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Abstract I state and prove formal versions of the claim that the Nash (Econometrica
18: 155–162, 1950) bargaining solution creates a compromise between egalitarianism
and utilitarianism, but that this compromise is “biased”: the Nash solution puts more
emphasis on utilitarianism than it puts on egalitarianism. I also extend the bargain-
ing model by assuming that utility can be transferred between the players at some
cost (the transferable and non-transferable utility models are polar cases of this more
general one, corresponding to the cases where the transfer cost is zero and infinity,
respectively); I use the extended model to better understand the connections between
egalitarianism and utilitarianism.

Keywords Bargaining · Egalitarianism · Nash solution · Utilitarianism

1 Introduction

Nash’s (1950) bargaining problem is described in the utility space: two players face a
compact, convex, and comprehensive set S ⊂ R

2+ of available utility allocations, from
which they need to choose one; if they agree on x ∈ S, then each player i receives
the utility payoff xi , but if they fail to reach an agreement both get zero.1,2 The Nash
solution (1950) to the problem S, denoted as N (S), is the maximizer of x1 · x2 over

1 It is assumed that 0 ≡ (0, 0) ∈ S for every bargaining problem S, so zero payoffs are always feasible;
also, it is assumed that there is an x ∈ S with x > 0, so cooperation is worthwhile (u Rv means that
ui Rvi for both i , for each R ∈ {>,≥}; u � v means that u ≥ v and u �= v).
2 Comprehensiveness means that {y ∈ R2+ : y ≤ x} ⊂ S for all x ∈ S.
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464 S. Rachmilevitch

x ∈ S. In general, a bargaining solution is a selection—a function that assigns a
unique point of S for every such S.

Two other known bargaining solutions are the egalitarian solution, E , and the util-
itarian solution, U . Like the Nash solution, they are related to certain maximizations.
The utilitarian solution selects an agreement under which the sum of the players’ utili-
ties ismaximized. The egalitarian solution selects theweakly efficient agreement under
which both players receive identical payoffs; this agreement maximizes min{x1, x2}
over x ∈ S.3,4 In this paper, I study various connections between the Nash solution
and the aforementioned ones. As we will see, there are several non-trivial connections.

It is known that the Nash solution exhibits attractive fairness properties. For exam-
ple, Brock (1979) showed that this solution is actually egalitarian, but not in the sense
of recommending equal payoffs, but in the sense of recommending payoff ratios that
are equal to the marginal rate of utility substitution between the players. An additional
fairness property of the Nash solution is that it guarantees for each player at least one
half of his maximum possible utility. This midpoint domination property was orig-
inally formulated by Sobel (1981); when combined with other standard conditions,
it characterizes the Nash solution (Moulin 1983; de Clippel 2007). Another fairness-
related result is by Mariotti (1999), who characterized the Nash solution on the basis
of Suppes-Sen dominance,5 a criterion that requires that if x is the selected agreement
and (a, b) is some other feasible agreement, then both (a, b) > x and (b, a) > x
are false. This requirement captures both fairness and efficiency restrictions, since it
stems from a combination of impartiality and the Pareto principle: if, for example,
(b, a) > x for some feasible utility pair (a, b), then since x is Pareto inferior to (b, a)

and impartiality implies that (b, a) and (a, b) are indistinguishable from an ethical
point of view, x should not be selected.6 Further works on the Nash solution in the con-
text of fairness and distributive justice include Binmore (1989, 1991, 2005), Sacconi
(2010) and Trockel (2005).

In addition to exhibiting these fairness properties, the Nash solution also creates
the following compromise between egalitarianism and utilitarianism (Fig. 1):

Proposition 1 For any bargaining problem S, the point N (S) lies on S’s Pareto bound-
ary in between E(S) and U (S).7

Hereafter, I will refer to the bounds that are described in Proposition 1 as the E-U
bounds.

Proposition 1 brings about the following questions:

3 E was axiomatized for the first time by Kalai (1977). U , in general, is multi-valued; in this paper, I will
only consider problems for which it is single-valued.
4 For problems S whose Pareto frontier is strictly concave, U (S) is the unique maximizer of the utility sum
over S and E(S) is the unique maximizer of min{x1, x2} over x ∈ S (in the following Section, I formally
introduce an important class of such problems—smooth bargaining problems). Compromising on precision
just a tiny bit, I will sometimes refer to

∑
i xi and min{x1, x2} as the utilitarian and egalitarian objectives,

respectively.
5 Suppes (1966), Sen (1970).
6 Related results have been obtained by Anbarci and Sun (2011). See also Mariotti (2000).
7 Later in this paper, I will prove two generalizations of Proposition 1—Propositions 6 and 7 below. Hence,
for brevity, a proof of Proposition 1 is not provided.

123



The Nash solution is more utilitarian than egalitarian 465

Fig. 1 Illustration of
Proposition 1
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• (I) Which side of the compromise between egalitarianism and utilitarianism, if
any, is “favored” by the Nash solution?

• (II) What is the meaning of “being between E and U”?

