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Abstract In this paper, we show that Case-based decision theory, proposed by Gilboa
and Schmeidler (Q J Econ 110(3):605–639, 1995), can explain the aggregate dynamics
of cooperation in the repeated Prisoner’s Dilemma, as observed in the experiments
performed by Camera and Casari (Am Econ Rev 99:979–1005, 2009). Moreover, we
find CBDT provides a better fit to the dynamics of cooperation than does the existing
Probit model, which is the first time such a result has been found. We also find that
humans aspire to a payoff above the mutual defection outcome but below the mutual
cooperation outcome,which suggests they hope, but are not confident, that cooperation
can be achieved. Finally, our best-fitting parameters suggest that circumstances with
more details are easier to recall. We make a prediction for future experiments: if the
repeated PD were run for more periods, then we would be begin to see an increase
in cooperation, most dramatically in the second treatment, where history is observed
but identities are not. This is the first application of Case-based decision theory to a
strategic context and the first empirical test of CBDT in such a context. It is also the
first application of bootstrapped standard errors to an agent-based model.

Keywords Case-based decision theory · Prisoner’s Dilemma · Learning ·
Agent-based computational economics · Experimental economics
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2 T. Guilfoos, A. D. Pape

1 Introduction

In this paper, we use Case-based decision theory (Gilboa and Schmeidler 1995) to
explain experimental data of human behavior in the repeated Prisoner’s Dilemma
game. We find that the aggregate dynamics of cooperation are predicted by this
theory. We fit the parameters of the model to data and establish that all parame-
ters are statistically significant. We establish this fact by comparing experimental
data collected by Camera and Casari (2009) against simulated data generated by
a computer program called the Case-based Software Agent (CBSA). CBSA was
introduced in Pape and Kurtz (2013), who show that CBSA (and therefore Case-
based decision theory) explains individual human behavior in a series of classification
learning experiments from Psychology starting with Shepard et al. (1961). Here we
show that CBSA can explain human group behavior in a setting that is dynamic and
strategic.

Case-based decision theory is a mathematical model of choice under uncertainty
which has the following primitives: A set of problems or circumstances that the agent
faces; a set of actions that the agent can choose in response to these problems; and a
set of resultswhich occur when an action is applied to a problem. Together, a problem,
action, and result triplet is called a case, and can be thought of as one complete learning
experience. The agent has a finite set of cases, called amemory, which it consults when
making new decisions. The Case-based Software Agent is a software agent, i.e., “an
encapsulated piece of software that includes data together with behavioral methods
that act on these data (Tesfatsion 2006).” CBSA computes choice data consistent
with an instance of CBDT for an arbitrary choice problem or game, provided that the
problem is well defined and sufficiently bounded.

We analyze data from an experiment by Camera and Casari (2009), in which study
subjects are grouped into small ‘economies’ to play the repeated Prisoner’s Dilemma.
The purpose of their experiment is to vary the level of information available to players
about each other andmeasure the effect on cooperation. For example, in one treatment,
the players are supplied unique identifiers for their opponents, so they knowwhen they
encounter the same opponent again. Because CBDT encodes the agent’s information
about the current choice directly (in the aforementioned “problem” variable), this is a
particularly appropriate experiment to test with CBSA. We compare simulated data to
real data by measuring the mean squared difference in probability of cooperation over
time. Like regression analysis, we then search the space of free parameter values for
those that provide the best fit (minimizing mean squared error).1 Moreover, we estab-
lish the precision by which we are able to estimate these parameters by bootstrapping
standard errors, which is a first for agent-based models.

We are able to establish four key facts about CBDT and its relationship with human
choice behavior in Camera and Casari’s Prisoner’s Dilemma experiment. We find

(1) The choice behavior of this software agent (and therefore Case-based deci-
sion theory) correctly predicts the empirically observed trajectory of average

1 The free parameters of CBSA include two kinds of forgetfulness and an aspiration level. See Sect. 3 for
details.
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Predicting human cooperation in the PD using CBDT 3

cooperation rates over time across three different treatments. This shows that
CBDT can predict human behavior in a strategic and dynamic setting.

(2) The choice behavior implied by CBSA is a closer fit to the empirical data than the
best-fitting Probit model (from Camera and Casari’s paper), and CBSA has only a
fifth as many parameters to fit to data. This is a vote in favor of CBSA as a useful
empirical description of human behavior in the repeated Prisoner’s Dilemma and
is a novel result in the literature.

(3) The best-fitting CBSA parameters suggest humans aspire to a payoff value above
the mutual defection payoff but below the mutual cooperation payoff, which
suggests they hope, but are not confident, that cooperation can be achieved. In
principle, the best-fitting aspiration values could have fallen into the ‘unreason-
able’ range: namely greater than the best or lower than the worst possible payoff.
The fact that this did not happen serves as an specification test of CBSA.2

(4) Circumstances with more details are easier to recall. The evidence is that our best-
fitting level of recall probability increases as the experimental treatment varies as
to share more information with the agents.

These findings are useful in understanding the behavior of human subjects as well
as developing a framework in which we can predict human behavior. For example,
the infinitely iterated Prisoner’s Dilemma can sustain cooperation when sufficiently
patient agents employ the ‘grim’ strategy, defecting forever if their partner defects,
but this strategy does not seem to be played by human subjects. This paper can be
thought of as part of an effort to find alternative, empirically valid explanations of
decision-making in this strategic context.

Below,we first review the relevant literature in decision theory, game theory, and the
empirical study of the Prisoner’s Dilemma (Sect. 2). Second, we describe the experi-
ment of Camera and Casari (2009) and explain how we simulate this experiment it in
the Case-based Software Agent framework, which implements Case-based decision
theory (Sect. 3). Third, we describe our statistical method of finding the best-fitting
parameters of CBSA to match the human data, including how we bootstrap standard
errors of our parameter estimates (Sect. 4). Fourth, we present and discuss our empir-
ical results (Sect. 5), and, in Sect. 6, we discuss the implications of these results for
case-based decision theory. In Sect. 7, we conclude.

2 Related literature

The central investigative tool of this paper is theCase-basedSoftwareAgent (CBSA). It
is a computational implementation of Case-Based decision theory (CBDT) introduced
in Gilboa and Schmeidler (1995). Implementations produce agent choice behavior
given a mathematical representation in the tradition of von Neumann andMorgenstern
(1944) and Savage (1954). Designed correctly, the choice behavior produced by an
implementation can be directly compared to empirical choice data of the same problem
faced by humans. This can yield two classes of insights: First, the comparison can shed

2 Like other specification tests, passing the test does not mean that the model is necessarily correctly
specified; only that failing the test would have been evidence that it is misspecified.
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4 T. Guilfoos, A. D. Pape

light on the question of whether and in what ways CBSA (and therefore CBDT) serves
as a representation or ‘explanation’ of human behavior. Second, the comparison can
shed light on the empirical phenomenon itself: for example, we learn what level of
forgetfulness is consistent with the human behavior observed in the experiments found
in Camera and Casari (2009).

CBDT postulates that when an agent is confronted with a new problem, she asks
herself: How similar is today’s case to cases in memory?What acts were taken in those
cases? What were results? She then forecasts payoffs of actions using her memory,
and chooses the action with the highest forecasted payoff. The primitives are a finite
set of problems P , a finite set of acts A, and a set of results R. A case is a triplet
consisting of a problem, the act taken, and the outcome (result) of that act given the
problem. A case can be thought of as a single, complete learning experience. The set
of all cases is C = P × A × R.

CBDT representations are defined by four additional components. The first com-
ponent of a CBDT representation is the agent’s memory. Memory is a set of cases
which, in CBSA, can be thought of as the list of learning experiences the agent has
had. An agent’s memory is denoted as M. The second component is the utility func-
tion u : R → R. It is defined in the usual way. The third component is the similarity
function s : P × P → [0, 1]. The output value of the similarity function gives how
much the input problems resemble each other in the opinion of the agent. The fourth
component is the aspiration level H ∈ R. It is a reference level of utility, like expected
value. However, while an expected value is the level of utility one believes on average
is the most likely, the aspiration level should be thought of as the agent’s target level
of utility, which could, in principle, differ from the expected value. Mechanistically,
it serves as a default value for forecasting utility of new alternatives. It also serves as
a satisficing level in the sense of Simon (1957): “Behaviorally, H defines a level of
utility beyond which the [decision maker] does not appear to experiment with new
alternatives (Gilboa and Schmeidler 1996, p. 2).”

Together, these four components define case-based utility:

CBU(a) =
∑

(q,a,r)∈M(a)

s(p, q) [u(r) − H ] ,

where M(a) is defined as the subset of the agents’ memory M in which action a
was taken. This utility represents the agent’s preference in the sense that, for a fixed
memory M, a is strictly preferred to a′ if and only if CBU(a) > CBU(a′).

Case-based decision theory was introduced for the main purpose of disposing of
the state space, that is, the assumption that agents are able to list and reason about
the set of all possible scenarios. CBDT limits the set the agent must reason about to
the set of past experiences, and requires only that the agent be able to make similarity
judgements between past experiences and newexperiences. ThereforeCBDTnaturally
incorporates cognitive constraints.Moreover, the implementation of CBSAhere in this
paper also includes forgetfulness explicitly.3

3 Incorporating cognitive constraints into economic models is a hallmark of work in the intersection of
economics and psychology, such as Simon (1957), Simon et al. (2008), Tyson (2008), Hanoch (2002),
Ballinger et al. (2011), and Cappelletti et al. (2011).
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Predicting human cooperation in the PD using CBDT 5

This paper contributes to a growing empirical literature testing the explanatory
power of CBDT; these papers generally find support for it.

