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STEVEN J. HUMPHREY

DOES LEARNING DIMINISH VIOLATIONS
OF INDEPENDENCE, COALESCING

AND MONOTONICITY?

ABSTRACT. Violations of expected utility theory are sometimes attrib-
uted to imprecise preferences interacting with a lack of learning opportu-
nity in the experimental laboratory. This paper reports an experimental
test of whether a learning opportunity which engenders accurate prob-
ability assessments, by enhancing understanding of the meaning of
stated probability information, causes anomalous behaviour to diminish.
The data show that whilst in some cases expected utility maximising
behaviour increases with the learning opportunity, so too do systematic
violations. Therefore, there should be no presumption that anomalous
behaviour under risk is transient and that discovered preferences will be
appropriately described by expected utility theory.

KEY WORDS: discovered preferences, event-splitting effects, indepen-
dence, monotonicity, probability learning.

1. INTRODUCTION

The decision-making under risk literature reports numerous
experimentally observed violations of the axioms of expected
utility theory. These observations challenge the predictions
of broader economic theories which assume expected utility
maximization and undermine the policy assessments emerg-
ing from them. More recently investigators have begun to
speculate that apparently anomalous behaviour may stem
from an inherent imprecision, or incompleteness, in prefer-
ences, coupled with unfamiliarity with the types of decision
task faced in the experimental laboratory (Loomes, 1999).
Plott (1996), for example, has argued that despite experimen-
tally observed choice anomalies, expected utility theory is a
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descriptively appropriate approximation of individuals’ true
preferences. Given some kind of learning process and famil-
iarisation with decision tasks, preferences will ‘firm-up’ and
settle on expected utility maximization.1 If Plott’s (1996) argu-
ment is correct, the problems posed to economic analysis by
experimentally observed violations of expected utility theory
may be less serious than previously thought.

This paper reports a test of the impact of a probability
learning opportunity on frequently observed choice anom-
alies: common consequence effect violations of the inde-
pendence axiom, violations of the coalescing principle and
violations of monotonicity. The experiment employs a lot-
tery valuation task whereby conformity with or violation of
expected utility maximisation is manifest in patterns of val-
uations over sets of individually valued lotteries. The vehicle
though which the learning opportunity is offered is the reve-
lation of the outcomes of 10 resolutions of the risk in each
lottery prior to that lottery being valued. This learning oppor-
tunity has three important properties: (i) For reasons out-
lined below, it may be expected to promote the formation of
accurate probability weights, and thereby give expected utility
maximising behaviour a fair chance of being observed. (ii) It
does not directly financially reward decision-makers for con-
formity with expected utility theory (as is the case in Chu
and Chu’s (1990) disciplining of transitivity violations). In this
sense the experiment can be regarded as a test of whether
decision-makers voluntarily learn to avoid anomalous behav-
iour. This is often the most economically relevant question
when market discipline is either not present or not strong
enough to enforce behaviour modifications. (iii) It is behavio-
urally relevant. Investors, for example, can observe the perfor-
mance of stocks prior to investment decisions.

The test investigates two questions. First, does experience
in observing the resolution of risk involved in lotteries prior
to choice affect behaviour? Second, if probability learning
affects revealed preferences, are those revealed preferences
appropriately described by expected utility theory? Seeking
an answer to these questions is important. One possibility is
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that Plott (1996) is right: learning opportunities may reveal
behavioural anomalies to be transient laboratory-generated
nuisances to the otherwise sound theory of rational choice.
On the other hand, even if learning occurs in experimen-
tal decision-making tasks, there is no reason in principle
why the discovery of genuine underlying preferences need
imply expected utility maximisation (Loewenstein, 1999). If
anomalies are genuine features of initially imprecise non-
expected utility preferences, and if learning and experience
reduce imprecision, deviations from expected utility maximisa-
tion may be expected to persist or even be exacerbated.

2. THREE VIOLATIONS OF EXPECTED UTILITY THEORY

2.1. Independence violations: The common consequence effect

The first panel of Table I describes a set of three decision
problems. Each pair of lotteries is generated from each of
the other pairs by shifting a probability mass of 0.5 between
outcomes in both lotteries in a pair. For example, S2 and
R2 are respectively generated from S1 and R1 by replacing
a 0.5 chance of £9 with a 0.5 chance of zero. Since the 0.5
probability event contains outcomes common to each lottery
within a pair, the independence axiom of expected utility the-
ory states that either the riskier option is preferred in all three
problems (R1, R2 and R3), the safer option is preferred in all
three problems (S1, S2 and S3), or that there is indifference
in all three problems. A common consequence effect occurs
when preferences switch systematically between the riskier lot-
tery and the safer lottery in a comparison of two lottery pairs.

Wu and Gonzalez (1998) discuss a large amount of experi-
mental evidence which shows that the usual pattern of observed
common consequence effects is as described in Table II.

2.2. Coalescing violations: Event-splitting effects

Event-splitting effects are observed by Starmer and Sugden
(1993) and Humphrey (1995) over pairs of decision problems
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TABLE I

Lotteries

Panel 1: Common Consequence Effect Lotteries
Lottery Probability 0.1 0.1 0.3 0.5

Pair 1 S1 Outcomes 0 9 9 9
R1 21 21 0 9

Pair 2 S2 Outcomes 0 9 9 0
R2 21 21 0 0

Pair 3 S3 Outcomes 0 9 9 21
R3 21 21 0 21

Panel 2: Event-Splitting Effect Lotteriesa

Lottery

Split Problem Probability p q r

P1 Outcomes a 0 0
P2 0 b b

Coalesced Problem Probability p 1−p

P3 Outcomes a 0
P4 0 b

Panel 3: Monotonicity Lotteriesb

Lottery

A Probability p 1−p

Outcomes x 0
B Probability q 1−q

Outcomes y 0
C Probability r s 1− r − s

Outcomes y y − ε 0

ap +q + r =1, a >b>0. Set 1 parameters are p = r =0.3, b=£21. Set 2
parameters are p =0.5, q =0.3, r =0.2, b=£10.
bp <q, q = r + s, x >y >ε > 0. Set 1 parameters are p = r = 0.5, s = 0.2,
x = £18, y = £11, ε = £0.5. Set 2 Parameters are p = r = 0.4, s = 0.2,
x =£24, y =£13, ε =£1.
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TABLE II

Common consequence effects∗

Pairs 1 and 2 v(S1)�v(R1) and v(R2)�v(S2)

Pairs 1 and 3 v(S1)�v(R1) and v(R3)�v(S3)

Pairs 2 and 3 v(S2)�v(R2) and v(R3)�v(S3)

∗v(.) represents the valuation assigned to a lottery. A violation of
expected utility theory requires at least one strict inequality in each
of the three rows.