In light of the extensive work emphasizing the fairness aspects of the Nash solution,
one might suspect that, in the abovementioned compromise, it is egalitarianism that
gets the upper hand. I suggest otherwise—I will highlight the utilitarian aspects of the
Nash solution and show that, in a certain sense, it is “more utilitarian than egalitarian.”

This sense takes on the following form. First, Proposition 2 shows that whenever
N coincides with E , this common point is also utilitarian. Hence, the Nash solution
is utilitarian “more frequently” than it is egalitarian. Proposition 3 gives sufficient
conditions for the converse implication. Next is Proposition 4, which shows that for
a normalized problem S,8 the Nash solution point for S is not only between U (S)

and E(S), but, moreover, is between U (S) and A(S), where A(S) is the maximizer of
1
2 (x1 + x2) + 1

2min{x1, x2} over x ∈ S—that is, the maximizer of the average of the
utilitarian and egalitarian objectives.

Proposition 5 is a generalization of Proposition 4: it shows that for any problem S,
normalizedor not, theNash solutionpoint for S lies between RU (S) and N A(S),where
RU is the relative utilitarian solution (Dhilon and Mertens 1999, Pivato 2009, Segal
2000 and Sobel 2001) and N A, the “normalized average” solution, is defined as fol-

lows: for every S, the point N A(S)maximizes 1
2

(
x1

a1(S)
+ x2

a2(S)

)
+ 1

2min
{

x1
a1(S)

, x2
a2(S)

}

over x ∈ S, where ai (S) ≡ max{xi : x ∈ S}.
More than thirty years ago, Cao (1982) presented a result that is similar to Propo-

sition 1: he proved that for every problem S, the point N (S) lies between the points

8 A bargaining problem is normalized if for each player the minimum and maximum utilities are 0 and 1.
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that are selected by the Kalai-Smorodinsky solution (Kalai and Smorodinsky 1975)
and the relative utilitarian solution.9 On the class of normalized problems, his result
and Proposition 1 amount to the same statement.10 In addition, Proposition 5 tightens
Cao’s (1982) bounds.

Next is Proposition 6 which shows that for any ρ ∈ [−∞, 1], the corresponding
constant elasticity solution (CES) for S—themaximizer of [xρ

1 +xρ
2 ]1/ρ over x ∈ S—

lies betweenU (S) and E(S); the fact that the Nash solution adheres to these bounds is
a particular instance of this more general result, since the Nash solution corresponds
to the limit ρ → 0. Therefore, Proposition 1 is a corollary of Proposition 6.11

An additional generalization of Proposition 1 is obtained by considering the
weighted versions of N , U , and E . I prove, in Proposition 7, that an appropriately
weighted Nash solution lies “between” the weighted utilitarian and egalitarian solu-
tions. Proposition 1 is a corollary of Proposition 7.

In Section 5, I turn to question (II) from above: namely, to the meaning of “falling
between E and U .” I prove that it is equivalent to egalitarianism if utility can be
transferred between the players at some cost, which is convex in the amount of the
transfer. Themodels of transferable and non-transferable utility are particular instances
of this more general model—they correspond to the cases where the cost function is
the identity function and where it is identically infinity, respectively.

The remainder of the paper is organized as follows. In Sect. 2, I prove results that
formalize the idea that the Nash solution is “at least as utilitarian as it is egalitarian.”
They are formal versions of some well-known facts about the geometry of the Nash
solution, but, to the best of my knowledge, they have not been previously published.
Section 3 is dedicated to the various bounds. In Sect. 4, I consider the non-symmetric
generalization of Proposition 1. In Sect. 5, I prove that “falling between E and U” is
equivalent to egalitarianism if utility can be transferred between the players at some
(convex in the amount of the transfer) cost. Section 6 contains a discussion about the
interpretation of the results, and Sect. 7 provides a conclusion.

The analysis in this paper is only for 2-person bargaining. The reconciliation of
utilitarianism and egalitarianism with more than two players is beyond the scope of
the present paper.

2 Egalitarianism implies utilitarianism, but not vice versa

Let B denote the collection of bargaining problems S such that U (S) is single-valued.

Proposition 2 Let S ∈ B be such that N (S) = E(S). Then N (S) = U (S).

Proof Let S be a problem and assume by contradiction that N (S) = E(S) = (e, e) �=
U (S) = (x, y). Note that x + y > 2e. For each λ ∈ [0, 1], consider λ(e, e) + (1 −

9 Cao refers to the relative utilitarian solution as the modified Thomson solution and to the Kalai-
Smorodinsky as the Raiffa solution. I will introduce these solutions formally in Sect. 3.
10 Both results are related to the fact that the Nash solution is the only solution that jointly satisfies the
egalitarian and utilitarian objectives for some rescaling of the individual utilities (Harsanyi 1959, Shapley
1969).
11 CES solutions have been studied by Sobel (2001), Bertsimas et al. (2012), and Haake and Qin (2013).

123



The Nash solution is more utilitarian than egalitarian 467

λ)(x, y) = (λe + (1 − λ)x, λe + (1 − λ)y), and let g denote the associated Nash
product:

g(λ) ≡ λ2e2 + λ(1 − λ)e(x + y) + (1 − λ)2xy.

