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Abstract This paper discusses random utility representations of the Luce model
(Luce, Individual choice behavior: a theoretical analysis, 1959). Earlier works, such
as McFadden (Frontier in econometrics, 1973), Yellott (J Math Psychol 15:109–144,
1977), and Strauss (J Math Psychol 20:35–52, 1979) have discussed random utility
representations under the assumption that utilities are additively (or multiplicatively)
separable in a deterministic and a random part. Under various conditions, they have
established that a separable and independent random utility representation exists if
and only if the random terms are type III (type I) extreme value distributed. This
paper analyzes independent random utility representations without the separability
condition and with an infinite universal set of alternatives. Under these assumptions,
it turns out that the most general random utility representation of the Luce model is
a utility function that is an arbitrary strictly increasing transformation of a separa-
ble utility function (additive or multiplicative) with extreme value distributed random
terms.

Keywords Independent random utility models · Independence from irrelevant
alternatives · Non-separable random utility representations
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1 Introduction

The representation of probabilistic models of choice behavior by random utility func-
tions has a long history. One of the early pioneers was Thurstone (1927) who proposed
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a Probit type model based on normally distributed utilities. In contrast, the theory of
Luce (1959) was derived from his Choice Axiom (equivalent to IIA) without reference
to an underlying random utility interpretation. Subsequently, Holman andMarley (see
Luce and Suppes 1965, p. 338, footnote 7), showed that the Luce model can also be
interpreted as a random utility model derived from extreme value distributed random
utilities. McFadden (1973), Yellott (1977), and Strauss (1979) have investigated the
following identification problem related to the Luce model, namely if there are distri-
butions of the utilities other than the extreme value distributions that yield the Luce
model. It turns out that under the assumptions of additively (or multiplicatively) sep-
arable utility functions in a deterministic part and a random part, the answer negative,
provided the utilities are independent. To this end, the most general results have been
obtained by Yellott (1977) and Strauss (1979). Strauss (1979) has also obtained some
results for the case where the random parts of the utility function are not necessarily
independent across alternatives.

Related works are Falmagne (1978), Strauss (1979), Colonius (1984), Monderer
(1992),Barberà andPattanaik (1986), andFiorini (2004)whohavediscussednecessary
and sufficient conditions on systems of choice probabilities so as to be consistent with
a random utility representation. Dagsvik (1994, 1995) showed that any random utility
model can be approximated arbitrarily closely by Generalized Extreme Value models.

In this paper, we consider another extension: we maintain the assumptions of the
utilities being independent across alternatives but abandon the assumption of separa-
bility. Under these assumptions, and with infinite universal set of alternatives, it turns
out that the most general random utility representation of the Luce model is a utility
function that is an arbitrary strictly increasing transformation of a separable utility
function (additive of multiplicative) with extreme value random component.

2 The luce model and non-separable random utility representations

Let S denote the set of integers and consider a family of random utility models with
utilities, Uj , j ∈ S, with the following properties. The utilities Uj and Uk are inde-
pendent for j �= k. To alternative j there is associated a positive scale w j such that
P(Uj ≤ u) = Fw j (u), u > 0, where Fw(u) is a c.d.f. defined on (0,∞) for given w
belonging to a some set. The scale {w j , j ∈ S} represents the deterministic parts of the
preference representation. In empirical applications, it will typically be specified as a
parametric function of individual characteristics and alternative-specific attributes.

