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UTILITY REPRESENTATIONS

ABSTRACT. A detailed theoretical analysis is presented of what five utility
representations – subjective expected utility (SEU), rank-dependent
(cumulative or Choquet) utility (RDU), gains decomposition utility (GDU),
rank weighted utility (RWU), and a configural-weight model (TAX) that we
show to be equivalent to RWU – say about a series of independence
properties, many of which were suggested by M. H. Birnbaum and his
coauthors. The goal is to clarify what implications to draw about the
descriptive aspects of the representations from data concerning these
properties. The upshot is a sharp rejection of SEU and RDU and no clear
choice between GDU and TAX, but a list of 8 properties is given that
should receive more attention to discriminate between the latter two models.
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This article focuses on discovering exactly what five classes of
utility representations predict about a series of independence
properties found in the literature, many of which were sug-
gested by M. H. Birnbaum and his coauthors. We begin by
defining the general mathematical forms of these representa-
tions. This is followed by a systematic list of independence
properties, each satisfied by subjective expected utility (SEU).
Next we derive what the various models predict about such
properties. We compile these results in three Tables (Sections
3.4, 4.3, and 5.5) and in two derivative tables where the pre-
diction of at least one model is unambiguously positive or
negative and report how the models fare vis-à-vis the existing
data. These tables may be viewed as a refinement and expansion
of Table 1 of Birnbaum et al. (1999, p. 53). The main discovery
is that two of the models have similar properties, and seem to
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account for much of the available data. Nonetheless, their
predictions differ on 8 properties. Not a great deal of data on
these distinguishing properties yet exists, and we urge experi-
menters to focus on them.

1. FORM OF MODELS

Suppose that X is a set of ‘‘pure’’ consequences and E is an
algebra of chance events underlying a particular gamble. In
general, we have several different algebras for gambles based on
different chance experiments. A typical first-order gamble of size
n has the form

g
C
!

n

¼ ðx1;C1; . . . ; xi;Ci; . . . ; xn;CnÞ;

where the xi 2 X, and ðC1; . . . ;Ci; . . . ;CnÞ is an ordered1 par-
tition, denoted C

!
n, of the non-null event CðnÞ ¼

Sn
i¼1Ci, which

is ‘‘universal’’ for the gamble. The size of the gamble is deter-
mined by the number of consequence-event pairs, ðxi;CiÞ, each
of which is called a branch of g

Cn
!. Some properties are stated

below only for the case where there is a finitely additive
probability measure Pr such that PrðCiÞ ¼ pi;Ci 2 E, and
PrðCðnÞÞ ¼ 1. In that case, the gamble is written

g
P
!

n

¼ ðx1; p1; . . . ; xi; pi; . . . ; xn; pnÞ
Xn

i¼1
pi ¼ 1

 !

:

If one or more of the xi, is replaced by a first-order gamble,
the result is a second-order compound gamble. For simplicity, we
often refer to the set of pure consequences and first- and sec-
ond-order gambles simply as ‘gambles’.

We assume that the preferences between gambles satisfy a
weak order %, i.e., % is transitive and connected, and that �
and � are defined in the usual fashion.

The setX is endowedwith a unique element, called ‘‘no change
from the status quo,’’ denoted e. Any x % e or any gamble gwith
all of its consequences xi % e is called a gain, and any x† e or g
with all of its consequences xi † e is called a loss. Cases of
gambles with mixed gains and losses are very important, but in
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this article we restrict our attention to gambles of all gains. The
theory for losses is completely parallel to that for gains.

A gamble for which x1 % x2 % � � � % xn is said to be in
ranked form. In this paper, the ranked form holds unless we
state otherwise. Written in this way, the cumulative subevents
Cð jÞ ¼

S j
i¼1Ci; 1 6 j 6 n, sometimes play a role. We assume

that people are indifferent to permutations of the indices.
Suppose g is a gamble. We assume that there exists

CEðgÞ 2 X such that

CEðgÞ � g; ð1Þ
which is called a certainty equivalent of g.

Co-monotonic consequence monotonicity is satisfied iff for
every i 2 f1; 2; . . . ; ng, when xi; x

0
i 2 X have the same rank po-

sition among the other consequences, then

x0i % xi iff ðx1;C1; . . . ; x0i;Ci; . . . ; xn;CnÞ
%ðx1;C1; . . . ; xi;Ci; . . . ; xn;CnÞ ðCi 6¼ /Þ: ð2Þ

We assume co-monotonic consequence monotonicity holds.
Idempotence is satisfied iff for every y 2 X and every ordered

partition C
!

n :¼ ðC1; � � � ;Ci; � � � ;CnÞ,

ðy;C1; � � � ; y;Ci; � � � ; y;CnÞ � y: ð3Þ
Although we do not assume idempotence in general, which is a
bit unusual, we will mostly examine models for which it does
hold. More attention needs to be paid to the non-idempotent
cases which allow the chance experiment underlying the gamble
to have value, per se, positive or negative. This is a way to
approach the issue of the utility of gambling (see Luce and
Marley, 2000; Meginniss, 1976).

A function U from the domain of pure consequences and
gambles of gains to the non-negative real numbers is called a
utility function if it is order preserving and maps the status quo
into 0, i.e.,

g % h iff UðgÞPUðhÞ; ð4Þ

UðeÞ ¼ 0: ð5Þ
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The existence of certainty equivalents, (1), plus the assumption
of consequence co-monotonicity, justifies using the same
notation U over both gambles and pure consequences. Given
that % has the numerical representation of (4), then %must be a
weak order. Whenever a function U occurs in the remainder of
the paper it is to be interpreted as such a utility function.

Our focus will be, first, on several well known forms of utility
representations. All but one is well understood from an axi-
omatic perspective (Luce and Marley, 2005). Mostly, we will
work with the representation rather than with the underlying
axioms although several proofs are simpler if we use a quali-
tative defining property and so we cite these properties. Next,
we explore what these representations predict about several
independence properties that have been discussed in the liter-
ature, with our focus on differential predictions. Finally, we
compare these differential predictions with existing data.

1.1. Rank weighted utility

The most general representation we shall use is the following:

DEFINITION 1. Let Si; i 2 f1; 2; . . . ; ng, be mappings from

ordered event partitions C
!

n :¼ ðC1; . . . ;Ci; . . . ;CnÞ to the non-
negative real numbers. The rank weighted utility2 ðRWUÞ of a
ranked gamble is of the form

Uð� � � ; xi;Ci; � � �Þ ¼
Xn

i¼1
UðxiÞSiðC

!
nÞ

ðSiðC
!

nÞP0; i 2 f1; 2; � � � ; ngÞ: ð6Þ
Note that assuming that the weights SiðC

!
nÞ are positive

is equivalent to assuming comonotonic consequence
monotonicity.

The other representations we examine are special cases of
this form which we describe in terms of specializations of the
weights SiðC

!
nÞ.

Idempotence holds in RWU iff
Pn

i¼1 SiðC
!

nÞ ¼ 1:
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A RWU representation is said to be simple iff there exist
functions SCðnÞ: E! ½0; 1� such that for each i, SiðC

!
nÞ

¼ SCðnÞðCiÞ: This means that the weight SiðC
!

nÞ is independent
of all other events Cj, j 6¼ i, of the partition. A simple and
idempotent utility representation with SCðnÞ finitely additive is
called subjective expected utility (SEU).

An example of a simple representation is

SCðnÞðCiÞ ¼
WðCiÞ

WðCðnÞÞ :

When W is finitely additive, this representation is idempotent
and so is an example of an SEU representation as defined
above. Note that these weights satisfy the choice property of
Luce (1959); see (16) below.

Observe that by its definition, simple utility (and therefore
SEU) does not depend at all on the ordered partition, only on
the Ci, and so not on the ranking of consequences. The theory
is thus simpler.

1.2. Rank-dependent utility

DEFINITION 2. A RWU representation for gains, (6), is a
rank-dependent utility (RDU) representation iff there is a
function WCðnÞ from events into [0; 1] with WCðnÞð[Þ ¼ 0,
WCðnÞðCðnÞÞ ¼ 1, such that the weights are of the form

SiðC
!

nÞ ¼WCðnÞðCðiÞÞ �WCðnÞðCði� 1ÞÞ
ði 2 f1; . . . ; ngÞ; ð7Þ

where Cð0Þ ¼ 0.

Note that the above representation satisfies idempotence.
Substituting (7) into the weighted utility expression, (6), we

see that RDU can be written in the equivalent form:

Uð� � � ; xi;Ci; � � �Þ

¼
Xn

i¼1
UðxiÞ½WCðnÞðCðiÞÞ �WCðnÞðCði� 1ÞÞ�: ð8Þ
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Because the structure is idempotent, it canalsobewritten in the form:

Uð� � � ; xi;Ci; � � �Þ ¼
Xn�1

i¼1
½UðxiÞ �Uðxiþ1Þ�WCðnÞðCðiÞÞ þUðxnÞ:

ð9Þ

The class of RDU models for gains alone and for losses
alone agrees with the general form of cumulative prospect
theory (CPT, Tversky and Kahneman, 1992), and includes such
special cases as subjective expected utility (SEU), whereWCðnÞ is
finitely additive and so

WCðnÞðCðiÞÞ �WCðnÞðCði� 1ÞÞ
¼WCðnÞðCi [ Cði� 1ÞÞ �WCðnÞðCði� 1ÞÞ
¼WCðnÞðCiÞ;

and expected utility (EU), where the events are replaced by
probabilities and so WCðnÞð pÞ ¼ p:

For mixed gains and losses, which we do not deal with here,
rank- and sign-dependent utility, RSDU, and CPT may differ
materially (Luce, 2000, Chs. 6 and 7).

A major, defining, necessary property of RDU is coalescing
which says that if two events of a gamble have the same con-
sequence, then that gamble is indifferent to the one in which the
union of the two events is treated as a single event with the
same consequence (see Luce and Marley, 2005). Formally, for
all ordered partitions and ordered consequences xi %
� � � % xn % e; n > 2; with xkþ1 ¼ xk ¼ x; k < n :

ðx1;C1;���;x;Ck;x;Ckþ1;���;xn;CnÞ
�ðx1;C1;���;x;Ck[Ckþ1;���;xn;CnÞ ðk¼1;���;n�1Þ: ð10Þ

In terms of the ‘‘bottom line’’ the two sides are identical. Of
course, that does not automatically mean that they are per-
ceived as indifferent.

It is easy to see that a simple and idempotent utility repre-
sentation is an SEU representation iff it satisfies coalescing
(Luce and Marley, 2005).
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1.3. Gains decomposition utility

DEFINITION 3. Within the domain of second-order (com-
pound) gambles of gains, a (lower) gains-decomposition utility
(GDU) representation holds iff there is a family of binary
weights WCðiÞ; i ¼ 1; . . . ; n; with CðnÞ the universal event, such,
that RWU, (6), holds, with the RWU weights

SiðC
!

nÞ ¼WiðC
!

nÞ �Wi�1ðC
!

nÞ; ð11Þ
where

WiðC
!

nÞ ¼

0; i ¼ 0
Qn�1

j¼i
WCð jþ1ÞðCð j ÞÞ; 16 i6 n� 1

1; i ¼ n

8
>><

>>:
: ð12Þ

By (11) and (12),

SiðC
!

nÞ ¼

Qn�1

j¼i
WCð jþ1ÞðCðjÞÞ; i ¼ 1

ð1�WCðiÞÞðCði� 1ÞÞ
Qn�1

j¼i
WCð jþ1ÞðCðjÞÞ; 26 i6 n� 1

1�WCðnÞðCðn� 1ÞÞ i ¼ n

8
>>>>><

>>>>>:

ð13Þ
In particular, in the binary case,

S1ðC
!

2Þ ¼WCð2ÞðC1Þ; S2ðC
!

2Þ ¼ 1�WCð2ÞðC1Þ;
which agrees with binary RDU. Although RDU and GDU
agree for binary gambles, they do not in general for n > 2.

For n > 2, these forms may not look terribly natural, but
they correspond to a surprisingly simple behavioral property
which we describe because we use it in a few of the proofs. For

a gamble g
c
!

n

, n > 2; with xi % � � � % xn % e, consider the

following sub-gamble

g
c
!

n�1
:¼ ðx1;C1; � � � ; xn�1;Cn�1Þ: ð14Þ
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Note that g
c!n�1

is based on the sub-experiment with the uni-

versal event Cðn� 1Þ but run independently of the C
!

n experi-
ment. Within the domain of second-order (compound) gambles
of gains, lower gains decomposition states that

g
c
!

n

� g
c
!

n�1
;Cðn� 1Þ; xn;Cn

� �
; ð15Þ

where ðg
c
!

n�1
;Cðn�1Þ; xn;Cn) is a second-order (compound) bin-

ary gamble.Note that in terms of the bottom line, the two sides of
(15) are the same. Gains decomposition is a special case of a
property that is frequently invoked as ‘‘rational’’ in the form of
‘‘reducing compound lotteries to the correspondingfirst-order one.’’

