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Abstract This paper considers the computational complexity of the design of voting
rules, which is formulated by simple games. We prove that it is an NP-complete
problem to decide whether a given simple game is stable, or not.
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1 Introduction

1.1 Motivation

This paper considers the design of voting rules from the viewpoint of computational
complexity. In many real-life organizations, people have to design some rules to make
collective decisions. In designing such a rule, the designer has to check beforehand
whether the designed rule works properly. For example, the designer has to check
whether the rule outputs an appropriate decision for every possible input. However,
such checking may be a computationally daunting task. In this paper, we examine
such computational problems in the case where the voting setting is formulated by the
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familiar concept of simple games (Nakamura 1975). In discussing the “hardness” of
computation, we utilize the well-known concept of NP-hardness from computational
complexity theory.

Consider a group of people who want to set up a voting rule for their own use. Then
there are at least two requirements that the group would want to impose on the rule.
First, the group would want the rule to properly reflect the distribution of “decision
power”within the group specified in advance. For example, in a stockholders’meeting,
it is usually required that the larger the share one has, the bigger the “decision power”
the one is given. This may be embodied as the number of votes distributed proportional
to the share.

Second, the group would want the rule to work for any conceivable case, that is, for
any combination of preferences of the members of the group. For example, the simple
majority rule can always output winners for any votes (though there can be ties). On
the contrary, the Condorcet winner rule does not always output winners. It would not
be desirable for the group to have decision rules like the latter.

In this paper, we adopt the formulation in terms of simple games. A simple game
represents a “power distribution” in the group in a very simple way: each subgroup
is categorized as “powerful” or “not powerful.” Formally, a simple game is the list of
the subgroups that are labeled “powerful.”

Provided that the power distribution is given by a simple game, let us consider the
two requirements which we imposed on the voting rule in the above. To meet the
first requirement, we require the voting rule to be a subcorrespondence of the core
of the simple game. The core is the set of alternatives which cannot be blocked by
any “powerful” subgroups. That is to say, the core is those alternatives which do not
confront with any effective oppositions given the power structure described by the
simple game. To fulfill the second requirement, the core has to be nonempty for every
combination of preferences that the members of the group may have. If the core of a
simple game has this property, then the simple game is called stable. Therefore, our
question in designing a voting rule is summed up to whether the underlying simple
game is stable, or not.

1.2 Results

From the discussion in the above, it is essential to checkwhether any given simple game
is stable, or not. The question we ask in this paper is how computationally complex
this checking is.We prove that it is anNP-complete problem to decide whether a given
simple game is stable or unstable. In fact, we prove that the problem is NP-complete
not only in the general case but also in the special case in which the set of “powerful”
subgroups consists only of “large” subgroups. Restricting “powerful” subgroups to
“large” ones is natural because in many real-life situations, power is assigned only
to “large” subgroups. In our proofs, we utilize the result proved by Nakamura (1979)
that gives a necessary and sufficient condition for stability.

The significance of our results is that they cast a practical limit on the availability
of stable voting rules. Our results suggest that there would be some cases in which
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the designer of the voting rule cannot check the performance of the rule in a practical
sense. This fact restricts those simple games which are available for practical use.

We note that our proofs are mathematically trivial: they follow immediately from
known results. Nonetheless, we consider our results important in that they answer
some basic questions regarding computational aspects of voting theory. We believe
that our results are worth reporting to the readers in voting theory, rather than those in
computational complexity theory.

2 Preliminaries

2.1 NP-completeness

For those not familiar with computational complexity, the following is only a brief and
informal description ofNP-completeness. For detailed exposition, Garey and Johnson
(1979) is a classical reference. A newer and concise presentation is Chapter 2 of Arora
and Barak (2009).

A decision problem (problem, henceforth) is a problem which is to be answered
in “yes” or “no.” A problem consists of the descriptions of

(i) instance, which is the free parameters of the problem, and
(ii) question, which is to be answered in “yes” or “no.”

The answer to the question depends on the values of the free parameters.An instance
refers to one set of values of these parameters.

