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Abstract The problem of how to rationally aggregate probability measures occurs
in particular (i) when a group of agents, each holding probabilistic beliefs, needs to
rationalise a collective decision on the basis of a single ‘aggregate belief system’
and (ii) when an individual whose belief system is compatible with several (possi-
bly infinitely many) probability measures wishes to evaluate her options on the basis
of a single aggregate prior via classical expected utility theory (a psychologically
plausible account of individual decisions). We investigate this problem by first recall-
ing some negative results from preference and judgment aggregation theory which
show that the aggregate of several probability measures should not be conceived as
the probability measure induced by the aggregate of the corresponding expected util-
ity preferences. We describe how McConway’s (Journal of the American Statistical
Association, 76(374):410–414, 1981) theory of probabilistic opinion pooling can be
generalised to cover the case of the aggregation of infinite profiles of finitely additive
probability measures, too; we prove the existence of aggregation functionals satisfying
responsiveness axioms à la McConway plus additional desiderata even for infinite elec-
torates. On the basis of the theory of propositional-attitude aggregation, we argue that
this is the most natural aggregation theory for probability measures. Our aggregation
functionals for the case of infinite electorates are neither oligarchic nor integral-based
and satisfy (at least) a weak anonymity condition. The delicate set-theoretic status of
integral-based aggregation functionals for infinite electorates is discussed.
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1 Introduction

This paper studies the aggregation of infinitely many probability measures. Depending
on one’s disciplinary outlook, the question may be either of interest in its own right
or need further motivation. The rest of the introduction and the following Sect. 2 is
meant to provide such motivation; these initial parts can be ignored by readers who
find the problem of sufficient interest in itself.

Formal epistemologists are now increasingly following the decision-theoretic par-
adigm of recent decades by weakening the strict, classical Bayesian assumption of
rational agents being endowed with a single subjective probability measure. (Subjec-
tive probability measures are generally referred to as priors in the decision-theoretic
literature, even when learning by conditioning is very rarely studied, whence there
are, strictly speaking, neither prior nor posterior probability measures in the statistical
sense; we submit to this terminological convention.) Bradley (2012), for example,
entertains the possibility of rational agents having belief systems that are compatible
with several subjective probability measures—as opposed to a single unique one. This
appears, at first sight, to be a step in the direction of the recent decision-theoretic
literature on multiple priors.

However, this is not the case—due to the different perspectives of epistemologists
on the one hand and decision theorists on the other. There are at least two ways in
which the aggregation of probability measures per se—as opposed to their induced
preferences—is of great importance from an epistemological point of view and perhaps
also of some interest from a decision-theoretic vantage point.

The first comes from social epistemology. Consider a group whose members hold
different belief systems, each encoded by a subjective probability measure, and face a
collective decision, i.e. they need to choose one of several social alternatives. Suppose
this group wants to ensure that their decision is rationally defensible given some belief
system which in a reasonable sense aggregates their individual belief system. Let us
assume, for simplicity, that the individuals differ only with respect to their beliefs
while sharing a common utility function over final outcomes. A good solution to their
problem would be to look for a way of rationally aggregating the probability measures
describing their individual belief systems and afterwards choosing a social alternative
which maximises expected utility with respect to the aggregate probability measure.
[Cases similar to this, however with additional serious complications, feature in a
forthcoming paper by Bradley et al. (2012).]

Another area in which the aggregation of probability measures per se becomes
important is a new, epistemologically and psychologically informed account of indi-
vidual decisions. This account is motivated by theories from contemporary psychol-
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ogy according to which the human mind is to be understood as a composition of more
elementary mental agents, viz. in terms of a ‘society of mind’ (Minsky 1986), a ‘mul-
timind’ (Ornstein 1986), or an ‘internal family system’ (Schwartz 1997); it has been
formalised and introduced into the epistemological discussion by Bradley (2012).

Technically speaking, this new account of human decision making attempts to give
a precise description of the decision process of an individual whose belief system
is compatible with several probability measures: Bradley (2012) suggests that every
decision of an agent with multiple subjective probability measures is preceded by an
‘aggregation’ of those priors—which takes her, temporarily, to a new, aggregate prior,
i.e. a new probabilistically consistent belief system; in order to make a decision, she will
then evaluate the options available to her using the classical expected utility criterion
with respect to the temporary, aggregate prior.1 After the decision has been made, she
returns to her previous epistemic state encoded by a whole set of subjective probability
measures. Note that this set of subjective probability measures will in general not be
finite—e.g. when it is the set of all probability measures that are consistent with certain
conditional probability assignments or that satisfy certain upper or lower bounds when
evaluated at certain events (‘interval probabilities’). Therefore, epistemologists who
wish to follow Bradley (2012) in his proposal to integrate insights from contemporary
psychology into epistemology should seriously consider the problem of aggregating
infinite profiles of probability measures.

Of course, the classical decision theory for multiple subjective probability measures
(multiple priors), as in Gilboa and Schmeidler (1989), is not—at least not without
substantial, quite probably philosophically questionable, detours—applicable in these
situations: whilst one could associate each probability measure in the set of priors
with an individual and thereby view a maxmin expected utility preference ordering
as an aggregate preference ordering, the corresponding ‘aggregator’ would aggregate
preferences derived from priors, not priors themselves. Therefore, this theory is—
notwithstanding its mathematical elegance and also in spite of its manifold practical
use, e.g. in mathematical finance [cf. e.g. Riedel (2009)] —not satisfactory for the
epistemologically motivated purposes of the present paper.