Note that g′(λ)|λ=1 ≥ 0.12 However, g′(λ)|λ=1 = 2e2 − e(x + y), so g′(λ)|λ=1 ≥ 0
implies 2e ≥ x + y > 2e, a contradiction. ��

The “converse” of Proposition 1 is not true: the fact that N coincides with U
on a certain problem does not imply that it also coincides with E on that problem.
To see this, look at S∗ = conv{0, (1, 0), (0, 1), ( 34 , 3

4

)
, (1, 0.7)}, for which we have

N (S∗) = U (S∗) = (1, 0.7) �= ( 34 ,
3
4 ) = E(S∗).

There is, however, some inelegance in S∗: its boundary has a “kink,” meaning that
the “price” of one person’s utility in terms of his partner’s utility exhibits disconti-
nuities. When this is ruled out, a “converse” of Proposition 1 obtains. Formally, let
B∗ be the collection of smooth problems—those S ∈ B whose frontier assumes the
form {(x, f (x)) : x ∈ [0, M]}, where M > 0 is some number and f is some strictly
concave, strictly decreasing differentiable function, with f (0) > 0 and f (M) = 0.

Proposition 3 Let S ∈ B∗ be such that N (S) = U (S). Then N (S) = E(S).

Proof Let S ∈ B∗ be such that N (S) = U (S). Let f be the function describing S’s
boundary. The point U (S) ≡ (x, f (x)) satisfies the first-order condition − f ′(x) = 1.
By the first-order condition associated with N , − f ′(x) = f (x)

x . Therefore N (S) =
E(S). ��

So, even though the Nash solution’s utilitarianism is generally more common (or
more frequent) than its egalitarianism, on the restricted domain B∗ the two coincide.
The normative content of E and U relies on the assumption that utilities are inter-
personally comparable (otherwise, for example, their summation has no normative
meaning). There is, additionally, an alternative sense in which the Nash solution is
more utilitarian than egalitarian; this sense, which is described in the following Sec-
tion, requires not only that the comparison of utilities be meaningful, but also that
these utilities be measured on the same scale.

3 Tighter bounds

One of the simplest ways to create a compromise between egalitarianism and utilitar-
ianism is to consider the average of their respective objectives: that is, to maximize
1
2 (x1 + x2) + 1

2min{x1, x2} over x ∈ S. Let A denote this bargaining solution.13

12 Locally, the value of the Nash product does not decrease, as one gets closer to the Nash solution point.
13 Alvarez-Cuadrado and van Long (2009) consider a maximization of a convex combination of utilitarian
and egalitarian objectives in the context of intergenerational equity (their objectives are defined on infinite
utility streams).
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Since 1
2 (x1 + x2) + 1

2min{x1, x2} is continuous, it has a maximum on every bargain-
ing problem. However, since the level curves (“indifference curves”) of this expres-
sion are linear on both sides of the 45◦ line, the aforementioned maximum may be
obtained at multiple points. Let B̃ ≡ {S ∈ B : A(S) is single-valued}. Obviously,
B∗ ⊂ B̃. When attention is restricted to normalized problems in B̃—S ∈ B̃ such that
ai (S) ≡ max{xi : x ∈ S} = 1 for each i—the Nash solution is not only between E
and U (this is true on the entire B), but, moreover, it is also between A and U—it is
“closer to utilitarianism than to egalitarianism.” I will prove this result for the normal-
ized problems in B∗, but it will be easy to see that it holds for any normalized problem
in B̃; i.e., the boundary does not have to be smooth.

The following lemma will be useful.

Lemma 1 Let S ∈ B∗ be a normalized problem and let (x, y) = A(S). Then x ∈
(0, 1).

Proof Make the aforementioned assumptions, and assume by contradiction that x ∈
{0, 1}. Let f be the function describing S’s boundary and let (e, e) ≡ E(S).

Case 1 x = 1. In this case, A maximizes R(t) ≡ 1
2 [t + f (t)]+ 1

2 f (t) = 1
2 t + f (t) over

(e, 1]. Since x = 1, R′(1) ≥ 0, or 1
2 ≥ − f ′(1), which is impossible for a normalized

problem.

Case 2 x = 0. In this case, A maximizes L(t) ≡ 1
2 [t + f (t)] + 1

2 t = t + 1
2 f (t) over

[0, e). Since x = 0, L ′(0) ≤ 0, or 1 + 1
2 f ′(0) ≤ 0, or 2 ≤ − f ′(0); again, this is

impossible for a normalized problem. ��
Proposition 4 Let S ∈ B∗ be a normalized problem. Then the following is true for
each i ∈ {1, 2}:

min{Ai (S), Ui (S)} ≤ Ni (S) ≤ max{Ai (S), Ui (S)}.
That is, the Nash solution, N , is “between” A and U.

Proof Let S ∈ B∗ be a normalized problem. Let f be the function describing its
boundary, let (x, f (x)) ≡ A(S) and let (e, e) ≡ E(S). If (x, f (x)) = E(S), then we
are done, since N is always between E and U . Suppose then that (x, f (x)) �= E(S).