of the type illustrated in the second panel of Table I. Over
these problems a violation of expected utility theory is man-
ifest in a preference for P2 over P1 and P3 over P4, despite
the fact that each problem offers identical probabilities of
identical outcomes in each respective lottery. Splitting the
event which offers a 1 − p chance of b in P4, such that it
offers a q chance of b and a r chance of b in P2, renders P2
relatively more attractive than P4. This is a violation of the
coalescing principle, which states that identical outcomes (b)
will be combined by adding their probabilities (q + r = 1 − p)
prior to choice.2

Event-splitting effects are unlike many choice anomalies
because there exists a range of real world decision-making
contexts where one observes analogous behaviour. For exam-
ple, insurance policies often describe risks such that they
are split into their most detailed ‘sub-risks’. Insurance cover
for having your wallet stolen from your house and having
your wallet stolen whilst out of the house may appear more
attractive than cover for simply having your wallet stolen. By
enhancing the impression of cover, splitting risks may allow
insurance companies to charge higher premiums (see Johnson
et al. (1993) for related evidence). Alba and Marmorstein
(1987) discuss the use of frequency information by marketers
to shape consumer decisions through influencing the salience
of object attributes (splitting events increases the frequency
with which outcomes are represented in the decision prob-
lem). In related work, Weber et al. (1988) report attribute-
splitting effects in multiattribute utility evaluation studies and
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Bateman et al. (1997) present evidence of part-whole bias in
contingent valuation studies. Common to the above examples
is that the frequency with which attributes are represented in
decision tasks can influence behaviour. Tversky and Koehler
(1994) refer to this phenomenon as an unpacking effect, and
allude to the possibility that it may operate at a fundamental
level where no risk is present.

2.3. Monotonicity violations: Preference for dominated lotteries

Starmer (1999a) reports violations of monotonicity and tran-
sitivity over lotteries described in the third panel of Table I.
When subjects were asked to choose between lottery A and
lottery B, lotteries B and C, and lotteries A and C, Starmer
(1999a) observes choice cycles involving A being chosen over
B, B over C and C over A (hence abbreviated to ABC). Note
that this (predicted) cycle, as opposed to the (counter-pre-
dicted) cycle (BCA), involves choosing B over C, which it
dominates by a s chance of ε.

Predicted cycles and event-splitting effects appear related.
Assuming that individuals recognise the dominance relation
in the choice between B and C (94% of Starmer’s (1999a)
subjects do), they are driven by the fact that, in the choice
between A and B, lottery A is relatively less attractive than
it is in the choice between A and C. Lottery C offers two
positive outcomes whereas B offers only one, despite the fact
that the chances of winning positive amounts are identical in
each and that B dominates C. To investigate this, Starmer
(1999a) conducts a test which compares the frequency of what
he calls pattern 1 choices (A chosen over B and C chosen
over A) with pattern 2 choices (B chosen over A and A
chosen over C). He observes a greater incidence of pattern
1 choices, which favour the predicted cycle, than pattern 2
choices, which favour the counter-predicted cycle. Therefore,
although Starmer’s (1999a) subjects obey monotonicity in the
transparent choice between B and C, it is indirect violations
of monotonicity generated by an event-splitting type argument
which appear to be driving predicted choice cycles.
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In the experiment reported here it is not possible for a set
of three valuations assigned to lotteries A, B and C to indi-
cate a non-transitive preference ordering. It is, however, pos-
sible to observe violations of monotonicity in valuation in a
manner which would imply non-transitive choices of the type
observed by Starmer (1999a), as well as violations of monoto-
nicity which do not.3 For example, if v(.) denotes the money
value attached to a lottery, then a violation of monotonic-
ity would be manifest in v(C) � v(B). If the preference order-
ing implied by these valuations was replicated in choices it
need not imply cycles, because it may represent only part of
a more general ordering such as v(A) >v(C) �v(B) or v(C) �
v(B) > v (A). If the latter ordering, for example, was applied
to choices, cycles would not be observed because A would be
chosen over neither B nor C. If, however, it was the case that
v(C) > v(B) and this formed part of a more general ordering
v(C) >v(A) >v(B), then the implication is that A is preferred
to B, and C is preferred to A, exactly as is the case for Starm-
er’s (1999a) pattern 1 choices. By comparing the incidence of
all valuation patterns involving v(C) �v(B) with v(C) �v(A) �
v(B) (with at least one strict inequality), it is possible to derive
an indication of the extent of monotonicity violations which
might imply non-transitivities in choice, without allowing non-
transitive preferences to emerge per se.

3. LEARNING IN RISKY CHOICE EXPERIMENTS

3.1. The discovered preference hypothesis

As Cubitt et al. (2001) point out, Plott’s (1996) discovered
preference hypothesis is supported by Smith (1989), Harrison
(1994) and Binmore (1999), and holds that individuals have a
unique and precisely structured set of underlying preferences,
but in order for them to be elicited in decision-making tasks
the individual will first have to discover which action best sat-
isfies those preferences. To this end some kind of learning,
possibly trial-and error, or deliberation, is required. Learning
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from experience transforms initially imprecise preferences into
‘firmed-up’ expected utility preferences. Experiments which
report choice anomalies without appropriate opportunities
for learning cannot therefore be taken as evidence against
expected utility theory. The discovered preference hypothesis
gives rise to the possibility that the plethora of experimentally
observed choice anomalies are the product of inexperienced
decision-makers making novel choices in an unfamiliar envi-
ronment whilst learning how their imprecise preferences inter-
act with the task. As individuals become more experienced
and their preferences become less imprecise, one might expect
choice anomalies to diminish or disappear altogether. If risky
choice anomalies are transient, as the discovered preference
hypothesis suggests, there are (at least) two important implica-
tions. First, the descriptive challenges which have undermined
expected utility theory, broader models based upon expected
utility theory, and the welfare and policy judgements which
follow, may turn out to be misplaced in ‘evolved’ economic
contexts. Second, the risky choice research agenda should pri-
oritise modelling the learning process (Friedman, 1998) and
investigating how different learning opportunities help to form
preferences (Loomes, 1999).

There is evidence which supports the discovered prefer-
ence hypothesis. For example, Cox and Grether (1996) observe
the decay of preference reversals in a Vickrey second price
auction. Loomes et al. (2002) find that as subjects progress
through sequences of pairwise choice problems, their decisions
converge upon expected utility maximisation. Friedman (1998)
experimentally replicates Monty Hall’s three door problem.
In this task subjects are asked to select one of three doors.
Behind one door is the ‘grand’ prize and behind the two
others are virtually worthless prizes. When the subject has
selected a door, one of the other doors is opened to reveal
a worthless prize, and the subject is offered the chance to
switch their selected door with the remaining unopened door.
Switching is rarely observed despite the fact that this would
increase the probability of winning the grand prize from 1/3
to 2/3. When subjects are offered the chance to learn by
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keeping a written record of the outcomes of repeated tri-
als, taking written advice, and comparing their winnings with
those of others, irrational behaviour is greatly diminished.
Friedman (1998, p. 941) interprets his evidence as suggesting
that appropriately structured learning environments render the
existence of anomalous behaviour (in the sense of stable and
yet irrational choices) unlikely.

