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Abstract In this paper, we consider the composition of an optimal portfolio made
of two dependent risky assets. The investor is first assumed to be a risk-averse
expected utility maximizer, and we recover the existing conditions under which all
these investors hold at least some percentage of their portfolio in one of the assets.
Then, we assume that the decision maker is not only risk-averse, but also prudent and
we obtain new minimum demand conditions as well as intuitively appealing inter-
pretations for them. Finally, we consider the general case of investor’s preferences
exhibiting risk apportionment of any order and we derive the corresponding mini-
mum demand conditions. As a byproduct, we obtain conditions such that an investor
holds either a positive quantity of one of the assets (positive demand condition) or a
proportion greater than 50 % (i.e., the “50 % rule”).
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1 Introduction and motivation

Consider a risk-averse decision maker who has to invest a given initial wealth in two
risky assets with possibly correlated performances over a given reference period. The
agent is assumed to act in order to maximize the expected utility of terminal wealth. In
this paper, we investigate two closely related problems. On the one hand, we further
study the conditions on the joint probability distribution of the assets such that all
risk-averse decision makers agree to diversify their position, i.e., to invest a positive
fraction of their initial wealth in each of the two assets. This first question is referred
to as the positive demand problem in the literature. On the other hand, we consider
a risk-averse investor holding a given portfolio made of these two risky assets and
we derive criteria expressed in terms of the joint probability distribution of the assets
and of the underlying portfolio to ensure that the share of an asset is increased at
the expense of the other in the portfolio. This second question is referred to as the
minimum demand problem in the literature.

Let us now briefly summarize the results available in the literature about these two
problems. Negative expectation dependence introduced by Wright (1987) is the key
concept to solve the positive demand problem. The expectation dependence concept
has been extended to higher orders by Li (2011). Denuit et al. (2015) introduced a
dual version of this dependence concept, called excess dependence, and provided an
application to the positive demand problem, generalizing the results of Wright (1987)
to investors’ preferences exhibiting higher-order risk apportionment in the sense of
Eeckhoudt and Schlesinger (2006).

The positive demand condition for risk-averse investors obtained byWright (1987)
has been extendedbyHadar andSeo (1988) to ensure that the proportionof a given asset
in the optimal portfolio exceeds a given threshold. This minimum demand condition is
closely related to the concept of marginal conditional stochastic dominance (MCSD)
introduced by Yitzhaki and Olkin (1991) and Shalit and Yitzhaki (1994) as a condition
under which all risk-averse investors agree to increase the share of one risky asset over
the other.

In this paper, we revisit the minimum demand problem by considering risk-averse
investors exhibiting prudence. In the expected utility setting, prudence is defined by
the non-negativity of the third derivative of the utility function. This risk attitude was
initially justified by reference to the decision of building up precautionary savings
in order to better face future income risk (Kimball 19901). The role of prudence has
also been illustrated in other contexts, including self-protection activities (Chiu 2005),
optimal audits (Fagart and Sinclair-Desgagné 2007), or decreasing sensitivity to an
increase in correlation when the initial wealth increases (Denuit and Rey 2010). Quite
surprisingly, although prudence originates in savings problems, this concept does not
seem to have been applied to optimal portfolio selection so far. The present paper
investigates the role of this additional assumption of prudence in asset allocation.

1 Kimball (1990) coined the term prudence in his analysis of savings under future income risk. However, as
indicated by Kimball (1990), this question had already been analyzed earlier, e.g., by Drèze andModigliani
(1972), Sandmo (1970), and Leland (1968).
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Risk aversion, prudence, and asset allocation... 229

By restricting the class of risk-averse decisionmakers to the subset of those investors
exhibiting prudence, we can weaken the condition imposed by Hadar and Seo (1988)
on the joint probability distribution of the assets ensuring that the optimal portfolio
comprises at least a given percentage of one of them. In particular, imposing prudence
in addition to risk aversion also weakens the positive demand condition in Wright
(1987) and the MCSD criterion. This produces new interpretations of the results,
extending Denuit et al. (2015) who only considered positive demand problem and
provided sufficient conditions (whereas our conditions are both necessary and suffi-
cient).

The results obtained both by Wright (1987) and with the MCSD criterion for risk-
averse decisionmakers can be interpreted in terms of covariances between asset returns
and payoffs of digital options written on the performances of the reference portfolio
comprising the desired proportion of the assets when the expected returns of the risky
assets are equal. When one assumes prudence beyond risk aversion, digital options
are replaced by European put options written on the reference portfolio. As such puts
can theoretically be replicated by means of digital options protecting against weak
performances of the reference portfolio, we thus get a weaker condition.