Although Meginniss (1976) implicitly used the lower gains
decomposition axiom in his interesting approach to non-idem-
potent, un-ordered gambles, the concept was first explicitly
introduced byLiu (1995) in an attempt to axiomatizeRDU in the
case of known probabilities. Luce (2000, p. 187) generalized it
(without, the adjective ‘‘lower’’) to events and used that together
with (16) below to arrive at RDU. However, he did not work out
fully the implications found in Luce and Marley (2005), which
improved on Marley and Luce (2001), that any two of the fol-
lowing properties implies the third: (i) RDU, (ii) GDU, and (iii)
for events withC � D � E, the choice property (Luce, 1959) holds:

WEðCÞ ¼WDðCÞWEðDÞ: ð16Þ
The property of lower gains decomposition, (15), suggests

looking also at upper gains decomposition defined by the
decomposition

g
C
!

n

� ðx1;C1; g
CnnC1
��!;CðnÞnC1Þ;

where

g
CnnC1

����! :¼ ðx2;C2; . . . ; xn;CnÞ:

We use sometimes the unmodified term ‘gains decomposition’
to refer to the lower case. As needed, we use the modifier upper
to refer to the upper case, that is, upper gains decomposition and
upper GDU.
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Indeed, for any i, we may define g
c!nnCi

in the obvious way

and define gains decomposition relative to branch (xi;Ci) as

g
C
!

n

�
ðxi;Ci; g

CnnCi

��!;CðnÞ
�
CiÞ; xi % g

cnnCi

���!

ðg
CnnCi

��!;CðnÞ
�
Ci; xi;CiÞ; xi � g

cnnCi

���!

8
<

:
:

Luce and Marley (2005) show that if idempotent RWU is sat-
isfied, and gains decomposition holds for all three branches of a
gamble of size 3, then the choice property, (16), is satisfied, and
the weights are finitely additive.

RDU (6¼ SEU) violates gains decomposition; GDU predicts
it. We are not aware of any direct experiments that have tested
gains decomposition in isolation.

1.4. Configural weighted utility

M. H. Birnbaum, with various collaborators, in a series of pa-
pers, some of which are cited explicitly later, has explored a class
of representations called configural weighted utility.3 In contrast
to the above utilitymodels that have been axiomatized in terms of
behavioral properties (seeLuce andMarley, 2005), the configural
weighted representations are stated only at the representational
level. No defining properties are known; however, see Proposi-
tion 6 below. Rather, Birnbaum and his collaborators have
shown that certain special cases do or do not exhibit certain
behavioral properties, and they have reported experiments
comparing how various models fare relative to them. The
majority of this work has focussed on two particular classes of
configural weighted representations, called RAMandTAX – the
reasons for these names are given later. BothRAMandTAX can
explain various choice and judgment data, but, as discussed be-
low, TAX is overall the better model.

1.4.1. RAM utility
According to Birnbaum (2005), the RAM model has the fol-
lowing form:
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DEFINITION 4. A RWU representation for gains, (6), is a
RAM representation if there is a function W from events into
[0,1] with W([)=0 and positive constants anðiÞ; i ¼ 1; . . . ; n;
such that the weights are of the form

SiðC
!

nÞ ¼
anðiÞWðCiÞPn
j¼i anðjÞWðCjÞ

: ð17Þ

The name RAM arises as the acronym for rank affected mul-
tiplicative (Birnbaum et al., 1992; Birnbaum and MacIntosh,
1996). The models of Karmarkar (1979), Viscusi (1989), and
Lattimore et al. (1992) are of this form. For choice studies,
Birnbaum focuses mostly on the case where the weights
anðiÞ ¼ i. Note that the RAM representation is idempotent, and
that for nonnull events Ci;Cj; i 6¼ j,

SiðC
!

nÞ
SjðC
!

nÞ
¼ anðiÞWðCiÞ

anð jÞWðCjÞ
:

Since this constraint does not hold for a general RWU repre-
sentation, there are RWU representations that are not RAM
representations.

1.4.2. TAX utility
As stated at the beginning of this section, the configural
weighted representation that has best survived empirical test is
called TAX (for reasons stated below) and we will focus on it
here. According to Birnbaum and Navarrete (1998), it has the
following form:4

DEFINITION 5. Let U be a utility function over ranked
gambles and pure consequences, T a function from events
into the non-negative real numbers, and xi; jðC

!
nÞ mappings

from ordered event partitions to real numbers. Then, TAX
is the following representation over gambles in ranked
order:
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Uðg
C
!

n

Þ¼

Pn
i¼1UðxiÞTðCiÞþ

Pn�1

i¼1

Pn

j¼iþ1
½UðxiÞ�UðxjÞ�xi;jðC

!
nÞ;

TðC!nÞ
;

ð18Þ

where TðC!nÞ :¼
Pn

i¼1 TðC
!

iÞ.

The name TAX arises because Birnbaum describes the term
on the right as imposing a tax from (resp., to) lower ranked
consequences to (resp., from) higher ranked ones depending on
whether the relevant weight is positive (resp., negative),
Birnbaum usually imposes a particular form on the xi;j, which
we discuss later.

Because all of the UðxiÞ terms appear linearly, it is obvious
that this is a RWU representation.5 It is less obvious how the
SiðC
!

nÞ of (6) relate to the T and xi;j of (18). This is formulated
as:

PROPOSITION 6.
(i) Any TAX representation, (18), is an idempotent RWU

representation, (6), with

SiðC
!

nÞ ¼
TðCiÞ þ

Pnþ1

j¼iþ1
xi; jðC
!

nÞ �
Pi�1

j¼0
x i; jðC

!
nÞ

TðC!nÞ
; ð19Þ

where

x0;iðC
!

nÞ :¼ 0; ð20Þ

xi;nþ1ðC
!

nÞ :¼ 0; ð21Þ

(ii) Any idempotent RWU representation, (6), can be put (in
many ways) in the form of a TAX representation, (18). One such
has

TðCiÞ > 0 ð22Þ
and
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xi;jðC
!

nÞ¼

TðC!nÞ
Pi

k¼1
SkðC
!

nÞ�
Pi

k¼1
TðCkÞ; i¼1;...;n�1;

j¼ iþ1;
0; i¼0 or j¼nþ1;

or j 6¼ iþ1:

8
>>>>><

>>>>>:

ð23Þ
All proofs are in the appendix.

Observe that to satisfy co-monotonic consequence monoto-
nicity, we must have SiðC

!
nÞP0; and that places some

(unknown) constraints on the xi;j in the general form (19).
Because of this result, we will state how properties fare for

RWU and then, in some cases, provide necessary and/or suf-
ficient conditions for the TAX formulation to predict the
property.

The second part of this proposition means that RAM is a
special case of TAX.

2. ISSUES OF DESIGN AND ANALYSIS

Before we turn to the analysis of, and data on, several specific
independence properties, it is appropriate to discuss some of the
problems that have to be confronted.

2.1. Choices or certainty equivalents in testing

The most obvious way to test properties that involve comparing
two gambles that have a common branch, which is true in many
of the independence properties that we shall explore, is to
present the two gambles to the respondent and request a choice.
Although obvious, in fact it is fraught with difficulties,
Respondents seem to engage in various forms of ‘‘editing’’
when comparing the gambles directly. One cannot be sure what
it is that they do, but as we shall see, they seem to be doing
something different from the kind of combining that the several
RWU models describe.

Perhaps the situation least subject to editing is to ask each
respondent to give a certainty equivalent for each gamble, and

A. A. J. MARLEY AND R. DUNCAN LUCE88



for the experimenter to construct the preference order % from
these certainty equivalents. Doing so is trivial if just one cer-
tainty equivalent is established for each gamble; however,
across repetitions, the estimates vary. In that case, various
options are available that have been widely explored; we do not
go into all of them here. Earlier, we defined a certainty equiv-
alent to be the certain consequence indifferent to the gamble,
(1). There are two standard ways to obtain such a CE: by
asking the respondent to report his or her judged CE or by
choice procedures. These methods do not yield the same
estimates (Luce, 2000, p. 44).

Among the choice procedures used, two important ones
are PEST and Quick Indifference (QI). They are both up-
down methods that differ primarily in the size of the step
used in adjusting the money alternative that is used in the
immediately subsequent presentation of this gamble among
the several others simultaneously under study. In PEST, the
changes are carried out in steps that are independent of how
far the procedure is from the true CE. In QI, the respondents
also indicate their strength of preference for the choice made
and an algorithm is used to determine the size of the step to
use in generating the next presentation of a money amount.
The idea is to get into the neighborhood of the CE as rapidly
as possible.

In a study of consequence co-monotonicity, von Winterfeldt
et al. (1997) compared CEs determined by PEST and QI. Using
medians, they concluded that QI was inferior to PEST in
confirming consequence co-monotonicity. However, Ho,
Regenwetter, Niederée, and Heyer (2005) reanalyzed the von
Winterfeld et al. (1997) data using quantile methods and
reached exactly the opposite conclusion: Under QI, conse-
quence monotonicity was strongly sustained and under PEST it
was not. This may relate to the conjecture of Cho et al. (2002)
that PEST, as implemented in these experiments, is subject to
premature terminations which sometimes yield very poor esti-
mates of the certainty equivalent.6

The following danger in using CEs, especially judged ones,
has not been deeply explored. Suppose that we are dealing
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with money gambles of gains, If the choices are made by
comparing the money amounts with the gamble and choos-
ing, there is no problem. But suppose that the respondent
simply subtracts the amount of money, y, either presented or
judged, from all of the consequences, i.e., considers the
gamble

ðx1 � y;C1; . . . ; xi � y;Ci; . . . xn � y;CnÞ;
and compares it with 0. If, as is usually the case, x1 > y > xn,
this has moved us from the domain of all gains to that of mixed
gains and losses. The form of the RDU models is not usually
the same in the mixed domain (Luce, 2000, Chs. 6 and 7;
Tversky and Kahneman, 1992). Thus, were this to happen, the
data would be quite misleading in evaluating models designed
just for gains. This concern is particularly pertinent to judged
buying and selling prices.

Most of the studies discussed below used either direct choices
or the respondents reported buying and/or selling judged prices
of gambles. Such judged forms of CE are by no means the same
as choice ones (Luce, 2000, pp. 39–44) and so it is desirable to
have data on the latter.

2.2. Data analyses

In most experimental studies of choices between gambles, there
are usually some respondents whose data satisfy a property
under study and others whose data do not. Thus, the data of
some individuals may be compatible with a relatively con-
straining model, such as SEU, whereas those of others may be
compatible with a less constraining model, such as RDU or
GDU, and still others may not be compatible with any RWU
model. Much of the available data has been reported at the
aggregate, or group, level, and has been interpreted as showing
that a particular condition does not hold if a ‘significant’ portion
of the aggregated data does not satisfy that condition, where
‘significant’ is defined in different ways in different papers. The
condition is said to hold if it does not fail in the above sense.
Sometimes authors follow up such an analysis with an inspec-
tion of the pattern of results for individual subjects, as is the case
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with Birnbaum and McIntosh (1996) and Birnbaum and Nav-
arette (1998). When such analysis of individual participants is
performed, a condition that does not hold at the group level is,
perhaps not surprisingly, usually found not to hold for some, or
even a majority, of individuals. Nonetheless, often there are still
numerous individuals who satisfy the condition under study. In
this article, we report conclusions regarding particular condi-
tions as they are stated by the original authors, which usually
amounts to stating that a condition does not hold if it does not
hold for a (significant) proportion of the respondents, even
though it does hold for the remainder.

For various reasons, such studies may be either understating
or overstating the case for a particular condition holding. For
instance, a study may underestimate the case for a particular
condition holding as a result of aggregating ‘‘noisy’’ individual
data. And a study may overestimate the case for a particular
condition holding as a result of a failure to select gambles in an
appropriate region of the gamble space for the selected par-
ticipants. For instance, testing branch indepedence (defined
later) requires the study of a set of common consequences z; z0

that covers a broad enough range of values that a failure can be
detected. Figures 1 and 2 of Birnbaum and Beeghley (1997)
show such failures of branch independence that could have
been missed in a study with different gambles, or, possibly, with
different participants.

2.3. Goals of the article

The balance of this article concerns somewhat complex inde-
pendence properties, not used in standard axiomatizations of
the representations, that do and do not follow from each of the
representations presented above. Our approach, insofar as we
know how, is to state necessary and sufficient conditions for the
property to hold under RWU. Then in a corollary we establish,
in terms of the forms for the weights for each of the special
cases of RWU, to what this necessary and sufficient condition
reduces. This permits us to compare the models to each other
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and to data. Although in existing articles Birnbaum has stated
all of the properties for the cases where the probabilities of
events are known, whenever possible we replace the probabil-
ities by general events. Also he has usually worked with special
cases of TAX and sometimes even with special forms for U over
money and weights over probabilities. In contrast, we examine
both the general TAX = idempotent RWU model and special
cases of it that force the property in question. To some extent
this strategy breaks down with some of the conditions in
Section 5 because we have only sufficient conditions for the
property to hold.