The paper is structured as follows. Section 2 motivates the problem of aggregating
subjective probability measures from a revised Bayesian perspective. This section can
be skipped by readers who are only interested in the technical aggregation problem
itself, which will be studied in Sect. 3. We will see that there is indeed a relatively nat-
ural and decision-theoretically defensible way of aggregating probability measures—
via a generalised aggregation theory for infinite profiles of probability measures along
the lines of McConway (1981) and Arrow (1963). Moreover, this existence question
is not trivial, as certain natural candidates like oligarchic aggregation or aggregation
via integrals on the electorate are not feasible. The formal details and proofs are given
in Sects. 4 and 5, respectively. Section 6 concludes.

1 An agent will always have several probability measures if her belief system only entails a partial probability
assignment, as for instance in Jeffrey’s ‘radical probabilism’ Jeffrey (1992).
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2 Motivation: Bayesianism with multiple priors

2.1 Single- versus multiple-prior Bayesianism and decision theory

In classical Bayesian contributions to epistemology and decision theory it is often
assumed that the degrees of belief of a rational individual can be given by a single
probability measure: a rational individual, it is tacitly or explicitly assumed in this
literature, makes judgments about all propositions in some algebra and does so by
assigning a precise real number, its degree of belief, to each of them. Let us call this
thesis—for reasons which will shortly become clear—single-prior Bayesianism. For
philosophical simplicity, let us also assume that all credences are reported explicitly
by the individual, rather than implicitly (through betting or the like).

Of course, this is a very strong assumption. To be sure, formal epistemologists have
offered numerous arguments why the degrees of belief of a rational agent should satisfy
the axioms of probability theory (at least with finite additivity), if they are precise
[e.g. Joyce (2009); Easwaran and Fitelson (2012); Fitelson and McCarthy (2012);
Leitgeb and Pettigrew (2010a, b); Wedgwood (2012)]. These arguments, however, do
not establish that the system of propositions to which a rational agent assigns degrees
of belief must be an algebra, nor that a rational agent must always assign precise
degrees of belief.

Indeed, rational agents may subscribe to a set S of precise assignments of condi-
tional degrees of belief (i.e. assignments of real values to conditional events 〈A|B〉,
where A, B belong to some algebra A of propositions of which the agent is aware)
which is in general too small to derive precise degrees of belief even for all proposi-
tions which occur in the conditional degree of belief assignments in S. For instance,
a rational agent may (for symmetry reasons, say) assign a conditional degree of belief
of 1/2 to proposition A given B, but at the same time may not be able to assign a precise
degree of belief to either A or B. Instead, she would deem a whole, in general: infinite,
set of probability measures compatible with her beliefs. Let us denote the thesis that
the belief system of a rational agent corresponds to a set of probability measures by
multiple-prior Bayesianism.

Additional reasons for relaxing the assumption of single-prior Bayesianism, i.e.
that the beliefs of a rational agent can always be encoded by a single probability mea-
sure, are provided by decision theory. More than 90 years ago, Knight (1921) already
distinguished two kinds of uncertainties to which economic agents may be subject:
sometimes, economic agents are merely uncertain about the exact value of a certain
economic variable while being quite certain about the probability distribution of that
variable. This kind of uncertainty is called risk or first-order uncertainty. But there
are also situations in which the economic agents do not even know the exact proba-
bility distribution of some non-deterministic economic variable, but consider several,
perhaps rather different, probability distributions possible. This kind of uncertainty is
referred to as second-order risk or second-order uncertainty or Knightian uncertainty
and is empirically observable [cf. e.g. the seminal contribution by Ellsberg (1961)].
Adopting the statistical terminology of prior and posterior probability distributions,
the phenomenon of second-order uncertainty is sometimes also expressed by the term
multiple priors or ambiguity (of the prior).
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For single-prior Bayesianism, there is an obvious decision criterion: an act is prefer-
able to another act if and only if the expected utility of the outcome of the first act
under the single prior is higher than the expected utility of the outcome of the second
act. This is not only an intuitively appealing, but also a particularly rational decision
criterion in a rigorous theoretical sense: the expected utility theorems of de Finetti
(1937, 1970, 1974, 1975), von Neumann and Morgenstern (1944) and, as a synthesis,
Savage (1954) show that any preference relation among acts (i.e. maps from a certain
set, whose elements are called states of the world, to another set, whose elements are
called outcomes) which satisfies certain rationality postulates can be derived from an
expected utility criterion for some probability distribution on the set of states of the
world and some utility function defined on the set of outcomes.

2.2 Options for a Bayesian decision theory with multiple priors

Among the strengths of single-prior Bayesianism—the thesis that the belief system
of a rational agent can always be adequately captured by a single unique probability
measure—is its association with a both theoretically and practically very appealing
decision criterion. But what would be appropriate decision criteria under the hypothesis
of multiple-prior Bayesianism—i.e. the thesis that rational agents may have belief
systems compatible with several subjective probability measures (‘uncertainty’ in the
sense of Knight (1921))? This depends, unsurprisingly, crucially on what we mean by
‘appropriate’ in this context. Two approaches have to be distinguished.

We might either conceive of multiple-prior Bayesian agents as rational decision
makers, whence ‘appropriate’ reduces to a notion of decision-theoretic rationality. If
we were to choose that approach, we would look for decision criteria that have some
intuitive appeal and at the same time can be rationalised in the same manner as the
expected utility criterion has been rationalised by de Finetti (1937, 1970), de Finetti
(1974, 1975), von Neumann and Morgenstern (1944) and ultimately Savage (1954).
(An additional criterion might perhaps be the practical implementability of a decision
criterion.)