In the paper most closely related to this one, Pape and Kurtz (2013) introduce
CBSA and find that imperfect memory, accumulative (not average) utility, a similarity
function consistent with research from psychology, and a 80–85% target success rate
renders CBSA a good fit for human data in the classification learning experiment from
the psychology literature.4

Ossadnik et al. (2012) run a repeated choice experiment involving unknown pro-
portions of colored and numbered balls in urns, which is the canonical ambiguous
choice setting (i.e., Ellsberg 1961). (The authors of CBDT suspect that it is a better
model of human behavior in settings of ambiguity versus risk.) Ossadnik et al. (2012)
find that CBDT explains these data well compared to alternatives such as minimax
(Luce and Raiffa 1957) and reinforcement learning (Roth and Erev 1995a). Their
method has some similarities with CBSA, in that they choose parameter values and
functional forms of CBDT and calculate CBDT-governed agents’ optimal choices,
and compare those choices to aggregate human data. There are two important ways
that the method differs from CBSA. First of all, the CBSA method sweeps parameter
values, so provides many more candidate values for fitting the human data. Second,
CBSA integrates forgetfulness and similarity functional forms from psychology.

Bleichrodt et al. (2012) provide a method to measure similarity weights which
avoids parametric assumptions about the weights. Their method has a number of
advantages, including testing CBDT in more generality. An advantage of the CBSA
approach is the ability to predict CBDT-governed behavior on arbitrary settings; the
Bleichrodt et al. (2012) approach implies a particular kind of experimental design.
Therefore, we feel these methods are complementary: insights developed in their
method can be applied to CBSA for application to other settings.

Gayer et al. (2007) investigate whether case-based reasoning appears to explain
human decision-making using housing sales and rental data. They hypothesize and
find that sales data are better explained by rule-based measures because sales are an
investment for eventual resale and rules are easier to communicate, while rental data
are better explained by case-based measures because rentals are a pure consumption
good where communication of measures is irrelevant.

Golosnoy and Okhrin (2008) use CBDT to construct investment portfolios from
real returns data and compare the success of these portfolios to investment portfolios
constructed from expected utility-based methods, and find some evidence that using
CBDT aids portfolio success.

The Prisoner’s Dilemma (PD) is perhaps the most famous game in game theory.
It is a symmetric, simultaneous, two-player game with two actions, Cooperate and
Defect, where (1) Defect strictly dominates Cooperate, but (2) the payoff for (Coop-
erate, Cooperate) Pareto dominates (Defect, Defect). Although there are benefits to
cooperation, the individual incentive to defect means that mutual cooperation is not a
Nash Equilibrium. Instead, (Defect, Defect) is the unique Nash Equilibrium. Because

4 In particular, the ‘SHJ’ series of classification learning experiments, starting with Shepard et al. (1961)
and including Nosofsky (1986) and Nosofsky et al. (1994).
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6 T. Guilfoos, A. D. Pape

of this tension between what is best for the group versus the individual, the repeated
Prisoner’s Dilemma is used as a metaphor for cooperation in general and has been
used to represent situations including public goods problems, common pool resource
depletion, and negotiation in international politics.

Much of the theoretical investigation into the repeated Prisoner’s Dilemma has been
about the question: when does cooperation occur and when is it sustainable? There are
many reasons why individuals might choose to cooperate, such as reputation building,
altruism, or fear of reprisal. The fear of reprisal was formalized in the famous Folk
Theorem first suggested by Friedman (1971), where players cooperate in the infinitely
repeated Prisoner’s Dilemma in a sustainable (i.e., subgame perfect Nash) equilibrium.
The reprisal the players fear is that their opponent will defect in all future periods,
therefore reverting to the suboptimal Nash outcome. This has been shown to be stable
when players are sufficiently patient (Fudenberg and Maskin 1986). However, this
does not imply that rational agents will necessarily cooperate, as mutual defection in
all periods is also a subgame perfect Nash equilibrium.

Experimentalists have also been investigating the causes and sustainability of coop-
eration through different treatments in experiments for some time now.5 Most relevant
to our investigation today, Camera and Casari (2009) show that punishment and infor-
mation of past play history can lead to higher sustainable levels of cooperation. They
show this by experimentally varying the level of information available to players and
measuring the resulting levels of cooperation. We attempt to explain their data with
CBSA.

The central investigative tool of this paper is a software agent; therefore, this paper
is part of Agent-based computational economics. There is a long history of using com-
putational agents to explore the repeated Prisoner’s Dilemma (PD): most famously,
Axelrod (1980) ran a series of tournaments where academics and computer program-
mers submitted strategies that play against each other in a repeated PD in one of the
earliest and most famous agent-based investigations. Similarly, Miller (1996) explores
the evolution of strategies when computational agents pick from a predetermined set.
They investigate which strategies survive over repeated play of the PD as informa-
tion is varied. This strain of literature has typically involved agents following simple
strategies that are tailor-made for this application, such as tit-for-tat or the grim trigger
strategy. The contribution of CBSA to this literature, other than its striking empirical

5 The experimental literature on the PD and other repeated games is vast. A sample follows; also see the
discussion in Sect. 6. Brosig (2002) show that signaling in face-to-face experiments may be effective at
encouraging cooperation. In one-shot games, there exists a low level of cooperation (Bereby-Meyer and
Roth 2006). Agents may learn to cooperate in repeated games, especially when monitoring of other players
actions is allowed (Selten and Stoecker 1986; Andreoni and Miller 1993; Hauk and Nagel 2001) but that
cooperation breaks down during the course of the game. Evidence on the altruism motivation is mixed,
some finding evidence for (e.g., Kreps et al. 1982) and some against (e.g., Cooper et al. 1996). Other papers
of note include Ellison (1994), Bó (2005) and Bo and Fréchette (2011). Chong et al. (2006) and Camerer
and Hua Ho (1999) use an ‘experience weighted attraction’ model to study learning in a repeated trust
game. This model postulates that players remember the history of previous play and form beliefs about
what other players will do in the future and also are reinforced by how successful previous strategies have
been. Monterosso (2002) uses false feedback to disrupt equilibria and measures the effects; this work seems
also well suited for analysis by CBSA and analyzing these data is a possible future extension.
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Predicting human cooperation in the PD using CBDT 7

fit, is that CBSA is a general choice engine that can be used in other games and decision
problems.

3 The Camera and Casari (2009) experiment and CBSA

In this section, we describe how to use the Case-based Software Agent (CBSA) to
apply case-based decision theory to the experiment performed by Camera and Casari
(2009). This involves recreating the environment of the experiment within the confines
of the software as accurately as possible, so that a comparison between the simulated
‘data’ produced by CBSA and the human data is a test of case-based decision theory
and not artifacts of the implementation or software. Because this is a simulation,
every function and parameter must be specified for a particular run, these choices are
specified below. After establishing this construction, the statistical method behind the
comparison between CBSA and human data is discussed in Sect. 4.

First, we describe the experiment performed by Camera and Casari. The specific
parameterization of the Prisoner’s Dilemma used by Camera and Casari is shown in
Fig 1.6 As usual, the first payoff listed is for player 1 and the second is for player 2.
In the experiment, the human subjects are put into 4-person groups. A group is called
an ‘economy.’ Each economy plays one ‘supergame.’ A ‘supergame’ is a series of PD
games among the four players, played for a random number of periods. Each period,
the 4 subjects are randomly paired to play PD.7 After both pairs play and payoffs are
given, with a fixed probability (1 − δ), the supergame immediately ends; and with
continuation probability δ, the game is played again. This repeats until continuation
fails. Camera and Casari (2009) set δ = 0.95 which implies that at all times, the
conditional expectation is that there will be 20 more periods of play.

Camera and Casari investigate four experimental treatments, and we consider three
of these four treatments here.8 The treatments are designed to investigate how the
level of anonymity influences players’ decisions to cooperate. Increasing the level of
information about other players’ identities and past play expands the set of possible
cooperative equilibria in the games. Correspondingly, Camera and Casari find that
more public information of players’ identities results in more cooperative behavior.

Now we discuss the CBSA implementation of the Camera and Casari experiment.
CBSA shares all primitives with CBDT, so there is a set of problems, a set of actions,
and a set of results. A single learning experience, called a case, is a problem, action, and
result triplet. In addition to these three primitives, CBSA follows case-based decision
theory in defining a utility function, a similarity function, and an aspiration level, as
well as an additional parameter: introduced here, CBSAs have an act randomization
probability α ∈ [0, 1]. Finally, CBSA requires the definition of a so-called problem-
result map or PRM. The PRM is the transition function of the environment. We define
all these objects below.

6 See Camera and Casari (2009) for details about why these payoff values were selected.
7 Randomly paired with a uniform probability.
8 The excluded treatment involves an additional stage game after the PD is played. We hope to study this
treatment in a future extension.
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8 T. Guilfoos, A. D. Pape

Fig. 1 The Prisoner’s Dilemma
used in Camera and Casari
(2009)

Player 2
C D

Player 1 C 25,25 5,30
D 30,5 10,10

The experience of the human subject is to repeatedly play the Prisoner’s Dilemma,
so we wish to consider one round of play as generating one learning experience
or case. Correspondingly, the set of actions A is the set of actions in the one-shot
Prisoner’s Dilemma: A = {C, D}, and the set of results R is the payoffs found in
Fig. 1: R = {5, 10, 25, 30}.