As is now well known, prudence is one of the risk attitudes beyond risk aversion
and this is related to the notion of higher-order risk apportionment, as defined by
Eeckhoudt andSchlesinger (2006). The notion of risk apportionment is a preference for
a particular class of lotteries combining sure reductions in wealth and zero-mean risks.
These higher-order risk attitudes entail a preference for combining relatively good
outcomes with bad ones and can be interpreted as a desire to disaggregate the harms
of unavoidable risks and losses. Risk apportionments of orders 2 and 3 correspond to
risk aversion and prudence, respectively. Increasing the order of risk apportionment
further restricts the class of investors and thus gives weaker conditions on the joint
probability distribution of the assets to ensure that the optimal portfolio comprises at
least a given percentage of one of them.

The remainder of this paper is organized as follows. Section 2 describes the problem
investigated in the present paper and gives the solution for risk-averse decisionmakers,
summarizing in a unified way the results available in the literature. The derivation of
these existing results from common grounds allows for an extension in Sect. 3 to risk-
averse investors exhibiting prudence and in Sect. 4 to investors whose preferences
exhibit higher-order risk attitudes. Specifically, an extension of the results obtained
for risk-averse and prudent decision makers to investors exhibiting risk apportionment
of orders 1 to 4, 5, . . . is proposed in Sect. 4. The final Sect. 5 discusses the results
obtained in this paper. Some technical results are gathered in the appendix to this
paper, which contains the derivation of a new expansion formula for expected utility.

2 Optimal asset allocation by risk-averse investors

2.1 Two-asset portfolio problem

Consider the following standard 2-asset portfolio problem as described, e.g., in Hadar
and Seo (1988). Let X j , j = 1, 2, be the random return per monetary unit invested
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in risky asset j valued in some interval [a, b] of the real line. Assume that the initial
wealth is equal to unity and must be invested in one of these two risky assets by
a non-satiated risk-averse decision maker. This agent is assumed to act in order to
maximize the expected utility of terminal wealth which is the end-of-period value
λX1 + (1− λ)X2 of the portfolio, where λ represents the fraction of the initial wealth
invested in asset 1.

Define Ura as the class of all utility functions u : [a, b] → R with first derivative
u′ ≥ 0 and second derivative u′′ ≤ 0, expressing risk aversion. For an investor with
utility function u ∈ Ura, the optimal λ maximizes the objective function

O(λ) = E[u(λX1 + (1 − λ)X2)].

The first-order condition is

O′(λ) = 0 ⇔ E[(X1 − X2)u
′(λX1 + (1 − λ)X2)] = 0. (2.1)

Denote as λ� the solution to Eq. (2.1), assumed to be unique. Notice that the concavity
of u ensures that the objective function is also concave. The concavity of the function
λ �→ O(λ) plays a central role in the developments appearing in the remainder of this
paper.

2.2 Minimum demand condition for risk-averse investors

The next Proposition 2.1 summarizes the results obtained so far in the literature in the
case of risk-averse decisionmakers. Precisely, it provides different conditions ensuring
that the optimal share λ� invested in the first asset by every risk-averse decision maker
is at least equal to some given percentage π . For the sake of completeness and to ease
the extension to prudent investors in the next section, we provide a direct proof of
these results based on a useful expansion formula given in Appendix. Henceforth, we
denote as I [·] the indicator function, i.e., I [A] = 1 if event A is realized and I [A] = 0
otherwise.

Proposition 2.1 Consider a fixed percentage π ∈ [0, 1]. Define the reference portfo-
lio

Xπ = πX1 + (1 − π)X2

comprising asset 1 in proportion π . The optimal share λ� invested in the first asset is
at least equal to π for every u ∈ Ura if, and only if, one of the following equivalent
conditions is fulfilled:

E
[
X1 I [Xπ ≤ z]] ≥ E

[
X2 I [Xπ ≤ z]] for all z ∈ [a, b] (2.2)

⇔ Cov
[
X1 − X2, I [Xπ ≤ z]] ≥ E[X2 − X1]P[Xπ ≤ z] for all z ∈ [a, b].