Among the most famous results in this direction are the rationalisation of the
maxmin expected utility decision criterion by Gilboa and Schmeidler (1989) and
its generalisation to the decision criterion of maxmin expected utility with additive
penalty (encoding the relative unlikelihood of certain priors) by Maccheroni et al.
(2006).

However, we might also look at our multiple-prior Bayesian agents (agents who
are subject to Knightian uncertainty) from a more epistemologically motivated per-
spective. This is what Bradley (2012) suggested in a recent colloquium talk. In line
with some of the recent psychological literature [for instance, Minsky (1986), Ornstein
(1986), or Schwartz (1997)], Bradley conceives of multiple-prior Bayesian agents as
complex—in extreme cases schizophrenic—personalities, composed of simpler sub-
personalities (called ‘opinionated avatars’ by Bradley) corresponding to each prior
that is compatible with the agent’s belief system. When the time is ripe for a decision,
the complex personality aggregates (Bradley) her different probability measures into
a single, temporary subjective probability measure and then choose the optimal act
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based on expected utility; after the decision has been made, she continues to be the
complex personality that she was before.

In other words, on the account of Bradley (2012), the preferences of a multiple-
prior Bayesian agent (on which the decision is based) are not deduced directly from
her set of priors—as would be the case if the agent were to use the maxmin expected
utility decision criterion. Instead, her preferences are derived, at least for this specific
decision, via classical expected utility theory, from a single, temporary subjective
probability measure which has been constructed using some aggregation rule from
her set of priors—even though the aggregation rule might vary, thus allowing for
time-inconsistency. Hence, at least from an epistemological perspective, the question
now remains how one can merge (‘aggregate’) probability measures; behaviourally,
only the aggregate prior is revealed.

3 The aggregation of probability measures

In principle, there are multiple possibilities for the ‘aggregation’ of several priors into
a single one. One’s choice will have to depend on how closely one wants to follow
some established notion of orthodoxy for aggregation.

If one were to take the requirement of an orthodox aggregation theory very literally,
one might recall that the aggregation theory of Arrow (1963) is the classical microeco-
nomic theory of aggregation. Since its domain is the aggregation of preferences, one
would have to convert the priors first of all into preference orderings; the canonical
way to achieve this is via expected utility theory. This will then prompt the question
under which circumstances Arrovian aggregation of expected utility preferences is
possible.

One might even go one step further [than Bradley (2012)] in the direction of a
society of mind (Minsky 1986) psychology of decisions: what if the decision maker
is composed of agents that are themselves conglomerates of even more elementary
agents who face some second-order uncertainty, yet have very simple utility func-
tions. Then, under some rationality constraints, one may assume that each of the
agents that constitute the decision maker has maxmin expected utility preferences or
at least preferences from one of the larger classes of ambiguous preferences, such
as the variational preferences of Maccheroni et al. (2006) or even the MBA prefer-
ences introduced by Cerreia-Vioglio et al. (2011). The above question then becomes
whether Arrovian aggregation of such generalisations of expected utility preferences is
possible.

As it turns out, this is in general not the case: whenever one wants to aggregate
a profile of variational preferences from a sufficiently rich class (e.g. the set of all
expected utility preferences for some set of states of the world or the set of all multiple-
prior preferences) into a single variational preference ordering (e.g. an expected utility
preference ordering on that set of states of the world), there will be no aggregation
rule satisfying the analogues of Arrow’s responsiveness axioms, as was shown in
Herzberg (2013a, b). Note that these impossibility statements can be established both
for the case of profiles of a given finite length [the analogue of Arrow’s impossibility
theorem, cf. Arrow (1963)] and for the case of profiles of any given infinite length [the
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analogue of Campbell’s impossibility theorem, cf. Campbell (1990)], using a model-
theoretic approach to aggregation theory inspired by Lauwers and Liedekerke (1995)
and systematically elaborated by Herzberg and Eckert (2012a, b). For the special case
of the Arrovian finite expected utility profiles of a given length, this impossibility
theorem was proved by Le Breton (1986); an impossibility theorem for the non-
dictatorial aggregation of expected utility preferences in a slightly different, yet still
very natural setting was established by Hylland and Zeckhauser (1979).

Thus, one will have to relax somehow the requirement of following a well-
established orthodoxy regarding aggregation. Another approach becomes available
as soon as one recalls that the problem of merging several priors into a single prior has
actually already been studied in the statistical literature: under the heading of proba-
bilistic opinion pooling, in particular the characterisation of aggregation (pooling) rules
satisfying certain responsiveness axioms as linear averaging rules due to McConway
(1981) [the findings of McConway (1981) have also entered the literature on aggregat-
ing expert judgments, e.g. Cooke (1991); the aggregation of probability distributions,
yet without the imposition of Arrovian responsiveness axioms, has been studied by
Lindley (1983).]

Even though McConway has shown a possibility result and Arrow an impossibility
result, the responsiveness axioms for pooling rules imposed by McConway (1981) are
remarkably similar to those of the social choice literature in the tradition of Arrow
(1963). In fact, based on these similarities, Dietrich and List (2010, 2008) have formu-
lated a unified framework for preference aggregation, probabilistic opinion pooling and
judgment aggregation. Herzberg (2014) has proposed a unified mathematical method-
ology for approaching this novel general aggregation theory of Dietrich and List (2010,
2008); in this setting, one can derive both McConway’s theorem (McConway 1981)
and a judgment aggregation analogue of Arrow’s theorem (Arrow 1963) from a single
characterisation theorem has been proposed in Herzberg (2014). The basic idea is that
in a binary setting, there are fewer aggregation rules anyhow, whence the responsive-
ness axioms can only be satisfied by aggregation ruler that are projections, while in
the probabilistic setting, the space of possible aggregation rules is much larger and
analogous responsiveness axioms can be satisfied by linear aggregation rules.