The set of problems is more complicated. The ‘problem’ can be thought of as
the vector of information observable by the player before the choice is made.9 In the
Camera andCasari setting, the experimental treatment is to vary the player’s observable
information: therefore, the problem set definition varies with the treatment. We define
the problem set that corresponds to each of experimental treatments below—but first
we reason that in all treatments, players are aware of how far into the supergame they
are, so all treatments’ problem vectors include the period of play t . The other elements
of the problem vectors vary by treatment.

Treatment 1 is private monitoring, which consists of anonymous subjects playing
the supergame with no information about the player they are paired against or the
players in the rest of the economy. Since no other information is available, P1 = T ,
with typical element p1 = (t), where t ∈ T = {1, 2, 3, . . .}.

Treatment 2 is anonymous public monitoring, which gives information about the
history of other players, including the highlighted history of one’s current opponent.
However, explicit identifiers are not available. In this treatment, we reason that the
relevant information is the average cooperation rate of ones current opponent. SoP2 =
T ×[0, 1], with typical element p2 = (

t, a
(
θ ′)). The dimension corresponding to the

interval [0, 1] is the average cooperation rate of the opponent, where θ ′ is the identity
of the opponent, and where a

(
θ ′) is the average cooperation rate of opponent θ ′.

Treatment 3 is non-anonymous publicmonitoring, which consists of the information
available in Treatment 2 as well as a unique ID of their opponent. We represent this
as a vector of three binary variables (id1, id2, id3), where at any time exactly one id
variable is 1 and the others are 0. Therefore,P3 = T ×[0, 1]×{0, 1}×{0, 1}×{0, 1},
with typical element p3 = (

t, a
(
θ ′) , id

(
θ ′)), where θ ′ is the identity of the opponent,

where a
(
θ ′) is the average cooperation rate of opponent θ ′, and where id

(
θ ′) is a

string of dummy variables that indicate the identity of opponent θ ′.
A tangent about the choice of Camera andCasari for testing CBSA: The fact that the

experimental treatment is to vary the information available to the players means that
this setting is ideal for testingCBSA, and is, in fact, one of the key factorswe considered
in selecting this experiment to model and test. Since the treatments in the experiment
imply different definitions of the set of problemsP , this experiment provides a set of a

9 This is akin to the player’s information set, but there is an important difference: the information set usually
includes the history of play. That is not necessarily the case here, because ‘history’ is typically handled by
the player’s memory, that is, set of past learning experiences, and not the problem vector.
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Predicting human cooperation in the PD using CBDT 9

priori hypotheses that are empirically testable: under the varying definitions of the set
P defined by the treatments, CBSA’s level of cooperation will move in tandem with
humans. Defining the problem sets requires some interpretation; that is, the treatments
do not uniquely identify corresponding problem sets. But, importantly, these problem
set definitionswere chosenwithout regard for goodness-of-fit (theywere chosen before
statistical analysis).

We assume the utility function u : R → R is simply the risk-neutral u(x) = x ;
this means that we assume the payoffs of the game represent utility payoffs.

The similarity function s : P×P → [0, 1]describes howsimilar two circumstances
are in the mind of the CBSA. Pape and Kurtz (2013) found that, consistent with the
evidence from psychology (Shepard 1987), the similarity function has the following
form, which was provided with an axiomatic foundation by Billot et al. (2008). We
assume this functional form here:

s(p, q) = 1

ed(p,q)

where p, q ∈ P

and d(p, q) =
√√√√

# Dims∑

i=1

[
(pi − qi )2

]

and pi refers to the i th element of p

The term “# Dims” refers to the number of dimensions of the problem set
P: # Dims (P1) = 1, # Dims (P2) = 2, and # Dims (P3) = 5. It is plausible that
different dimensions could have differing weights, that could plausibly vary over
time. These are called ‘attentional weights’ in the psychology literature. We find these
weights to be of little qualitative importance here sowe do not consider them explicitly.

There is an aspiration level H ∈ R, which represents a target level of utility of the
agent. We explicitly consider this as a fitted parameter.

Along with the decision primitives, CBSA defines the decision environment, i.e.,
those parts of the choice problem that are external to the agent.10 InCBSA, the decision
environment is represented by a function (algorithm) called the problem-result map
or PRM. The PRM is the transition function of the environment. It takes as input the
current problem p ∈ P the agent is facing, the action a ∈ A that the agent has chosen,
and somevector θ ∈ Θ of environmental characteristics. ThePRM returns the outcome
of these three inputs: namely, it returns a result r ∈ R; the next problem p′ ∈ P that
the agent faces; and a potentially modified vector of environmental characteristics
θ ′ ∈ Θ, i.e.,

PRM : P × A × Θ → R × P × Θ

In general in CBSA, θ describes the current state of the environment of each agent, i.e.,
exogenous, unknown forces that are acting on the agent.11 In the setting of Camera

10 These need not be defined for a decision theory, so are not a formal part of CBDT, and need only be
formally defined when one seeks to generate simulated choice behavior to compare to empirical data.
11 Known exogenous forces acting on the agent are part of the problem vector.
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10 T. Guilfoos, A. D. Pape

Input: problem p, memory M.

1. For each a ∈ A:

(a) For each (q, a, r) ∈ M, draw r.v. b(q,a,r) =

{
1, with probability precall

0 otherwise.

Construct Ma =
{
(q, a, r)

∣∣b(q,a,r) = 1, AND
∃q ∈ P, r ∈ R s.t. (q, a, r) ∈ M}

(b) Let Ua =

{∑
(q,a,r)∈Ma

s(p, q)
[
u(r) − H

]
, if Ma �= ∅

0, otherwise

2. Construct set BEST =
{
a ∈ A∣∣Ua = maxb∈A {Ub}

}
3. If #(BEST ) = 1 then let a� be the sole entry in BEST.

If #(BEST ) = 2, then C is chosen with probability α, D with probability
(1 − α).

Output: Selected action a�

Fig. 2 The choice algorithm

and Casari, the environment of the player is the identity of the opponent. Given this
definition, the PRM finds the action a(θ) chosen by the opponent, then (1) assigns
the payoff associated with actions (a, a(θ)) to the result r , (2) chooses a new oppo-
nent θ ′, and (3) delivers the new problem vector p′ associated with opponent θ ′. For
completeness, the explicit PRM is provided in Figure 7 (see Appendix 2).

Figure 2 describes the choice algorithmwhich implements the core of CBSA,where
the choice C represents Cooperation and D represents Defect. It is an algorithmic
description of the choice process defined by CBDT, with two modifications. The
modifications allow for imperfect memory. In Pape and Kurtz (2013), it was found
that a match between CBSA and human data was only achieved by allowing for
imperfect memory: otherwise CBSA solves the classification learning problem much
faster than humans. We find that imperfect memory is also important for matching
human data in this setting (Sect. 5.4).

There are two kinds of imperfect memory. First, there is imperfect recall, governed
by aprobability precall ∈ [0, 1]. Imperfect recall corresponds to an inability to access all
memory at any given time, and it is therefore associatedwith limited cognitive capacity.
Second, there is imperfect storage, governed by a probability pstore ∈ [0, 1]. Imperfect
storage corresponds to a failure to add some experiences to memory after they are
experienced, and it is therefore associated with limited memory storage capacity.

In Fig. 2, the agent faces a problem p ∈ P and has a memory M⊆ C. In Step
1a, for each action a, she collects those cases in which she performed this act. Since
her recall is imperfect, relevant cases are selected into the set Ma with probability
precall, where relevant cases which are not recalled are simply ignored.12 In Step 1b,
she uses this subset of her memoryMa to construct a utility forecast of that act, called
hereUa . The agent then chooses the action which corresponds to the maximumU. As
seen in step 3, when there is a tie between C and D,C is chosen with an exogenous

12 When precall = 1, the agent has perfect recall. It then corresponds to CBDT as it appears in Gilboa and
Schmeidler (1995).
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Predicting human cooperation in the PD using CBDT 11

Input: problem p, memory M, characteristics θ.

1. Input p, M into choice algorithm (Figure 2). Receive output a�.
2. Let (r, p′, θ′) = PRM(p, a�, θ).
3. With probability pstore,

Let M’ = M ∪ {(p, a�, r)}
Else let M’ = M

Output: problem p′, memory M′, characteristics θ′.

Fig. 3 A single choice problem

probability α. In the original formulation, it was assumed that α = 0.5, but in this
study, we calibrate α to data (see Sect. 4 for calibration details).

Figure 3 describes a single choice problem faced by the agent. It embeds a reference
to the choice algorithmdescribed inFig. 2. Figure 3 embeds the agent in an environment
and explicitly references that environment in the call toPRM. (ThePRM corresponding
toCamera andCasari’s experiment is described above and also appears inAppendix 2).
In Step One of the single choice problem, the agent selects an act, a�. In Step Two,
the action is performed in the sense that the environment of the agent reacts to the
agent’s choice: the PRM takes the current problem p, the action a� selected by the
agent, and the characteristics unobserved by the agent θ, and constructs a result r , a
next problem p′, and a next set of characteristics θ ′. In Step Three, the agent’s memory
is augmented by the new case which was just encountered, so long as the agent does
not have a ‘write-to-memory error:’ i.e., with probability pstore, the case that was just
experienced is added to the setM.With probability (1 − pstore), that case is discarded.