Case 1 x > f (x). In this case, A maximizes the objective function R(t) ≡ 1
2 (t +

f (t)) + 1
2 f (t) = 1

2 t + f (t) over t ∈ (e, 1]. R′(t) = 1
2 + f ′(t). By Lemma 1, the

solution is interior, and therefore R′(x) = 0, or f ′(x) = − 1
2 ; so A(S) is to the left of

U (S). If N (S) ≡ (n, f (n)) is to the left of A(S), then − f ′(n) < 1
2 . By the first-order

condition associated with N , − f ′(n) = f (n)
n , and so we would obtain n > 2 f (n);

this, however, is impossible in a normalized problem, because f (n) ≥ 1
2 .
14

Case 2 x < f (x). In this case, A maximizes the objective function L(t) ≡ 1
2 (t +

f (t)) + 1
2 t = t + 1

2 f (t) over [0, e). L ′(t) = 1 + 1
2 f ′(t). Here L ′(x) = 0, or

14 This is due to midpoint domination (Sobel 1981).
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The Nash solution is more utilitarian than egalitarian 469

f ′(x) = −2, so A(S) is to the right of U (S). If N (S) is to the right of A(S), then
f (n)

n > 2, which contradicts midpoint domination. ��
As mentioned in the text above, it is not important for Proposition 4 that S has

a smooth boundary. It is important, however, that each player has the same maxi-
mum utility in S. Otherwise, it may be the case that the utilitarian objective becomes
overwhelmingly more important than the egalitarian one, and, consequently, the max-
imizations of A and U coincide; in such a case, N clearly fails the betweenness
condition. For example, in the problem S = conv{0, (1, 0), (0, k)} with k > 2, it is
the case that U (S) = A(S) = (0, k) �= ( 1

2 ,
k
2

) = N (S).
However, with suitable normalizations, an analog (in fact, a generalization) of

Proposition 4 is obtained for B̃. In order to state it, some additional definitions are
needed. Recall that the relative utilitarian solution, RU , is defined as follows: for
each problem S, it selects the point that maximizes the (normalized) sum x1

a1(S)
+ x2

a2(S)

over x ∈ S.15 “Relative egalitarianism” is analogous to “relative utilitarianism,” and is
expressed by the Kalai-Smorodinsky solution (Kalai and Smorodinsky 1975), which
assigns to every S the point λa(S) ≡ K S(S), where λ is the maximum possible.
Similar to the egalitarian solution, the Kalai-Smorodinsky solution maximizes the

minimum of the normalized utilities, namely min
{

x1
a1(S)

, x2
a2(S)

}
. On the basis of the

normalized versions of utilitarianism and egalitarianism, we can define, analogously
to the definition of A, the solution N A as the one that picks for every S the maximizer

of 1
2

(
x1

a1(S)
+ x2

a2(S)

)
+ 1

2min
{

x1
a1(S)

, x2
a2(S)

}
over x ∈ S.

Like RU and K S, the solution N A can be operationalized in three steps: first,
the bargaining problem, say S, is normalized, which means that player i’s utility is
multiplied by 1

ai (S)
; next, the relevant solution (A in the case of N A, U/E in the

cases of RU/K S) is applied to the normalized problem, resulting in the choice of a
point of the normalized problem, call it v; finally, the solution point of the original
problem is (v1a1(S), v2a2(S)). The solutions N A, RU , and K S, as well as N , are
scale invariant.16 I will utilize this fact in the proof of the following result.

Proposition 5 Let S ∈ B∗. Then the following is true for each i ∈ {1, 2}:

min{N Ai (S), RUi (S)} ≤ Ni (S) ≤ max{N Ai (S), RUi (S)}.

That is, the Nash solution, N , is “between” N A and RU. In other words, the Nash
solution is “closer to relative utilitarianism than to relative egalitarianism.”

Proof Let S ∈ B∗. Let V ≡ l ◦ S, where li (t) ≡ t
ai (S)

. By Proposition 4,

min {Ai (V ), Ui (V )} ≤ Ni (V ) ≤ max{Ai (V ), Ui (V )} . (1)

15 Like U , the solution RU is also, in principle, multi-valued. For simplicity, I assume that the problems
under consideration in this paper are such that it is single-valued (this is the case, for example, on the domain
B∗).
16 A solution, μ, is scale invariant if μ(l ◦ S) = l ◦ μ(S) for every S and every pair of positive linear
transformations l = (l1, l2). A positive linear transformation is also called a rescaling.
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Applying l to (1) we get

min{N Ai (S), RUi (S)} ≤ Ni (S) ≤ max{N Ai (S), RUi (S)},

as desired. ��
I end this Section by showing that the E-U bounds apply not only to the Nash

solution, but also to any CES solution. Given ρ ∈ [−∞, 1], denote the corresponding
such solution by μρ ; namely, μρ(S) ≡ argmaxx∈S[xρ

1 + xρ
2 ]1/ρ .