(2.3)
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Proof Considering (2.1), the concavity of the objective functionO ensures thatλ� ≥ π

when

O′(π) = E[(X1 − X2)u
′(Xπ )] ≥ 0. (2.4)

Let us apply formula (5.1) in appendix to Z1 = X1, Z2 = Xπ and g(z1, z2) =
z1u′(z2). This gives

E[X1u
′(Xπ )] = u′(b)E[X1] −

∫ b

a
bu′′(z2)P[Xπ ≤ z2]dz2

+
∫ b

a
u′′(z2)E

[
(b − X1)I [Xπ ≤ z2]

]
dz2. (2.5)

Hence,

E[(X1 − X2)u
′(Xπ )] = u′(b)E[X1 − X2]

−
∫ b

a
u′′(z2)E

[
(X1 − X2)I [Xπ ≤ z2]

]
dz2.

As a consequence, if (2.2) is valid, then condition (2.4) is fulfilled for every u ∈ Ura.
Conversely, if (2.4) holds for all u ∈ Ura, then it holds in particular for the utility
function u(x) = min{x, z} such that u′(x) = I [x ≤ z], which shows that inequality
(2.2) must hold true. To get the equivalence (2.3), it suffices to notice that

E
[
(X1 − X2)I [Xπ ≤ z]] = E[X1 − X2]E

[
I [Xπ ≤ z]] + Cov

[
X1 − X2, I [Xπ ≤ z]]

= E[X1 − X2]P[Xπ ≤ z] + Cov
[
X1 − X2, I [Xπ ≤ z]].

This ends the proof. 	


Condition (2.2) involves the average return of assets 1 and 2 computed over scenar-
ios where the portfolio underperforms, i.e., where Xπ ≤ z. The proportion of wealth
invested in asset 1 should be increased above the current fraction π comprised in Xπ

if this asset performs on average better over these adverse scenarios.
Notice that (2.2) ensures that E[X1] ≥ E[X2] holds, by letting z tend to b. The

condition E[X1] ≥ E[X2] rules out the cases where X2 dominates X1 by first-order
stochastic dominance. Second-order stochastic dominance is nevertheless possible
provided E[X1] = E[X2].

Condition (2.2) can be found in Theorem 3 by Hadar and Seo (1988). Instead of
the expansion used in the proof provided here, Hadar and Seo (1988) reduce in their
Theorem 1 the class Ura to the subset of all representative risk averters whose utility
functions consist of two linear pieces (i.e., of the form x �→ min{x, z} for some fixed
z). The alternative proof provided here appears useful when extending the analysis to
prudent investors in Sect. 3.
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232 M. M. Denuit, L. Eeckhoudt

Considering condition (2.2) , it is easy to see that it can be rewritten as

E
[
X1 I [Xπ ≤ z]]

≥ πE
[
X1 I [Xπ ≤ z]] + (1 − π)E

[
X2 I [Xπ ≤ z]] for all z ∈ [a, b]

⇔ E
[
X1 I [Xπ ≤ z]] ≥ E

[
Xπ I [Xπ ≤ z]] for all z ∈ [a, b]. (2.6)

All risk-averse investors thus agree to increase the fraction of wealth invested in asset
1 above its current levelπ if this asset performs on average better than the portfolio Xπ

in adverse situations (i.e., when Xπ ≤ z). Increasing the weight of such an asset in the
portfolio thus improves its performances in adverse situations and this is considered
as optimal by all risk-averse investors. Condition (2.6) is in turn equivalent to

⇔ Cov
[
X1 − Xπ , I [Xπ ≤ z]] ≥ E[Xπ − X1]P[Xπ ≤ z] for all z ∈ [a, b].

(2.7)

Notice that (2.6)–(2.7) no longer refer explictly to asset 2 but rather compare the return
X1 to the current portfolio return Xπ .

2.3 The 50 % rule

Let us now consider the so-called 50% rule, i.e., whether more than 50% of the initial
wealth is invested in asset 1. This corresponds to Proposition 2.1 with π = 0.5. In
this case, we denote X0.5 simply as X = X1+X2

2 . Portfolio X is the equally weighted
portfolio comprising an equal share of both assets. Condition (2.2) ensuring that λ� ≥
1
2 is equivalent to condition (9) in Clark and Jokung (1999).

2.4 Digital options

If E[X1] = E[X2], then only the covariance remains in (2.3) and one obtains

λ� ≥ π ⇔ Cov
[
X1, I [Xπ ≤ z]] ≥ [Cov[X2, I [Xπ ≤ z]] for all z ∈ [a, b].