Since the choice problem depicted in Fig. 3 maps a problem, a characteristic, and
a memory vector to another vector in the same space, it can be applied iteratively. A
series of such iterations, along with initial conditions and ending conditions, can then
be used to produce a single time series of agent behavior, called a ‘run.’ The ending
condition used by Camera and Casari, as mentioned above, is a δ probability of ending
the supergame after each period. We follow this ending condition in the sense that we
simulate the actual lengths of play that appear in the data; see Sect. 4 below for details.

4 Statistical model and fitting human data

In this section, we describe the statistical and simulation method by which we esti-
mate the parameters of this model. First, we give an overview of the criteria we use
to evaluate the explanatory power of the parameterized model and the process we
use to estimate those parameters, which includes a description of the simulated data
generation, the method we use to bootstrap standard errors for our parameters, and
a description of these free and constrained parameters. Then we discuss the relevant
psychometric literature, which is the source of this modeling perspective.

There are three criteria we use to evaluate the explanatory power of a model:
qualitative fit, quantitative fit, and model complexity.

Qualitative fit is equivalent to matching “stylized facts” of human data. For exam-
ple, we find that, empirically, Treatment 3 maintains a higher cooperation rate than
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12 T. Guilfoos, A. D. Pape

Treatments 1 and 2 in all periods. A model which matches more of these regularities
is said to have a greater qualitative fit.

Quantitative fit is a numeric evaluation of fit to human data: for any given set of sim-
ulated data, we construct Mean Squared Error (MSE) between the simulation average
cooperation rate over time and human average cooperation rate over time. The lower
the MSE, the better the quantitative fit. Even though perfect quantitative fit implies
perfect qualitative fit, in practice, quantitative fit can come at the cost of qualitative fit.
In the selection of best-fitting parameter values, we search the parameter space tomax-
imize quantitative fit and then evaluate qualitative fit of the best-quantitative-fit model.

Model complexity is known as ‘over-fitting’ in econometrics or ‘model elegance’
in theory. This third criterion rests on the observation that if a model is allowed to be
arbitrarily complicated, then perfect qualitative and quantitative fit can be achieved,
but such a model may be undesirable because it does not reveal insight into the phe-
nomenon and is not generalizable out-of-sample. This consideration leads us to select
a simpler model over a more complicated one.13 Like qualitative fit, model complexity
is an ex-post evaluation criterion.

Quantitative fit guides the selection of best-fitting parameters in amanner analogous
to linear regression. Like linear regression, we seek a set of parameters of a mathe-
matical model that best fits observed data by minimizing mean squared error between
predicted and observed values of the outcome variable. However, unlike regression,
there is no known closed-form function from the observed data to the parameters of
CBDT.14 Because there is no closed-form function, we search the space of parameter
values by (1) running CBSAwith these different parameter values, (2) generating sim-
ulated data, and (3) measuring those simulated data against the human data according
to mean squared error (MSE), and returning to step 1 with new parameter values.
Specifically, we explore the parameter space through an iterated grid-search: the para-
meter space is swept at a certain resolution, generating 1000 simulation runs for each
parameter combination. Then, the part of the parameter space which contains the best
fitting models is explored at a higher resolution, again with 1000 simulation runs
per parameter combination. This is repeated until it appears we exhaust measurable
improvements in MSE.

The 1000 simulation runs are generated in the following way:15 For each candidate
set of parameter values, we construct 50 ‘sub-simulations,’ each corresponding to one
of the 50 observed supergames in the data. This is done by setting the number of periods
and the random pairing in each period to that which occurred in the corresponding
observed supergame. We then run each sub-simulation 20 times, generating 1000 =
20 × 50 total runs. Note that this means that we have 1, 000 period one observations,

13 For another point of view on this criterion, consider two competing theories that attempt to explain
the same phenomenon: theory a and theory b. Suppose that there is some empirical data available about
the phenomenon. Suppose theory a has many more free parameters than theory b does. Now suppose we
calibrate theories a and b to the data, and we find, after calibration, that theory a and theory b both explain
the same fraction of the variation in the data and explain the same qualitative phenomena. Then, under the
model complexity criterion, theory b is preferred.
14 i.e., the equivalent to β = X ′X

X ′Y .
15 Thanks to an anonymous referee for this suggestion.
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Predicting human cooperation in the PD using CBDT 13

but as the rounds go on and some groups stop playing, the number of observations falls.
By round 30, we typically have 2–3 groups left in each treatment, both in the observed
and simulated data. This corresponds to 200–300 observations in the simulated data.

Beyond point estimates, we also desire to ascertain the statistical significance of
our parameter estimates. We do this by bootstrapping standard errors using the data
(Wooldridge 2012).16 This process is similar to bootstrapping standard errors in a
regression model: we randomly select a subset of the experimental panel data, select
the best-fitting parameter values for that subset, and repeat, until we have generated
a distribution for these parameter values. Given this constructed distribution of para-
meter values, we can construct standard errors of those estimates. Of course, here the
best-fitting model is chosen for each subsample in the manner described above (1000
runs and comparing MSE).

The formula for the bootstrapped standard error of a parameter β is

SE(β) =
√√√√ 1

N − 1
×

N∑

i=1

(
βi − β̂

)2
,

where N is the number of times subsamples are drawn and parameters re-estimated,
βi is the best fitting parameter estimate associated with the i th subsample, and β̂ is
the estimate of β from the full dataset.

There are three parameters of CBSA that are estimated in this manner. The first
and second estimated parameters are the imperfect memory parameters: pstore, which
is the probability that an individual case is written to memory, and precall, which is
the probability that an individual case is recalled when memory is accessed. The third
estimated parameter is the aspiration level H , which is the target payoff level sought
by individuals.17

In addition to the three estimated parameters, there are two that are chosen according
to theory. The first parameter chosen in this way is the problem vector p, which was
described above. The second is α, the probability of cooperating when indifferent.
A brief theoretical analysis proves that α will be equal to the population average
cooperation level in the first round of play. The logic is as follows: at the beginning of
the supergame, all agents are indifferent between C and D and therefore randomize
with probability α. Therefore, a priori the first round of play will, on average, yield a
fraction α of cooperators, which of course turns out to be true in the simulated data.18

16 To the authors’ knowledge, this is the first example of bootstrapping the standard errors of parameters
in an agent-based model.
17 There are also parameters we do not choose to vary. For example, we do not vary the functional form
of similarity: we choose only the ‘accumulative’ form of similarity over ‘average similarity,’ as average
similarity is found in Pape and Kurtz (2013) to cause the counterfactual behavior of individuals believing
actions to be irrelevant. We also do not vary from the functional form of inverse exponential weighted
Euclidean distance. There is a strong empirical case for this functional form in psychology,which is bolstered
by the results found in Pape and Kurtz (2013). Please see that paper and Sect. 3 of this paper for details.
18 An alternative modeling choice is to posit a two types of agents: ones who always cooperate when
indifferent and ones who always defect. Then one calibrates the relative size of the two populations to
the known cooperation rate in the first round. This alternative modeling strategy does not make a large
difference in the results so it is not presented here.
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14 T. Guilfoos, A. D. Pape

This method (other than bootstrapping) was used in the economic literature in Pape
and Kurtz (2013). In that paper, the authors use CBSA to evaluate CBDT’s ability
to explain human learning behavior in a set of concept-learning experiments from
psychology, using psychological statistical methods (‘psychometrics’). In this litera-
ture, mechanistic or algorithmic models of human behavior are used to simulate data,
which are compared to human behavioral data collected in the laboratory. They andwe
follow the method used in the work of Nosofsky et al. (1994), which advanced the sta-
tistics of this field; in their own words, “although previous researchers have discussed
the ability of different models to account for qualitative aspects of [concept learning
experimental] data, in this research we begin the process of quantitatively testing such
models (Nosofsky et al. 1994, p. 354).” Like us, Nosofsky et al search the space of free
parameters to minimize the sum of square deviations between the (average) predicted
and (average) observed outcome variable.19 This method is widely accepted in psy-
chology, which uses these kinds of models fitted to ‘micro-level’ experimental panel
data using algorithmic models like ours.20 This method also bears some similarity to
calibration of macroeconomic models (Kydland and Prescott 1996): perhaps the most
important difference between this method and macroeconomic model calibration is
that macroeconomic models calibrate to time series instead of panel data. We intend
to investigate this relationship more thoroughly in future work.

A final comment on this method: matching the simulated average data to the aver-
age of the outcome variable of the data ignores variance of those data. It stands to
reason that it may be valuable to count more heavily observed outcomes that have low
variance in data. Here we are also able to follow Nosofsky et al. (1994), who present
a weighted mean squared error, where the weights are chosen to address this concern:
“The weighted [mean squared error] is found by [averaging] the squared deviation
between the predicted and observed error proportions weighted by 1

σ 2 , the inverse

of the variance of each cell proportion[.] (Nosofsky et al. 1994, p. 362).”21 We try
estimation with weighted mean squared error, and, like Nosofsky et al, find it has little
effect on the results. Therefore, we do not present these results here.