Understandably, the probabilistic opinion pooling literature is only concerned with
finite sets of (σ -additive) priors. Since the set of priors of multiple-prior Bayesian
agents (agents facing Knightian uncertainty) will in general be infinite sets of finitely
additive priors, we are looking for an appropriate generalisation of McConway’s the-
orem. Our desideratum is a theorem which proves the existence of aggregation rules
for infinite profiles of priors that satisfy Arrow’s responsiveness axioms.

In fact, it is not too difficult to give such an existence proof, at least if one does
not insist on the σ -additivity of the aggregate prior (which also permits to study the
aggregation of profiles of finitely additive probability measures).

We adopt essentially the same setup as in McConway (1981), with three mod-
ifications. First, no σ -additivity is required for the probability measures. Secondly
(WSFP, SSFP or ZPP) consensus functions are now called (independent, systematic
or unanimity-preserving—respectively) aggregation functionals, in order to connect
the result to general aggregation theory. Thirdly and most importantly, we allow for
an infinite electorate N.
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In the remainder of the paper, we shall discuss the framework just described (includ-
ing the assumptions on the aggregation operators) and prove the following results,
assuming that the underlying set of states of nature has at least three elements:

(1) An aggregation functional is systematic if and only if it is both independent and
unanimity-preserving.

(2) If the electorate is finite, then an aggregation functional is systematic if and only if
the aggregation functional can be reduced to weighted averaging of probabilities.

(3) If the electorate is infinite, then there again exist aggregation functionals that are
systematic but cannot be derived from the probability assignments of any finite
subset of the electorate.

(4) The existence of such aggregation functionals is non-trivial because an obvious
class of candidates for such aggregation functionals, viz. integrals with respect to
a σ -additive measure on the (power-set of the) electorate, generically is empty if
N is uncountable.2

Thus, non-trivial systematic aggregation of priors is possible even for infinite
electorates. Parts 1 and 2, of course, are merely a straightforward adaptation of
McConway’s famous results (McConway 1981, Theorems 3.2 and 3.3) to a setting
in which σ -additivity of priors is not assumed and which also admits with profiles of
infinite length.

For part 3 of the Theorem, one has to find systematic aggregation functionals for
infinite profiles of priors, which have hitherto not been constructed. Our construction
uses Robinsonian non-standard analysis (Robinson 1961, 1966) through an ultrapower
of the reals with respect to some non-principal ultrafilter on the cardinality of the set
of priors (i.e. the profile length). Very roughly speaking, the ultrafilter can be seen as
a device of picking an accumulation point of a bounded sequence (such as the profile
of all probabilities assigned to a particular event by individuals in the electorate),
and the use of non-standard analysis permits (a) calculating with this accumulation
point as if it were an ordinary sequence element (i.e. just an ordinary real between 0
and 1) and (b) extracting accumulation points in a uniform manner for all sequences
(i.e. all profiles of probabilities). In particular, this construction satisfies only a weak
anonymity concept, viz. finite anonymity, but not bounded or even strong anonymity,
as was shown by Fey (2004).

Part 4 merely assembles various results from axiomatic set theory on the so-called
measure problem. The problem with integral-based aggregation functionals is that the
function i �→ Pi (A) which assigns to each individual i the subjective probability of i
for a given event A, given some profile P , need not be measurable with respect to a
fixed σ -algebra on an uncountable electorate N. In general, it can only be assumed to
be measurable with respect to the power-set σ -algebra. However, the existence of σ -
additive probability measures on the power-set of an uncountable set N is an intricate
set-theoretic problem; the existence of such a measure cannot be proved in classical
mathematics and for some cardinalities of N even refuted.

2 I am very grateful to the Associate Editor for the suggestion to look at this question.
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4 A generalised aggregation theory for probability measures à la McConway
and Arrow

The possibility of aggregating finitely many probability measures while satisfying
responsiveness axioms similar to those in Arrow (1963) has been known for more than
three decades: any rule which takes the weighted average of the individual probability
measures already has those desirable properties, and there are no other rules satisfying
those desiderata (McConway 1981).

What has not been treated in the existing literature—at least to the present author’s
knowledge—is the aggregation of infinitely many probability measures. We will now
show that one can aggregate an infinite number of subjective finitely additive proba-
bility measures in a manner that the Arrow-type responsiveness axioms imposed by
McConway (1981). It is enough to form an ultrapower of the sequence of the subjective
finitely additive probability measures, with respect to an ultrafilter over the infinite set
of individuals, and then push it down to a standard finitely additive probability mea-
sure by composing it event-wise with the standard part operator [as in the Loeb (1975)
measure construction, but without requiring σ -additivity and thus without invoking a
saturation principle].

4.1 Formal framework

In the following, we present a framework for probabilistic opinion pooling which is
very similar to that of the classical paper by McConway (1981). Our framework is
more general in that it allows for infinite electorates as well (and is concerned with the
aggregation of finitely additive probability measures). Our terminology reflects the
formal similarities between judgment aggregation and probabilistic opinion pooling
which have already been observed by Dietrich and List (2010) [for a more formal
treatment, see Herzberg (2014)].

Let Ω be a set of possible worlds and let � be the set of all algebras on Ω .3 For all
A ∈ �, let �(A) be the set of finitely additive probability measures defined on A.