Let C be a finite subset of S. Then the random utility model is a Luce model
whenever

PC ( j) ≡ P

(
Uj = max

k∈C Uk

)
= w j∑

k∈C
wk

. (1)

The special case where Fw j (u) = exp(−w j/u) corresponds to the multiplicative
random utility representation, Uj = w jε j where ε j has type I extreme value c.d.f.
exp(−1/u). The multiplicative representation is equivalent to the additive represen-
tation Ũ j = v j + η j where Ũ j = logUj , v j = logw j and η j = log ε j . It follows
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readily that η j has type III extreme value c.d.f. exp(− exp(−u)). It is well known that
the latter specification implies (1), see for example McFadden (1973).1

Theorem 1 Assume a random utility model with independent utilities U j , j ∈ S,
where P(Uj ≤ u) = Fw j (u) for each given w j ∈ A where A is a set containing at
least two positive real numbers. Furthermore, assume that Fw(u) is strictly monotone
and continuously differentiable in u ∈ (0,∞). Then (1) holds for any selection {w j ∈
A, j ∈ S} if and only if U j has the same distribution as H(w jε j ) where H is an
arbitrary strictly increasing mapping from (0,∞) to some suitable set and ε j , j ∈ S,
are independent extreme value distributed randomvariablewith c.d.f. exp(−1/u), u >

0.

Proof Consider first the “if” part. Then the utility representation {H(w jε j )} is equiv-
alent to the multiplicative representation {w jε j } because H is strictly increasing.
Moreover, the latter one is equivalent to the additive representation {logw j + log ε j }.
If ε j has c.d.f. exp(−1/u) it follows readily that log ε j has c.d.f. exp(− exp(−u)). Con-
sequently, the Luce choice model follows from well-known results, see for example
McFadden (1973).

Consider next the “only if” part. Let C = {1, 2, . . . ,m+1}wherem is any integer.
The corresponding choice probability of selecting alternative j can then be expressed
as

PC ( j) = P(Uj = max
k∈C Uk) =

∫
R+

F ′
w j (u)

m+1∏
k=1,k �= j

Fwk (u)du = w j∑m+1
k=1 wk

. (2)

With no loss of generality assume that 1 ∈ A. Consider the special case with
w1 = w and wk = 1, for k = 2, 3, . . . ,m + 1. Then the choice probability PC (1)
reduces to

PC (1) = w

w + m
=

∫
R+

F ′
w(u)F1(u)mdu. (3)

Since F1(u) is strictly increasing and continuously differentiable it follows that it
is invertible and the inverse is also continuously differentiable. By change of variable;
y = F1(u), dy = F ′

1(u)du, the integral in (3) transforms to

w

w + m
=

1∫
0

ψ ′
w(y)ymdy, (4)

where ψw(y) = Fw(F−1
1 (y)), which is for each given w a c.d.f. defined on [0,1].

The equation in (4) must hold for all m = 1, 2, . . .. The equation in (4) corresponds

1 In a recent paper by Fosgerau and Bierlaire (2009), it is argued in their abstract that sometimes the
multiplicative formulation may be a more plausible than the additive one because decision-makers may
evaluate relative differences rather than absolute differences. However, since the utility concept in this
context is ordinal the multiplicative and additive formulations are equivalent a priori (that is, before a
functional form of the respective deterministic part of the utility functions have been chosen).
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to Hausdorff’s moment problem (see Feller 1971 vol. II, pp. 224–225). Specifically,
Hausdorff has proved that ψw is uniquely determined provided (4) holds for every
integer m. Note next that ψw(y) = yw is a solution to (4). Hence, ψw(y) = yw is
the only possible solution.2 Thus, one must have Fw(F−1

1 (y)) = yw, which yields
Fw = Fw

1 .
Next, define H−1(x) = −1/ log F1(x). Since F1(u) < 1 for finite u it follows that

H−1(x) is positive. Furthermore, it is easily verified that H−1(x) is strictly increasing,
which implies that also H(u) is strictly increasing. Thus, with ε j distributed according
to the c.d.f. exp(−1/u), u > 0, we obtain that

P
(
H(w jε j ) ≤ u

) = P
(
ε j ≤ H−1(u)/w j

)
= exp

(
−w j/H

−1(u)
)

=
(
exp(−1/H−1(u)

)w j = F
w j
1 (u) = Fw j (u)

which shows thatUj has the same distribution as H(w jε j ). This completes the proof
of Theorem 1. �	
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