3.2. Frequency-based probability learning

Estes (1976a) notes that individuals do not process proba-
bility information with advanced statistical ability, but rather
rely on simple heuristic devices. Of particular importance is
that learning by experience, in the shape of observing the out-
comes of repeated situations, coupled with faith in the uni-
formity of nature, yields the fundamental heuristic that more
frequently observed outcomes are more likely to be future
outcomes. If repeated situations yield different outcomes then
probability judgements are generated by converting absolute
event frequencies into relative event frequencies. On Estes’s
(1976a,b) view, therefore, probability learning is based on the
learning of absolute event frequency. This conception of prob-
ability learning is hence termed the frequency-based probability
learning hypothesis.4 To support his view Estes (1976a) pro-
vides experimental evidence from a predictive decision-making
task which shows that if in observation trials an event occurs
more frequently than is suggested by objective probability,
individuals judge the future occurrence of that event to be
more likely than it actually is. Further evidence of deviations
from rationality stemming from the use of frequency heuris-
tics is provided by Einhorn and hogarth (1987). Humphrey
(1999) replicates Estes’s (1976a) results in a computerised
experiment with financial incentives for accurate probability
learning.

Although the above evidence documents irrational behav-
iour attributable to frequency-based probability learning, Estes
(1976a,b) also shows that if individuals observe sequences of
outcomes where event occurrence matches true probabilities,
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probability learning is accurate and extremely efficient. It is
this evidence with which the experiment reported here is pri-
marily concerned. The learning opportunity provided to one
group of subjects involves showing them the outcomes of 10
resolutions of the risk in the lottery, alongside stated prob-
ability information, prior to making their valuation. These
resolutions of the risk will yield event occurrences exactly as
suggested by the stated probabilities. Consider how this type
of learning opportunity might promote expected utility maxi-
misation.

All of the anomalous behaviours discussed in Section 2 can
be explained by probability weighting models such as prospect
theory (Kahneman and Tversky, 1979). Assume an individual
is faced with a choice between prospects Pi , where i = 1,2.
Each prospect is represented by a vector of probabilities pij

for j = 1, . . . , n where pij is the probability that Pi results in
consequence xj . Individuals maximise the value of:

n∑

j=1

π(pij )v(xj ) (1)

Where π(pij ) is the probability weight attached to probabil-
ity pij and v(.) is the monotonically increasing utility function
assigned to increments or decrements of wealth relative to the
individual’s current asset position. v(.) is unique up to multi-
plication by a positive constant with v(0) = 0 at the point of
reference.

If the decision rule in expression (1) is applied to the com-
mon consequence effect between pairs 1 and 2 in Table II,
the violation of coalescing discussed in Section 2.2 (assum-
ing that there is no editing stage) and the predicted cycles
in Section 2.3 (assuming the dominated lottery in the choice
between B and C is ignored) expressions (2), (3) and (4) are
respectively yielded:

π(0.9)>π(0.4)+π(0.5) (2)

π(p)+π(q)>π(p +q) (3)
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π(r)v(y)+π(s)v(y − ε)>π(q)v(y) (4)

The probability weighting function is assumed to be well-
behaved around the salient endpoint probabilities such that
π(1) = 1 and π(0) = 0, but is less so elsewhere. A subaddi-
tive probability weighting function would render expression
(3) true and be a necessary condition for expression (4). In
the absence of a probability learning opportunity, probability
weights are more likely to display non-linearity, such as sub-
additivity, which generates anomalous behaviours.

If, in the context of probability weighting models, fre-
quency-based probability learning engenders expected utility
maximising behaviour, it would do so by promoting a reduc-
tion in the non-linearity of the probability weighting func-
tion. By allowing reflection on probability weights formed
on the basis of stated probabilities, frequency-based probabil-
ity learning may achieve exactly this. Following Diecidue and
Wakker (2001), consider the lottery (£30, 0.4; £20, 0.5; £10,
0.1). Cumulative prospect theory (Tversky and Kahneman,
1992) suggests that the importance of an outcome in the eval-
uation of the lottery depends not only on its probability, but
also how good it is in relation to the other outcomes. If
the decision-maker is a pessimist, for example, the probabil-
ity weight attached to the worst outcome (£10) will be such
that π10(0.1)> 0.1, say 0.3. Similarly, being a pessimist, more
than half of the remaining attention will be paid to the next
worst outcome (£20) such that π20(0.5)>0.5=0.6. This leaves
π30(0.4) = 0.1. Diecidue and Wakker (2001) point out that
rank-dependent probability weights of the type described may
represent an irrational belief that relatively aversive events
tend to happen more often than suggested by their true prob-
ability.

Now imagine that the decision-maker observes ten resolu-
tions of the risk in the lottery, which yields £10 only once,
£20 five times and £30 four times (i.e. event occurrence
exactly matching stated probabilities). It is plausible to sug-
gest that experience of observing these outcomes causes the
pessimist to regard the probability weight π10(0.1) = 0.3 as
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placing too much emphasis on an unlikely outcome. Corre-
spondingly, even the pessimist, upon observing £30 to have
occurred four times out of ten, might regard the probabil-
ity weight π30(0.4)= 0.1 as under-representing the importance
of the best outcome in the evaluation of the lottery. Thus
it seems that the opportunity to engage in frequency-based
probability learning might cause sufficient reflection upon
probability weights (formed on the basis of stated informa-
tion) to engender their modification and purge the weighting
function of the properties which imply anomalous behaviour.
All that is required to form accurate probability assessments
is the observation of outcomes over a sufficiently long period
such that relative frequencies of event occurrence converge on
objective event likelihood. If so, any imprecision in prefer-
ences rooted in a lack of experience in dealing with and/or
understanding the meaning of probabilities may be dimin-
ished.5

4. EXPERIMENTAL DESIGN

4.1. Valuation tasks, learning and incentives

The experiment involved subjects assigning money valuations
to a total of twenty lotteries, fifteen of which were con-
cerned with problems described in Table I. Each lottery was
expressed in terms of tickets numbered consecutively from 1
to 10 as illustrated in Figure 1. The valuation was attached
to each lottery through what was termed the ‘yardstick’. Sub-
jects were told that they should increment or decrement the
amount shown in the boxes containing question marks (the
‘up’ cursor key changed the question marks to £00.00, press-
ing it again gave £00.10, etc.) until the box displayed an
amount such that should they be offered the lottery or the
yardstick they would not mind which they received.6