Proposition 6 Let ρ ∈ [−∞, 1] and S ∈ B. Then the following is true for each
i ∈ {1, 2}:

min{Ei (S), Ui (S)} ≤ μ
ρ
i (S) ≤ max{Ei (S), Ui (S)}.

That is, any CES solution is “between” E and U.

Proof Let ρ ∈ (−∞, 1] and S ∈ B (there is nothing to prove if ρ = −∞, as in
this case the CES solution is E). Wlog, suppose that U (S) is weakly to the left of
E(S).17 Also, since the three solutions in question are continuous,18 we can assume
that S ∈ B∗. The first-order condition associated with μρ is

(
f (x)

x

)1−ρ

= − f ′(x).

If this point is to the left of U (S), then − f ′(x) < 1, which implies f (x) < x , in
contradiction to the fact that (x, f (x)) is to the left of E(S). If, on the other hand,
(x, f (x)) is to the right of E(S), then f (x) < x , which implies that— f ′(x) < 1,
which implies that (x, f (x)) is to the left of U (S)—again, a contradiction. ��

4 Asymmetry

Given the weights (p, 1 − p) > 0, the weighted utilitarian solution maximizes the
sum px1 + (1 − p)x2 over x ∈ S, the weighted egalitarian solution is given by
(pe, (1− p)e), where e is the maximal number such that the latter expression belongs
to S, and the weighted Nash solution maximizes the product x p

1 x (1−p)
2 over x ∈ S. I

will denote these solutions by U p, E p, and N p, respectively.
I restrict my attention to B∗; this guarantees that U p(S) is single-valued, for any

p ∈ (0, 1). Let θ ≡ p
1−p . Note that E p(S) takes the form (θy, y), N p maximizes the

product xθ
1 x2 over x ∈ S, and U p(S) maximizes θx1 + x2 over x ∈ S.

17 This assumption iswlog, since eachμ ∈ {E, U, μρ } is ananonymous solution; a solutionμ isanonymous
if for each S it is true that π ◦ μ(S) = μ(π ◦ S), where π(a, b) ≡ (b, a).
18 A solution μ is continuous if μ(Sn) → μ(S), provided that {Sn} converges to S in the Hausdorff
topology.
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Consider the following function h : (0, 1) → (0, 1):

h(p) ≡ p2

2p2 − 2p + 1
.

A solution that makes its selection from “in between” U p(S) and E p(S), for every
S, will be called p-EU robust.

Proposition 7 Let p ∈ (0, 1). The solution N h(p) is the unique scale invariant solution
that is p-EU robust.

In the proof of the proposition, I will make use of the following lemma.

Lemma 2 Let p ∈ (0, 1) and S ∈ B∗. Then there is a rescaling of S, T = λ ◦ S, such
that E p(T ) = U p(T ).

Proof Let p ∈ (0, 1) and θ = p
1−p . Let S ∈ B∗ and let f be the function, defined

on [0, M], which describes its boundary. Since both U p and E p are homogeneous—
μ(cS) = cμ(S) for every S, c > 0, and μ ∈ {U p, E p}—it suffices to consider
rescaling of one player’s utility. Wlog, I will consider rescaling of player 2’s utility
by λ > 0. With E p(T ) = (a, λ f (a)) for some a ∈ [0, M], the required equalities are
θλ f (a) = a and λ f ′(a) = −θ . That is, it is sufficient to find an a ∈ [0, A] such that

a
f (a)θ

= −θ
f ′(a)

, or ψ(a) ≡ −a f ′(a)
f (a)

= θ2. There exists a unique such a because the
function ψ is strictly increasing and satisfies ψ(0) = 0 and ψ(a) → ∞ as a → M . ��
Proof of Proposition 7 Let p ∈ (0, 1). It is well-known that every weighted Nash
solution satisfies scale invariance; hence, N h(p) satisfies it; let us verify that it is also
p-EU robust. Let S ∈ B∗. Let f be the smooth function describing S’s boundary.
Let θ = p

1−p and β = h(p)
1−h(p)

. Note that β = θ2. Assume by contradiction that

N h(p)(S) is not in between U p(S) and E p(S). Note that there are two possibilities:
either U p

1 (S) ≤ E p
1 (S) or U p

1 (S) > E p
1 (S). Suppose that U p

1 (S) ≤ E p
1 (S). There are

two further possibilities: N h(p)
1 (S) < U p

1 (S) or N h(p)
1 (S) > E p

1 (S). Consider first the

case N h(p)
1 (S) < U p

1 (S). Letting a ≡ N h(p)
1 (S), we see that the tangency condition

associated with N h(p) is β
f (a)

a = − f ′(a). Since N h(p)
1 (S) < U p

1 (S), − f ′(a) < θ ;

therefore, β
f (a)

a < θ . Combining this with β = θ2, we obtain f (a)
a < 1

θ
= 1−p

p ,

in contradiction to N h(p)
1 (S) < E p

1 (S). Next, consider N h(p)
1 (S) > E p

1 (S). Here

we have f (a)
a < 1

θ
, and therefore − f ′(a) = β

f (a)
a < β 1

θ
= θ , in contradiction to

N h(p)
1 (S) > U p

1 (S). The possibility U p
1 (S) > E p

1 (S) is ruled out on the basis of
similar arguments.

