it allows gambles to be evaluated in terms of the VN&M utilities of the prizes
and surrogate probabilities of the events that determine the prizes. The theory reduces
to expected utility theory under certain conditions, but when these conditions are not
met, the surrogate probabilities need not be additive, and the formula for the utility of
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a gamble need not be linear. Several arguments are given for restricting attention to
surrogate probabilities given by the Hurwicz criterion, with the upper and lower prob-
abilities of an event taken to be its outer and inner measures generated by a subjective
probability measure given on some subclass of all relevant events. However, only the
ambiguity-neutral Hurwicz criterion satisfies all our requirements.
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