5 Experimental results

In this section, we present the results of two versions of CBSA and compare them to the
results of the Probit found in Camera and Casari (2009) and a constrained alternative
Probit formulation. The purpose of this comparison is to validate CBSA: we seek
to empirically ‘benchmark’ CBSA against some alternative explanatory model. We
compare the four models by the model selection criteria described in the previous
section: quantitative fit, qualitative fit, and model complexity. An overview of the
results can be seen in Table 1. In this table, we provide parameter estimates for the
two CBSA versions and degrees of freedom and goodness-of-fit (MSE) of all four

19 In the case of concept learning, the outcome variable in question is the rate of misclassification of
particular objects over time in a supervised learning environment
20 e.g., Nosofsky and Palmeri (1996), Love et al. (2004), Kurtz (2007) and Vigo (2013).
21 They cite Bishop et al. (1975) as a statistical source for this method.
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Table 1 CBSA and probit regression predicting average cooperation rates

Benchmark
CBSA

Constrained
CBSA

Full probit Constrained
probit

Treatment 1

H 10.45 (0.479) 10.1 (0.339)

precall 0.25 (0.109) 0.70 (0.078)

pstore 0.75 (0.175) 0.25 (0.039)

α 0.735 0.735

p (t)

Treatment 2

H 15.15 (0.520) 11.50 (0.919)

precall 0.50 (0.121) 0.70 (0.078)

pstore 0.60 (0.133) 0.25 (0.039)

α 0.705 0.705

p
(
t, a

(
θ ′))

Treatment 3

H 12.45 (0.742) 12.75 (0.872)

precall 0.70 (0.139) 0.70 (0.078)

pstore 0.20 (0.052) 0.25 (0.039)

α 0.87 0.87

p
(
t, a

(
θ ′) , id

(
θ ′))

Other
estimated
parameters

None None See Camera
and Casari
(2009)

See Appendix
1

# Parameters 15 11 68 25

Mean Sq. error 0.00091 0.00129 0.0022 0.0289

Indiv. fixed effects? No No Yes No

Cycle fixed effects? No No Yes No

Predicted values Fig. 4b Fig. 4c Fig. 4d Fig. 4e

Bootstrapped standard errors are given in parentheses
All estimates provided here are significant at the 1 % level
α and p are set by theory and are not estimated. Only H , precall, and pstore are estimated
In the definition of p
t is the time period
a

(
θ ′) is the average cooperation rate of opponent θ ′

id
(
θ ′) is a string of dummy variables that indicate the identity of opponent θ ′

precall and pstore are constrained to be identical across treatments in the Constrained CBSA

available models. The predicted outcome variable, average cooperation rates over
time, for all four models as well as the raw data are shown in Fig. 4. We also organize
these predicted outcome variables by treatment and include 95% confidence intervals
(the gray area around the CBSA prediction) in Fig. 5.

We are able to show (1) that the CBSA correctly predicts the empirically observed
trajectory of average cooperation rates over time across different treatments, and (2)
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Fig. 4 Cooperation rates over time: experimental data versus alternative models. a Human data: Camera
and Casari (2009). b Simulated data: CBSA. Benchmark model. c Simulated data: CBSA. constrained
alternative. d Simulated data: Full probit, camera and Casari e Simulated data: constrained probit

that the choice behavior implied byCBSA is a closer fit to the empirical data than either
Probit models. We also find that the best-fitting parameters suggest (3) humans aspire
to payoff value above the mutual defection outcome but below the mutual cooperation
outcome, which suggests they hope, but are not confident, that cooperation can be
achieved, and (4) circumstances with more details are easier to recall. We also predict
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Fig. 5 Cooperation rates over time: comparisonby treatment.aTreatment 1: privatemonitoringbTreatment
2: anonymous public monitoring. cTreatment 3: non-anonymous public monitoring. Note: The gray-shaded
areas depict the 95 % confidence intervals of the prediction of the baseline CBSA model

that, if the experiments of Camera and Casari were run for more periods, then we
would begin to see an increase in cooperation among the players.

Probit and CBSA methods with similar goals: the coefficient estimates of a Probit
emerge from an analytical maximization of a likelihood function given the data, and
the CBSA parameter estimates emerge from a computational maximization of a quan-
titative measure of fit to data. In this sense, they are both predictive methods calibrated
to data. Therefore, one could think that if CBSA compares favorably to the Probit
along some goodness-of-fit metric, then perhaps CBSA should be considered more
seriously as an empirical method. On the other hand, if CBSA compares unfavorably
to the Probit, it should be considered less seriously.

Note that this does not imply we seek to accept Probit over CBSA or the reverse.
This is because CBSA and Probit could both be true. Suppose both the Probit and
CBSA were good fits to explain the empirical data. One explanation could be that
CBSA explains human learning behavior, and the memory, similarity, and utility of
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18 T. Guilfoos, A. D. Pape

CBSA together encode strategies that the Probit measures, even though CBSA does
not explicitly represent strategies.22 Another explanation notes that Decision Theory
is built on representation theorems: if behavior matches certain axioms, then a util-
ity function, beliefs, etc., that represent that choice can be constructed. However, in
decision theory, no representation theorem claims exclusivity: on the contrary, so long
as the axiom sets of two representation theorems are not mutually exclusive, then the
choice behavior can be represented by the structures in each theorem. So if the Probit
and CBSA both seek to explain behavior in the ‘representation theorem’ sense, they
could both be valid.23, 24

This section proceeds in four parts: First, we describe the four models depicted
here. Second, we compare the two CBSAmodels and the two Probit models along the
dimensions of quantitative fit and model complexity using Table 1. Third, we compare
the four models along the dimension of qualitative fit by using Fig. 4. Steps two and
three establish results (1) and (2) above that CBSA fits well and compares favorably
to the Probit. Fourth, we interpret the estimated parameters from the Benchmark and
Constrained CBSA models and establish results (3) and (4) above.25

5.1 Model descriptions

The Benchmark CBSA has 15 parameters, which corresponds to five per treatment.
For each treatment, two parameters are chosen according to theory and three are
estimated. The parameters chosen according to theory are the definition of the problem
vector p and the likelihood of choosing cooperate when indifferent, α. The estimated
parameters are H , the aspiration level; precall, the probability that a given case is
recalled from memory; and pstore, the probability that a given case is written to, or
stored in, memory.

The Constrained CBSA is an alternative specification of CBSA. It comes from the
following observation: given the fact that data were provided to the subjects of the
experiment in all treatments in an identical way, perhaps memory is written to and
accessed in an identical away across treatments. The Constrained CBSA formalizes
this hypothesis by constraining that the probability of recall precall and the probability
of storage pstore to be the same across all three treatments. (The aspiration level H ,
the initial rate of cooperation α, and the definitions of the problem vector vary across

22 This is possible if one notes that these computational structures of CBSA could ‘encode strategies’ in
the way that a computer program encodes program behavior.
23 Moreover, Matsui (2000) shows that Case-based Decision Theory and Expected Utility Theory can
both represent the same choice behavior almost always. If the Probit can be likened to an expected utility
perspective, then Matsui’s result would suggest that both the Probit and CBSA could match.
24 It is interesting to consider running the models on each others’ outcomes: what strategies does a Probit
suggest that the CBSA has encoded? And, in the other direction, what CBSA parameters emerge when
CBSA seeks to predict the implied Probit strategies? We intend to consider these questions in a future
extension.
25 Camera and Casari provide their own interpretation of the Probit parameter estimates, so there is no
need to reproduce it here.
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treatments.) As a consequence, the Constrained CBSA has 11 parameters total, only
5 of which are estimated.

The Full Probit refers to the Probit analysis which appears in Camera and Casari
(2009), Table 4, p. 994. Camera and Casari propose three strategies players might
use, and their Probit attempts to empirically identify the relative importance of these
strategies in determining behavior. The three strategies are reactive strategies, global
strategies, and targeted strategies. Reactive strategies are choosing to defect after
one’s opponent defects. Global strategies are choosing to defect when any player in
the economy defects. Targeted strategies are choosing to defect against players who
have defected against oneself, but ignoring defections against others. Each of these
strategies is associated with a lag of one to five periods after a subject experiences a
defection, so that the marginal response from a defection can change over those five
periods. Camera and Casari’s Probit regression is designed to identify the marginal
effects of these different strategies, where the binary outcome variable is the choice
to cooperate and observations are people-periods. The probit also includes individual
and cycle fixed effects, for a total of 68 estimated parameters.

We created the Constrained Probit as a variant to the Camera and Casari Probit. It is
the same as the Full Probit, except that there are no cycle and individual fixed effects.
The reason for the Constrained Probit is to make a fair comparison to CBSA along
the following dimension: because CBSA does not fit parameters for different cycles
and individual subjects, it can predict out-of-sample in its current form. However, the
Full Probit allows independent fitting for individuals. These individual fixed effects
would not be available for predicting out-of-sample. So the Constrained Probit is,
in some sense, the best-fitting Probit which allows for the same freedom to predict
out-of-sample as does CBSA. (The same reasoning could be applied to out-of-sample
prediction for any econometric model. It guards against over-fitting.) The Constrained
Probit has 25 estimated parameters. The results of the Constrained Probit can be found
in the Appendix 1.