Consider a problem.We say that an algorithm solves this problem if (i) the algorithm
outputs “yes” if, and only if, the input is an instance forwhich the answer to the problem
is “yes,” and (ii) otherwise the algorithm outputs “no.”1 Then we say that the problem
belongs to the class P if there is an algorithm that solves the problem in polynomial
time, that is, the maximum time (the maximum number of steps) taken to answer the
question is bounded by some fixed polynomial in the size of the instance (the length
of the input).

We say that the problem belongs to the classNP if there is an algorithm that verifies
the answer to the problem in polynomial time, that is, if there is a polynomial-time
algorithm such that for any given instance, the answer to the question is “yes” if,
and only if, there is a certain additional input, called a certificate, with which this
algorithm outputs “yes.” Here the certificate has to be a polynomial length in the size
of the instance.

It is straightforward that P ⊂ NP. At the present time, however, it is unknown
whether P = NP, or not. This is one of the fundamental problems in computer science
and mathematics. (See Cook (2000)). It is widely believed that P �= NP.

Let L1 and L2 be problems. We say that L1 is polynomial-time reducible to L2 if

(i) there exists a function f that transforms any instance x of L1 into the instance
f (x) of L2 such that the answer to L1 for the instance x is “yes” if, and only if,
the answer to L2 for the instance f (x) is “yes,” and

1 In this paper, by the term “algorithm,” we mean “deterministic algorithm.” That is, we exclude such
algorithms which utilize randomness. We are not going into the formal definitions of these concepts here.
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(ii) the function f is embodied by a polynomial-time algorithm.

Intuitively, L2 is at least as hard as L1; if you can solve L2, then you can also solve
L1 by transforming the instances of L1 into those of L2, and the transformation itself
is not difficult. Denote this relation by L1 ≤p L2. Note that ≤p is transitive.

A problem L1 is called NP-hard if for any L2 ∈ NP, L2 ≤p L1. Further, L1
is called NP-complete if L1 is NP-hard and L1 ∈ NP. Intuitively, a problem being
NP-complete means that the problem is one of the “hardest” among all NP problems.
A problem being NP-hard means that it is at least as hard as NP-complete problems.

There are numerous problems which are known to be NP-complete. One method
which is often used in proving a certain problem L1 is NP-hard is reduction. This is
done by the following steps:

(i) Specify a known NP-complete problem L2.
(ii) Show L2 ≤p L1 by giving a concrete polynomial-time transformation.

To prove L1 is NP-complete, we additionally show L1 ∈ NP. We will utilize this
method in the sequel.

Given a problem L , the complementary problem L̄ of L is the problem which
has the same free parameters but has the opposite question to L . That is, if L asks
if ∃x : p(x), then L̄ asks if ∀x,¬p(x). First, we note that if a problem L is NP-
complete, then L̄ is NP-hard since L is reducible to L̄ (i.e., L ≤p L̄) by flipping the
output. Let coNP denote the set of problems L for which L̄ ∈ NP. It holds true that
P ⊂ coNP. It is an open problem whether coNP = NP or not. In fact, this is related
to the P = NP problem: coNP �= NP implies P �= NP. Further, if there exists an
NP-complete problem L such that L̄ ∈ NP, then coNP = NP. (Theorem 7.2 in Garey
and Johnson (1979) p. 156.) Thus if a problem is NP-complete, then it is not known
whether its complementary problem belongs to NP or not.

2.2 Simple games

A simple game is a listG = (N ,W ,�). Here N is a nonempty finite set of individuals.
A coalition is a nonempty subset of N . W is a nonempty class of coalitions. Any
element ofW is called awinning coalition.� is a nonempty finite set of alternatives.

A preference relation of individual i ∈ N is an acyclic binary relation �i on �.2

For x, y ∈ �, x �i y means “i strictly prefers x to y.” We denote a combination of
preferences of all individuals (�i )i∈N by �.

Let a simple game and a combination of preferences (G ,�) be given. Let x, y ∈ �.
Then we say that x is blocked by S with y if

∀i ∈ S, y �i x .