I now turn to uniqueness. Let μ be a scale invariant p-EU robust solution. Let
S ∈ B∗. By Lemma 2, S can be rescaled such that the resulting problem, call it T ,
satisfies E p(T ) = U p(T ) = N h(p)(T ).19 By scale invariance, μ(S) = N h(p)(S). ��

19 The last equality here is due to the fact that we just proved that N h(p) is p-EU robust.
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Note that Proposition 1 is a corollary of Proposition 7 because h
( 1
2

) = 1
2 . It is

interesting to note that
(

p − 1
2

)
(h(p) − p) > 0 for all p �= 1

2 : in bridging the gap
between (weighted) utilitarianism and egalitarianism, the stronger player is favored in
terms of having augmented weight in the Nash product.

5 Costly transferable utility

Recall that when utility is 1-to-1 transferable between the players, utilitarianism coin-
cides with Pareto efficiency. However, since 1-to-1 utility transfers are not always
feasible, it would be fruitful to examine a richer set of circumstances—when transfers
are possible, but only in a constrained, costly manner.

Consider, then, the following scenario: we fix a point on the Pareto frontier, say
(x, y), and then, without changing the bargaining outcome (i.e., in addition to, or “on
top of” the bargaining resolution (x, y)) we seek to increase player i’s utility by t
units; typically, this will entail the need to decrease j’s utility. Denote the minimal
required decrease by ci j (t). Thus, ci j is a cost function, which specifies the cost of
transferring utility from j to i . The case of 1-to-1 transferable utility corresponds to
c12(t) = c21(t) ≡ t , and the case of non-transferable utility corresponds to c12 =
c21 ≡ ∞.

The case t < ci j (t) < ∞ has not received (to the best of my knowledge) treatment
within the bargaining framework, even though it is particularly relevant froman applied
point of view. For instance, think of a university administrator who needs to allocate
a single job vacancy between two departments, i and j . If he gives it to i , then it
may be the case that he will be able to subsequently implement policies that are more
favorable to department j than to department i . This, in turn, can be viewed as an
implicit transfer from i to j . Constructing such transfers, however, is not always easy,
and certainly not free. These transfers are not 1-to-1.

From here on, I will assume that the players are symmetric in regards to the costs
of utility transfers, namely that c12 = c21 ≡ c. I will consider cost functions c that
are differentiable, convex, and satisfy c(0) = 0 and c′(0) ≥ 1. The last condition says
that it is easiest to make transfers in the transferable utility world. Let C be the set of
these cost functions. For convenience, I will consider the domain B∗ from here on.

Given S, consider the following two-step process: (i) choosing a point (x, y) ∈ S,
and (i i) transferring utility between the players, where the cost of transfers is given
by some c ∈ C. Now consider egalitarianism in this setting: namely, the task of
generating, via the aforementioned two-step process, a point in the utility space of
the form (e, e), on which Pareto improvements are impossible. Call this the general
egalitarian problem. Assuming that it is solved via some non-zero transfer between
the players, there are two possibilities: a positive transfer from player 1 to player 2, or
a positive transfer from player 2 to player 1. Letting f denote the boundary function
of S, we see that the optimization problems corresponding to the two cases are as
follows.

Case 1: Transfer from 1 to 2: Given that we start from the point (x, f (x)), where
x > f (x), and we increase player 2’s utility by t , the post-transfer utilities are (x −
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c(t), f (x)+ t). The optimal t maximizes f (x)+ t subject to the constraint x −c(t) ≥
f (x) + t . It is easy to check that there is a unique t = t (x) that solves this problem.
The optimization problem that corresponds to Case 1 is therefore as follows:

maxx :x> f (x) f (x) + t (x). (2)

Since this optimization is on an open set, a maximum may not exist. In this case—
abusing terminology a little—the value of the problem, call it V12(S), is declared to
be zero. Therefore,

V12(S) ≡
{

f (x∗) + t (x∗) if (2) has a solution and x∗is such a solution

0 otherwise

Case 2: Transfer from 2 to 1: Given that we start from the point (x, f (x)), where x <

f (x), andwe increase player 1’s utility by t , the post-transfer utilities are (x+t, f (x)−
c(t)). The optimal t maximizes x + t subject to the constraint x + t ≤ f (x) − c(t).
Similar to Case 1, it is easy to check that there is a unique solution, t̃ = t̃(x). The
optimization problem that corresponds to Case 2, therefore, is as follows:

maxx :x< f (x) x + t̃(x). (3)

Similar to Case 1, define

V21(S) ≡
{

f (x∗) + t̃(x∗) if (3) has a solution and x∗is such a solution

0 otherwise

The value corresponding to the problem S is

V (S) = max{V12(S), e(S), V21(S)},

where (e(S), e(S)) = E(S). Thus, V (S) is the value of the general egalitarian prob-
lem. In order to highlight its solution’s dependence on the particular cost function,
denote the solution to the first stage of the two-stage process—namely, the point in S
on which we improve by transfers—by G E(S|c).
Proposition 8 Let S ∈ B∗ and c ∈ C. Then the following is true for each i ∈ {1, 2}:

min{Ei (S), Ui (S)} ≤ G Ei (S|c) ≤ max{Ei (S), Ui (S)}.