3. BRANCH CANCELLATION AND INDEPENDENCE

The first of these properties, branch independence, requires that
if two gambles have a common consequence for a particular
event, i.e., they have a common branch, then the value of that
consequence should have no effect on the preference order
induced by the branches (Cohen and Jaffray, 1988, Birnbaum
and McIntosh, 1996). We will see that this is a very strong
condition. For example, we show below that, given RWU, a
simple representation holds on gambles of size n ¼ 3 if and only
if a property called branch cancellation holds for all branches –
branch cancellation is equivalent to branch independence pro-
vided the comparatively weak (34), below, is satisfied.

3.1. Branch types and locations

We now define various terms that help in stating conditions and
results compactly. We say that a branch (z;E) of a 3-compo-
nent gamble is in position i, i ¼ 1; 2; 3, if z is in rank position i.
A branch ðz;EÞ that occurs in each of two gambles based on the
same ‘‘universal’’ event is of type (i, j) if z is in position i in the
first gamble and in position j in the second gamble. For con-
venience, we refer occasionally to the given pair of gambles as
of type (i, j). The definitions of branch cancellation and inde-
pendence given below considers pairs of such gambles with the
restriction that x0 � x � y � y0 � e, in which case there
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are 5 distinct possibilities for the type of z, namely (1; 1), (1; 2),
(2; 2), (3; 2), (3; 3). The three symmetric cases, (1; 1), (2; 2), and
(3; 3), are called co-ranked with, respectively, upper (U), inter-
mediate (I), and lower (L) positions.

The gamble pair is called restricted when C0 ¼ C; D0 ¼ D;
otherwise, it is called unrestricted.

Finally, for two pairs of pairs of such gambles, say

ðx;C; y;D; z;EÞ; ðx0;C0; y0;D0; z;EÞ;
and

ðx;C; y;D; z0;EÞ; ðx0;C0; y0;D0; z0;EÞ;

we say that the branches ðz;EÞ and ðz0;EÞ have a common location
ði; jÞ iff each is of type ði; jÞ. In the theoretical development below,
we restrict attentionmainly to the 5 common locations, which we
denote by (1; 1)2, (1; 2)2, (2; 2)2, (3; 2)2, (3; 3)2,Consistentwith our
prior use of the term, the cases (1; 1)2, (2; 2)2, (3; 3)2 are called co-
ranked. This limitation to common locations is adequate for our
purposes because these 5 cases, withRWU, give the simple utility
representation (see Proposition 8 below), which, as its name
suggests, is the simplest RWU representation, plus they are suf-
ficient to distinguish between SEU, RDU, GDU, and TAX,
which distinctions are the focus of the present article.

Nonetheless, note that the above 5 cases are a small subset of
the possible combinations of types for the z; z0 pair. Because
there are 5 distinct possibilities for the type of each of z; z0,
then, noting the symmetry of the roles of z; z0, there are 15
different combinations of types for z; z0 in the above 4 gambles
(see Table 1). These possibilities can be identified by symbols
such as ½ði; jÞ; ði0; j0Þ�; which, as proposed above, may in the case
of common locations be written ði; jÞ2. And for all possible
cases of branch independence to hold, the same preference
pattern must hold in the above two pairs of gambles for all 15
possibilities. Numerous of these non-common locations appear
in several experimental articles including Birnbaum (2005),
Birnbaum and McIntosh (1996), Birnbaum and Navarrete
(1998); in particular, see Tables 2 and 3 of Birnbaum and
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McIntosh (1996). The one non-common location that we do
consider is [(1; 1), (3; 3)].

3.2. Branch cancellation

In working with branch cancellation, it is essential that the
notation keep track of the ordering imposed on the partitions
fC;D;Eg and fC0;D0;Eg where C [D [ E ¼ C0 [D0 [ E: To
this end, define:

C
!ðiÞ

3 ¼
ðE;C;DÞ
ðC;E;DÞ
ðC;D;EÞ

( )

for
i ¼ 1
i ¼ 2
i ¼ 3

( )

;

and similarly C
!0ðiÞ

3 for the partition fC0;D0;Eg:

DEFINITION 7. Suppose that a RWU representation, (6),
holds. For all eventsC,C0,D,D0, E where E is nonnull, fC;D;Eg
and fC0;D0;Eg are both partitions of the same event, and a pair
of gambles (x, C; y, D; z, E), (x0; C0; y0 ; D0; z; E) with x0 � x �
y � y0 � e; z � e of type (i; j) but otherwise arbitrary,
branch cancellation (BC ) of type ði; jÞ holds iff

SiðC
!ðiÞ

3 Þ ¼ SjðC
!0ðjÞ

3 Þ: ð24Þ
Restricted BC of type ði; jÞ holds iff the above definition holds
with the restriction that C0 ¼ C;D0 ¼ D:

Co-ranked BC of type ði; iÞ holds iff BC of type (i; i) holds.
Note that branch cancellation is automatically satisfied in

any co-ranked, restricted case. Also, it is trivially satisfied if E is
null. We nonetheless include the condition E nonnull to keep
the definition of BC and the later definition of branch indepe-
dence, Def. 10, of the same form.

To be completely precise, the above should be called 3 branch
cancellation (3-BC), with a natural generalization of the defini-
tion to gambles of size n > 3.Weuse the briefer terminology here,
and in the later presentation of branch independence, since we
only study these conditions for gambles of size 3.

PROPOSITION 8. Suppose that a RWU representation holds
for gambles of size 3. It is a simple utility representation iff BC
holds for all five common locations.

A. A. J. MARLEY AND R. DUNCAN LUCE94



PROPOSITION 9. Suppose that a RWU representation holds.
Then:

(i) SEU predicts all forms of BC.
(ii) RDU7 predicts that:

(a) In the unrestricted case: Upper BC (and lower BC are
satisfied, but BC of types (1,2), (2,2) intermediate), and
(3,2) are not satisfied.

(b) In the restricted case: co-ranked BC is satisfied, but BC
of types (1,2) and (3,2) are not satisfied.

(iii) GDU predicts that:
(a) In the unrestricted case: Upper BC is not satisfied.

Intermediate BC is satisfied iff

WC[EðCÞWC[D[EðC [ EÞ ¼WC[D[EðC [ EÞ �WC[D[EðEÞ:
ð25Þ

Lower BC is satisfied. For the non-co-ranked types, ð1; 2Þ BC is
not satisfied, and (3; 2Þ BC is satisfied iff ð25Þ holds.

(b) In the restricted case: co-ranked BC is satisfied. For the
non-co-ranked cases, ð1; 2Þ BC is satisfied iff

WC[EðCÞ þWC[EðEÞ ¼ 1; ð26Þ

and ð3; 2Þ BC is satisfied iff

1�WC[D[EðC [DÞ ¼ ½1�WC[D[EðCÞ�WC[D[EðC [ EÞ:
ð27Þ

(iv) TAX predicts:
(a) Restricted co-ranked BC.
(b) Non-co-ranked BC of type (i, j) if

TðEÞ þ
P4

k¼iþ1 xi;kðC
!

3Þ �
Pi�1

k¼0 xk;iðC
!

3Þ
TðCÞ þ TðDÞ þ TðEÞ

¼
TðEÞ þ

P4
k¼iþ1 xk;iðC

!0
3Þ �

Pj�1
k¼0 xk;jðC

!0
3Þ

TðC0Þ þ TðD0Þ þ TðEÞ ð28Þ

Several observations:
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(1) These conditions entail restrictions only on the weights, not
on the utilities.

(2) Neither (24) nor (28) is a single condition but is dependent
on whether or not the pairs of gambles are restricted or not
and on the values of i; j ¼ 1; 2; 3, These conditions are not
necessarily consistent with each other, thus making it very
difficult, indeed, to say whether either the RWU or TAX
model does or does not predict the property.

(3) Under RAM, i.e., RWU = TAX with (17), co-ranked
upper, intermediate, and lower BC hold, but BC of types
(1, 2) and (3, 2) do not.

(4) Consider the following form for the weights in the left hand
side of (28) but stated for general size n, not just n ¼ 3. For
all r < s (the only terms we need to specify),

xr;sðC
!

nÞ ¼ kðnÞr;s TðCiÞ if r ¼ i or s ¼ i
arbitary otherwise

�

; ð29Þ

with a parallel form for the weights in the right hand side of (28).
It is important to note that, in general, (29) cannot hold for two
distinct values i; j, with, say, i < j, for then we have, by (29),

kðnÞi; j TðCiÞ ¼ xi; jðC
!

nÞ ¼ kðnÞi; j TðCjÞ;
and so either kðnÞi; j ¼ 0 or TðCiÞ ¼ TðCjÞ.

Now consider the case of (28) corresponding to co-ranked
upper BC, for which i ¼ j ¼ 1. Then using (29) we have

xr;sðC
!

nÞ ¼ kðnÞr;s TðEÞ if r ¼ 1 or s ¼ 1
arbitary otherwise

�

on both sides of (28).
Substituting the above weight values in (28) gives the con-

dition

kðnÞ1;2 þ kðnÞ1;3

TðCÞ þ TðDÞ þ TðEÞ ¼
kðnÞ1;2 þ kðnÞ1;3

TðC0Þ þ TðD0Þ þ TðEÞ

iff

TðCÞ þ TðDÞ þ TðEÞ ¼ TðC0Þ þ TðD0Þ þ TðEÞ
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which is true in the restricted case or when TðCÞ þ TðDÞ ¼
TðC0Þ þ TðD0Þ, which holds if T is finitely additive because
C [D ¼ C0 [D0. The other two cases, intermediate and lower
BC, are similar.

Birnbaum has considered two special cases for the TAX
weights: For all r < s (the only terms we need to specify), there
are constants kðnÞr;s such that:

Case 1.

xr;sðC
!

nÞ ¼ kðnÞr;s TðCrÞ: ð30Þ
Case 2.

xr;sðC
!

nÞ ¼ kðnÞr;s TðCsÞ: ð31Þ
Note that, when r ¼ i ¼ 1, (30) is a special case of (29), and so
by the earlier argument upper BC holds for (30) in the restricted
case or when T is finitely additive. Similarly, when s ¼ i ¼ 3,
(31) is a special case of (29), and so by the earlier argument
lower BC holds for (31) in the restricted case or when T is
finitely additive.

There are other restrictions thatmight suggest themselves as of
potential interest. For instance, one might consider the
assumption that the weights xi; jðC

!
nÞ are restricted to the form

kðnÞi; j xðCi;CjÞ where the kðnÞi; j only depend on the indices, not the
events; (29), (30), and (31) are special cases of this form. Later
general results are easily restated under such restrictions, and it is
clear that they are of relatively limited interest for the various
independence conditions studied here. Turning to the xi; iþ1 of
(23), onemight consider the assumption that they are all positive,
or that they are all negative; routine calculations show that such is
always possible for a given partition C

!
n, but not necessarily

simultaneously for more than one such partition. In summary,
our overall conclusion will be that special cases of TAX have
limited relevance to whether or not TAX fits available data.

3.3. Branch independence

Branch cancellation is not directly testable, but it does imply
the following property that is indeed testable.
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DEFINITION 10. Branch independence (BI) of type ði; jÞ2 is
defined by: Given consequences x; x0; y; y0; z; z0 with x0 � x �
y � y0 � e; z; z0 with common location ði; jÞ in the gambles
below but otherwise arbitrary, and all events C;C0;D;D0, and
non-null E where fC;D;Eg and fC0;D0;Eg are both partitions
of the same event,

ðx;C; y;D; z;EÞ % ðx0;C0; y0;D0; z;EÞ ð32Þ
iff

ðx;C; y;D; z0;EÞ % ðx0;C0; y0;D0; z0;EÞ: ð33Þ
Restricted BI of type ði; jÞ2 holds iff the above definition holds
with the restriction8 that C0 ¼ C;D0 ¼ D.
Co-ranked BI of type ði; iÞ2 holds iff BI of type ði; iÞ2 holds.
These cases are called upper, intermediate, and lower BI,
respectively, iff i ¼ 1; 2; 3.9 If this condition is satisfied for all 3
types, then we simply say that co-ranked BI holds.

The term co-ranked is introduced to link our concepts to
those in the literature – see, for instance, Birnbaum (1997, 1999,
p. 31), Birnbaum and Chavez (1997), and Birnbaum and
Navarrete (1998).

This definition of branch independence for gambles of size
n ¼ 3 can be immediately generalized to gambles of size n > 3,
in which case there is more than one intermediate case.