The core of (G ,�) is the set of alternatives which are not blocked by any coalitions
with any alternatives.

2 A binary relation �i on � is called acyclic if for any natural number m, any m elements x1, x2, · · · , xm
of �, if x2 �i x1, x3 �i x2, · · · and xm �i xm−1, then x1 �i xm .
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A simple game G is called stable if the core of (G ,�) is nonempty for any com-
bination of preferences �. One of the fundamental questions in the theory of simple
games is whether a given simple game is stable, or not. Nakamura (1979) gave the
answer to this question by providing a necessary and sufficient condition for stability
in terms of the “Nakamura number.”

Call a simple game G weak if
⋂

W �= ∅. Let G be a simple game which is not
weak. Then the Nakamura number V (W ) of G is

V (W ) = min
{
#σ | ∅�=σ ⊂ W ,

⋂
σ = ∅

}
.

We will utilize the following well-known theorem for proving our results.

Theorem 1 (Nakamura 1979) Let a simple game G = (N ,W ,�) be given. Then G
is stable if, and only if, (i) G is weak, or (ii) #� < V (W ).

For a general and comprehensive analysis of the Nakamura number, consult Kum-
abe and Mihara (2008a).

3 Results

Let us define the problem that we will examine.

Name: UNSTABILITY.
Instance: A nonempty finite set N ; A nonempty collectionW = {W1, · · · ,Wm}
of nonempty subsets of N ; A nonempty finite set �.
Question: Is the simple game G = (N ,W ,�) not stable?

Note that the question in the above problem is asking whether the simple game is
not stable, that is, the answer is “yes” if, and only if, the simple game is not stable.
Let us refer to the complementary problem of UNSTABILITY as STABILITY. One
may think that STABILITY, rather than UNSTABILITY, is the natural question to ask.
However, as we will see, here we cannot decide whether STABILITY belongs to NP,
or not, whereas we prove that UNSTABILITY is in NP (see just below Theorem 2).

Although UNSTABILITY is our primary problem, we consider an easier version of
UNSTABILITY so that we will obtain stronger results. In this easier version, winning
coalitions are restricted to “large” coalitions. Here, by a coalition being “large,” we
mean that the number of individuals in the coalition is no less than the total population
minus k (where k is a natural number given in advance) if the total population is
more than k. This restriction is natural because in many real-life situations, power is
assigned only to subgroups larger than a particular size. Although this restriction may
seem to reduce the difficulty of the problem, as we will prove, this easier version is in
fact as difficult as the original problem if k ≥ 3. We refer to this easier version of the
problem as k-UNSTABILITY, and its complementary problem as k-STABILITY. Let
us define this problem formally. Let a natural number k be given.

Name: k-UNSTABILITY.
Instance: A nonempty finite set N ; A nonempty collectionW = {W1, · · · ,Wm}
of nonempty subsets of N with for all i = 1, · · · ,m, #Wi ≥ #N − k if #N > k;
A nonempty finite set �.
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Question: Is the simple game G = (N ,W ,�) not stable?

Obviously, for any k, k-UNSTABILITY≤pUNSTABILITY. Also, it is straightfor-
ward that if k′ ≤ k, then k′-UNSTABILITY≤p k-UNSTABILITY.

In the following, we prove that 3-UNSTABILITY is NP-complete.

Lemma 1 3-UNSTABILITY is NP-hard.

Proof Theproof is done by reduction from the following knownNP-complete problem
([SP5] in Garey and Johnson (1979)).

Name: 3-MINIMUM COVER.
Instance: A finite set S; A nonempty collection C = {C1, · · · ,Cm} of subsets
of S with for all i = 1, · · · ,m, #Ci ≤ 3; a natural number r with r ≤ m.
Question: Does there exist a collection D such that D ⊂ C , #D ≤ r , and⋃

D = S?

Let an instance (S,C , r) of 3-MINIMUM COVER be given. Let us construct
an instance of 3-UNSTABILITY (i.e., a simple game) G = (N ,W ,�) as follows:
Let N := S ∪ {i�} with i� /∈ S. And let W := {N \ C | C ∈ C } ∪ {S} and
� := {1, 2, · · · , r + 1}.