Let N be a finite or infinite set, called the electorate. An aggregation functional is a
map F with domain � such that F(A) : �(A)N → �(A) for all A ∈ �. [McConway
(1981) calls our aggregation functionals “classes of consensus functions”, denoted by
C.] Elements �(A)N (for any A ∈ �) are called profiles and are typically denoted P .
Given some profile P = (Pi )i∈N ∈ �(A)N (for any A ∈ �), we denote by P(A),
for any A ∈ A, the sequence (Pi (A))i∈N ∈ [0, 1]N . Furthermore, we denote by 0 and
1 the N -sequences consisting only of 0’s and 1’s, respectively. Note that whenever
A �= B, �(A)∩�(B) = ∅ and therefore the domains of F(A) and F(B) are disjoint.
We shall therefore usually drop the first argument, writing F

(
P

)
instead of F(A)

(
P

)

for all A ∈ �.

3 One could simplify the framework, in departure from the original paper by McConway (1981), by just
considering a single algebra, thereby ensuring that all aggregation functionals have the same domain. Since
all algebras are, up to isomorphism, subalgebras of power-set algebras [due to the representation theorem
of Stone (1936)], this framework would be less general than ours.
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4.2 Properties of aggregation functionals

A very natural condition on any aggregation functional (‘class of consensus functions’)
is the unanimity-preservation principle [in the terminology of McConway (1981) ‘Zero
Probability Property’], which demands that the aggregate probability of some event
should be zero if all voters assign zero to it.4

Definition 1 An aggregation functional F is unanimity-preserving/ZPP if and only if
for all A ∈ �, P ∈ �(A)N and A ∈ A, one has F

(
P

)
(A) = 0 whenever Pi (A) = 0

for all i ∈ N .

Another natural, but perhaps somewhat less compelling condition is to demand
that the aggregate probability of some event should depend on nothing else than that
event and the sequence of probabilities assigned to that event by the voters [in the
terminology of McConway (1981): ‘Weak Setwise Function Property’].

Definition 2 An aggregation functional F is independent/WSFP if and only if there
exists a function G : (

2Ω\{∅,Ω}) × [0, 1]N ∪ {(
∅, 0

)} ∪ {(
Ω, 1

)} → [0, 1] such
that for all A ∈ �, P ∈ �(A)N and A ∈ A,

F
(
P

)
(A) = G

(
A, P(A)

)
. (1)

The independence property can be traced back to the Arrovian literature where it
appears as the requirement of ‘independence of irrelevant alternatives’. In the judg-
ment aggregation literature, it is commonly known as independence tout court. The
idea is that the social judgment with respect to some proposition (encoding, e.g., a pref-
erence of one alternative over another) should only depend on the individuals’ attitudes
towards that particular proposition. Of course, such a requirement is only plausible
if the agenda admits some kind of separability, so that the propositions about which
social judgments are formed enjoy some degree of mutual independence themselves.

It is clear that G(Ω, 1) = 1 and G(∅, 0) = 0 whenever G satisfies Eq. (1) for
some aggregation functional F (because F

(
P

)
is, by assumption on F, always a

finitely additive probability measure). Moreover, the extension of the notion of inde-
pendence/WSFP would not change if one replaced the domain of G by 2Ω × [0, 1]N .
This, however, would introduce additional notational difficulties in the proof.

Finally, an even stronger notion than independence would be to require that the
aggregate probability of some event should depend on nothing else but the sequence
of probabilities assigned to that event by the voters [in the terminology of McConway
(1981): ‘Strong Setwise Function Property’]:

4 An alternative name for this concept might be the Pareto principle. However, the Pareto principle is
commonly associated with aggregation of preferences as opposed to beliefs. (Even though one might
argue that aggregation of probabilistic beliefs cannot be separated from aggregation of utilities, cf. Hylland
and Zeckhauser (1979).) The desideratum of unanimity-preservation is applicable to epistemic as well as
economic aggregation problems.
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Definition 3 An aggregation functional is systematic/SSFP if and only if there exists
a function f : [0, 1]N → [0, 1] such that for all A ∈ �, P ∈ �(A)N and A ∈ A,

F
(
P

)
(A) = f

(
P(A)

)
. (2)

The notion of systematicity is known in the preference aggregation literature as ‘neu-
trality’. It can be seen as stronger version of independence, demanding that aggregation
procedures be blind to the content of the proposition about which individual judgments
are aggregated.

From the judgment aggregation literature, it is well-known that for sufficiently
complex agendas, systematicity and independence are actually equivalent (for a con-
cise proof, cf. e.g. Klamler and Eckert (2009)). A similar finding holds in the setting
of McConway (1981) probabilistic opinion pooling. This result of McConway (1981,
Theorem 3.2) can easily be generalised to infinite electorates, as follows. (Because
the original proof is only for finite electorates and contains several misprints, we shall
provide a full proof, even though it is very close to McConway’s.)

Theorem 4 (Unanimity-preservation and independence = systematicity) Suppose
card(Ω) ≥ 3. Then, an aggregation functional is both unanimity-preserving/ZPP
and independent/WSFP if and only if it is systematic/SSFP.

4.3 Existence and characterisation of aggregation functionals

For the formal statement of our main theorem, we need the notion of an oligarchy,
which is a finite subset of an infinite electorate which uniquely determines the aggre-
gation functional by means of weighted averaging.

Definition 5 An aggregation functional is an oligarchy if and only if there exists
a finite proper subset M ⊂ N and some function h : [0, 1]M → [0, 1] such that
F(P)(A) = h

(
(Pi (A))i∈M

)
for all A ∈ �, P ∈ �(A)N and A ∈ A.