Subjects were assigned to one of two conditions. ‘Control’
treatment subjects simply valued each lottery before moving
on to the next. ‘Learning’ treatment subjects saw the lottery,
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but before valuing it saw an observation sequence involving
ten resolutions of the risk in the lottery. This is captured in
the box in Figure 1 showing ‘draw’ (1 to 10) and ‘winnings’
(the outcome of each of the draws). When subjects started
the observation sequence the computer showed the outcome
of the first draw (£21 in Figure 1), paused for a second,
showed the outcome of the second draw, and so on. The lot-
tery draws in the observation sequence were such that events
occurred exactly according to their stated probabilities in a
manner analogous to a ‘speeding-up’ of the law of averages.7

Subjects were told that in a genuinely random draw according
to the stated probabilities, any of the outcomes in the lottery
could occur, but that the observation sequence shows them
what might happen over a series of ten resolutions of the risk.
Investigating whether violations of independence, coalescing
and monotonicity replicate in valuation tasks, as opposed to
pairwise choice tasks, is an interesting test of their robustness.
However, the primary motivation for employing a valuation
task is that it provides a fair and simple test of the frequency-
based probability learning hypothesis. By allowing subjects to
concentrate on one lottery at a time, a valuation task pre-
cludes subjects in the learning treatment having to evaluate
two lotteries at a time alongside assimilating an observation
sequence for each, as would be the case in a pairwise choice
task.

The incentive system used in the experiment made it in
subjects’ financial interests to attach valuations to the lotteries
which reflected their genuine preference ordering over the set
of lotteries. Subjects were told that at the end of the exper-
iment two lotteries would be randomly selected by drawing
two numbered disks from a bag containing twenty consecu-
tively numbered disks. The valuations assigned to these lot-
teries would be compared and the lottery which was valued
highest would be played out for real money (by drawing a
disk from a bag containing ten consecutively numbered disks)
to determine their payment for participation in the experi-
ment.8 Since subjects would not know which two lottery val-
uations would be compared to determine the payment lottery
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Figure 1. Valuation task display.

until after all lotteries had been valued, they could only be
sure of playing out their truly preferred lottery from the pair
by assigning valuations which reflected their genuine prefer-
ence ordering over the set of twenty lotteries. Subjects were
told that one way in which they could guarantee playing out
their truly preferred lottery from the randomly selected pair
would be to consider each lottery carefully and assign it a
genuine valuation.9

The system of incentives described above is a hybrid of
the random lottery incentive system and what Tversky et al.
(1990) call the ordinal payoff scheme. The ordinal payoff
scheme is favoured over the Becker et al.(1964) incentive
mechanism (BDM) in valuation tasks because it has been
shown that the latter can only be theoretically relied upon to
elicit true valuations if the independence axiom of expected
utility theory holds (e.g. Segal, 1988).10 Camerer (1995) dis-
cusses a wealth of evidence which shows that it does not.
Avoiding the BDM device mitigates these concerns. Holt
(1986), however, shows that if subjects treat experiments as
a single large choice between compound lotteries which have
first been simplified according to the reduction principle, then
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it cannot be inferred that behaviour observed in a comparison
of two lotteries can be taken as indicating genuine preference
over those lotteries. For example, take the tests of the coalesc-
ing principle. Holt’s (1986) argument suggests that observing a
higher valuation of P2 than of P4 cannot be taken as a genu-
ine preference for P2 over P4. According to Holt (1986), val-
uing P2 over P4 is equivalent to selecting lottery H1:

H1 : [P2, λ;Z,1−λ]

Where λ is the probability that P2 and P4 are selected as the
two lotteries whose valuations are compared to determine the
lottery in which the risk will be resolved to determine the
subject’s payment, and Z is determined by behaviour over all
other tasks in the experiment. Similarly, valuing P4 greater
than P2 is equivalent to selecting lottery H2:

H2 : [P4, λ;Z,1−λ]

Holt’s (1986) argument is that P2 being valued above P4 can-
not be taken as a genuine preference for P2 because there
is a potentially perturbing wedge driven between observation
and inferred preference by the term in Z. If the independence
axiom of expected utility does not hold then this term may
render revealed preference in an experiment involving addi-
tional tasks different to that which would be expressed, for
example, in a single direct choice between P2 and P4. Relative
valuations may have been contaminated by the other tasks. If,
however, a preponderance of valuations patterns which indi-
cate P2 to be preferred to P4 is observed, Holt’s (1986) argu-
ment would need to explain why violations of independence
systematically favour this valuation pattern rather than the
opposite one. Since, from the perspective of conventional the-
ory, P2 and P4 are identical, any such explanation would
appear to require an account of event-splitting effects. These
tests, therefore, control for Holt’s (1986) hypothesis. A similar
argument can be extended to the other anomalies discussed in
Section 2.

Holt’s (1986) argument can neither explain any differences
which may be observed in behaviour between the control
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and learning treatments. Any such difference could not be
explained by any generalized expected utility theory which
does not involve independence and views preferences between
lotteries as dependent only on probabilities and outcomes,
even if independence does not hold and relative valuations are
contaminated. Any theory of this type would view the incen-
tive system faced by our control and learning groups as equiv-
alent. And so this could not be responsible for any observed
differences in behaviour.

4.2. Hypotheses

Violations of independence, coalescing and monotonicity in
valuation tasks are manifest in particular patterns of valuations.
Table III describes the hypothesis tests which will be conducted
to establish whether violations of independence, coalescing and
monotonicity emerge. In the tests for common consequence
effects and event-splitting effects the null hypothesis is that pat-
terns of valuations which violate expected utility theory in the
direction consistent with the predicted anomaly (common con-
sequence effects as described in Table II or an event-splitting
effect) are no more frequent than the opposite patterns of val-
uations which violate expected utility theory.11 Implicit in this
null hypothesis is the neutral assumption that patterns of valua-
tions which deviate from expected utility maximisation are due
to random errors. Random errors, of course, may be indicative
of imprecision in preferences. In the tests for monotonicity vio-
lations the null hypothesis is that patterns of valuations which
violate dominance are no more frequent than monotonic val-
uation patterns. A failure to reject the null hypothesis would
mean that it cannot be ruled out that patterns of anomalous
valuations are the result of random mistakes. In the case of
monotonicity violations which might imply non-transitivities in
choice, the null hypothesis is that patterns of valuations consis-
tent with the choice cycles observed by Starmer (1999a) are no
more frequent than valuations which imply a choice cycle in the
opposite direction. The alternative hypotheses are that patterns
of valuations consistent with the common consequence effects
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described in Table II, or which violate coalescing and mono-
tonicity, are observed with greater frequency than the opposite
patterns of valuations.