For all four models—the two CBSAs and the two Probits—we construct the aggre-
gate level of cooperation in each time period t :

CLt =
∑

i∈It

ai,t
Nt

,

where It is the set of subjects still playing at time t, Nt is the number of subjects
still playing at time t , and ai,t equals 1 if a player i chooses Cooperate and 0 if
she chooses Defect. In the experiment, Nt varies with treatment and time period. In
the CBSA results, Nt is as high as 4000 (we simulate 1000 economies, each with
four players, and as supergames end in the data, this value falls). To generate CLt

in the Full and Constrained Probit, we use the predicted value of the dependent vari-
able, Ŷi , for each agent in the data. Ŷi is the probability of cooperating. We record
a binary value of 1 if Ŷi ≥ 0.50 and 0 if Ŷi < 0.50. Then we construct the aver-
age cooperation level of all observations per period across economies as described
above.
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5.2 Model comparison: quantitative fit and model complexity (results 1 and 2)

Table 1 summarizes both the quantitative fit, MSE, and one measure of model com-
plexity, the number of estimated parameters. It also depicts the bootstrapped standard
errors.

With regard to quantitative fit, the order of Mean Squared Error (MSE) is

Benchmark CBSA < Constrained CBSA ≤ Full Probit << Constrained Probit

The Benchmark CBSA is a better fit than any other model available by a significant
degree. The next best is fit the Constrained CBSA, although the Full Probit is close
(only 22% larger MSE). The Constrained Probit performs far worse than the others:
its MSE is over 30 times that of the Benchmark CBSA and ten times that of the Full
Probit.

These results are particularly striking when one considers the model complexity.
The Full Probit is worse at explaining the average cooperation rates despite having four
times the number of free parameters. The Full Probit, as opposed to the Constrained
Probit, also takes advantage of individual fixed effects, which CBSA does not allow
(CBSA assumes that all agents are ex-ante identical and differ only because of experi-
ences over the course of the run.) Dropping individual fixed effects in the Constrained
Probit reduces themodel complexity to only about twice that of the Benchmark CBSA,
but at the cost of large amounts of predictive power.

5.3 Model comparison: qualitative fit (results 1 and 2)

Figure 4 visually depicts the actual average cooperation rates in the experiment versus
the four models’ predicted average cooperation rates. Figure 4a depicts the aver-
age cooperation rates over time in the human trials as found by Camera and Casari.
Figure 4b and c depicts the average predicted cooperation rates over time in the CBSA
models; first the Benchmark, then the Constrained. Figure 4d and e depicts the pre-
dicted average cooperation rates over time which arise from the Probit models; first
the Full, then the Constrained.

Consider the following observations about the human cooperation rates as seen in
Fig. 4a. First, Treatment 3 does not overlap with Treatments 1 and 2 and instead lies
strictly above it for the entirety of the thirty periods. Second, Treatment 1 involves
somewhatmore cooperation thanTreatment 2 in early periods, until some timebetween
rounds 5 and 10, where Treatment 2 begins to involve more cooperation. Treatment
2 continues to involve more cooperation until the end, with the exception of a brief
time around Period 20. Third, average cooperation rates appear to settle into their
long-run averages around period fifteen or so. There is a possible upward drift in the
three treatments, suggesting if the experiments were to have gone on longer, perhaps
average cooperation rates would be u-shaped.26

26 This is also predicted in the long run by CBSA; see Sect. 5.4 below.
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The CBSA predicted cooperation rates, Fig. 4b and c, match the human data qual-
itatively quite well. First, Treatment 3 is strictly above the other treatments for the
entirety of the run. Second, Treatment 1 has an early lead in cooperation over Treat-
ment 2, but switches places around between periods 5 and 10, as in the human data. (It
also ignores the brief reversal around Period 20, which looks like noise.) The crossover
occurs a bit too early in the Constrained CBSA. Third, average cooperation rates settle
into their long-run averages fairly early, although apparently earlier than the human
data (more likely by Period 10 to 15). There is also a possible upward drift in all
treatments near the end, particularly in Treatment 2. The upward drift in Treatment 2
is perhaps too pronounced in the Constrained CBSA.

The Full Probit, Fig. 4d, matches the human data somewhat well: Treatment 3 is
largely above the other two treatments, and Treatments 1 and 2 switch as they do in
the human data, with overlap seen in the human data. Also, there appears to be some
possible upward drift in all Treatments near the end. The most significant way that the
Full Probit matches the human data better than the CBSA data is Treatment 1’s spike
around period 5. The Full Probit has this spike (and the Constrained Probit has it in
an even more exaggerated way). CBSA has this spike only mildly (and, in fact, CBSA
seems significantly less noisy than the Probit). In the authors’ opinion, this brief spike
is likely just noise in the human data and not a meaningful feature to attempt to match.
So the extent to which the Full Probit ‘overfits’ on such features, it would suggest that
CBSA is a better qualitative fit. On the other hand, if one believes that the period 5
spike in the human data is not noise, then the fact that the Full Probit picked it up is
to its favor.

This spike does cause theConstrained Probit to violate the ordering that Treatment 3
has higher cooperation rates than Treatments 1 and 2 over the whole trial. Although the
Full Probit matches the trajectory and final average cooperation rates fairly well, under
the Constrained Probit, the average cooperation rates for the Probit under Treatments 1
and 2 fallmuch faster than either the human data or the benchmarkCBSA, resulting in a
final average level of cooperation much lower than the observed level of cooperation.
Finally, in Treatments 1 and 2, there is definitely no upward drift seen, although
possibly in Treatment 3.

Also consider Fig. 5, inwhich, using the bootstrapmethod,we calculate the standard
errors of the predicted cooperation rate for theCBSAbenchmarkmodel and display the
95% level confidence intervals, shown as the gray area around the CBSA prediction.
This provides us with the measure of variation in prediction which appears to fit the
experimental data quite well in all three treatments. This provides further qualitative
evidence that CBSA can consistently predict the average cooperation rates in the
empirical data over time.

5.4 CBSA: interpretation of estimated parameters (results 3 and 4)

We can establish, using bootstrapped standard errors, that all of the point estimates in
the CBSA models are highly significant at the 1% level. Furthermore, the individual
estimates from the treatments are different from each other in most cases. There are
significant differences between the estimates in the benchmark CBSA of H between
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treatments at the 5% level, found by using Z test. The estimates of pstore are not
statistically different from each other at the 10% level across almost all treatments.
The precall is statistically different when comparing treatment 3 to the other treatments.
The estimates of precall and pstore do not have a consistent ordering.

Here we interpret the values of the estimated parameters, precall, pstore, and H , in
the best-fitting CBSAmodels and establish the results three and four: (3) the aspiration
levels are ‘reasonable’ and (4) circumstances with more details are easier to recall.27

In the course of the presentation, we investigate these claims with the aid of some
robustness tests.

Result 3: The aspiration level H represents a target payoff level that the agent seeks
in the PD Stage game (Table 1). For the Benchmark and Constrained CBSAs, the
fitted values for all three treatments are above the (D, D) payoff (10) but below the
(C,C) payoff (25). This suggests that agents hope to do better than the stage game
Nash equilibrium but are not confident that they will. Aspiration levels can also be
interpreted as the satisficing payment required for a subject to stop searching for a
better outcome. This leads to an interpretation of the aspiration level as a weighted
average of the two symmetric outcomes, (C,C) and (D, D).28 In the benchmark
model, this interpretation implies that the agent only hopes for the mutual cooperation
outcome about 3% of the time in Treatment 1, 34% of the time in Treatment 2, and
16% of the time in Treatment 3. (The values are similar in the Constrained CBSA.)
The aspiration level is higher in 2 than in 1, and higher in 3 than in 1. This is consistent
with the interpretation that agents hope more monitoring will increase cooperation.
However, that interpretation is somewhat undercut by the fact that the aspiration level
is higher in Treatment 2 than in Treatment 3.

We run a robustness test by varying the aspiration level to examine the implications
of behavior in our model. In the Benchmark CBSA, when the aspiration level H is
set to be higher than achievable, 31, the mean squared error increases about twenty-
eightfold, to 0.022. When it is constrained to be below the worst payoff, 4, the MSE
increases about twenty-fivefold, to 0.025. The fact that reasonable aspiration values
provide a better fit than ‘unreasonable’ aspiration values should be interpreted as a
vote in favor of CBSA being the correct model specification.

It is worth considering the behavior one expects with different aspiration levels.
As mentioned in the description of CBDT, aspiration levels function as a satisficing
level. This can be seen in the functional form of case-based utility, which awards a
payoff of [u(r) − H ] for a case in memory which yields an outcome r . Consider a
new experienced case (p, a, r). If u(r) falls short of H , this new case would tend to
discourage action a in circumstance p (or other, similar circumstances), while if u(r)
exceeds H , this case encourages this same action in such circumstances.29

27 We do not interpret p, the problem set, and α, the probability of cooperating when indifferent, because
they are set by theory; therefore, their values are not a “finding” and are therefore it is not appropriate to
interpret them as one would estimated parameters. Please see Sect. 3 for how those parameters were chosen.
28 One could also interpret the value as being induced by some ‘hope distribution’ over all four payoff
values, 5, 10, 25, and 30.
29 The agent-basedmodeling literature describes these two behaviors as ‘exploration’ versus ‘exploitation,’
so aspiration levels determine the switch from exploration to exploitation.
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This implies that aspiration levels have the following behavioral implications: a
very low aspiration level yields quick ‘convergence’ in behavior for all circumstances
that is heavily influenced by early choices. A very high aspiration level yields con-
tinuous ‘searching,’ so agents are seen vacillating between defection and cooperation
for the same or similar circumstances. An intermediate aspiration level, then, leads
to some searching. For circumstances that are predictive of opponent’s behavior and
therefore of the payoffs associated with ones own actions, the agent may learn which
action is appropriate (yields the highest available payoff) and circumstances that are
not predictive (or predictive of only low-payoff-outcomes) will prompt the agent to
continue to search.