PROPOSITION 11. Suppose that a RWU representation holds,
that gambles are idempotent, that C

!
3 and C0

!
3 are ordered event

partitions of the same event underlying gambles g3 and g
0
3, and that

these gambles are of type ði; jÞ2, with ði; jÞ one of (1; 1), (1; 2), (2; 2),
(3; 2), or (3; 3). Then, the following statements are equivalent:

(i) Branch cancellation of type ði; jÞ2 holds.
(ii) Branch independence of type ði; jÞ2 holds, and there exist

x0 � x � y � y0 � e and z in position ði; jÞ such that

ðx;C; y;D; z;EÞ � ðx0;C0; y0;D0; z;EÞ: ð34Þ
This proposition shows us that the properties formulated in

Proposition 9 under the hypothesis of branch cancellation hold
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equally for branch independence provided only that the com-
paratively weak (34) is satisfied.

3.4. Data on BI and summary

Wakker et al. (1994), Weber and Kirsner (1997), Birnbaum and
McIntosh (1996), Birnbaum and Chavez (1997), and Birnbaum
and Navarrete (1998) each ran empirical studies of the BI
properties. Wakker et al. (1994), using choices where the
cancellations were fairly obvious, concluded that all cases of
co-ranked, restricted BI were sustained. Weber and Kirsner
(1997) argued that choices invite direct cancellation which may
not appear when forms of certainty equivalents are used such as
buying or selling prices. Their choice data satisfy co-ranked,
restricted BI, and their price data exhibit somewhat more
violations, although to our eyes not impressively more.
Birnbaum and McIntosh (1996) studied choices between
gambles with three equally likely consequences. The data satisfy
co-ranked restricted BI, but, by and large, reject the non-co-
ranked restricted cases of BI.

Note that the available studies of BI (Tables 1 and 2)
reject all versions of BI except co-ranked restricted BI, with
no studies having been carried out of co-ranked unrestricted
BI. Both the Weber and Kirsner (1997) and Birnbaum and
Macintosh (1996) studies used presentation formats for the
gambles that displayed the outcomes in order of magnitude –
in descending order from top to bottom in Weber and
Kirsner’s graphic displays, and in ascending order from left
to right in Birnbaum and Macintosh’s text displays. Thus, in
the case of choices, the common branches in the co-ranked
cases may have been more ‘‘transparent’’ than in the non-co-
ranked cases, leading to BI being satisfied in the former, but
not in the latter (as found by Birnbaum and Macintosh).
This suggestion is compatible with Weber and Kirsner’s
finding that co-ranked restricted BI was somewhat less
strongly supported in their judged price condition. Thus we
recommend that these conditions be re-run using a certainty
equivalent method such as Quick Indifference.
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On the assumption that (34) is satisfied, which is not a
problematic assumption, then BC and BI are equivalent
(Proposition 11). So, although the theoretical results are stated
for BC and the data for BI, we proceed as if both concern BI.
The pattern of predictions and the experimental results for BI
are summarized in Table 2.

4. DISTRIBUTION INDEPENDENCE

4.1. 3-Distribution independence

DEFINITION 12. 3-distribution independence (3-DI) is de-
fined by: For x0 � x � y � y0 � e; z � e; z0 � e; p; p0 2 ð0; 1=2�,

ðx; p; y; p; z; 1� 2pÞ � ðx0; p; y0; p; z; 1� 2pÞ;
iff

ðx; p0; y; p0; z0; 1� 2p0Þ � ðx0; p0; y0; p0; z0; 1� 2p0Þ:

TABLE 1
The types of branch independence

Conclusion

z0 (1, 1) (1, 2) (2, 2) (3, 2) (3, 3)

z

(1, 1) + )(a) )(a) )(a) )
(1, 2) )(a) )(a) )(a) )(a)

Hyp. (2, 2) + )(a) )(a)

(3, 2) )(a) )(a)

(3, 3) +

The data are organized with z0% z, therefore the only off diagonal entries
(i; j), ði0; j0Þ filled in are those above the main diagonal. A + means that the
data so far collected satisfy the property, ) means that violations have been
observed. No data are available in the unrestricted case, and the only price
data that are available are for co-ranked cases, where they agree with choice
data. The full details of the data summarized in this table are presented in
Tables 2 and 3.
(a)Birnbaum and McIntosh (1996, Tables 2 and 3). The data about these
non-co-ranked cases are not discussed explicitly individually, but Tables 2
and 3, and the general discussion of the data, suggest that they all fail.
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TABLE 2
Branch Independence (BI) and the Several Models

Rest BI Type RWU RDU GDU TAX Data

(i, j)2 Choices Judged

Prices

u (1, 2)2 (24) ) ) (28) ND ND

u (3, 2)2 (24) ) (25) (28) ND ND

r (1, 2)2 (24) ) (26) (28) )(a) ND

r (3, 2)2 (24) ) (27) (28) )(a) ND

u (1, 1)2 UBI (24) + ) (28) ND ND

u (2, 2)2 IBI (24) ) (25) (28) ND ND

u (3, 3)2 LBI (24) + + (28) ND ND

r (1, 1)2 UBI + + + + +(a),(b),(c) +(c)

r (2, 2)2 IBI + + + + +(a),(b),(c) +(c)

r (3,3)2 LBI + + + + +(a),(b),(c) +(c)

The following codes are used: r = restricted, u = unrestricted. The cases
(i, j)2 are each described plus the symmetric ones are called, respectively,
upper (i = j = 1), intermediate (i = j = 2) and lower (i = j = 3) BI. A
+ in a condition column means that the condition is met and – means that it
is not. A + in a model column means that the model predicts the condition,
– means that there are violations. A + in the data column means that the
data so far collected satisfy the property, – means that violations have been
observed, and ND means no data have been reported. Equation numbers
are shown for special cases of a model for which the property holds. Note
that SEU satisfies all of the properties and is not explicitly shown. Also note
that the entries (24) and (28) are, in fact, different conditions from row to
row.
(a)Birnbaum and McIntosh (1996, Tables 2 and 3). The data about the
(restricted) cases (1, 2) and (3, 2) are not explicitly discussed, but Tables 2
and 3 and the general discussion, suggest that both fail.
(b)Wakker et al. (1994); see criticism of choices in Weber and Kirsner (1997).
(c)Weber and Kirsner (1997). The exact criterion for acceptance or not is
subject to debate. For the co-ranked cases, the number of cases of failure is
larger for judged prices than for choices, but the differences in judged prices
that lead to such failures are really not very large.
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Lower 3-DI (L3-DI) holds if y0 � z ¼ z0.
Upper 3-DI (U3-DI) holds if z ¼ z0 � x0.
Lower/Upper 3-DI (L/U3-DI) holds if z0 � x0; y0 � z.

Birnbaum (2005), who introduced the concept of the Lower/
Upper case, viewed it as a case of non-co-ranked restricted
branch independence, Def. 10. This is clearly consistent with
the definitions. We place it here because the branches (z; 1� 2p)
and (z0; 1� 2p0) do not have a common location since
z0 � x0 � y0 � z, and we have elected to develop the BI prop-
erties of the several theories only for the co-ranked BI cases.

PROPOSITION 13. Suppose that a RWU representation holds.
Then Lower 3-DI holds iff, for some constant KL > 0,

S1ðp; p; 1� 2pÞ
S2ðp; p; 1� 2pÞ ¼ KL ð0 < p6 1=2Þ: ð35Þ

Upper 3-DI holds iff, for some constant Ku > 0,

S2ð1� 2p; p; pÞ
S3ð1� 2p; p; pÞ ¼ KU ð0 < p6 1=2Þ: ð36Þ

Lower/Upper 3-DI holds iff

S1ðp; p; 1� 2pÞ
S2ðp; p; 1� 2pÞ ¼

S2ð1� 2p; p; pÞ
S3ð1� 2p; p; pÞ ð0 < p6 1=2Þ: ð37Þ

COROLLARY.

(i) Under EU, Upper, Lower, and Lower/Upper 3-DI are sat-
isfied.

(ii) Under RDU, Lower 3-DI is satisfied iff, for c defined by

c ¼ �
ln KL

1þKL

� �

ln 2
ðKL > 0Þ;

WðpÞ ¼ pcP
ln p

�ln 2

� �

ð0 < p6 1Þ; ð38Þ

where P is periodic with period 1 and W is strictly increas-
ing. This simplifies to
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WðpÞ ¼ pc ð0 < p6 1Þ; ð39Þ
iff the right derivative of W exists at 0.
Upper 3-DI is satisfied iff, for c defined by

c ¼ �
ln 1

1þKU

� �

ln 2
ðKU > 0Þ;

WðpÞ ¼ 1� ð1� pÞcP lnð1� pÞ
�ln 2

� �

ð06 p < 1Þ; ð40Þ

where P is periodic with period 1 and is strictly increasing.
This simplifies to

WðpÞ ¼ 1� ð1� pÞc ð06 p6 1Þ ð41Þ
iff the left derivative of W exists at 1.
Lower/Upper 3-DI is satisfied iff W satisfies the following
functional equation:

Wðp=2Þ
WðpÞ �Wðp=2Þ ¼

Wð1� p=2Þ �Wð1� pÞ
1�Wð1� p=2Þ ð0 < p6 1Þ:

ð42Þ

(iii) Under GDU,

Lower 3-DI is satisfied iff, for some constant KL > 0,

Wpðp=2Þ ¼
KL

1� KL
ð0 < p6 1Þ: ð43Þ

Upper 3-DI is satisfied iff, for some constant KU > 0,

W1�p=2ð1� pÞ ¼ 1� KU
1

W1ð1� p=2Þ � 1

� �

ð0 < p6 1Þ:

ð44Þ
Lower/Upper 3-DI is satisfied iff

Wpðp=2Þ
1�Wpðp=2Þ

¼
W1ð1� p=2Þ½1�W1�p=2ð1� pÞ�

1�W1ð1� p=2Þ ð0 < p6 1Þ: ð45Þ
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(iv) Under TAX Lower 3-DI is satisfied iff, for some constant
KL > 0,

TðpÞ þ x1;2ðp; p; 1� 2pÞ þ x1;3ðp; p; 1� 2pÞ
TðpÞ � x1;2ðp; p; 1� 2pÞ þ x2;3ðp; p; 1� 2pÞ ¼ KL: ð46Þ

Upper 3-DI is satisfied iff, for some constant KU > 0,

TðpÞ � x1;2ð1� 2p; p; pÞ þ x2;3ð1� 2p; p; pÞ
TðpÞ � x1;3ð1� 2p; p; pÞ � x2;3ð1� 2p; p; pÞ ¼ KU: ð47Þ

Lower/Upper 3-DI is satisfied iff

TðpÞ þ x1;2ðp; p; 1� 2pÞ þ x1;3ðp; p; 1� 2pÞ
TðpÞ � x1;2ðp; p; 1� 2pÞ þ x2;3ðp; p; 1� 2pÞ

¼ TðpÞ � x1;2ð1� 2p; p; pÞ þ x2;3ð1� 2p; p; pÞ
TðpÞ � x1;3ð1� 2p; p; pÞ � x2;3ð1� 2p; p; pÞ :

ð48Þ

There are several comments about these results.

(1) The conditions are entirely in terms of the weights; the
utility of the consequences do not appear.

(2) Under RDU, the form of W is known for lower and upper
3-Dl, and if one is willing to assume that W has a right
derivative at 0 and a left one at 1, respectively, the results
are quite simple. It is easy to see, depending on cl1, that
these functions are either everywhere concave or convex.
Thus, they are inconsistent with much data on estimates of
W (Luce, 2000, pp. 90–100). For the Lower/Upper 3-DI
case, we have a functional equation, (42), for W which has
not yet been solved. If W(p) = p, i.e., EU, were the only
family of solutions, it would be a discriminating property,
but we conjecture that there are other solutions.

(3) Under GDU, Lower 3-DI is satisfied iff, for all x % y % e
and all p 2�0; 12�; ðx; p; y; pÞ � ðx; 12 ; y; 12Þ This follows from
the fact that (43) is equivalent to Wpðp=2Þ ¼W1ð12Þ:

(4) Under TAX, (46) holds when (29) holds for i = 1 or i = 2,
and in particular for Birnbaum’s (30). Also, (47) holds
when (29) holds for i = 2 or i = 3, and in particular for
Birnbaum’s (31). Finally, (48) holds for (29) only if the
latter holds for both i = 1 and i = 3, which we have shown
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is very restrictive, and (48) does not hold for either (30) or
(31).