Once it has been established whether violations of indepen-
dence, coalescing or monotonicity are respectively observed
within the control and learning groups, attention will turned
towards investigating any differences in behaviour between
treatments. This investigation will be two-fold. Firstly, the
null hypothesis that learning does not occur and violations
of expected utility theory occur with similar frequency under
both conditions will be pitted against a one-tailed alterna-
tive hypothesis provided by the discovered preference and the
frequency-based probability learning hypotheses; that behav-
iour observed in the learning group is more consistent with
expected utility maximization than behaviour in the con-
trol group. Secondly, the data will be interrogated to reveal
whether frequency-based probability learning affects the dis-
tribution of any observed violations of expected utility theory.
For example, if significant violations of coalescing observed
in the control group are not observed in the learning group,
this could be due to learning generating fewer event-splitting
effects, more violations of expected utility theory in the oppo-
site direction, or a combination of both.

4.3. Conduct of the experiment

The experiment was conducted at the Centre for Decision
Research and Experimental Economics (CeDEx) laboratory at
the University of Nottingham. A total of 203 subjects were
recruited by e-mail shot to the CeDEx mailbase of pre-reg-
istered volunteers from across the undergraduate population
and asked to reserve a place in one of a number of pre-
arranged sessions. It was determined randomly in advance
whether each session would be a control treatment or a learn-
ing treatment, with 67 subjects taking part in the former and
136 in the latter. 60% of subjects were male. Each session
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TABLE III

Hypothesesa

Test Null Hypothesis Alternative Hypothesis

Common
Consequence
Effectb

n[v(S1)�v(R1) and
v(R2)�V (S2)]=
n[v(R1)�v(S1) and
v(S2)�V (R2)]

n[v(S1)�v(R1) and
v(R2)�V (S2)]>
n[v(R1) � v(S1) and
v(S2)�V (R2)]

n[v(S1)�v(R1) and
v(R3)�V (S3)]=
n[v(R1)�v(S1) and
v(S3)�V (R3)]

n[v(S1)�v(R1) and
v(R3)�V (S3)]>
n[v(R1)�v(S1) and
v(S3)�V (R3)]

n[v(S2)�v(R2) and
v(R3)�V (S3)]=
n[v(R2)�v(S2) and
v(S3)�V (R3)]

n[v(S2)�v(R2) and
v(R3)�V (S3)]>
n[v(R2)�v(S2) and
v(S3)�V (R3)]

Coalescing n[v(P 2)>v(P 4)]=
n[v(P 4)>v(P 2)]

n[v(P 2)>v(P 4)]>
n[v(P 4)>v(P 2)]

Monotonicity n[v(C)�v(B)]=
n[v(B)>v(C)]

n[v(C)�v(B)]>
n[v(B)>v(C)]

Monotonicity/
Transitivityc

n[v(C)�v(A)�
v(B)]=n[v(B)�
v(A)�v(C)]

n[v(C) � v(A) �
v(B)] > n[v(B) �
v(A)�v(C)]

an[v(P 2) > v(P 4)], for example, should be interpreted as the number
of valuation patterns which involve P2 lotteries (as in Table I) being
assigned a higher value that P4 lotteries.
bThe set of three null and alternative hypotheses respectively refer to the
common consequence effects tests which compare lottery pairs 1 and 2,
pairs 1 and 3, and pairs 2 and 3, as in Table II.
cEach term in square brackets requires at least one strict inequality. The
term on the left hand side of the equality under the null hypothesis rep-
resents the number of valuation patterns which violate monotonicity in
a manner consistent with Starmer’s (1999a) pattern 1 choices. The term
on the right-hand side of the equality represents valuation patterns con-
sistent with Starmer’s (1999a) pattern 2 choices.
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lasted for approximately one hour, including detailed instruc-
tions from the experiment organiser and working through two
practice valuations to illustrate the task and the incentive
mechanism. Average payment for participation was £12.97.
The order in which the twenty lotteries were valued was
randomised for each subject to control for order effects. For
learning treatment subjects, the order in which each outcome
occurred during the observation sequence was also determined
randomly. There was no time limit for completion of the
tasks.

5. RESULTS

5.1. Independence violations: The common consequence effect

Table IV reports the results of the test for common conse-
quence effects. Taking the control treatment data first, the
EUT column shows 43–46% (with an average of 45%) of val-
uation patterns to be consistent with expected utility max-
imisation. These subjects always valued the riskier lottery
higher, always valued the safer lottery higher, or expressed
indifference by always valuing the riskier and safer lotteries
identically. This means that over half (54–57%) of the pat-
terns of valuations assigned by control group subjects vio-
late expected utility theory. Despite this overall violation rate,
the data in the predicted and counter-predicted anomaly col-
umns show violations to be broadly equally distributed. The
p-value column shows that the null hypotheses in Table III
cannot be rejected in favour of the alternative hypothesis
of systematic common consequence effects. The most sus-
tainable explanation of violations of expected utility theory
in the common consequence effect tests is therefore ran-
dom noise. The source of this noise may be imprecision in
preferences.

The learning treatment data show patterns of valuations
consistent with expected utility theory to vary between 45%
and 61%. The average consistency rate is 53%. This is slightly
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higher than that of 45% under the control group. The Z col-
umn in Table IV contains the results of a test of difference in
sample proportions based on the normal distribution. Three
negative Z-values show greater consistency with expected util-
ity theory amongst the learning group in all three common
consequence effect tests. This difference is significant at the
5% level in the pairs 1 and 2 comparison (Z = −1.7523).
There is weak evidence therefore that the probability learning
opportunity mitigates violations of the independence axiom of
expected utility theory.

Violations of expected utility theory in the learning group
are distributed differently to those in the control group.
Whereas the latter indicate randomly noisy violations, the for-
mer reveal significant common consequence effects at the 5%
level in both the pairs 1 and 3 and pairs 2 and 3 comparisons.
The implication of these data is that whilst frequency-based
probability learning increases consistency with expected utility
theory, it also distils noisy violations of expected utility theory
such that they become systematic. It seems that overall con-
vergence on expected utility maximisation does not rule-out a
proportion of systematically anomalous behaviour.

The data from the common consequence effect tests are con-
sistent with Friedman’s (1998, p. 942) recognition that some
learning environments may actually encourage choice anoma-
lies. They are also consistent with Slovic and Tversky’s (1974)
findings in a common consequence effect test which used pair-
wise choices and involved a different type of learning opportu-
nity. After subjects had made their choices (some 60% of which
violated independence), they were presented with arguments in
favour of and against the logic of the independence axiom.
They were then offered the chance to change their initial deci-
sions. Slovic and Tversky (1974) observe that rather than miti-
gating the choice anomaly, this learning opportunity increased
violation of the independence axiom. There appears, therefore,
to be a growing body of support for Loewenstein’s (1999) view
that although there is a role to be played by learning in reduc-
ing confusion which may stem from experimental procedures, it
should not be presumed that confusion-free preferences will be
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those dictated by expected utility theory. Prima facie, this argu-
ment appears to be as reasonable as the discovered preference
hypothesis. If choice anomalies are genuine features of under-
lying non-expected utility preferences, then learning opportuni-
ties which give rise to a better identification of those preferences
are likely, if anything, to cause the emergence or exacerbation
of anomalous behaviour.