Note that N and all elements of W are nonempty since in defining N we have
added i� to S. Also note that for any W ∈ W , it holds i� ∈ W if, and only if, W �= S.
Clearly, if #N = #S + 1 > 3, then ∀W ∈ W , #W ≥ #N − 3, i.e., W consists of
“large” coalitions only. And we have the following relations:

⋃
C = S ⇔

⋂
W = ∅, (1)

⋃
C = S ⇒ min

{
#D | D ⊂ C ,

⋃
D = S

}
+ 1 = V (W ) (2)

Suppose that the answer to 3-MINIMUM COVER for this instance is “yes.” Then
we have

⋃
C = S and min{#D | D ⊂ C ,

⋃
D = S} ≤ r . This implies that the

simple game constructed in the above is not weak by (1), and that V (W ) ≤ r + 1 =
#� by (2). Then by Theorem 1, the simple game is not stable so the answer to 3-
UNSTABILITY for this instance is “yes.”

Suppose that the answer to 3-UNSTABILITY is “yes,” i.e., the constructed simple
game is not stable. Then by Theorem 1, it follows that the simple game is not weak
and that V (W ) ≤ #� = r + 1. By (1) and (2), this implies

⋃
C = S and min{#D |

D ⊂ C ,
⋃

D = S} ≤ r , that is, the answer to 3-MINIMUM COVER is “yes.” ��
Lemma 2 UNSTABILITY and k-UNSTABILITY with any k belong to NP.

Proof Because k-UNSTABILITY≤pUNSTABILITY, it suffices to prove UNSTA-
BILITY ∈ NP. Let an instance (N ,W ,�) of UNSTABILITY be given. Then by
Theorem 1, the answer to the problem is “yes” for this instance if, and only if, there
exists a class of coalitions σ such that

∅ �= σ ⊂ W ,
⋂

σ = ∅ and #σ ≤ #�. (3)
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Then the class σ constitutes the certificate. And the time taken to check whether σ

satisfies (3) grows only linearly. Thus it is checkable in polynomial time. ��
Remark 1 2-UNSTABILITY belongs to P. This is because of the following two facts:
(i) There is a polynomial time algorithm for solving “2-MINIMUM COVER,” the
natural variant of 3-MINIMUM COVER, that is, the problem of checking if there is
a cover of S in the family of subsets C of S with #C ≤ 2 for all C ∈ C . (See [SP5]
in Garey and Johnson (1979)); (ii) 2-UNSTABILITY≤p 2-MINIMUM COVER.

From Lemmas 1 and 2, we have the following conclusion.

Theorem 2 UNSTABILITY and k-UNSTABILITY with k ≥ 3 are all NP-complete.

As mentioned in Sect. 2.1 (in the last paragraph), it is unknown if coNP = NP or
not. And if there exists some NP-complete problem whose complementary problem
belongs toNP, then coNP = NP. (Theorem 7.2 in Garey and Johnson (1979) p. 156).
Thus it is not known if STABILITY belongs toNP or not. We have only the following.

Corollary 1 STABILITY and k-STABILITY with k ≥ 3 are all NP-hard.

Recall that in k-UNSTABILITY (and k-STABILITY) we have restricted winning
coalitions to “large” coalitions. Now let us consider an alternative formulation of
“largeness” of coalitions; we define “large” coalitions as those which exceed in size
some fixed proportion q of the total population. This formulation may be more natural
than the one in k-UNSTABILITY. Let us formally define this problem. Let a number
q with 0 ≤ q < 1 be given.

Name: QUOTAq-UNSTABILITY.
Instance: A nonempty finite set N ; A nonempty collectionW = {W1, · · · ,Wm}
of nonempty subsets of N with for all i = 1, · · · ,m, #Wi ≥ q#N ; A nonempty
finite set �.
Question: Is the simple game G = (N ,W ,�) not stable?