Result 4: The memory probabilities precall and pstore can be interpreted as follows:
A low precall implies the relevant limitation is cognitive capacity, while a low pstore
implies that the relevant limitation is memory space. These parameters vary across the
three treatments in the Benchmark CBSA, and are constrained to be identical in the
Constrained CBSA.

Let us consider the ordering of precall across treatments in the Benchmark CBSA.
In recall probability precall, this is the ordering: precall(Treat1) < precall(Treat2) <

precall(Treat3). This suggests as the length of the problem vector (i.e., available infor-
mation) increases, the probability of recall increases. This seems counter-intuitive:
the longer the problem vector, the more information must be recalled in the future.
Presumably, more information is more difficult to store and recall than less informa-
tion, which would make it harder, not easier, to recall. On the other hand, adding
information that is relevant to the problem could have the opposite effect. For exam-
ple, if one has access to the opponent’s ID, it may take less effort to store and recall
cases from earlier periods because there is a ‘marker’ to attach those memories to:
this ID variable. In any case, the apparent empirical fact is that the recall probability
is inversely related to the length of the problem vector.

Although in previous work (Pape and Kurtz 2013), it was found that precall was
found to be smaller than pstore, that does not consistently hold in this experiment.
Here we find that only Treatment 1 and 2 have precall less than pstore, while Treatment
3 and the constrained CBSA have the reverse.

For storage probability pstore, the ordering suggests that the probability of stor-
age decreases the length of the problem vector: pstore(Treat3) ≤ pstore(Treat2) <

pstore(Treat1). However, this set of orderings is not statistically significant at the 10%
level.

Next we consider the implications of perfect memory in the CBSA. When we only
consider perfect memory, i.e., precall = pstore = 1, we find that the MSE worsens
significantly. When memory is constrained to be perfect, the MSE increases about one
hundredfold, to 0.10. This suggests that imperfect memory may be more important
than reasonable aspiration values. In Fig. 6a, we see that in Treatments 1 and 2, the
downward trend quickly reverses toward perfect cooperation, and even Treatment 3
shows someupward drift near the end of the displayed timeframe. (The other parameter
values are kept at the level set in Table 1). We compare these results to long-run results
of the benchmark model in Fig. 6b. In this figure, the benchmark model is run for 200
periods. We see that even under imperfect memory, cooperation heads toward perfect
cooperation inTreatment 2,with someupward tendency inTreatment 3 aswell.Wealso
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Fig. 6 Cooperation rates: benchmark in the long run versus perfect memory. a Perfect memory. b Bench-
mark model in long run

find that for an increase inmemory over those values found in Table 1 (not shown here),
Treatments 1 and 3 also head toward perfect cooperation in this timeframe. This pattern
is robust to lowering the probability of cooperation when indifferent, so this is not a
product of over-selection under indifference. Instead, what is happening is that agents
eventually ‘find’ the cooperative outcome and then, as they go into the future, the early
events that led to defection fade into the past and cooperation wins over. When there
is perfect memory, this effect occurs too early to be consistent with the human data.

This observed effect makes an out-of-sample prediction: we predict that among
human players, if game playwas allowed to continue,wewould expect that the leveling
off would eventually turn around to increasing cooperation in the long run, most
strongly with Treatment 2. This suggests it would be valuable to do repeated Prisoner’s
Dilemma experiments for longer time spans (i.e., higher continuation probabilities) to
see whether this out-of-sample prediction is achieved.

6 Discussion

In this section, we discuss the broader implications of these results. To the
author’s knowledge, this is the first application of case-based decision theory to a
strategic/game-theoretic context. What is the appropriateness of such an application?
After all, case-based decision theory is developed for individual choice; is it appro-
priate to view game play as merely another form of decision-making? And, given this
match in this strategic setting between case-based decision theory—as implemented
through CBSA—and human choice, what have we learned about case-based decision
theory? What have we learned about learning-in-games?

Let us consider strategic choice problem as a decision theory problem in the
expected utility paradigm. In order to do so, one must define the state space. The
state space in this setting is the set of possible strategies (complete contingent plans)
that one’s opponent (and Nature) might use. From this perspective, the mapping of a
game into the expected utility framework is straight-forward. Consider von Neumann
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and Morgenstern in The Theory of Games and Economic Behavior: they transform an
arbitrarily complicated finite game into a game in which each player makes one move
which specifies all of their contingent plays; each player submits thismove to an umpire
who thenworks out the payoffs for all players. This results in a single expression for the
player’s probability-weighted payoff, “his ‘mathematical expectation’ of the outcome
(von Neumann and Morgenstern 1944, Sect. 11.2.3).” They continue: “The player’s
judgement must be directed solely by this ‘mathematical expectation,’—because the
various moves [of other players and Nature] are completely isolated from each other.”
(Themathematical expectation referred to here is expected utility as vonNeumann and
Morgenstern define it (See von Neumann and Morgenstern 1944, Sect. 5.2.2)). The
only remaining issue to determine choice is the probability distribution over other play-
ers’ strategies. The zero-sum analysis of von Neumann and Morgenstern and Nash’s
subsequent work (Nash 1950, 1953) can be thought of as a search of this space for ‘rea-
sonable’ priors. This historical note justifies the approach of viewing strategic choice
as another form of individual choice. Furthermore, and in justification of case-based
decision theory specifically, the fact that the state-space representation is well-defined
mathematically does not imply that it is intuitive for actual human players. Consider
the objection to the state-space representation offered by Gilboa and Schmeidler in
their original work (Gilboa and Schmeidler 1995): if the state space is not intuitive
for agents, then it might not be how agents actually represent their problem, so the
conclusions of that theory may not be helpful in understanding how humans actually
choose. Saying the reverse, finding a representation that is more intuitive for people
may lead to a theory that is better at predicting how people actually choose.

Along those lines, consider the theoretical (vs. empirical/experimental) game the-
ory literature of learning-in-games. The basic problem faced by researchers in this
literature is that for an agent to “learn” the strategy of her opponent, one of two things
must hold: she must have some a priori rule to extrapolate from past actions to future
actions or some a priori restriction on the set of possible strategies that are allow-
able. Why? Nachbar (1997) makes a concise formal argument: “Formally, if a player
can learn to predict the continuation path of play then, in particular, the player can
learn to predict the distribution over play in the next period. Let a one-period-ahead
prediction rule be a function that, for each history, chooses a probability distribution
over the opponent’s stage game actions. [...] [F]or any one-period-ahead prediction
rule, whether or not derived via Bayesian updating, there exists an opposing strategy
that does “the opposite.” [...] [S]o there is no one-period-ahead rule that is asymptot-
ically accurate against all strategies (Nachbar 1997, p. 227, footnote 3).” From this
perspective, the learning-in-games literature can be thought of as proposing different
extrapolation rules and/or restricted subsets. Nachbar (1997), for example, proposes
a set of ‘conventional’ strategies, and supposes that (it is common knowledge that)
agents have a lexicographic preference for conventional vs. unconventional strategies.
Another prominent example is Fudenberg and Kreps (1993, 1995), who suppose that
opponents’ play corresponds to historical frequencies of past play (“fictitious play”)
which leads to so-called self-confirming equilibria. From this perspective, case-based
decision theory is simply one such extrapolation rule. Why choose a case-based rule?
The first justification is, of course, the empirical success of Pape and Kurtz (2013)
explaining human learning in another setting. Another justification, however, relates
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directly to this basic problem that Nachbar describes so effectively. In the early his-
tory of the philosophy of learning, Hume (1748) introduced the ‘induction problem.’
Gilboa andSchmeidler take as some inspiration of case-based reasoningHume’s obser-
vation that “[f]rom causes which appear similar we expect similar effects. This is the
sum of all of our experimental conclusions (Hume 1748).” The reference to similar-
ity is the inspiration of Gilboa and Schmeidler to formally incorporate ‘similarity’
in their model. Nachbar’s observation that there must be some a priori extrapolation
rule or a priori restriction on the set possible ideas in order to learn from experience
is essentially a restatement of the induction problem as introduced by Hume. Now,
Hume’s point is that inferring from past events to future events falls short of ‘true
knowledge’ as one might want from a philosophical point of view; that is not the
point here, however. The point here is to take Hume’s claim as a hypothesis regarding
human learning behavior: that actual people extrapolate from past events to future
events using similarity. This is a strong, historically rooted justification for using a
case-based approach to model human behavior in learning-in-games. Moreover, since
we find that case-based decision theory provides a good match for human learning
behavior, it suggests that the development of a formal equilibrium concept along these
lines—a case-based equilibrium—could be a fruitful endeavor. Perhaps the most prof-
itable direction would be to investigate the relationship between learning implied by
case-based decision theory and fictitious play proposed by Fudenberg and Kreps.30