The question that this interpretation poses in the context of
the experiment reported here is exactly why frequency-based
probability learning appears to facilitate systematic violations
of expected utility theory when no such systematic violations
were previously in evidence? One answer to this question is
provided by the preference reversal literature (e.g. Grether
and Plott, 1979). Preference reversals are observed when a
$-bet (offering a high money prize with a low probability)
is assigned a higher reservation price than a P-bet (offering
a relatively low money prize with a high probability), but is
subsequently not chosen in a direct choice between the two.
This pattern of behaviour is often attributed to response mode
effects. One feature of response mode effects is compatibility.
The compatibility hypothesis states that money is the salient
attribute of lotteries in money valuation tasks (the two are
compatible). This renders the high prize in the $-bet partic-
ularly influential in driving the valuation. A higher money
valuation for the $-bet than for the P-bet is the result. In
the choice task there is no such compatibility with money
outcomes (and possibly one operating in favour of the P-bet
because of the potentially enhanced salience of the probabil-
ity of winning). So preferences are reversed in favour of the
P-bet. Assume common consequence effects are the product
of how probabilistic biases influence the probability weighting
function, as in expression (2). The salience of the money attri-
bute of the lotteries in the control group valuation tasks may
have precluded the emergence of any such probability-driven
anomalies. In the learning group, however, the observation
sequence may have enhanced the salience of the probability
attribute such that probability-based common consequence
effects emerged.12
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5.2. Coalescing violations: event-splitting effects

Considering the control treatment data first, the tests of coa-
lescing reveal 22% of valuation patterns to be consistent with
expected utility maximisation in parameter set 1 and 48% in
set 2. The valuations patterns which violate coalescing are
distributed differently under each set. The set 1 violations are
approximately evenly distributed such that the null hypothe-
sis of consistent valuations cannot be rejected. Under set 2,
however, violations of coalescing are distributed in the direc-
tion of event-splitting effects such that the null hypothesis can
be rejected at the 10% level. This, to my knowledge, is the
first evidence of event-splitting effects in a valuation task. It
is interesting that the systematic violation of the coalescing
principle should emerge within the parameter set which also
indicates the highest proportion of expected utility maximising
behaviour. The difference in behaviour between the two sets of
parameters is that the counter-predicted violation of coalesc-
ing is more prevalent in set 1 than in set 2. The set 2 param-
eters split a 0.5 chance (of £10) into 0.3 and 0.2 chances,
and the set 1 parameters split a 0.7 (of £21) into 0.4 and 0.3
chances. Since the former split probabilities are smaller than
the latter, this observation is consistent with subadditive prob-
ability weights, as in expression (3), stemming from the over-
weighting of small probabilities.

Turning to the learning treatment data, parameter sets 1
and 2 respectively reveal 30% and 33% of valuation patterns
to be consistent with expected utility maximisation. The pat-
terns which violate coalescing are split in the direction consis-
tent with event-splitting effects in both parameter sets. In set
1 event-splitting effects are sufficiently frequent in relation to
the opposite violation to reject the null hypothesis at the 10%
level. This is not the case in set 2.

In parameter set 1, the impact of the learning opportu-
nity on violations of coalescing between treatments is that
expected utility maximisation increases from 22% to 30%. The
Z-value in Table IV reveals this difference to be insignificant
(Z=−0.9868). In a similar manner to that under the common
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consequence effect tests, however, frequency-based probability
learning introduces a systematic violation of the coalescing
principle. This is the case despite the fact that event-split-
ting effects do not significantly increase between treatments
(36% and 43% of valuation patterns in the control and learn-
ing treatments, respectively, giving Z = −0.88). Increasingly
systematic violations of coalescing appear to be driven by the
reduction in counter-predicted violations. These fall from 42%
in the control treatment to 27% in the learning treatment.
This yields Z=1.82 and allows rejection of the null hypothesis
that learning does not affect behaviour with 5% significance
in a one-tailed test. One interpretation of this observation
is that counter-predicted violations of the coalescing princi-
ple stem from an inherent imprecision in preferences which
frequency-based probability learning diminishes. Thus whilst
probability learning significantly affects neither the proportion
of expected utility maximization nor violations of coalescing
in the direction of event-splitting effects per se, it does help
to weed-out certain patterns of behaviour. On this interpreta-
tion, valuation patterns consistent with event-splitting effects
should not be considered as transient features of imprecise
preferences. If they were, it would be necessary to explain why
subjects learned to commit fewer violations of the counter-
predicted violation, but were not similarly inclined to commit
fewer event-splitting effects.

The impact of learning on violations of coalescing in
parameter set 2 between the control and learning treatments
appears contrary to that in set 1. In parameter set 2 learn-
ing reduces patterns of valuations consistent with expected
utility theory from 48% to 33% (Z = 1.7313). This may lead
to the prima facie conclusion that violations of expected util-
ity theory are features of genuine non-expected utility pref-
erences which learning opportunities exacerbate by reducing
initial imprecision in those preferences. The structure of these
genuine preferences, however, would apparently not include
subadditivity as stated in expression (3), because learning in
set 2 also causes systematic event-splitting effects to diminish.
The source of which appears to be a disproportionately large



118 STEVEN J. HUMPHREY

increase in counter-predicted violations of coalescing in rela-
tion to event-splitting effects. The latter increases from 33%
to 39% and the former from 19% to 28% (neither are signifi-
cant, respectively yielding Z = −0.76 and Z = −1.12). This is
contrary to the set 1 observation.

The differential impact of learning on behaviour in each
parameter set is not easy to reconcile. What appears to be
happening is that violations of coalescing in set 2 are (insig-
nificantly) greater in the learning treatment than in the con-
trol treatment (by similar order to that in parameter set 1),
but a proportion of expected utility maximising behaviour
(48% of valuation patterns falling to 33%) is being replaced
with counter-predicted violations (19% of valuation patterns
increasing to 28%). It may be that the set 2 lotteries are eas-
ier to value than set 1 lotteries because they involve what
might be considered more salient parameters (a 0.5 chance of
£10 as opposed to a 0.7 chance of £21 in set 1). But why
this, in conjunction with learning, would shift expected utility
maximizing valuations towards counter-predicted violations of
expected utility theory is not clear. One explanation would be
that subjects in both treatments were pretty sure of their pref-
erences over the set 2 lotteries, and therefore of the appropri-
ate valuations to assign, but the inclusion of the observation
sequence per se (rather than what was learned from the obser-
vation sequence) disrupted this sureness such that expected
utility maximising behaviour diminished. Any confidence in
this explanation, however, would require an auxiliary account
of why such disruption should favour counter-predicted viola-
tions over event-splitting effects.