That is, any general egalitarian point is “between” E and U.

Proof Assume by contradiction that there are such S and c for which this assertion
is false. Let f be the boundary function of S. Wlog, suppose that U (S) is to the left
of E(S). There are two possibilities: the general egalitarian solution for this problem
involves a transfer from 1 to 2 or from 2 to 1.

123



474 S. Rachmilevitch

Case 1 The transfer is from 1 to 2.20 In this case, the value of the objective is f (x)+ t ,
where x = G E1(S|c) and t is the transfer. I will now show that if we start from
e ≡ E(S) instead of from x , we can find another transfer that keeps player 2 just
indifferent relatively to the original situation and makes player 1 strongly better off.
Let s be the transfer which is uniquely defined by

f (e) + s = f (x) + t. (4)

I argue that e − c(s) > x − c(t). To see this, assume by contradiction that

e − c(s) ≤ x − c(t). (5)

Adding up equations (4) and (5), we obtain e+ f (e)+ s −c(s) ≤ x + f (x)+ t −c(t).
Since our assumption implies e+ f (e) > x + f (x), it follows that s −c(s) < t −c(t).
Since the function ψ(a) ≡ a − c(a) is decreasing, s > t . Since s > t , (4) implies that
f (e) < f (x), which implies x < e—a contradiction.

Case 2 The transfer is from player 2 to player 1, and so x = G E1(S|c) < U1(S). As
in Case 1, I will construct a transfer, s, that makes 2 indifferent but strictly improves
1’s welfare. As opposed to Case 1, where our starting point for constructing the Pareto
improvement was E(S) = (e, f (e)), here it will be U (S); let (y, f (y)) = U (S). The
condition that defines s is f (y)− c(s) = f (x)− c(t), and we would like to prove that
y + s > x + t . Assume by contradiction that y + s ≤ x + t . Adding this equation to
y − c(s) = f (x) − c(t), we obtain y + f (y) + s − c(s) ≤ f (x) + x + t − c(t), and
therefore s − c(s) ≤ t − c(t), which implies s > t . Since y + s ≤ x + t , it follows
that y < x—a contradiction. ��

The following is the “converse” of Proposition 8; together, the two propositions
establish an equivalence relation between “E − U betweenness” and general egalitar-
ianism.

Proposition 9 Let S ∈ B∗ and let x be a point in S’s Pareto boundary such that the
following is true for each i ∈ {1, 2}:

min{Ei (S), Ui (S)} ≤ xi ≤ max{Ei (S), Ui (S)}.

Then there is a c ∈ C such that x = G E(S|c).
Proof Let S be a smooth problem, such thatU (S) is to the left of E(S) and let (x, f (x))

be some point in between them. In the general egalitarian solution that corresponds to
this case, the egalitarian objective assumes the value x+t (x). The associated first-order
condition is

1 + t ′(x) = 0. (6)

20 This means that the solution point is to the right of E(S).
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Since t + c(t) − f (x) + x = 0, it follows from the Implicit Function Theorem that
∂t
∂x = − 1− f ′

1+c′ . Combining this with (6), we obtain

c′(t (x)) = − f ′(x). (7)

I will now construct a function c ∈ C that satisfies (6) and

t + c(t) = f (x) − x ≡ 	. (8)

Given a > 0, let ca(t) = t + at2. Note that ca ∈ C for all a > 0, and hence it is
enough to prove that there is an a > 0 such that ca satisfies (7) and (8). Equation (8)
becomes 2t + at2 = 	, which is solved by t = −1 + √

1 + a	. Then (7) becomes
1+2a[−1+√

1 + a	] = − f ′(x). Since x is to the right ofU (S), at a = 0, we obtain
the strict inequality 1 < − f ′(x). However, the LHS diverges to infinity as a → ∞,
and hence there is an a such that the equation is satisfied. ��

6 Discussion

Two types of results have been presented in the paper: in Sect. 2–4, the (geometrical)
relationships among the three solutions {E, U, N } are analyzed, and in Sect. 5, the
idea of costly utility transfers is studied. I will now discuss these two parts separately.

The results of Sect. 2–4 show, plain and simple, that N is “between” E and U . This
fact can be understood in light of the philosophical interpretations of these solutions,
as follows. The Nash and the egalitarian solutions are contractarian: the former is a
solution proposed by a theory of fair bargains, and the latter expresses the Rawlsian
view of how collective choices should be made in a hypothetical original position—a
thought experimentwhich is contractarian in its verynature (Rawls (1971)). In contrast,
the utilitarian solution rests upon the following, non-contractarian foundation, which
is due to Harsanyi.21 The Harsanyian view describes an out-of-society standpoint,
from which an impartial but sympathetic (to the members of society) observer seeks a
desirable social alternative. Thus, in contrast to N and E , both of which corresponding
to philosophies that concern the agents’ point of view, the philosophy associated with
U takes a stand that is external to society.