(5) Under RAM, the special case of RWU = TAX with (17),
Lower and Upper 3-DI hold and Lower/Upper 3-DI holds
iff ½a3ð2Þ�2 ¼ a3ð1Þa3ð3Þ:

(6) As we shall see in Table 3, the data do not support the
Lower/Upper 3-DI case, and it fails in a particular way,
namely, with z0 � x0 � x � y � y0 � z � e,

ðx; p; y; p; z; 1� 2pÞ � ðx0; p; y0; p; z; 1� 2pÞ; ð49Þ
and

ðz0; 1� 2p; x; p; y; pÞ � ðz0; 1� 2p; x0; p; y0; pÞ: ð50Þ
If we assume that RDU is valid, then this violation implies

Wð2pÞ �WðpÞ
WðpÞ >

Uðx0Þ �UðxÞ
UðyÞ �Uðy0Þ >

1�Wð1� pÞ
Wð1� pÞ �Wð1� 2pÞ :

ð51Þ
Birnbaum (2005) then goes on to argue, correctly, that this
inequality is incompatible with the empirical findings of
studies using binary gambles which show that, assuming
binary RDU, W has an inverse-S form (Tversky and
Kahneman, 1992; Wu and Gonzalez, 1996). Thus, either
RDU is false or the inverse-S form is incorrect. Because we
will present much other data (see Table 5 below) that rejects
RDU, we really cannot reach any conclusion about the form
of the weights from this study. The point of this observation
is to warn the reader that the data from a single study can
easily be misleadingly interpreted.

4.2. 4-Distribution independence

DEFINITION 14. 4-distribution independence (4-DI) is
defined by: For z0 � x0 �x � y � y0� z � e and p; r; r0; r� 2p; r0

�2p 2 ½0; 1�; then
ðz0; 1� r� 2p;x; p; y;p; z; rÞ � ðz0; 1� r� 2p;x0;p; y0; p; z; rÞ;

ð52Þ
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iff

ðz0;1� r0 � 2p;x;p;y;p;z; r0Þ � ðz0;1� r0 � 2p;x0;p;y0;p;z; r0Þ:
ð53Þ

Note that when r ¼ r0, 4-DI can be considered to be a
special case of restricted 4-BI, as was done by Birnbaum and
Veira (1998) – see the earlier parallel discussion of the inter-
pretation of Lower/Upper 3-DI. Also note that this condition,
paralleling the form for L/U3-DI, can be renamed Lower/
Upper 4-DI, and can be extended to (at least) Lower and
Upper cases.

PROPOSITION 15. Suppose that the RWU representation
holds. Then, 4-DI is satisfied iff, for all p; r; rþ 2p 2 ½0; 1� and
some constant K > 0,

S2ð1� r� 2p; p; p; rÞ
S3ð1� r� 2p; p; p; rÞ ¼ K: ð54Þ

COROLLARY TO PROPOSITION 15. For all p; r; rþ 2p 2
½0; 1�,
(i) Under EU, 4-DI is satisfied.
(ii) Under RDU, 4-DI is not satisfied.
(iii) Under GDU, 4-DI is satisfied iff, for some constant K > 0,

W1�r�pð1� r� 2pÞ

¼ 1� K
1

W1�rð1� r� pÞ � 1

� �

06 p <
1

2
ð1� rÞ

� �

�

ð55Þ
(iv) Under TAX, 4-D is satisfied iff, for some constant K > 0,

TðpÞ � x1;2ðp; rÞ þ x2;3ðp; rÞ þ x2;4ðp; rÞ
TðpÞ � x1;3ðp; rÞ � x2;3ðp; rÞ þ x3;4ðp; rÞ

¼ K 06 p <
1

2
ð1� rÞ

� �

: ð56Þ

where xi; jðp; rÞ :¼ xi; jð1� r� 2p; p; p; rÞ: Under RAM, i.e.,
RWU with (17), 4-DI holds
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Note that (56) is satisfied if the assumption (29) is made either
for i ¼ 2 or for i ¼ 3, but not both without major restrictions
arising. And (56) is not satisfied for either assumption (30) or
assumption (31). An important unsolved problem is to discover
the form of any nontrivial solutions to (56).

4.3. Data on DI and summary

Birnbaum and Chavez (1997) tested 3-DI and 4-DI using choices
with 100 respondents. At the aggregate level, they found
approximately 30% and 40% violations of 3-DI, 4-DI, resp.; the
data of individual respondents showed a similar pattern of vio-
lations. Birnbaum and Veira (1998) present violations in judged
price (buying, selling) data. Birnbaum’s (2005) choice data give
strong evidence for Lower 3-DI holding and Upper 3-DI failing.
In addition, Birnbaum (2005) presents various choice tests of
Lower/Upper 3-DI. He constructed his gambles in such a way
that he could testwhether or notLower/Upper 3-DI always holds
– it does not – plus he could compare various special cases of
RDU and TAX. Overall, the special cases of TAX fit the viola-
tions of Lower/Upper 3-DImuch better than do the special cases
of RDU. These interpretations of the data are highly dependent
on the selected parameter values, which Birnbaum has kept fixed
successfully in fitting several data sets.Other violations ofLower/
Upper 3-DI in choice are presented in Birnbaum and Navarette
(1998), Birnbaum and McIntosh (1996), Birnbaum and Chavez
(1997) and Birnbaum et al. (1999); and violations in price (buy-
ing, selling) appear in Birnbaum and Beeghley (1997).

Table 3 summarizes the predictions and the data.Note that no
general model unqualifiedly predicts the success or failure of any
distribution property except for RDU for 4-DI (failure) and
GDU for L3-DI (success). However, RAM, i.e., RWUwith (17),
satisfies lower and upper 3-DI and 4-DI, counter to the data, and
the special case, (30), of TAX satisfies lower 3-DI and fails upper
3-DI and 4-DI, in agreement with the data. These are the crucial
differences that lead Birnbaum (2005) to favor the special case,
(30), of TAX over RAM, given that they otherwise provide very
similar fits to the available data10 (e.g., Birnbaum et al., 1999).
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5. OTHER FORMS OF INDEPENDENCE

5.1. Common consequence and common ratio independence

Birnbaum (1999) defines the following two additional types of
independence in the context of comparing model predictions
regarding the occurrence or otherwise of the Allais paradox and
of choices satisfying or not stochastic dominance.

DEFINITION 16. Common consequence independence (CCI)
is satisfied if, for all, p; q; r; pþ r; qþ r 2 ½0; 1�,

ðx; p; 0; 1� pÞ % ðy; q; 0; 1� qÞ ð57Þ

TABLE 3
Distribution independence (DI) and the several models

Type RWU RDU GDU TAX Data

Choices Judged

prices

U3-DI (36) (40) (44) (47) )(a), +(b) ND

L3-DI (35) (38) (43) (46) +(a), )(b) ND

L/U3-DI (37) (42) (45) (48) )(c), )(e) )(d)

4-DI (54) ) (55) (56) )(e) )(f)

The codes are as in Table 2. Note that SDU satisfies all of the properties and
is not explicitly shown.
(a)Birnbaum (2005), Tables 1 and 2.
(b)Birnbaum (2005), Table 3. These data are inconsistent with those of (a).
The result is not statistically significant according to Birnbaum’s criterion.
(c)Birnbaum and Navarette (1998), Birnbaum and McIntosh (1996),
Birnbaum and Chavez (1997), Birnbaum et al. (1999), Birnbaum (2005).
In each of these papers, L/U3-DI was treated as a special case of restricted
3-BI. The condition fails as it does not always hold, but it does hold for
some special gambles, in agreement with Birnbaum’s (2003) predictions
based on special parameter values.
(d)Birnbaum and Beeghley (1997), where M3-DI was treated as a special case
of restricted 3-BI.
(e)Birnbaum and Chavez (1997).
(f)Birnbaum and Veira (1998), where 4-Dl was treated as a special case of
restricted 4-BI.
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is equivalent to

ðx; p; z; r; 0; 1� p� rÞ % ðy; q; z; r; 0; 1� q� rÞ:

PROPOSITION 17. Suppose that a RWU representation holds.
Then CCI is satisfied iff, for all p; q; r; pþ r; qþ r 2 ½0; 1�,

S1ðq; 1� qÞ
S1ðp; 1� pÞ ¼

S1ðq; r; 1� q� rÞ
S1ðp; r; 1� p� rÞ ð58Þ

COROLLARY TO PROPOSITION 17. For all p; q; r; pþ r;
qþ r 2 ½0; 1�,

(i) Under EU, CCI is satisfied.
(ii) Under RDU, CCI is satisfied.
(iii) Under GDU, CCI is satisfied iff

W1ðpÞ ¼WpþrðpÞW1ðpþ rÞ: ð59Þ
(iv) Under TAX CCI is satisfied iff

TðqÞþx1;2ðq;1�qÞ
TðpÞþx1;2ðp;1�pÞ�

TðpÞþTð1�pÞ
TðqÞþTð1�qÞ

¼TðqÞþx1;2ðq;r;1�q� rÞþx1;2ðq;r;1�q� rÞ
TðpÞþx1;2ðp;r;1�p� rÞþx1;2ðp;r;1�p� rÞ

�TðpÞþTðrÞþTð1�p� rÞ
TðqÞþTðrÞþTð1�q� rÞ : ð60Þ

Under RAM, Def. 4, CCl holds iff the constants an(i) of
(17) are independent of n.

Note the following:

• (59) is a special case of the choice property, (16).
• With the additional assumption (29) for i ¼ 1, and in

particular for Birnbaum’s (30), then (60) reduces to

TðpÞ þ Tð1� pÞ
TðqÞ þ Tð1� qÞ ¼

TðpÞ þ TðrÞ þ Tð1� p� rÞ
TðqÞ þ TðrÞ þ Tð1� q� rÞ ð61Þ

holding, which it clearly does if the sum of T over each
partition (of size three) adds to a constant.

• The CCI property can be recast in event form, namely, for
events C;C0;C00;D;D0;D00;E such that the relevant cases
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below are partitions, C [ C0¼ D [D0 and C [ E [ C00 ¼
D [ E [D00, then

ðx;C; e;C0Þ % ðy;D; e;D0Þ
iff

ðx;C; z;E; e;C00Þ % ðy;D; z;E; e;D00Þ:
There are, to our knowledge, no relevant data about CCI

aside from Birnbaum’s (1999) specialization of this property to
the Allais paradox.

DEFINITION 18. Common ratio independence (CRI ) is sat-
isfied if, for all p; q 2 ½0; 1�; ð57Þ is equivalent to

ðx; ap; e; 1� apÞ % ðy; aq; e; 1� aqÞ ða 	 1=maxðp; qÞÞ:

This property does not seem to generalize in any simple way
to events.

PROPOSITION 19. Any separable model, i.e., for all
x 2 X; p 2 ½0; 1�:

Uðx; p; e; 1� pÞ ¼ UðxÞWðpÞ;
satisfies common ratio independence iff W is a power function of
p.

Note that all RWU representations are separable. Esti-
mates of the binary weights based on binary data for the
separable case such as Tversky and Kahneman (1992) or
Wu and Gonzalez (1996), which find both WðpÞ > p for
small p and WðpÞ < p for large p, reject that W is a power
function.

5.2. Cumulative independence

The following concepts are defined by Birnbaum (1997) and
further elaborated by Birnbaum and Navarrete (1998) and by
Birnbaum et al. (1999).

DEFINITION 20. The following forms of cumulative inde-
pendence (CI) are defined where z0 � x0 � x � y � y0 � z � e:
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Lower CI

ðx;C; y;D; z;EÞ � ðx0;C; y0;D; z;EÞ ð62Þ

implies

ðx;C [D; y0;EÞ � ðx0;C; y0;D [ EÞ: ð63Þ

Upper CI

ðz0;E; x;C; y;DÞ � ðz0;E; x0;C; y0;DÞ ð64Þ
implies

ðx0;E; y;C [DÞ � ðx0;C [ E; y0;DÞ: ð65Þ

PROPOSITION 21. Suppose that a RWU representation is
satisfied. Then lower CI is satisfied iff

S1ðC [D;EÞ
S1ðC;D [ EÞP

S2ðC;D;EÞ
S1ðC;D;EÞ

: ð66Þ

And upper CI is satisfied iff

S2ðC [ E;DÞ
S2ðE;C [DÞ � S2ðC [ E;DÞ 6

S3ðE;C;DÞ
S2ðE;C;DÞ

ð67Þ

COROLLARY TO PROPOSITION 21.

(i) Under SEU, both lower and upper CI are satisfied.
(ii) Under RDU, both lower and upper CI are satisfied.
(iii) Under GDU, lower CI is equivalent to

WC[D[EðC [DÞWC[DðCÞPWC[D[EðCÞ½1�WC[DðCÞ�;
ð68Þ

and upper CI is equivalent to

WC[D[EðC [ EÞWC[EðEÞPWC[D[EðEÞ: ð69Þ
(iv) Under TAX, lower CI is equivalent to

TðC [DÞ þ x1;2ðC [D;EÞ
TðCÞ þ x1;2ðC;D [ EÞ � TðCÞ þ TðD [ EÞ

TðC [D;EÞ

P
TðDÞ � x1;2ðC;D;EÞ þ x2;3ðC;D;EÞ
TðCÞ þ x1;2ðC;D;EÞ þ x1;3ðC;D;EÞ

; ð70Þ
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and upper CI is equivalent to

TðDÞ�x1;2ðE[C;DÞ
½TðC[DÞ�x1;2ðE;C[DÞ�TðC[EÞþTðDÞTðC[DÞþTðEÞ�TðDÞþx1;2ðE[C;DÞ

6
TðDÞ�x1;3ðE;C;DÞ�x2;3ðE;C;DÞ
TðCÞ�x1;2ðE;C;DÞþx2;3ðE;C;DÞ

: ð71Þ

Under RAM, Def., 4 CI does not hold.