The fact that systematic violations of coalescing are not
observed in the learning treatment in parameter set 2, does
not critically undermine the conclusions derived from parame-
ter set 1. Violations of expected utility theory do not seem to
be transient. The conclusion might be different if the lack of
systematic coalescing violations in the set 2 learning treatment
was observed alongside an increase in expected utility maximi-
zation. But this is not the case. Deviations from expected util-
ity maximisation in set 2 are more prevalent in the learning
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treatment than they are in the control treatment. This obser-
vation is consistent with the conclusion that learning does
not increase expected utility maximization, despite the reasons
why it might be expected to, and may exacerbate features of
preferences which generate anomalies.

5.3. Monotonicity violations: Preference for dominated
lotteries

The results of the tests for violations of monotonicity appear
more clear cut than those for violations of coalescing. In
the control condition, in both parameter sets, valuation pat-
terns indicate significant violations of monotonicity at the 5%
level. These non-monotonic valuations may have their roots
in an event-splitting type argument resting on the subadditiv-
ity of decision weights as in expression (3). The data support
Starmer’s (1999b) suggestion that despite the status of mono-
tonicity as a fundamental canon of rational choice, when the
dominance relation is not transparent, significant violations
emerge. In this respect the extent of non-monotonic behav-
iour may be better reflected by the data at hand than it is by
pairwise choice experiments which demand consideration of
dominant and dominated lotteries simultaneously. Starmer’s
(1999b, p. F9) comment that individuals generally do not have
monotonic preferences, however, must be judged in light of
the learning treatment data.

The learning treatment data reveal that frequency-based
probability learning appears to facilitate a better identification
of monotonicity in preferences such that systematic violations
no longer emerge under either parameter set. In parameter set
1, 63% of valuation patterns violate monotonicity in the control
treatment, and this falls to 49% in the learning treatment. Simi-
larly, in parameter set 2, 61% violation falls to 46%. As Table IV
shows, on the basis of a one-tailed test of difference in sam-
ple proportions, the former reduction yields Z = −1.5807 and
the latter yields Z =−1.7525.These respectively allow rejection
of the null hypothesis that learning does not increase expected
utility maximization at the 10% and 5% levels.
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When set alongside the results of the tests for violations
of coalescing, the tests for non-monotonic preferences sug-
gest that particular types of learning opportunity successfully
diminish some violations of expected utility theory but not
others. This might be surprising since event-splitting effects
and monotonicity violations appear to be related in that they
are both consistent with a subadditive probability weighting
function as described in expressions (3) and (4). However,
the subadditivity of probability weights may be embedded in
preferences such that learning will only modify those pref-
erences if the vehicle through which learning is applied is a
task which has properties that act as a catalyst for behavio-
ural modifications. The fact that one of the small probability
events is dominated in the tests for monotonicity, but is not
in the tests for event-splitting effects, may provide the required
catalyst.

5.4. Violations of monotonicity which imply non-transitive
choices

Finally, Table IV reports the extent of monotonicity viola-
tions which might imply cyclical choices of the type reported
by Starmer (1999a) in pairwise choice tasks. In both parame-
ter sets the control treatment data reveal no significant differ-
ences between the predicted and counter-predicted violations
of expected utility theory. In the learning treatment, param-
eter set 2 reveals that total violations of expected utility
theory fall from 24% to 16%. This reduction is primarily
driven by the fall in the incidence of predicted violations from
15% to 6% (Z = 1.75). However, since significant predicted
violation patterns are not observed under either treatment,
this should not be taken as strong evidence that probability
learning mitigates this particular violation of expected utility
theory.

The parameter set 1 data show that an insignificant inci-
dence of predicted violations in the control treatment increases
(insignificantly, Z = −1.45) alongside a marginal reduction in
counter-predicted patterns to yield a significant effect in the



INDEPENDENCE, COALESCING, MONOTONICITY AND LEARNING 121

learning treatment (p = 0.0106 in Table IV). Frequency-based
probability learning appears to engender an identification of
preferences which violate monotonicity in a manner which
might be considered analogous to that which generated the
cyclical choices observed by Starmer (1999a).

6. CONCLUSION

The experiment reported here tests whether frequency-based
probability learning causes violations of expected utility the-
ory to diminish or be exacerbated. The motivation for con-
ducting this test is the possibility that choice anomalies stem,
at least in part, from an inherent imprecision in risk prefer-
ences attributable to a lack of understanding of the meaning
of stated probability information. The answer to this question
has implications for both the status of rational choice theory
and for practitioners involved in the elicitation of risk prefer-
ences for the purpose of informing public policy.

The overall results of the experiment are mixed. For exam-
ple, the tests for coalescing and monotonicity/transitivity vio-
lations show significant violations of expected utility theory to
diminish with learning under one parameter set, but to emerge
where none previously existed under the other parameter set.
However, the data also contain clear patterns. The common
consequence effect test data for pairs 1 and 3 and pairs 2
and 3, the coalescing test data for parameter set 1 and the
monotonicity/transitivity test data for parameter set 1 all reveal
learning to engender the emergence of systematic violations
of expected utility theory. This occurs alongside the overall
incidence of expected utility maximization being insignificantly
different between treatments. If, as these data show, enhancing
the understanding of probability information through learning
causes a known anomaly to emerge, then an interesting ques-
tion is whether there are as yet undiscovered anomalous fea-
tures of preferences which this or other learning opportunities
might bring to light in other risky choice tasks?
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In his investigation of anomalous behaviour in Monty
Hall’s three doors problem, Dan Friedman (1998, p. 941)
asserts that, “Every choice ’anomaly’ can be greatly dimin-
ished or entirely eliminated in appropriately structured learn-
ing environments.” The present data suggest this assertion to
be only partly sustainable. The assertion would be sustain-
able if showing individuals a series of lottery draws prior
to the elicitation of their preferences does not constitute an
appropriately structured learning environment. There may be
grounds upon which to suspect this to be the case. For exam-
ple, frequency-based probability learning does not involve
market discipline to punish ineffective learners. Nor does it
allow the opportunity to imitate more successful decision-
makers. But does this render it inappropriate? There are rea-
sons to suggest not.

First, Estes (1976a, b) and others have shown frequency-
based probability learning to be effective in both introducing
probabilistic biases and engendering accurate probability
learning in other tasks. Second, the beneficial information
content of frequency-based probability learning opportunities
enjoys anecdotal support from real world observations. The
time-series of stock performances is often observed prior to
periodic portfolio decisions. Betting form guides often pro-
vide information on the outcomes of a team’s last n fixtures
(and often not, for example, on whom the opponents were,
the location of the game, the weather, injured players, and a
variety of other potentially decision-relevant information).