One vein of experimental/empirical game theory literature regarding learning-in-
games involves explaining human game play using reinforcement learning (Roth and
Erev 1995b; Bereby-Meyer and Erev 1998; Erev and Roth 1998, 2001; Erev et al.
1999). TheRoth,Erev, andBereby-Meyer papersmeasure success in explaininghuman
data by considering the mean squared deviation between average results of simulated
and observed data, as we do here. This supports the methodology we describe in
Sect. 4. In reinforcement learning, each agent keeps track of a weight (value) for each
actionwhich indicates her proclivity to take that action.When she takes an action and it
delivers a payoff which exceeds some reference level, she increases the weight on that
action, and when it falls short, she decreases the weight on that action. Reinforcement
learning can be made more complex: for example, the reference level can vary over
time and be endogenous to experience in some manner, or the agent can have multiple
sets of action weights, so that different circumstances invoke different action weights.
Reinforcement learning is related but distinct from case-based learning. For example,
in both theories, reference levels or aspiration levels play a key “sign-changing” role.
The major difference is as follows: first of all, CBDT does not collapse history into a
single set of weights, so CBDT allows for history to be re-examined later in the agent’s
experience. Also, CBDT has similarity, which seems to be a critical component to
getting human learning behavior correct.31 Although we do not explicitly compare
reinforcement learning versus case-based decision theory on the Camera and Casari
data, following the work of Pape and Kurtz (2013), it can be shown that while ‘simple’

30 We intend to develop this relationship in future work.
31 Pape and Kurtz (2013) investigate alternative similarity functions, including ones that involve ‘no’
similarity, and these do not capture the facts regarding relative difficulty of problems that human subjects
find.
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case-based learning reproduces the ordering of difficulty of human concepts found
in the psychological concept learning experiments of Nosofsky and Palmeri (1996),
reinforcement learning does not.32 Since differences between these approaches can
be found, it suggests that we may learn more about case-based learning by a closer
comparison between CBSA and reinforcement learning, which we intend to pursue in
a future extension.

7 Conclusion

In this paper, we use Case-based decision theory to explain the average cooperation
level over time of the repeated Prisoner’s Dilemma among random pairs of people
in a small group; the work of Camera and Casari (2009). We are the first to use a
method called the Case-based Software Agent and show that CBSA (and therefore
CBDT) empirically explains human behavior in a strategic, dynamic, multi-agent set-
ting. This provides a different frame of reference to view the results in the iterated
prisoner’s dilemma game that incorporates past experiences into explaining sustained
cooperative outcomes.

We establish four main results.
First, we find that CBSA predicts human behavior in this strategic and dynamic

setting quite well. It has a good quantitative fit, and its predicted outcome variable
has the main patterns of the human data without over-fitting. This is a vote in favor of
CBSA and CBDT as a explanation of human behavior in this setting.

Second, we find that CBSA compares quite favorably with the Probit from Camera
and Casari: it has an arguably stronger qualitative fit, a stronger quantitative fit, and
fewer free parameters to achieve this fit. Combined with Result 1, a fairly strong
empirical argument can be made that CBSA should be considered seriously as an
empirical explanation of human behavior in the repeated Prisoner’s Dilemma.

Third,wefindbest-fittingCBSAaspiration value H implies humans aspire to payoff
value above the mutual defection outcome but below the mutual cooperation outcome,
which suggests they hope, but are not confident, that cooperation can be achieved. In
principle, the best-fitting aspiration values could have fallen into the ‘unreasonable’
range–greater than the best or lower than the worst possible outcome–which would
have implied that CBSA is misspecified.

Fourth, we find evidence that suggests that circumstances with more details are eas-
ier to recall. The evidence is that our best-fitting level of probability of recall increases
as the experimental treatment varies as to share more information with the agents.
The best-fitting parameter values suggest that in treatments where subjects have more
public information, such as the ID of the partner, the probability of recall increases.

This paper was predicted in the concluding paragraph of Pape and Kurtz (2013):
“This computational implementation of Case-basedDecision Theory”–that is, CBSA–

32 With 1100 simulation runs for each of the six problem category types, case-based decision theory finds
the ordering that is observed in humans, with statistically significant differences. (This echoes the results of
Pape and Kurtz (2013)). However, with the same number of runs, reinforcement learning finds all problems
of equal difficulty (at least, not statistically significantly different in difficulty) and the point estimates do
not follow the human ordering. Please see Appendix 3 for details.
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“can be calibrated to and tested against human data in any existing experiment which
can be represented in a game-theoretic form[.] This suggests amodel for future studies.
As these studies accumulate, we will learn whether and when Case-based Decision
Theory provides an adequate explanation of human behavior in other decision settings
and may also learn which parameters appear to vary by setting and which, if any,
remain constant across settings.”With more studies like this one, their stated goal may
be achieved: “This could lead to a version of CBDT which can be used to simulate
human behavior in a variety of economic models.”

Acknowledgments This work is supported by the USDA National Institute of Food and Agriculture,
Hatch project 1005053.

Appendix 1: Details about the constrained probit

Similar to the Camera andCasari (2009) paper, this is a Probit regression to identify the
marginal effect of these different strategies. Table 2 shows the results of the different
strategies from the ‘constrained Probit,’ which differs from the one in Camera and
Casari (2009) only in that individual and cycle fixed effects are excluded. To make
clear the construction of the variables included, the grim trigger is coded as 1 for all
periods following a defection. The lag variables are to control for the five following
periods after a defection. The lag 1 contains a 1 for the first period after a defection
by an opponent but zero for all other periods, and a lag 2 contains a 1 for the second
period after a defection by an opponent. If the player chooses to defect after observing
a defection by an opponent, then the expectation would be a negative coefficient on at
least one of the grim trigger or lags.

Appendix 2: The explicit problem-result map corresponding to Camera
and Casari (2009)

Input: act a, problem p, characteristics θ.

1. Find action of opponent a(θ).
2. Set result r according to the game depicted in Figure 1, with actions (a, a(θ)).
3. Next opponent is chosen θ′.
4. Set next problem p′, by constructing the vector:

p′ =

⎧⎪⎨
⎪⎩
(t) , if Treatment 1
(t, a (θ′)) , if Treatment 2
(t, a (θ′) , id (θ′)) , if Treatment 3

Where:
t is the time period,
a (θ′) is the average cooperation rate of opponent θ′, and
id (θ′) is a string of dummy variables that indicate the identity of opponent
θ′

Output: result r, problem p′, characteristics θ′.

...

Fig. 7 The Camera and Casari Prisoner’s Dilemma experiment PRM

123



Predicting human cooperation in the PD using CBDT 29

Appendix 3: Case-based decision theory versus reinforcement learning

Table 3 contains the results from CBSA versus Reinforcement Learning on the
six canonical learning problems tested in the concept learning literature starting with
Shepard et al. (1961). CBSA was tested against these types in Pape and Kurtz (2013).
Standard CBSA with perfect memory and the standard similarity function was tested
against reinforcement learning for these six problems and compared against the data
from Nosofsky and Palmeri (1996). The ordering of the columns, I < IV < III <

V < II < VI, indicates the relative difficulty of the problems as humans find it (in the
data by Nosofsky and Palmeri). Each cell contains 1100 simulation runs. Note that
the order of the means of the CBSA results matches the human ordering and that the

Table 2 Probit regression on individual choice to cooperate: marginal effects

Dependent variable: 1 = cooperation, 0 = defection

Treatment 1
private
monitoring

Treatment 2 anonymous
public monitoring

Treatment 3 public
monitoring
(non-anonymous)

Reactive strategies

Grim trigger −0.485*** −0.309*** 0.046

0.007 0.093 0.035

lag 1 0.079* −0.052*** −0.084***

0.0434 0.003 0.037

lag 2 0.088** −0.089*** −0.175***

0.036 0.028 0.044

lag 3 0.066 −0.071*** −0.089***

0.047 0.019 0.018

lag 4 0.038* −0.062* −0.075

0.023 0.034 0.075

lag 5 0.005 −0.069*** −0.031

0.003 0.008 0.052

Global strategies

Grim trigger – −0.248 −0.121***

– 0.171 0.019

lag 1 – 0.194*** 0.021

– 0.065 0.067

lag 2 – 0.184 0.026

– 0.109 0.046

lag 3 – 0.191*** 0.051***

– 0.059 0.019

lag 4 – 0.153*** 0.003

– 0.032 0.034

lag 5 – 0.131*** −0.027

– 0.034 0.067
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Table 2 continued

Dependent variable: 1 = cooperation, 0 = defection

Treatment 1
private
monitoring

Treatment 2 anonymous
public monitoring

Treatment 3 public
monitoring
(non-anonymous)

Targeted strategies

Grim trigger – – −0.408***

– – 0.039

lag 1 – – −0.062***

– – 0.017

lag 2 – – −0.079***

– – 0.033

lag 3 – – −0.034

– – 0.024

lag 4 – – −0.062***

– – 0.007

lag 5 – – −0.079***

– – 0.009

Sample size 3520 5080 4280

Table 3 CBSA versus reinforcement learning: Nosofsky and Palmeri (1996)

I IV III V II VI

CBSA Mean 3.65 9.00 6.77 6.25 7.87 9.50

SD 1.12 1.88 1.35 1.93 1.48 1.22

RL Mean 13.39 13.21 13.38 13.48 13.47 13.39

SD 2.70 2.80 2.78 2.74 2.60 2.62

order of the means of RL does not. Moreover, the ordering of CBSA is significant (all
neighboring pairs pass t-tests at the 1% level). We believe this is attributable to the
similarity function that CBSA has that allows extrapolation from some problems to
others.
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