Birnbaum et al. (1999) discuss experimental violations of
both lower and upper CI

5.3. Interval independence

Birnbaum et al. (1999) formulated the following concept11:

DEFINITION 22. Let

Ak ¼ ðx1;C1; x2;C2; . . . ; x;Ck; . . . ; xn;CnÞ;
Bk ¼ ðx1;C1; x2;C2; . . . ; y;Ck; . . . ; xn;CnÞ;
A0k ¼ ðy1;D1; y2;D2; . . . ; x;Dk; . . . ; xn;DnÞ;
B0k ¼ ðy1;D1; y2;D2; . . . ; y;Dk; . . . ; xn;DnÞ;

where C
!

n, D
!

n are ordered partitions with

[n

j¼1
Cj ¼

[n

j¼1
Dj; and Dk ¼ Ck:

Then interval independence at position k (kII ) is satisfied pro-
vided that

UðAkÞ �UðBkÞ ¼ UðA0kÞ �UðB0kÞ:
Lower II holds when k ¼ n and upper II holds when k ¼ 1,

PROPOSITION 23. Suppose that a RWU representation is
satisfied. Then, for any k,

UðAkÞ �UðBkÞ
UðA0kÞ �UðB0kÞ

¼ SkðC
!

nÞ
SkðD
!

nÞ
; ð72Þ

and kII is satisfied iff SkðC
!

nÞ ¼ SkðD
!

nÞ:
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COROLLARY TO PROPOSITION 23.

(i) Under SEU, kII is satisfied for every k.
(ii) Under RDU, lower and upper II are satisfied, and, for

26 k6 n� 1, kII is not satisfied. However,

UðAkÞ�UðBkÞ
UðA0kÞ�UðB0kÞ

¼WðCk[Cðk�1ÞÞ�WðCðk�1ÞÞ
WðCk[Dðk�1ÞÞ�WðDðk�1ÞÞ

: ð73Þ

(iii) Under GDU,

UðAkÞ�UðBkÞ
UðA0kÞ�UðB0kÞ

¼

Qn�1

j¼k
WCð jþ1ÞðCðjÞÞ½1�WCðkÞðCðk�1ÞÞ�

Qn�1

j¼k
WDðjþ1ÞðDðjÞÞ½1�WDðkÞðDðk�1ÞÞ�

:

ð74Þ
Thus, lower II is satisfied, but kII is not in general sat-
isfied for k < n.

(iv) Under TAX, a sufficient condition for kII is that

TðC!nÞ ¼ TðD!nÞ;xi; jðC
!

nÞ ¼ xi; jðD
!

nÞ ði < jÞ: ð75Þ

In particular, (29) satisfies kII and (31) satisfies lower II
provided that either T is finitely additive or TðCnÞ is a
constant for all partitions of a fixed event; and (30)
satisfies upper II.

Birnbaum et al. (1999, Figure 4, p. 69) provide evidence that
both lower and upper II are violated.

Note that we do not know necessary and sufficient condi-
tions for GDU or TAX to imply kII.

5.4. Tail independence (=Ordinal independence)

Ordinal independence was first formulated by Green and
Jullien (1988; see their important erratum, 1989). They used it
to axiomatize RDU. In Wu’s (1994) empirical study of it, he
suggested that it might be better called tail independence, which
term we adopt. To formulate this, consider a gamble
A ¼ ðx1;C1; . . . ; xk;Ck; xkþ1;Ckþ1; . . . ; xn;CnÞ; x1 % x2 % � � �%
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xn % e of size n. Let k be an index with 26 k6 n� 1. The upper
tail of A is the portion AuðkÞ :¼ ðx1;C1; . . . ; xk;CkÞ and the
lower tail is the portion AlðkÞ :¼ ðxkþ1;Ckþ1; . . . ; xn;CnÞ:

DEFINITION 24. Let A;B;A0;B0 be gambles of size n with a
common universal set C and the same ordered consequences.
Let k 2 f2; . . . ; n� 1g.

Lower tail independence (LTI) holds if AlðkÞ ¼ BlðkÞ;
A0lðkÞ ¼ B0lðkÞ;AuðkÞ ¼ A0uðkÞ, and BuðkÞ ¼ B0uðkÞ implies that
A % B iff A0 % B0.

Upper tail independence (UTI) holds if the same condition is
true with the u and l interchanged.

The following result is not satisfactory for RWU and so for
TAX because we do not have a necessary and sufficient con-
dition, but only a sufficient one which we do not believe is
necessary.

PROPOSITION 25. Suppose a RWU representation holds.
Then neither UTI nor LTI is satisfied in general. A sufficient
condition for LTI to hold is:

AlðkÞ ¼ BlðkÞ implies SiðC
!

AÞ¼SiðC
!

BÞ ði ¼ kþ 1; . . . ; nÞ;

A0lðkÞ ¼ B0lðkÞ implies SiðC
!

A0 Þ ¼SiðC
!

B0 Þ ði ¼ kþ 1; . . . ; nÞ;

AuðkÞ ¼ A0uðkÞ implies SiðC
!

AÞ¼SiðC
!

A0 Þ ði ¼ 1; . . . ; kÞ;

BuðkÞ ¼ B0uðkÞ implies SiðC
!

BÞ¼SiðC
!

B0 Þ ði ¼ 1; . . . ; kÞ;
ð76Þ

where C
!

A denotes the ordered event partition of gamble A, etc. A
sufficient condition for UTI is

AuðkÞ ¼ BuðkÞ implies SiðC
!

AÞ ¼ SiðC
!

BÞ ði ¼ 1; . . . ; kÞ;
A0uðkÞ ¼ B0uðkÞ implies SiðC

!
A0 Þ ¼ SiðC

!
B0 Þ ði ¼ 1; . . . ; kÞ;

AlðkÞ ¼ A0lðkÞ implies SiðC
!

AÞ ¼ SiðC
!

A0 Þ ði ¼ kþ 1; . . . ; nÞ;
BlðkÞ ¼ B0lðkÞ implies SiðC

!
BÞ ¼ SiðC

!
B0 Þ ði ¼ kþ 1; . . . ; nÞ:

ð77Þ
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COROLLARY TO PROPOSITION 25.

(i) SEU implies both LTI and UTI.
(ii) RDU implies both LTI and UTI.
(iii) GDU implies LTI but not UTI.
(iv) A sufficient condition on TAX for LTI or for UTI to

hold is obtained by replacing the Si terms of the sufficient
conditions of Part (i) by the form given in (19).

A weaker sufficient condition for TAX, (18), to hold is that

the xi; j are independent of the event partition C
!

n and that T is

finitely additive. The latter implies TðC!nÞ is independent of C
!

n

because
Sk

i¼1Ci ¼
Sk

i¼1C
0
i and

Sn
i¼kþ1Ci ¼

Sn
i¼kþ1C

0
i.

Note that the above results generalize to the case where, for
example in LTI, the x1; . . . ; xk in the gambles B and B0 are
replaced by y1; . . . ; yk where the yj; j6 k, may differ from the
xj; j6 k. A similar remark is true for UTI.

The data reported by Wu (1994) and somewhat replicated by
Birnbaum (2001) showing violations of UTI are, from our
perspective, limited in two respects.12 First, in constructing the
experimental gambles, they assumed coalescing even though it
is not a part of the definition of TI.13 Second, the smallest
consequence was 0. So, we do not believe that UTI has been
adequately tested experimentally.

LTI has not been studied empirically.

5.5. Summary of other forms of independence

Table 4 summarizes what we have shown about these several
forms of independence and the upshot of the relevant data. One
does not learn much from these conditions other than that
RDU has been tested using choices in 6 of 7 cases where the
property is predicted and it failed in all 6.

6. CONCLUSIONS AND OPEN PROBLEMS

In our opinion, the only important tests of a model are of two
types: (1) When the model, or a well-motivated special case of
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it, predicts that a property always holds, in which case nega-
tive data weigh in against the model. (2) When the model, or a
well-motivated special case of it, predicts that a property never
holds, in which case positive data are evidence against the
model. Table 5 summarizes the tests of type (1) and Table 6, of
type (2).

We now make several observations about these Tables,
which must be read in the context of our comments in Section 2
regarding the way these data were analyzed, and interpreted, by
the researchers who collected them.

TABLE 4
Remaining forms of independence and the several models

Type RWU RDU GDU TAX Data

choices

CCI (58) + (59) (60) )(b)

CRI )(a) )(a) )(a) )(b)

UCI (67) + (69) (71) )(c),)(d)

LCI (66) + (68) (70) )(c),)(d)

UII (72) + ) (75) )(d)

III (72) ) ) (75) )(d)

LII (72) + + (75) )(d)

UTI (77) + ) (77) & (19) )(e)

LTI (76) + + (76) & (19) ND

In addition to the codes of Table change: 2, CCI = common consequence
independence, CRI = common ratio independence, CI = cumulative
independence, II = interval independence, TI = tail independence. Note
SEU satisfies all of the properties save CRI where it only holds if W is a
power function.
(a)It is satisfied iff W is a power function.
(b)Birnbaum (1999) cites a mix of well known empirical results and the
existence of the Allais paradox in support of rejecting this property.
(c)Birnbaum and Navarrete (1998).
(d)Birnbaum et al. (1999).
(e)The experiments in the literature, Wu (1994) and Birnbaum (2001), that
exhibit violations of TI are flawed in presuming coalescing and having a 0
consequence.
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TABLE 5
Properties predicted to hold by at least one general model

Condition Type RDU GDU TAX Data

Rest (i, j)2 Choices Judged

prices

u (1, 1)2 UBI + ND ND

u (3, 3)2 LBI + + ND ND

r (1, 1)2 UBI + + + +,+,+ +

r (2, 2)2 IBI + + + +,+,+ +

r (3, 3)2 LBI + + + +,+,+ +

CCI + ) ND

UCI + ) ND

LCI + ) ND

UII + ) ND

LII + + + ) ND

UTI + ) ND

LTI + + ND ND

TABLE 6
Properties predicted not to hold by at least one general model

Condition Type RDU GDU Data

Rest. (i, j) Choices Judged

prices

u (1, 2) BI ) ND ND

u (3, 2) BI ND ND

r (1, 2) BI ) ND

r (3, 2) BI ND ND

u (1, 1) UBI ) + )

u (2, 2) IBI ND ND

4-DI ) ) )
III ) ) ) ND

UII ) ) ND

UTI ) ) ND
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• Table 5 shows that the only cases where RWU (and
therefore all of SEU, RDU, GDU and TAX) predicts
properties to hold are lower, intermediate, and upper BI in
the restricted case. The 3 choice and one price studies on
this agree with the prediction. Notice that various of the
properties do not appear at all in Table 5. Most notable
are the distribution independence ones except for L3-DI.

• Twelve of the 12 entries of Table 5 for RDU are positive.
For the 5 positive predictions with respect to BI, both the
choice and price data are positive in 3 cases, and not avail-
able in 2. For the remaining 7 positive predictions of Table
5 for RDU, the choice data are negative in 6 cases, and not
available in 1; there are no price data for any of these cases.
Various of these failures havebeen confirmedalso at the level
of individual participants (see, for instance, Birnbaum and
McIntosh, 1996; Birnbaum and Navarette, 1998). These
failures of RDU should havemajor implications for the field
of utility under risk and uncertainty which, after all, has for
themost part been restricted toRDUfor gains in one variant
or another – EU, SEU, and CPT. Birnbaum has made this
point in many recent papers, but so far the implications of
these data seem not to have had much impact on theorists.

• Six of the 12 entries of Table 5 for GDU are positive. For
the 4 positive predictions with respect to BI, both the choice
and price data are positive in 3 cases and not available in 1.
GDU also predicts lower interval independence (LII) for
which the choice data are negative, and lower tail inde-
pendence (LTI) for which there are no choice data; there are
no price data for these three cases. Of course, upper GDU
gives the opposite pattern of predictions. We urge
additional experimental focus on the 3 cases in Table 5
where lower GDU predicts a property to hold and TAX
does not except for special cases. These properties are
unrestricted co-ranked LBI, LII, and LTI.