Beyond non-oligarchy, the stronger notion of finite anonymity is a desirable prop-
erty of aggregation functionals for infinite electorates:5

Definition 6 An aggregation functional is finitely anonymous if and only if for each
permutation π : N → N that is constant on a co-finite subset of N , one has
F(P)(A) = F

((
Pπ(i)

)
i∈N

)
(A) for all A ∈ �, P ∈ �(A)N and A ∈ A.

If there exists some probability measure μ on the whole power-set of N , then
i �→ Pi (A) will be a bounded measurable function for all A ∈ �, P ∈ �(A)N

and A ∈ A. Hence one may define in such a setting a systematic/SSFP aggregation
functional by F(P)(A) = ∫

N Pi (A)μ(di) for all A ∈ �, P ∈ �(A)N and A ∈ A.
The existence of such a μ, however, becomes a profound set-theoretic problem if N is
uncountable. The consequence of this will be seen in the subsequent characterisation
theorem for aggregation functionals. Let us, for simplicity, call aggregation functionals
continuous linear if and only if they admit an integral representation of the above form.

5 I thank the Associate Editor for suggesting this.
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Definition 7 An aggregation functional is continuous linear if and only if there exists
a σ -additive measure μ : 2N → [0, 1] such that for all A ∈ �, P ∈ �(A)N and
A ∈ A,

F(P)(A) =
∫

N

Pj (A)μ(d j).

Remark 8 Any continuous linear aggregation functional is systematic/SSFP.

Lemma 9 If N is countably infinite, then no continuous linear aggregation functional
is finitely anonymous.

Theorem 10 (Existence of systematic aggregation functionals) Suppose card(Ω) ≥
3.

• If N is finite, then an aggregation functional F is systematic/SSFP if and only if it
is continuous linear, and there exist non-oligarchic aggregation systematic/SSFP
functionals.

• If N is countably infinite, there exist non-oligarchic aggregation functionals that
are continuous linear, but also non-oligarchic systematic/SSFP aggregation func-
tionals that are finitely anonymous.

• If N is uncountably infinite, then there exist aggregation functionals that are sys-
tematic/SSFP, finitely anonymous and non-oligarchic.

• If N is uncountably infinite, the existence of continuous linear aggregation func-
tionals cannot be proved from Zermelo–Fraenkel set theory with the Axiom of
Choice (ZFC).

• If the cardinality of N is the least uncountable cardinal (or any other successor
cardinal), there cannot be a continuous linear aggregation functional.

The proof follows from the following two lemmas in combination with known
results from axiomatic set theory. The first lemma is just a slight variation of
McConway (1981, Theorem 3.3).

Lemma 11 If N is finite, then an aggregation functional F is systematic/SSFP if and
only if there exists some α ∈ [0, 1]N such that F(P)(A) = ∑

i∈N αi Pi (A) for all
A ∈ �, P ∈ �(A)N and A ∈ A.

Lemma 12 If N is infinite, then there exist aggregation functionals that are system-
atic/SSFP and finitely anonymous, but neither oligarchic nor continuous linear.

5 Proofs

Proof of Theorem 4 First consider a systematic/SSFP aggregation functional F , and
let f : [0, 1]N → [0, 1] be such that for all A ∈ � and every A ∈ A, Eq. (2)
holds. Trivially, it is then independent/WSFP. In order to see that it is also unanimity-
preserving/ZPP, it is enough to prove that f

(
0
) = 0. However, again by Eq. (2), for
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any A ∈ � and P ∈ �(A)N ,

f
(
0
) = f

(
P(∅)

) = F
(
P

)
(∅) = 0,

wherein the first equality holds because each Pi is a finitely additive probability mea-
sure and hence Pi (∅) = 0 for all i ∈ N , and the last equality holds because F

(
P

)
is

a finitely additive probability measure by definition of F .
Now consider an aggregation functional F that is both unanimity-preserving/ZPP

and independent/WSFP. Then there exists a function G : (
2Ω\{∅,Ω}) × [0, 1]N ∪{(

∅, 0
)} ∪ {(

Ω, 1
)} × [0, 1]N → [0, 1] such that Eq. (1) holds for all A ∈ � and

every A ∈ A. Because F is unanimity-preserving/ZPP, it is easy to see that we must
have

G(A, 0) = 0 (3)

for all A � Ω . Let P with P(A) = 0, so that P(�A) = 1. Then, G(�A, 1) =
F(P)(�A) = 1 − G(A, 0) = 1. Therefore,

G(B, 1) = 1 (4)

for all non-empty B ⊆ Ω .
Consider now two sequences (ai )i∈N , (bi )i∈N ∈ [0, 1]N such that ai + bi ≤ 1 for

all i ∈ N . Since card(Ω) ≥ 3, there will be two disjoint non-empty sets A, B � Ω

such that A ∪ B �= Ω . Then, there will be a algebra A such that A, B ∈ A and a
sequence P ∈ �(A)N such that for all i ∈ N ,

Pi (A) = ai , Pi (B) = bi , Pi (A ∪ B) = ai + bi .

Since F
(
P

)
is a finitely additive probability measure on A by definition of F , we will

have F
(
P

)
(A ∪ B) = F

(
P

)
(A) + F

(
P

)
(B), so

G (A ∪ B, (ai + bi )i∈N ) = G (A, (ai )i∈N ) + G (B, (bi )i∈N ) .

In the special case, (bi )i∈N = 0, we obtain, in light of Eq. (3),

G (A ∪ B, (ai )i∈N ) = G (A, (ai )i∈N ) .