This condition can be interpreted as follows. The indicator I [Xπ ≤ z] is the payoff
of a digital option paying 1 if the performance of the portfolio Xπ does not reach the
threshold z. This digital option protects the investor against weak performances of the
portfolio Xπ . Now, the optimal proportion invested in asset 1 is larger than π if the
covariance between X1 and the payoff of this digital option is always larger than the
corresponding covariance with X2 whatever the performance threshold z. If X1 and
X2 are identically distributed, or simply have the same variance, then the dominating
asset in the portfolio is the one which is less correlated with the payoff of the digital
option written on the performance of the reference portfolio Xπ .
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As E[X1] = E[X2] = E[Xπ ] also holds, only the covariance remains in (2.7)
which reduces to

λ� ≥ π ⇔ Cov
[
X1, I [Xπ ≤ z]] ≥ Cov

[
Xπ , I [Xπ ≤ z]] for all z ∈ [a, b].

The minimum demand condition is again based on covariances with the payoffs of
digital options written on the current portfolio Xπ , protecting the investor against
weak performances of Xπ (i.e., against Xπ falling below the threshold z). If the
covariance between asset 1 and this digital option payoff is larger than the covariance
of the portfolio itself with this payoff, then the percentage invested in X1 should be
increased above the current level π .

2.5 MCSD condition

Given a portfolio Xπ , Shalit and Yitzhaki (1994) have established that it is optimal
for every risk-averse decision maker to increase the weight of asset 1 at the expense
of asset 2 if, and only if,

E[X1|Xπ ≤ z] ≥ E[X2|Xπ ≤ z] for all z ∈ [a, b] (2.8)

which is obviously equivalent to condition (2.2). This condition is known in the liter-
ature as marginal conditional stochastic dominance (MCSD). In words, MCSD favors
assets performing on average better in adverse situations (i.e., when the portfolio
underperforms ⇔ Xπ ≤ z).

Considering the alternative statement (2.6), it is easy to see that theMCSDcondition
can be equivalently expressed as

E[X1|Xπ ≤ z] ≥ E[Xπ |Xπ ≤ z] for all z ∈ [a, b] (2.9)

The share invested in asset 1 should be increased when this asset performs on average
better than the current portfolio in adverse situations, i.e., when Xπ ≤ z for some
threshold z.

2.6 Positive demand

The particular case π = 0 has been considered by Wright (1987) who established
that all risk-averse investors hold a positive amount of each asset in their expected
utility maximizing portfolio when (2.2)–(2.3) hold with π = 0, so that the reference
portfolio Xπ reduces to X0 = X2.

The next example considers the case of independent returns X1 and X2.

Example 2.2 If X1 and X2 are mutually independent and E[X1] ≥ E[X2], then there
is always a positive demand for X1 as

E[X1|X2 ≤ z] = E[X1] ≥ E[X2] ≥ E[X2|X2 ≤ z] for all z ∈ [a, b]
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234 M. M. Denuit, L. Eeckhoudt

so that condition (2.2) with π = 0 (hence Xπ = X2) is fulfilled. Every risk-averse
investor diversifies his position in such a case.

Stated in the alternative way (2.6)–(2.7), it is clear that positive demand and min-
imum demand conditions are intimately related. A minimum demand at level π for
asset X1 in presence of asset X2 is equivalent to a positive demand for asset X1 in
presence of the portfolio Xπ viewed as the second asset.We are allowed to let the port-
folio play the role of the second asset as we made no restriction about the dependence
structure between the two assets when deriving conditions (2.2)–(2.3).

2.7 Negative expectation dependence

In his conclusion,Wright (1987) suggested to define X1 asmore negatively expectation
dependent than X2 on Xπ when the inequality

E[X1|Xπ ≤ t] − E[X1] ≥ E[X2|Xπ ≤ t] − E[X2] (2.10)

holds for all t . If E[X1] = E[X2] and (2.2) holds, then (2.10) is necessary fulfilled.
Condition (2.10) allows one to derive inequalities involving covariances, as shown
next. Consider a decreasing transformation h. From the proof of Theorem 3.1 in
Wright (1987), we can write

Cov[X1, h(Xπ )]
=

∫ b

a

(
E[X1] − E[X1|Xπ ≤ x2]

)
P[Xπ ≤ x2]h′(x2)dx2

≥
∫ b

a

(
E[X2] − E[X2|Xπ ≤ x2]

)
P[Xπ ≤ x2]h′(x2)dx2 under (2.10)

= Cov[X2, h(Xπ )]. (2.11)

Hence, (2.10) ensures that the inequalityCov[X1, h(Xπ )] ≥ Cov[X2, h(Xπ )] is valid
for every decreasing transformation h. The reverse inequality holds for an increasing
h. Condition (2.10) corresponds to Definition 2.9 in Dionne et al. (2012), restricted to
the pairs of random variables (X1, Xπ ) and (X2, Xπ ).