• For the 7 entries of Table 6 for which RDU predicts that a
property does not hold, the choice data are negative for 3
and not available for 4; the price data are negative for 1
and not available for 6. For the 5 entries of Table 6 for
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which GDU predicts that the property does not hold, the
choice data are positive for 1, negative for 3, and not
available for 1; the price data are negative for 1 and not
available for 4. Thus, we have a rather mixed picture for
both RDU and GDU. Because we fear that direct choices
tend to elicit direct cancellation independent of the model
we are testing, we recommend that a number of these
crucial conditions be re-run using a certainty equivalence
method such as Quick Indifference.

• Much more complex and perplexing are the various
necessary and/or sufficient conditions for a property to
hold. Given a currently empirically acceptable model,
and new data that either confirm or reject a particular
property of that model, is it reasonable to develop new
variants of the model that handle both the old and new
data, and then test new predictions of the revised
model? Birnbaum has taken this approach, leading him
to develop and test numerous independence properties
of numerous configural weighted models. He argues
currently for the special case, (30), of TAX which does
make several important predictions, including that lower
3-DI holds and upper 3-DI fails, in agreement with the
available data. Nonetheless, there are two limitations to
this type of approach. First, TAX is as flexible as
RWU. Second, different conditions are required for
different positive predictions (see the various TAX
equations in Tables 2–4), and we do not know whether
or not one can invoke a single set of consistent special
conditions that predict all the available data. The task is
formidable – witness all of the equation numbers in the
tables, and, additionally, take into account that the
apparently common (28) is really different conditions for
i ¼ 1; 2; 3.

• A major open theoretical problem is to axiomatize spe-
cial cases of the class of configural weighted models,
such as the currently most successful special case, (30),
of TAX.
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APPENDIX A: PROOFS

PROPOSITION 6.

Proof. (i) Expanding (18) we have,

TðC!nÞUðg
C
!

n

Þ

¼
Xn

i¼1
UðxiÞTðCiÞþ

Xn�1

i¼1

Xn

j¼iþ1
UðxiÞxi;jðC

!
nÞ

�
Xn�1

i¼1

Xn

j¼iþ1
UðxjÞxi;jðC

!
nÞ

¼
Xn

i¼1
UðxiÞTðCiÞþ

Xn�1

i¼1
UðxiÞ

Xn

j¼iþ1
xi;jðC
!

nÞ

�
Xn

j¼2
UðxjÞ

Xj�1

i¼1
xi;jðC
!

nÞ

¼
Xn

i¼1
UðxiÞTðCiÞþ

Xn�1

i¼1
UðxiÞ

Xn

j¼iþ1
xi;jðC
!

nÞ

�
Xn

i¼2
UðxiÞ

Xi�1

j¼1
xj;iðC
!

nÞ

¼
Xn

i¼1
UðxiÞTðCiÞþ

Xn�1

i¼2
UðxiÞ

Xn

j¼iþ1
xi;jðC
!

nÞ�
Xi�1

j¼1
xj;iðC
!

nÞ
" #

þUðx1Þ
Xn

j¼2
x1;jðC
!

nÞ
 !

�UðxnÞ
Xn�1

j¼1
xj;nðC
!

nÞ
 !

¼
Xn

i¼1
UðxiÞTðCiÞþ

Xn�1

i¼2
UðxiÞ

Xn

j¼iþ1
xi;jðC
!

nÞ�
Xi�1

j¼1
xj;iðC
!

nÞ
" #

þUðx1Þ
Xn

j¼2
x1;jðC
!

nÞ�x0;1ðC
!

nÞ
 !

þUðxnÞ xn;nþ1ðC
!

nÞ�
Xn�1

i¼1
xj;nðC
!

nÞ
 !

[by (20) and (21)]
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¼
Xn

i¼1
UðxiÞ TðCiÞ þ

Xnþ1

j¼iþ1
xi;jðC
!

nÞ �
Xi�1

j¼0
xj;iðC
!

nÞ
" # !

[by (20) and (21)]

¼ TðC!nÞ
Xn

i¼1
UðxiÞSiðC

!
nÞ;

where SiðC
!

nÞ; i ¼ 1; . . . ; n; are given by (19). Thus Uðg
c!n

Þ
satisfies RWU, (6).

(ii) Assume that the idempotent version of (6) holds, and
define xi; jðC

!
nÞ by (22) and (23), Then using these xi; jð c!nÞ,

TðCiÞ þ xi;iþ1ðC
!

nÞ � xi�1;iðC
!

nÞ

¼ TðCiÞ þ TðC!nÞ
Xi

k¼1
SkðC
!

nÞ �
Xi

k¼1
TðCkÞ

� TðC!nÞ
Xi�1

k¼1
SkðC
!

nÞ þ
Xi�1

k¼1
TðCkÞ

¼ TðC!nÞSiðC
!

nÞ:
Thus,

SiðC
!

nÞ ¼
TðCiÞ þ xi;iþ1ðC

!
nÞ � xi�1;iðC

!
nÞ

TðC!nÞ

¼
TðCiÞ þ

Pn

j¼iþ1
xi;jðC
!

nÞ �
Pi�1

j¼0
xj;iðC
!

nÞ

TðC!nÞ
;

i.e., the TAX representation, (18), with the above xi;jðC
!

nÞ,
gives the desired idempotent RWU representation, (6), with its
SiðC
!

nÞ and the chosen xi;jðC
!

nÞ, are related by (19).
Note that this representation is highly non-unique because

there are no particular restrictions on TðCiÞ and there may well
be other choices for the xi;j: (
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PROPOSITION 8.

Proof. Clearly if a simple utility representation holds, then
BC holds for all 5 common locations.

So now suppose that the RWU representation holds with BC
holding for the five types. Let Ci;Di; i ¼ 1; . . . ; 6, be such that
each fCi;Di;Eg is an arbitrary partition of the same event Cð3Þ.
Using the definition of branch cancellation, Def. 10, for each of
the five types of 3-BC, and selecting various of the possible
pairings of two partitions of Cð3Þ, we obtain:

ð1; 1Þ gives S1ðE;C1;D1Þ ¼ S1ðE;C2;D2Þ;
ð1; 2Þ gives S1ðE;C1;D1Þ ¼ S2ðC3;E;D3Þ;
ð2; 2Þ gives S2ðC4;E;D4Þ ¼ S2ðC3;E;D3Þ;
ð3; 2Þ gives S3ðC5;D5;EÞ ¼ S2ðC4;E;D4Þ;
ð3; 3Þ gives S3ðC5;D5;EÞ ¼ S3ðC6;D6;EÞ;

which gives

S1ðE;C1;D1Þ ¼ S1ðE;C2;D2Þ
¼ S2ðC3;E;D3Þ ¼ S2ðC4;E;D4Þ
¼ S3ðC5;D5;EÞ ¼ S3ðC6;D6;EÞ;

and so we may define: for i ¼ 1; 2; 3;

WCð3ÞðCiÞ ¼ SiðC
!

3Þ;
and thus we have a simple utility representation. (

PROPOSITION 9.

Proof.
(i) Suppose that SEU holds. In any version of BC, the (z;E)

branch has weight SðEÞ and so (24) holds.
(ii) Suppose that RDU holds and write W for WC[D[E ¼

WC0[D0[E.
(a) For i ¼ j ¼ 1, the weight on both sides of (24) isWðEÞ

and so UBC holds. For i ¼ j ¼ 3, using that
C [D ¼ C0 [D0, the weight on both sides of (24) is
1�WðC [DÞ and so LBC holds. For the unrestricted
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case with i ¼ j ¼ 2, the weights on the two sides of (24)
are not equal asC appears on the left, andC0 occurs on
the right. The two non-co-ranked cases are i ¼ 1, j ¼ 2
and i ¼ 3, j ¼ 2. In the former, BC holds iff

WðEÞ ¼ S1ðC
!ð1Þ

3 Þ ¼ S2ðC
!0ð2Þ

3 Þ ¼WðC0 [ EÞ �WðC0Þ;

with E and C0 arbitrary, which gives finite additivity,
and so SEU, which is excluded. For the i ¼ 3, j ¼ 2
case,

1�WðC[DÞ¼S3ðC
!ð3Þ

3 Þ¼S2ðC
!0

3
ð2ÞÞ¼WðC0[EÞ�WðC0Þ:

Setting C0 ¼£, and so D0 ¼ C [D, gives
1�WðC [DÞ ¼ WðEÞ, and substituting this back
into the general equation gives

WðEÞ ¼WðC0 [ EÞ �WðC0Þ;
for all C0, which gives finite additivity, and so SEU,
which is excluded.

(b) In the restricted case, it is clear that BC holds iff i ¼ j.

(iii) Suppose that GDU holds. Using (13) and writing
F ¼ C [D [ E ¼ C0 [D0 [ E,

S1ðC
!ð1Þ

3 Þ ¼ S1ðE;C;DÞ ¼WC[EðEÞWFðC [ EÞ; ð78Þ

S2ðC
!ð2Þ

3 Þ ¼ S2ðC;E;DÞ ¼ ½1�WC[EðCÞ�WFðC[EÞ; ð79Þ

S3ðC
!ð3Þ

3 Þ ¼ S2ðC;D;EÞ ¼ 1�WFðC [DÞ: ð80Þ
(a) For the case i ¼ j ¼ 1, (78) holds iff

WC[EðEÞWFðC [ EÞ ¼WC0[EðEÞWFðC0 [ EÞ:
Setting C0 ¼£, and so D0 ¼ C [D, gives

WC[EðEÞWFðC [ EÞ ¼WD0[EðEÞ ¼WFðEÞ;
which is the choice property. That with GDU implies
RDU, which we have previously shown satisfies BC
only in the special case of SEU, which is excluded.
For the case i ¼ j ¼ 2, (79) yields
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½1�WC[EðCÞ�WFðC [ EÞ
¼ ½1�WC0[EðC0Þ�WFðC0 [ EÞ: ð81Þ
Setting C0 ¼£, and so D0 ¼ C [D ¼ F, gives

WC[EðCÞWFðC [ EÞ ¼WFðC [ EÞ �WFðEÞ;
which is (25). Note that if this has the common value
WFðCÞ, then both the choice property and finite
additivity hold, reducing us to SEU. But otherwise,
this is not the case.
For the case i ¼ j ¼ 3, (80), and the fact that C [D ¼
C0 [D0 imply that

S3ðC;D;EÞ¼1�WFðC[DÞ¼1�WFðC0[D0Þ
¼S3ðC0;D0;EÞ;
and so cancellation occurs.
In the non-co-ranked case i ¼ 1, j ¼ 2,

S1ðC
!ð1Þ

3 Þ¼S2ðC
!0ð2Þ

3 Þiff
WC[EðEÞWFðC[EÞ¼½1�WC0[EðC0Þ�WFðC0 [EÞ: ð82Þ
Setting C0 ¼£, and so D0 ¼ C [D ¼ F, gives

WC[EðEÞWFðC [ EÞ ¼WFðEÞ;
which is the choice property. That with GDU implies
RDU, which is excluded.
The other non-co-ranked case i ¼ 3, j ¼ 2 yields

1�WFðC [DÞ ¼ ½1�WC0[EðC0Þ�WFðC0 [ EÞ:
Setting C0 ¼£, and so D0 ¼ C [D, we obtain that
1�WFðC [DÞ ¼WFðEÞ, which substituted back in
the equation gives

WC0[EðC0ÞWFðC0 [ EÞ ¼WFðC0 [ EÞ �WFðEÞ;
which is the same expression as for IBC, (25).

(b) For the restricted case with i ¼ j, (11) implies that the
weights are identical, and so co-monotonic BC holds.
In the non-co-ranked case, i ¼ 1, j ¼ 2, we have from
(78) and (79) that
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S1ðC
!ð1Þ

3 Þ ¼ S2ðC
!0ð2Þ

3 Þ iff
WC[EðEÞWFðC [ EÞ ¼ ½1�WC0[EðCÞ�WFðC [ EÞ;
i.e., iff

WC[EðCÞ þWC[EðEÞ ¼ 1;

which is (26). In the other non-co-ranked case,
i ¼ 3; j ¼ 2, we have from (80) and (79) that

S1ðC
!ð3Þ

3 Þ ¼ S2ðC
!0ð2Þ

3 Þ iff
1�WF ðC [DÞ ¼ ½1�WC[E ðCÞ�WF ðC [ EÞ; ð83Þ
which is (27).

(iv) Suppose that TAX holds. By Def. 7 coupled with (24),
the necessary and sufficient condition is (28) which is
clearly holds in the co-ranked cases, i.e., when i ¼ j. h

PROPOSITION 11.

Proof. (i) implies (ii) By the RWU representation we have

Uðg3Þ�Uðg03Þ¼
X3

k¼1;k 6¼i
UðxkÞSkðC

!ðiÞ
3 Þ�

X3

k¼1;k 6¼j
Uðx0kÞSkðC

!0ðjÞ
3 Þ

þUðzÞ SiðC
!ðiÞ

3 Þ�SjðC
!0ðjÞ

3 Þ
� 	

: ð84Þ

By branch cancellation, the term on the last line is 0, and so z
may be replaced by any z0, establishing branch independence.