Corollary 2 For any q with 0 ≤ q < 1, QUOTA q -UNSTABILITY is NP-complete.

Proof First, we prove UNSTABILITY≤pQUOTAq-UNSTABILITY, which estab-
lishes the NP-hardness of QUOTAq-UNSTABILITY. Let an instance of UNSTA-
BILITY G = (N ,W ,�) be given. Let us construct an instance of QUOTAq-
UNSTABILITY G ′ = (N ′,W ′,�′) as follows: Let M be a finite set disjoint with
N such that #M ≥ q(#N + #M). Let N be the set of coalitions {N ∪ (M \ { j}) |
j ∈ M}. Then let N ′ := N ∪ M,W ′ := {W ∪ M | W ∈ W } ∪ N and
�′ := {1, 2, · · · , #� + #M}.

Note that for any W ∈ W ′, #W ≥ #M thus #W ≥ q#N ′ i.e., W ′ satisfies the
quota condition. N is constructed in the way that

⋂
N = N but the intersection of

any proper subset N ′ of N contains not only N but also some elements of M . On
the other hand, clearly, each element W in W corresponds to the element W ∪ M in
W ′ \ N . Thus for any σ ⊂ W , there is the natural counterpart σ ′ ⊂ W ′ \ N , and it
holds

⋂
σ ′ = ⋂

σ ∪ M . Thus
⋂

σ = ∅ if, and only if, (
⋂

σ ′) ∩ (
⋂

N ) = ∅. Note
that #N = #M . Therefore, if G and G ′ are not weak, then

V (W ) + #M = V (W ′). (4)
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Also, G is weak if, and only if, G ′ is weak,
Suppose that the answer to the UNSTABILITY instance is “yes.” That is, G is not

stable, i.e., by Theorem 1, G is not weak and V (W ) ≤ #�. Then it is immediate that
G ′ is not weak, and the relation (4) implies V (W ′) ≤ #�′. Thus G ′ is not stable,
i.e., the answer to the QUOTAq-UNSTABILITY instance is “yes.” Next, suppose that
the answer to the QUOTAq-UNSTABILITY instance is “yes.” Then similarly to the
above case, we have that the answer to the UNSTABILITY instance is “yes.”

Second, we show QUOTAq-UNSTABILITY ∈ NP. This is immediate from
QUOTAq-UNSTABILITY≤pUNSTABILITY, andUNSTABILITY∈ NP by Lemma
2. Therefore, we conclude that the problem is NP-complete. ��

4 Related studies

Remark 2 Many works examine those computational problems which arise in various
models of coalitional games when preferences are given. For example, some studies
consider the problem of determining whether the core is nonempty, or whether a given
outcome is in the core (e.g., Conitzer and Sandholm2006,Kumabe andMihara 2008b).
The present work should be carefully distinguished from this type of research. Our
problems ask to determine whether a given game is such that the core is nonempty for
every combination of preferences, not a given combination of preferences.

Remark 3 Bartholdi et al. (1991) is related to our work. Whereas our interest is in
simple games, a generalmodel, they study spatial voting games, amore specificmodel.
They show that it is an NP-complete problem to check the unstability of q-weighted
majority voting games. This class of voting games is a subclass of simple games.
However, the NP-hardness of UNSTABILITY, one of our results, is not immediate
from their result because their games have a different representation: In their problem
of the unstability of q-weighted majority voting games, the instance of the problem is
a list of weights assigned to individuals and the quota q. The size of these data grows
only in linear order as the number of individuals gets larger. On the other hand, in our
problem UNSTABILITY, the instance is the list of winning coalitions, which grows
exponentially.

Remark 4 Onemay object that the simple game is too simple a representation of power
distribution. The “effectivity function,” which is a generalization of the simple game,
is a more elaborate expression of power distribution. The computational complexity of
determining the unstability of effectivity functions was proved to be NP-complete by
Mizutani et al. (1993) and Boros and Gurvich (2000). Similarly to the case in Remark
3, effectivity functions have a different representation from simple games thus their
result has no direct relations to ours.
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