3 Optimal asset allocation by risk-averse and prudent investors

So far, we have reviewed the existing literature on optimal portfolio composition by a
risk-averse decision maker. We now investigate how the restriction to risk-averse and
prudent decision makers affects the portfolio composition. We start our study with the
following illustration.
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3.1 Introductory example

To motivate the analysis, we start with a simple numerical example. Consider for
instance assets with respective returns given by

X1 =
{
1.1 with probability 3

4

1.3 with probability 1
4

and X2 =
{
1 with probability 1

4

1.2 with probability 3
4

.

Both returns have the same mean and variance. Assume besides that the returns X1
and X2 are correlated, with joint distribution

P[X1 = 1.1, X2 = 1] = 3

16
+ ρ

P[X1 = 1.1, X2 = 1.2] = 9

16
− ρ

P[X1 = 1.3, X2 = 1] = 1

16
− ρ

P[X1 = 1.3, X2 = 1.2] = 3

16
+ ρ, (3.1)

for some correlation parameter ρ ∈ [− 3
16 ,

1
16

]
. The strength of the dependence

between X1 and X2 is controlled by the parameter ρ. A positive (resp. negative)
ρ entails positive (resp. negative) dependence between X1 and X2, i.e., a large return
for asset 1 tends to be accompanied by a large (resp. small) return for asset 2. The
special case ρ = 0 corresponds to independence.

Let us consider the case ρ = 1
32 so that both returns are positively related. We take

π = 0.4, meaning that the reference portfolio X0.4 comprises 40 % of unit wealth
invested in asset 1 andwewonderwhether this proportion should be increased. Figure 1
displays the curves z �→ E

[
X1 I [X0.4 ≤ z]] and z �→ E

[
X2 I [X0.4 ≤ z]]. These are

step functions exhibiting jumps at the four possible values of X0.4, that is 1.04, 1.12,
1.16, and 1.24. The two curves are at zero before 1.04 and at E[X1] = E[X2] = 1.15
after 1.24. We clearly see on Fig. 1 that the two curves intersect so that condition
(2.2) is violated and risk-averse investors do not unanimously agree to invest more
that 40 % of their initial wealth in asset 1. We could nevertheless wonder whether a
subset of these decision makers would agree to do so. This is why we derive in the
next section the minimum demand conditions for a relevant subset of investors. Then,
we come back to this example to show that all these decision makers agree to increase
the share of X1 in their portfolio.

3.2 Minimum demand condition for risk-averse, prudent investors

The introductory example described above motivates the restriction of the set of
investors. As prudence is usually justified by reference to the decision of building
up precautionary savings in order to better face future income risk, this behavioral
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Fig. 1 Graphs of z �→ E
[
X1 I [Xπ ≤ z]] (continuous line) and z �→ E

[
X2 I [Xπ ≤ z]] (broken line) for

π = 0.4 when the joint distribution of asset returns X1 and X2 is given by (3.1) with ρ = 1
32

trait is quite natural in investment problems. This is why we now consider prudent
investors and define the subsetUra-p ofUra consisting in all u ∈ Ura with third derivative
u′′′ such that u′′′ ≥ 0.

Thanks to the expansion formula proposed inAppendix,wehave been able to review
in a unifiedway the results obtained from the end of the 1980s for the optimal allocation
of a risky portfolio when decision makers are risk-averse. In the present section, we
examine the implication of the additional and now well-accepted assumption that
decision makers are prudent for optimal portfolio selection. The next result extends
Proposition 2.1 to the case of prudent risk-averse decisionmakers. Precisely, it provides
different conditions such that the optimal share λ� invested in the first asset by every
prudent risk-averse decision maker is at least equal to some given percentage. We
denote as x+ = max{x, 0} the positive part of x , i.e., x+ = x if x > 0 and x+ = 0
otherwise.