Therefore (putting C = A ∪ B), whenever A ⊆ C � Ω ,

G(C, ·) = G(A, ·). (5)

(This equation, and structural similar identities in the remainder of this paper, should
be understood as an equality on the intersection of the domains of the left-hand side
and the right-hand side.)

It is now easy to prove G(A1, ·) = G(A2, ·) for all A1, A2 � Ω . If A1 and A2
have a non-empty intersection, then G(A2, ·) = G(A1 ∩ A2, ·) = G(A1, ·) after
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applying Eq. (5) twice (each time with A = A1 ∩ A2, once with C = A2 and once
with C = A1). If A1 and A2 are disjoint with A1 ∪ A2 � Ω , then G(A2, ·) =
G(A1 ∪ A2, ·) = G(A1, ·) after applying Eq. (5) twice (each time with C = A1 ∪ A2,
once with A = A2 and once with A = A1). If A1 and A2 are disjoint with A1∪A2 = Ω ,
then there must be a proper non-empty subset D of either A1 or A2. Without loss of
generality, assume ∅ �= D � A1 Then, on the one hand, G(A1, ·) = G(D, ·) by
Eq. (5), and on the other hand G(A2, ·) = G(A2 ∪ D, ·) = G(D, ·) after noting that
A2 ∪ D � A1 ∪ A2 = Ω and applying Eq. (5) twice.

Therefore, if we fix any non-empty A1 � Ω , we will get G(A, ·) = G(A1, ·) for
all A ⊆ Ω and we may define f = f (A1, ·).
Proof of Lemma 9 If F is continuous linear, say represented by some probability mea-
sure μ on N , and N is countably infinite then there must be two individuals i, j such
that μ{i} �= μ{ j}. Any permutation π that is constant on a co-finite subset of N and
satisfies π(i) = j and π( j) = i is a counterexample to finite anonymity.

Proof of Lemma 11 One can literally copy the proof of McConway’s main result
(McConway 1981, Theorem 3.3), because that proof does not require the σ -additivity
of the probability measures in the profile.

Proof of Lemma 12 Our proof employs non-standard analysis in the sense of Robinson
(1961, 1966).6 Fix a non-principal ultrafilter U on N .7 Then, the ultrapower RN /U
will be a non-standard model of the real numbers.

Let ◦ denote the standard part operator on this model of the hyperreals.
Let A ∈ � and P ∈ �(A)N , and define a real-valued set function F(P) by

F(P) : A → [0, 1], A �→ ◦ [
P(A)

]
∼U

.

(Since each element of the sequence P(A) is between 0 and 1, the ultrapower element[
P(A)

]
∼U

is a hyperreal between 0 and 1 by Łoś’s theorem (Łoś 1955), whence its

standard part ◦ [
P(A)

]
∼U

is well-defined and a standard real number between 0 and
1.)

Now, each Pi is finitely additive, addition on the ultrapower RN /U is defined
representative-wise and ◦ commutes with addition of limited hyperreals. Therefore,
for all disjoint A, B ∈ A,

◦ [
P(A ∪ B)

]
∼U

= ◦ [
P(A) + P(B)

]
∼U

= ◦ ([
P(A)

]
∼U

+ [
P(B)

]
∼U

)

= ◦ [
P(A)

]
∼U

+ ◦ [
P(B)

]
∼U

,

whence the set function F(P) defined above is finitely additive. Similarly,

◦ [
P(Ω)

]
∼U

= ◦ [
1
]
∼U

= ◦1 = 1,

6 For an introduction and comprehensive survey of non-standard analysis, cf. e.g. Albeverio et al. (1986).
7 The existence of non-principal ultrafilters is a consequence of, though weaker than, the Axiom of Choice,
cf. Halpern and Levy (1971)
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whence F(P)(Ω) = 1. Hence, F(P) is a finitely additive probability measure on A.
We also need to show that F is not an oligarchy. Suppose otherwise, so that there

is some M ⊆ N and some function h : [0, 1]M → [0, 1] such that F(P)(A) =
h

(
(Pi (A))i∈M

)
for all A ∈ �, P ∈ �(A)N and A ∈ A. On the one hand, one can

show that h must be a linear weighted averaging operation, simply by applying the
first part of the theorem to the aggregation functional F (M) defined through

F (M)(A) : �(A)M → �(A), P �→ h
(
(Pi (·))i∈M

)
.

On the other hand, by our above choice of F , we have

◦ [
α
]
∼U

= h
(
α
)

(6)

for all α ∈ [0, 1]N , in particular for all sequences that converge to zero in a strictly
decreasing manner. Let us insert such a sequence α. Since h is a linear weighted
averaging operation and all entries of α are positive, h

(
α
)

> 0. However, since α

is a null sequence,
[
α
]
∼U

is an infinitesimal on account of Łoś’s theorem, hence
◦ [

α
]
∼U

= 0, contradicting Eq. (6).
We have to prove that F need not be continuous linear. Now, if N is countable, then

U cannot be σ -complete, and therefore the set function χU defined on 2N is not a
σ -additive measure, whence the aggregation functional F does not admit a classical
integral representation (and hence is not continuous linear).