One can therefore interpret the results of Sect. 2–4 to imply that a contractarian who
takes N to be the right bargaining solution can reassure a utilitarian that it is OK to
embrace the former’s theory: despite being built on different philosophical premises,
the two views often lead to the same social choice. Moreover, in case of disagreement
between U and N , the “distance” between them is bounded; in particular, it can be no
greater (in a certain formal sense) than the “distance” between N and E . This is far
from trivial because “qualified egalitarianism” is built into the Nash solution (in the
form of Nash’s symmetry axiom), whereas there is nothing utilitarian in the axiomatic
foundations of this solution.22

21 See Fleurbaey et al. (2008) for illuminating discussions on the subject.
22 I am grateful to a thorough referee for offering this interpretation.
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That N is “more utilitarian than egalitarian” has alternative formal manifesta-
tions. For example, consider the maximization of the weighted average μα(x) ≡
α

[
x1

a1(S)
+ x2

a2(S)

]
+ (1 − α)min

{
x1

a1(S)
, x2

a2(S)

}
over x ∈ S, where α ∈ [0, 1] is an

arbitrary weight.23 Given a problem S, and a point on its boundary which lies between
K S(S) and RU (S), say x , we can ask the following question: for what α (if any) does
the point x maximize μα over S? It can be shown that for every S, the α that corre-
sponds to N (S) belongs to

[ 1
2 , 1

]
. Conversely, for any α ∈ [ 1

2 , 1
]
, there is a problem

S such that N (S) maximizes μα over S.24

Let us now turn to the analysis of Sect. 5. In that Section, I introduced the general
egalitarianproblem.Themainupshot of the analysis in that Section is that it rationalizes
(under the assumption of costly utility transfers) the E-U bounds. The shortcoming
of this analysis is that it does not assign any particular importance or significance to
the Nash solution—it is only one of many solutions adhering to these bounds. In the
remainder of the current Section, I will discuss some feature that are common (albeit
indirectly) to the aforementioned analysis and a classic work by Shapley (1969). This
discussion’s goal is to clarify the meaning of the costly transfers idea, and to indicate
possible directions for future research.

Given a problem S, Shapley assumed that there are some weights, (p, 1− p), that
describe the “correct” rates of exchange between the individual utilities. Theseweights
are allowed to depend on the problem, so p = p(S). Given a point on S’s frontier, x ,
if we could operationalize utility transfers in accordance with these correct weights,
then we would face a TU game, namely H(x, p) ≡ {u ∈ R

2+ : pu1 + (1 − p)u2 ≤
px1 + (1 − p)x2}. Now, suppose that we have a solution concept for TU games, and
suppose, moreover, that this solution assigns to any such game H the midpoint of
its frontier, call it m(H) (as was mentioned in the proof of Proposition 4, the Nash
solution satisfies this property; for TU games, this property is also satisfied by many
other well-known solutions; see Kalai and Kalai (2013)). Could we apply our TU-
solution to the original (NTU) game S? We certainly could, if we were fortunate
enough to discover that m(H(x, p(S))) ∈ S. Shapley proposed a solution method for
bargaining problems that guarantees that m(H(x, p(S))) ∈ S.

Specifically, he proved that for every problem S, there is a p = p(S) such that
m(H(x∗, p)) ∈ S, where the point x∗ is egalitarian with respect to p, which means
that (1 − p)x∗

1 = px∗
2 . Call this approach endogenous weighted egalitarianism. The

cherry on Shapley’s sundae is that x∗ is the Nash solution point for S.
Both Shapley’s work and the analysis from Sect. 5 involve a form of egalitarianism

as an ethical guideline for the resolution of the bargaining problem—endogenous
weighted egalitarianism in the former, and general egalitarianism in the latter. In both
cases, utility transfers play a role in a somewhat non-standard way: in the analysis
from Sect. 5, transfers take place, but in a non-linear way; the transfers in Shapley’s
work are linear, but they are not carried out.

The major difference between the two works is that Shapley’s pins down a unique
solution, whereas the costly transfers model only pins down a range from which

23 α = 1
2 corresponds to the solution N A.

24 For the sake of brevity, I omit the proof. It is available upon request.
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the solution makes its selection. Whether and how the costly transfers model can be
enriched so as to narrow this range remains a task for future research.

7 Conclusion

I have studied in detail the geometric relationships among three important bargaining
solutions: the Nash solution N , the utilitarian solution U , and the egalitarian solution
E . I have described a formal sense inwhich N creates a compromise betweenU and E ;
this compromise is “biased,” in the sense that N puts more emphasis on utilitarianism
than on egalitarianism.

I have also introduced the idea of costly utility transfers and applied it to the bargain-
ing model. It was shown that in the model with costly transfers, the central property
from the aforementioned geometric analysis—“falling between E and U”—is equiv-
alent to general egalitarianism.
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