Proposition 3.1 Consider a fixed percentage π ∈ [0, 1]. The optimal share λ�

invested in the first asset is at least equal to π for every u ∈ Ura-p if, and only if,
E[X1] ≥ E[X2] and one of the following equivalent conditions is fulfilled:

E
[
X1(z − Xπ )+

] ≥ E
[
X2(z − Xπ )+

]
for all z ∈ [a, b] (3.2)

⇔ Cov
[
X1 − X2, (z − Xπ )+

] ≥ E[X2 − X1]E[(z − Xπ )+] for all z ∈ [a, b].
(3.3)
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Proof Condition (2.4) still applies but with u′ being now decreasing and convex. Let
us use integration by parts in the two integrals appearing in formula (2.5) to get

E[X1u
′(Xπ )]

= u′(b)E[X1] − bu′′(b)E[b − Xπ ] +
∫ b

a
bu′′′(z2)E[(z2 − Xπ )+]dz2

+ u′′(b)E[(b − X1)(b − Xπ )] −
∫ b

a
u′′′(z2)E[(b − X1)(z2 − Xπ )+]dz2.

This gives

E[(X1 − X2)u
′(Xπ )] = u′(b)E[X1 − X2] + u′′(b)E

[
(X2 − X1)(b − Xπ )]

+
∫ b

a
u′′′(z2)E[(X1 − X2)(z2 − Xπ )+]dz2. (3.4)

Hence, the proportion invested in asset 1 is at least π for every u ∈ Ura-p if E[X1] ≥
E[X2] and (3.2) is fulfilled. To get the converse implication, notice that condition
(2.4) with u(x) = x ensures that E[X1] ≥ E[X2]. Inserting the utility function
u(x) = −(z−x)2+ in (2.4) shows that condition (3.2)must also hold. Finally, condition
(3.3) easily follows as

E[(X1 − X2)(z − Xπ )+] = E[X1 − X2]E[(z − Xπ )+]
+Cov[X1 − X2, (z − Xπ )+]

and this ends the proof. 	

Notice that compared to Proposition 2.1, we now need an additional condition

imposed on the first moments of X1 and X2, i.e., we have to impose that E[X1] ≥
E[X2] in addition to (3.2)–(3.3).

Let us come back to the introductory example of this section. Figure 2 displays the
curves z �→ E

[
X1(z − X0.4)+

]
and z �→ E

[
X2(z − X0.4)+

]
. We see that condition

(3.2) is fulfilled in this case. Whereas risk-averse investors did not all agree to invest
more than 40% of their initial wealth in asset 1, all the risk-averse and prudent ones
among them agree about this decision.

As it was the case for risk-averse investors, we can rewrite condition (3.2) as

E
[
X1(z − Xπ )+

]

≥ πE
[
X1(z − Xπ )+

] + (1 − π)E
[
X2(z − Xπ )+

]
for all z ∈ [a, b]

⇔ E
[
X1(z − Xπ )+

] ≥ E
[
Xπ (z − Xπ )+

]
for all z ∈ [a, b]. (3.5)

Compared to (3.2), return X2 does not explicitly appear in condition (3.5) which
involves X1 and the reference portfolio Xπ . Then, (3.3) can be rewritten as

Cov
[
X1 − Xπ , (z − Xπ )+

] ≥ E[Xπ − X1]E[(z − Xπ )+] for all z ∈ [a, b].
(3.6)
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Fig. 2 Graphs of z �→ E
[
X1(z − Xπ )+

]
(continuous line) and z �→ E

[
X2(z − Xπ )+

]
(broken line) for

π = 0.4 when the joint distribution of asset returns X1 and X2 is given by (3.1) with ρ = 1
32

3.3 The 50 % rule

Setting π = 0.5 in (3.2)-(3.3) allows us to obtain the conditions under which all
risk-averse, prudent decision makers invest at least 50 % of their initial wealth in
asset 1.

Now, consider two asset returns with the same means and variances, i.e., such that
E[X1] = E[X2] and E[X2

1] = E[X2
2]. Then, (3.4) with π = 1

2 gives

E[(X1 − X2)u
′(Xπ )] =

∫ b

a
u′′′(z2)E

[
(X1 − X2)

(
z2 − X1 + X2

2

)

+

]
dz2.

If (3.2) holds true with π = 0.5, then we see that

(i) all prudent decision makers (u′′′ ≥ 0) invest at least π in asset 1 as O′(π) ≥ 0.
(ii) all imprudent decision makers (u′′′ ≤ 0) invest at most π in asset 1 asO′(π) ≤ 0.