If N is uncountable, then U can at the very least be chosen in such a manner that
U is not σ -complete and hence F is not continuous linear: For example, suppose
that either there are no weakly inaccessible cardinals or the cardinality of N is less
than the least such cardinal. If U were σ -complete on N , then it would induce a
σ -additive measure χU on N , which contradicts our cardinality assumption [cf. Ulam
(1930), Jech (2000, p. 126, Theorem 10.1)]. Hence, unless the cardinality of N is
extremely large, no non-principal ultrafilter U can be σ -complete, whence F will not
be continuous linear. [Note, that the existence of weakly inaccessible cardinals cannot
be proved from ZFC, cf. (Jech, 2000, p. 33).] In general, regardless of the cardinality
of N , there will at least exist non-principal ultrafilters U which are not σ -complete
[and satisfy additional properties, cf. e.g. Kunen (1972, Theorem 3.2)].

Finally, we have to verify that F is finitely anonymous. To see this, note that if
π : N → N is a permutation which is constant on a co-finite subset of N , then
Iπ = {i ∈ N : π(i) = i} ∈ U by our choice of U .

As U is closed under supersets, this means that for all β ∈ [0, 1]N , β ∼U(
βπ(i)

)
i∈N , i.e.,

[
β
]

∼U

= [(
βπ(i)

)
i∈N

]
∼U

. (7)

Now let A ∈ �, P ∈ �(A)N and A ∈ A, and put P ′ = (
Pπ(i)

)
i∈N . Then,

[
P(A)

]
∼U

= [
P ′(A)

]
∼U
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by Eq. (7), hence F(P)(A) = F(P ′)(A) by definition of F .

Proof of Theorem 10 • The equivalence follows from Lemma 11. If the vector α in
that Lemma is chosen to contain only non-zero entries, the resulting aggregation
functional is clearly non-oligarchic.

• If N is countably infinite, there are of course continuous linear aggregation func-
tionals, and whenever the measure that represents such a functional has full sup-
port, the resulting aggregation functional will be non-oligarchic. There will then
exist a sequence α ∈ (0, 1)N such that F(P)(A) = ∑

i∈N αi Pi (A) (convergent)
for all A ∈ �, P ∈ �(A)N and A ∈ A. (In particular,

∑
i∈N αi = 1.) How-

ever, Lemma 12 teaches that there also other aggregation functionals which are
non-oligarchic and systematic/SSFP.

• This follows from Lemma 12.
• The existence of a continuous linear functional entails the existence of a σ -additive

measure on N. This, however, implies the existence of a weakly inaccessible—
in fact, even of a measurable—cardinal [cf. Ulam (1930), Jech (2000, p. 126,
Theorem 10.1)]. This, however, is not provable from ZFC [cf. Jech (2000, p. 33)].8

• Since no successor cardinal is weakly inaccessible, the above argument shows
that there cannot be a continuous linear aggregation functional if N has successor
cardinality.

6 Discussion and conclusion

Formal epistemologists who accept Knightian uncertainty (or ambiguity)—i.e. the the-
sis that rational agents may have belief systems that are compatible with several sub-
jective probability measures (multiple priors)—need to come up with a new account of
how such agents will make their decisions, as classical expected utility theory requires,
of course, a unique prior. The standard decision-theoretic literature (e.g. Gilboa and
Schmeidler 1989) treats Knightian uncertainty through axiomatic rationalisation of
generalisations of expected utility preferences, but this is clearly not satisfactory from
an epistemological point of view, since there are situations where decisions have to be
rationalised with respect to an aggregate belief system [as, for instance, in Bradley’s
psychologically informed account of individual decisions (Bradley 2012), or in social
epistemology, cf. Bradley et al. (2012)]. What is needed is a natural aggregation theory
for probability measures—ideally one that is applicable to infinite profiles of priors.

While a number of obvious approaches (such as Arrovian aggregation of !-utility
preferences or their generalisations) turn out to be barren, there does exist a candidate
for such an aggregation theory of (possibly infinitely many) probability measures:
We have proved an extension of McConway’s results on probabilistic opinion pool-
ing (McConway 1981) which can be regarded as Arrovian in spirit as it relates to
the social choice theory in the tradition of Arrow (1963) through the unified general
aggregation theory of Dietrich and List (2008, 2010). The existence of well-behaved
aggregation functionals for uncountably infinite profiles is non-trivial, since obvious

8 If the existence of (weakly) inaccessible cardinals were provable, one could prove the consistency of
ZFC, violating Gödel’s second incompleteness theorem.
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candidates such as integral-based aggregators quickly lead into (set-theoretic) mea-
surability problems. Moreover, the aggregation functionals that we construct for the
case of infinite electorates also satisfy a weak anonymity condition.

Now some readers might be concerned about the use of the ultrafilter existence
theorem and non-standard analysis in the construction of the aggregation function-
als for infinite electorates. It may be reassuring to recall that (i) any proof invok-
ing non-standard analysis can always be transformed into a long standard proof; (ii)
that the ultrafilter existence theorem is strictly weaker than the Axiom of Choice
(Halpern and Levy 1971); and (iii) that there are non-standard models of the reals—
even non-standard universes—which are definable over Zermelo–Fraenkel set theory
plus Choice (Kanovei and Shelah 2004; Herzberg 2008a, b).

To conclude: It is possible to directly aggregate—finite and infinite—profiles of
finitely additive probability measures in a way that (i) respects Arrovian-spirited
responsiveness axioms, (ii) reduces, in the case of finite profiles, to the intuitive rule of
linear averaging of probabilities, (iii) is—for several decision-theoretic reasons—the
most natural viable approach to the aggregation of priors. Philosophically, this means
that there is a rigorous sense in which one can refer (1) to the ‘aggregate belief system’
of a group of individuals who hold probabilistic beliefs [as in Bradley et al. (2012)]
and (2) to the ‘aggregate prior’ of an agent whose belief system is compatible with
several subjective probability measures [as recently suggested by Bradley (2012)].
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