Friedman (1998, p. 42) does not prescribe an ignorance
of anomalies because they will eventually disappear. He does,
however, argue the lack of need to modify, criticise or reject
expected utility theory on the basis of anomalies stemming
from incomplete learning. How the present experiment bears
on this conclusion depends on how one defines incomplete
learning. It would seem tautological to defend expected util-
ity theory on the grounds of a learning argument where the
definition of complete learning is when all choices conform
to expected utility theory. Moreover, economic decisions are
often made where there is no opportunity to observe and imi-
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tate more successful decision-makers, or where market forces
are not strong enough to discipline behaviour. In this respect
it is important to investigate the full range of economically-
relevant learning opportunities. It would be dubious practice
to concentrate research effort solely on investigating learning
opportunities which might a priori be suspected of yielding
the best chance of convergence on expected utility maximisa-
tion.

However, it is of course important to recognise that a
different type of learning opportunity, or process to facilitate
the discovery of genuine preferences might cause all of the
violations of expected utility theory considered here to disap-
pear. This is a matter for future investigation. But other evi-
dence (e.g. Chu and Chu, 1990; Cox and Grether, 1996) and
argument (e.g. Smith, 1989; Plott, 1996) suggest that market
forces might successfully facilitate the discovery of expected
utility preferences. Yet it should be pointed out that the basis
for broader market theory is only one of the roles played by
the theory of risky choice. For example, it is also used to
structure the process by which values elicited in survey studies
are fed into public policy decisions. In survey studies market
forces are not present to discipline behaviour, and so policy
decisions may be made on the basis of assumed expected util-
ity preferences and values elicited from members of the pub-
lic whose preferences may not be appropriately described by
expected utility theory. The potential for wrongly informed
policy decisions is obvious. Moreover, expected utility theory
does not restrict its domain of applicability (although some
authors such as Binmore (1999) have argued the case for this).
It therefore seems unreasonable to attempt to validate the the-
ory solely on the basis of observations that it seems to be
approximately right in only one of the domains in which it
is applied. In this respect the experiment reported here con-
tributes to a richer picture of how different learning oppor-
tunities affect the formation of preferences in different, but
equally economically relevant, domains.

Aside from contributing to the emerging debate between
the discovered preference school and what Binmore (1999,
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F17) refers to as “the school of Kahneman and Tversky”,
the results of this experiment show that the impact of learn-
ing on similar choice anomalies can be quite subtle. The pre-
vailing explanation of both the monotonicity violation con-
sidered here and event-splitting effects is the subadditivity of
probability weights. Yet the former tests show learning to con-
verge on expected utility theory whilst the latter tests show
that increased expected utility maximization does not preclude
the emergence of a proportion of systematic anomalies. Thus,
if Friedman’s (1998, p.942) call is answered and the “sterile”
debate on anomalies is replaced by the modelling and test-
ing of learning processes, it seems that this will not be an
easy route to pursue. The transience or persistence of similar
anomalies may not be robust to the same learning opportu-
nity. By contributing some evidence contrary to the discovered
preference perspective, the experiment reported here will hope-
fully assist in stimulating this potentially fruitful new research
agenda.
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NOTES

1. Henceforth, ‘genuine’ or ‘true’ preferences are taken as those which
are free from imprecision attributable to a lack of experience
or understanding of the decision-making task. Possible sources of
imprecision are not understanding the meaning of stated informa-
tion, confusion stemming from experimental procedures, and a lack
of learning opportunity.

2. The coalescing violation is coupled with a transitivity violation as
the effect over P2 and P4 is mediated through respectively pairing
them with P1 and P3. Note that P1 and P3 are not strictly identi-
cal since, in relation to the latter lottery, the former splits the event
offering zero. In most decision theories zero consequences are carri-
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ers of zero utility and do not affect the decision. Humphrey (2001)
reports a test of whether an aversion to greater frequencies of zero
outcomes contributes to event-splitting effects and concludes that it
does not.

3. This assumes that, contrary to the preference reversal phenomenon
(e.g. Grether and Plott, 1979), there is no divergence between pref-
erence orderings elicited using choices and valuations.

4. Humphrey and Bleaney (2006) report evidence that frequency-based
probability information is less ambiguous than stated likelihoods,
and that when probabilities are represented in this way, individuals’
valuations of risky prospects increase.

5. Frequency-based probability learning has been discussed in terms of
how it may contribute to the (post-learning) accuracy of expected
utility theory in describing preferences. It is, however, necessary to
recognise that (ex post learning opportunity) preferences may be
appropriately represented by some non-expected utility theory. In
terms of the previous example, the pessimistic decision-maker may,
on the basis of observing the least favourable £10 outcome occur
once in ten observation trials, view π10(1/10) = 3/10 as under-rep-
resenting the importance of this outcome in their evaluation of the
lottery. If so, non-linearity in the probability weighting function may
increase. Associated deviations from expected utility maximisation
may accordingly persist or increase.

6. Negative valuations were not allowed and no upper bound was
imposed.

7. This controls for the possible bias introduced into lottery valuations
by genuinely random sequences of observations which turn out to be
non-representative. This question has been examined elsewhere (e.g.
Humphrey, 1999).

8. In the event that these two lotteries were valued identically, the pay-
ment lottery was determined by flipping a coin. To clarify these
incentives subjects worked through two example valuations. The val-
uations assigned to the two example lotteries were used to illustrate
the incentive mechanism.

9. This incentive system controls for behaviour which, in other experi-
ments, might be taken as evidence of irrationality, such as assigning
valuations above the highest outcome offered by the lottery. Within
this design it is legitimate to perform any monotonic transformation
on valuations. Subjects can effectively eliminate one lottery from the
set which could determine their payment by assigning it a zero val-
uation. This would only make sense, however, if it were their genu-
inely least preferred lottery out of the twenty.

10. The random lottery incentive system involves randomly selecting a
task at the end of the experiment and resolving the risk involved
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in that task to determine subject payment. This device controls for
wealth effects and motivates subjects to consider all tasks carefully.
The BDM device provides incentives to reveal true absolute valua-
tions of lotteries by comparing reservation prices with a randomly
generated offer. If the offer is below the valuation attached to a lot-
tery then the subject plays out the lottery, but if it is equal to or
above the valuation the subject gets the offer.

11. Opposite violations are those on the right-hand side of the strict
inequalities in the alternative hypotheses in Table III.

12. Given that the observation sequence displayed a series of money out-
comes, one might question why this would enhance the probability
attribute of lotteries? An explanation is offered by the proposition
that outcome frequency information is a basic building block in the
formation of subjective probability assessments which ultimately con-
tribute to the formation of probability weights.
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