Notice that decision makers with quadratic utilities (u′′′ = 0) are indifferent between
the various portfolio compositions as O′(π) = 0 for every proportion π in this case.
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3.4 European put options

If E[X1] = E[X2], then Proposition 3.1 shows that λ� ≥ π for any u ∈ Ura-p when

Cov
[
X1, (z − Xπ )+

] ≥ Cov
[
X2, (z − Xπ )+

]
for all z ∈ [a, b].

In particular, we get for z = b

Cov
[
X1, Xπ

] ≤ Cov
[
X2, Xπ

]
.

It is thus necessary (but not sufficient) for investing at least π in asset 1 that the
covariance of X1 with the reference portfolio Xπ is smaller than that of X2.

Notice that (z − Xπ )+ is the payoff of a put option written on the performance of
the reference portfolio Xπ , with exercise price z. If E[X1] = E[X2], then the optimal
proportion invested in asset 1 is larger than π if the covariance between X1 and the
payoff of this put option is always larger than the corresponding covariance with X2.
If X1 and X2 are identically distributed, or simply have the same variance, then the
dominating asset in the portfolio is the one which is more correlated with the put
option payoff on the performance of the portfolio Xπ .

As E[X1] = E[X2] = E[Xπ ] holds, condition (3.6) ensures that λ� ≥ π for any
u ∈ Ura-p is guaranteed when

Cov
[
X1, (z − Xπ )+

] ≥ Cov
[
Xπ , (z − Xπ )+

]
for all z ∈ [a, b].

This condition is stated in terms of the covariance between X1 and the put option
written on the portfolio Xπ compared to the covariance of Xπ with the same put
option.

3.5 Positive demand

The particular case π = 0 has been considered by Denuit et al. (2015) who extended
the analysis conducted in Wright (1987) to higher-order risk attitudes. Considering
the results obtained by Denuit et al. (2015) in their Sect. 6.1 (with n = 2, letting ε

tend to 0 to recover the class of risk-averse and prudent decision makers), it is worth to
mention that Proposition 3.1 with π = 0 provides a characterization for the positive
demand case, not only a sufficient condition.

3.6 Negative second-order expectation dependence

We can relate (2.10) to conditions (3.2)–(3.3) in Proposition 3.1, noting that

∫ z

a

(
E[X1] − E[X1|Xπ ≤ x2]

)
P[Xπ ≤ x2]dx2 = E[X1]E[(z − Xπ )+]

− E[X1(z − Xπ )+]
= −Cov[X1, (z − Xπ )+].
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This also allows us to derive inequalities involving covariances, as integration by parts
in formula (2.11) gives

Cov[X1, h(Xπ )] =
∫ b

a
h′(z)

(
E[X1] − E[X1|Xπ ≤ z])P[Xπ ≤ z]dz

= h′(b)Cov[X1, Xπ ] +
∫ b

a
h′′(z)Cov[X1, (z − Xπ )+]dz.

Therefore, provided E[X1] = E[X2], conditions (3.2)-(3.3) ensure that Cov[X1,

h(Xπ )] ≥ Cov[X2, h(Xπ )] for any decreasing and convex transformation h.

4 Optimal asset allocation by investors with higher-order risk
apportionment

The results obtained for risk-averse and prudent investors in Sects. 2–3 can be extended
to investors whose preferences exhibit risk apportionment up to any order in the sense
of Eeckhoudt and Schlesinger (2006). Henceforth, we write u(n) for the nth deriv-
ative of u, n = 1, 2, 3, 4, . . .; the notations u′, u′′, and u′′′ and u(1), u(2), and u(3),
respectively, are used interchangeably. Recall that the preferences expressed by a dif-
ferentiable utility function u satisfy risk apportionment of order n if u fulfills the
condition (−1)n+1u(n) ≥ 0. Prudence, temperance, and edginess, respectively, corre-
spond to risk apportionment of order 3, 4, and 5.

Assume now that the risk-averse decisionmaker exhibits prudence and temperance,
i.e., (−1)n+1u(n) ≥ 0 holds for n = 1, 2, 3, 4. Integrating (3.4) by parts gives

E[(X1 − X2)u
′(Xπ )] = u′(b)E[X1 − X2] + u′′(b)E

[
(X2 − X1)(b − Xπ )]

+ u′′′(b)E
[

(X1 − X2)
(b − Xπ )2

2

]

+
∫ b

a
u(4)(z2)E

[

(X2 − X1)
(z2 − Xπ )2

2

]

dz2. (4.1)

Provided E[X1] ≥ E[X2], the analog of condition (3.2) for the subset of temperant
investors becomes

E
[
X1(b − Xπ )] ≥ E

[
X2(b − Xπ )]

and

E
[
X1(z − Xπ )2+] ≥ E

[
X2(z − Xπ )2+] for all z ∈ [a, b].

Proceeding in the same way, we see that every investor whose preferences exhibit
risk apportionment of orders 1 to n includes a proportion at least equal to π of asset
1 in his optimal portfolio when E[X1] ≥ E[X2] if
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E
[
X1(b − Xπ )k] ≥ E

[
X2(b − Xπ )k] for k = 1, . . . , n − 3

and

E
[
X1(z − Xπ )n−2+ ] ≥ E

[
X2(z − Xπ )n−2+ ] for all z ∈ [a, b].

The minimum demand conditions are thus structured similarly, whatever the order n
of risk apportionment, except that the shortfall (z − Xπ )+ in the performances of the
reference portfolio Xπ used for prudent investors is replaced by its increasing powers.
Compared to Sect. 6.1 in Denuit et al. (2015), we have thus identified here the positive
demand condition, not only a sufficient one, and we have extended the analysis to the
minimum demand case.

5 Discussion

The notion of prudence is now well accepted in the economics literature, almost at
parity with that of risk aversion. Besides its initial implications for the analysis of sav-
ings decision, it has been useful also to analyze other problems such as self-protection
or optimal audits. Surprisingly however its implications for minimum demand in port-
folio composition have not been analyzed so far and we have tried here to compensate
for this deficiency.

The existing literature looks at the role of only risk aversion in the optimal compo-
sition of a portfolio of two possibly correlated risky assets. Thanks to an expansion
formula presented in appendix, we have been able to summarize and extend the exist-
ing literature in a unifiedway. Then in Sect. 3, we havemade the additional assumption
that the decision maker is risk-averse and prudent. This additional requirement of pru-
dence has lead to new results about diversification or about the 50% rule. Besides,
when the two risky assets have the same mean, these conditions can be interpreted in
terms of covariances with the payoffs of European put options written on the reference
portfolio, replacing the digital options protecting against weak performances of this
portfolio for risk-averse investors. An extension to higher-order risk apportionments
has been proposed in Sect. 4.
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Appendix: A useful expansion formula

Consider two random variables Z1 and Z2 valued in [a, b] and a real valued function
g with domain [a, b] × [a, b]. Let g(i, j) denote the (i, j)th partial derivative of g, i.e.,

g(i, j)(z1, z2) = ∂ i+ j

∂zi1∂z
j
2

g(z1, z2). Integration by parts shows that

E[g(Z1, Z2)] = E[g(Z1, b)] −
∫ b

a
g(0,1)(b, z2)P[Z2 ≤ z2]dz2

+
∫ b

a

∫ b

a
Pr[Z1 ≤ z1, Z2 ≤ z2]g(1,1)(z1, z2)dz1dz2.
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Integrating by parts the last double integral gives

∫ b

a

∫ b

a
Pr[Z1 ≤ z1, Z2 ≤ z2]g(1,1)(z1, z2)dz1dz2

=
∫ b

a
g(1,1)(b, z2)

(∫ b

a
Pr[Z1 ≤ ξ1, Z2 ≤ z2]dξ1

)
dz2

−
∫ b

a

∫ b

a

(∫ z1

a
Pr[X1 ≤ ξ1, X2 ≤ z2]dξ1

)
g(2,1)(z1, z2)dz1dz2.

Now, as

∫ z1

a
Pr[Z1 ≤ ξ1, Z2 ≤ z2]dξ1 =

∫ x1

a
E

[
I [Z1 ≤ ξ1]I [Z2 ≤ z2]

]
dξ1

= E

[∫ z1

a
I [Z1 ≤ ξ1]dξ1 I [Z2 ≤ z2]

]

= E
[
(z1 − Z1)+ I [Z2 ≤ z2]

]

the expectation E[g(Z1, Z2)] can be expanded as follows:

E[g(Z1, Z2)] = E[g(Z1, b)] −
∫ b

a
g(0,1)(b, z2)P[Z2 ≤ z2]dz2

+
∫ b

a
g(1,1)(b, z2)E

[
(b − Z1)I [Z2 ≤ z2]

]
dz2

−
∫ b

a

∫ b

a
g(2,1)(z1, z2)E

[
(z1 − Z1)+ I [Z2 ≤ z2]

]
dz1dz2.

(5.1)
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