To show the existence of consequences such that (34) holds,
consider non-null events C;C0;D;D0;E, and the initial choice
x00 ¼ x0 ¼ y0 ¼ y00 ¼ z0 � e, which because gambles are idem-
potent means that, because of BC, for any choice of ði; jÞ,

Uðg3Þ�Uðg03Þ¼
X3

k¼1;k6¼i
UðxkÞSkðC

!ðiÞ
3 Þ�

X3

k¼1;k 6¼j
Uðx0kÞSkðC

!0
3
rðjÞÞ

þUðzÞ SiðC
!ðiÞ

3 Þ�SjðC
!0ðjÞ

3 Þ
� 	

: ð85Þ
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Now, because by BC, SiðC
!ðiÞ

3 Þ ¼ SjðC
!0

3
r0ðjÞÞ, we may ignore z0 as

it plays no role in this difference, and because the representa-
tion is onto the positive real numbers we can increase x00 to x0

and decrease y00 to y0 by a compensating amount so that the
utility difference remains 0 and x0 � x0 ¼ y0 � y0. In like
manner, increase x0 to x � x0 and decrease y0 to y � y0 by a
compensating amount continuing to maintain the 0 difference
and now with x0 � x � y � y0. Once done, select z to yield type
ði; jÞ which does not affect the difference because of BC. This
(highly non-unique) gamble pair satisfies (34).

(ii) implies (i). Observe that BI applied to (34) implies, for any
z0 also of type ði; jÞ, that
ðx;C; y;D; z0;EÞ � ðx0;C0; y0;D0; z0;EÞ; ð86Þ

and so by RWU, (85) holds for these two gambles for all z. Now

suppose, contrary to what is asserted, that SiðC
!ðiÞ

3 Þ 6¼ SjðC
!0ðjÞ

3 Þ,
then the last line of (85) is not 0. So when z is replaced by z0, still
yielding a gamble pair of type ði; jÞ, the equality is destroyed.
Thus, (86) is violated. Because this is impossible, branch can-
cellation must hold. (

PROPOSITION 13.

Proof. Applying RWU to the left side of the hypothesis of
lower 3-DI, we obtain:

Uðx;p;y;p;z;1�2pÞ¼UðxÞS1ðp;p;1�2pÞþUðyÞS2ðp;p;1�2pÞ
þUðzÞS3ðp;p;1�2pÞ:

The right side is the same with y; x replaced by y0; x0, respec-
tively. So the hypothesis is equivalent to

UðyÞ �Uðy0Þ
Uðx0Þ �UðxÞ >

S1ðp; p; 1� 2pÞ
S2ðp; p; 1� 2pÞ :

The conclusion is of the same form, but with p replaced by p0. If
the right ratio differs for p and p0, we may select values of
x; x0; y; y0, subject to the ordering restraint, so that the left ratio
lies between them, thus violating the condition. Therefore the
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ratio has to be independent of p, i.e., a constant. The argument
for Lower/Upper and upper 3-DI is parallel. h

COROLLARY TO PROPOSITION 13.
Proof.

(i) SEU yields S1ðp; p; 1� 2pÞ ¼ S2ðp; p; 1� 2pÞ
¼ S3ð1� 2p; p; pÞ ¼WðpÞ and so the conditions are met.

(ii) For RDU and lower 3-DI, we have

S1ðp; p; 1� 2pÞ ¼WðpÞ;
S2ðp; p; 1� 2pÞ ¼Wð2pÞ �WðpÞ:

Therefore, using the Proposition,

KL ¼
S1ðp; p; 1� 2pÞ
S2ðp; p; 1� 2pÞ ¼

WðpÞ
Wð2pÞ �WðpÞ

,Wð2pÞ ¼ ð1þ 1=KLÞWðpÞ ð0 < p6 1=2Þ

,Wðp=2Þ ¼ AWðpÞ 0 < p6 1;A ¼ KL

1þ KL

� �

,Wðp=2Þ ¼ ð1=2ÞcWðpÞ c ¼
log KL

1þKL

log 2

 !

: ð87Þ

This is Equation (11) of Aczél and Kuczma (1991), and the
solutions (38) and (39) are from their Theorems 3 and 9,
respectively.

For upper 3-DI, we have

S2ð1� 2p; p; pÞ ¼Wð1� pÞ �Wð1� 2pÞ;
S3ð1� 2p; p; pÞ ¼ 1�Wð1� pÞ;

which immediately implies

Wð1� pÞ ¼ AWð1� 2pÞ þ 1� A

0 < p <
1

2
;A ¼ 1

1þ KU
< 1

� �

�

The following solution to this functional equation is due to
János Aczél.14 Define FðpÞ ¼ 1�Wð1� pÞ. Because Wð0Þ ¼ 0;
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Wð1Þ ¼ 1, it follows that Fð0Þ ¼ 0;Fð1Þ ¼ 1, and F is strictly
increasing. By substitution (40) is equivalent to

Fðp=2Þ ¼ AFðpÞ ¼ ð1=2ÞcFðpÞ ð0 < p < 1Þ; ð88Þ
which is exactly the same as (87). So the solution follows
immediately, which when substituted into WðpÞ ¼ 1� Fð1� pÞ
yields (40). Note that F has a right derivative at 0 iff W has a
left derivative at 1, and so (41).

For Lower/Upper 3-DI, substituting the above expressions
for Si; i ¼ 1; 2; 3 in (37) yields (42).

(iii) For GDU, by (13),

S1ðp; p; 1� 2pÞ ¼W2pðpÞW1ð2pÞ;
S2ðp; p; 1� 2pÞ ¼W1ð2pÞ½1�W2pðpÞ�;

and

S2ð1� 2p; p; pÞ ¼W1ð1� pÞ½1�W1�pð1� 2pÞ�;
S3ð1� 2p; p; pÞ ¼ 1�W1ð1� pÞ:

Substituting these into the necessary and sufficient condition of
the Proposition immediately yields that lower 3-DI holds iff

W2pðpÞ
1�W2pðpÞ

¼ KL ,W2pðpÞ ¼
KL

1� KK
:

Upper 3-DI holds iff (44), i.e.,

W1ð1� pÞ½1�W1�pð1� 2pÞ�
1�W1ð1� pÞ ¼ KU 0 < p6 1

2


 �
;

which can be written in the form

W1�p=2ð1� pÞ ¼ 1� KU
1

W1ð1� p=2Þ � 1

� �

ð0 < p6 1Þ:

i.e., (44).
The above expressions for Si; i ¼ 1; 2; 3, imply that Lower/

Upper 3-DI holds iff (45).

(iv) For TAX we have from (19) for the terms arising in Part
(i) that
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S1ðp;p;1�2pÞ¼TðpÞþx1;2ðp;p;1�2pÞþx1;3ðp;p;1�2pÞ;
S2ðp;p;1�2pÞ¼TðpÞ�x1;2ðp;p;1�2pÞþx2;3ðp;p;1�2pÞ;

and

S2ð1�2p;p;pÞ¼TðpÞ�x1;2ð1�2p;p;pÞþx2;3ð1�2p;p;pÞ;
S3ð1�2p;p;pÞ¼TðpÞ�x1;3ð1�2p;p;pÞ�x2;3ð1�2p;p;pÞ;

where the denominator 2TðpÞ þ Tð1� 2pÞ is omitted because in
both ratios it cancels. Substituting these expressions in the
relevant equations, i.e., (35), (36), (37), we see that (46), (47),
(48) are the appropriate conditions. (

PROPOSITION 15.

Proof. Assuming RWU simple substitution and rearrange-
ment yields (54). (

COROLLARY TO PROPOSITION 15.
Proof
(i) under EU, S2ð1� r� 2p; p; p; rÞ ¼ S3ð1� r� 2p; p; p; rÞ
¼ p, and so the condition of (54) is satisfied.

(ii) Under RDU it is trivial to verify that the expressions for
S2 and S3 are

S2ð1� r� 2p; p; p; rÞ ¼Wð1� r� pÞ �Wð1� r� 2pÞ;
S3ð1� r� 2p; p; p; rÞ ¼Wð1� rÞ �Wð1� r� pÞ;

and thus from (54), 4-DI holds iff, for some constant K > 0,

Wð1� r� pÞ �Wð1� r� 2pÞ
Wð1� rÞ �Wð1� r� pÞ ¼ K 06 p <

1

2
ð1� rÞ

� �

:

ð89Þ
The following proof that the only solution to this func-
tional equation is WðqÞ ¼ q, i.e., EU, is due to János Aczél.15

Observe that if we let q ¼ 1� r� p; u ¼ q� p ¼ 1� r� 2p;
m ¼ qþ p ¼ 1� r, then q ¼ 1

2 ðuþ mÞ and (89) is equivalent to

INDEPENDENCE PROPERTIES 129



W
uþ m
2

� �
¼ AWðuÞ þ ð1� AÞWðmÞ

ð06 u6 m6 1;A ¼ 1=ð1þ kÞÞ:
By defining

fðtÞ ¼W
t

2

� �
; gðuÞ ¼ AWðuÞ; hðmÞ ¼ ð1� AÞWðmÞ;

this becomes the Pexider equation fðuþ mÞ ¼ gðuÞ þ hðmÞ. It is
well known that one can extend a Pexider equation from a
convex region of the non-negative quadrant to the entire
domain of non-negative real numbers and that the general
solution is

fðtÞ ¼ atþ bþ c; gðtÞ ¼ atþ b; hðtÞ ¼ atþ c:

Taking into account that Wð0Þ ¼ 0;Wð1Þ ¼ 1, we see that
b ¼ c ¼ 0; a ¼ 1, and A ¼ 1� A, whence A ¼ 1

2, and, we have
WðpÞ ¼ p.

(iii) Suppose GDU, we see that

S2ð1� r� 2p; p; p; rÞ
¼W1ð1� rÞW1�rð1� r� pÞ½1�W1�r�pð1� r� 2pÞ�;

S3ð1� r� 2p; p; p; rÞ ¼W1ð1� rÞ½1�W1�rð1� r� pÞ�;

and (55) follows from (54).

(iv) For TAX, we have

S2ð1�r�2p;p;p;rÞ
S3ð1�r�2p;p;p;rÞ

¼TðpÞ�x1;2ðp;rÞþx2;3ðp;rÞþx2;4ðp;rÞ
TðpÞ�x1;3ðp;rÞ�x2;3ðp;rÞþx3;4ðp;rÞ

;

and so (56) follows from (54). (

PROPOSITION 17.

Proof. Assuming RWU, we see that the condition holds iff

UðxÞ
UðyÞ 


S1ðq; 1� qÞ
S1ðp; 1� pÞ and P

S1ðq; r; 1� q� rÞ
S1ðp; r; 1� p� rÞ :

Since we may choose x and y independently, we have (58) (
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COROLLARY TO PROPOSITION 17.
Proof. For each special model, simply calculate the weights

of (58) to get the four assertions. Note that GDU gives

W1ðqÞ
W1ðpÞ

¼WqþrðqÞW1ðqþ rÞ
WpþrðpÞW1ðpþ rÞ

,WpþrðpÞW1ðpþ rÞ
W1ðpÞ

¼WqþrðqÞW1ðqþ rÞ
W1ðqÞ

¼ K:

By taking the limit as r! 0, we see that K ¼ 1 and so this is
equivalent to (59). (

PROPOSITION 19.

Proof. Applying separability to the conditions shows that

UðxÞ
UðyÞ 


WðqÞ
WðpÞ iff

UðxÞ
UðyÞ 


WðaqÞ
WðapÞ :

By the usual argument,

WðqÞ
WðpÞ ¼

WðaqÞ
WðapÞ :

Suppose pPq, then for a ¼ 1=p we have

WðqÞ
WðpÞ ¼

Wðq=pÞ
Wð1Þ :

Setting t :¼ q=p and using Wð1Þ ¼ 1 yields the well known
Cauchy equation

WðtpÞ ¼WðtÞWðpÞ;
whose strictly monotonic solutions are power functions. (

PROPOSITION 21.

Proof. Suppose that RWU is satisfied. Then substituting the
RWU form in the hypothesis and conclusion of lower CI and
rearranging gives that lower CI is satisfied iff

Uðx0Þ �UðxÞ
UðyÞ �Uðy0Þ <

S2ðC;D;EÞ
S1ðC;D;EÞ

ð90Þ

implies
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Uðx0Þ �Uðy0Þ
UðxÞ �Uðy0Þ <

S1ðC [D;EÞ
S1ðC;D [ EÞ : ð91Þ

Similarly, upper CI is satisfied iff

Uðx0Þ �UðxÞ
UðyÞ �Uðy0Þ >

S3ðE;C;DÞ
S2ðE;C;DÞ

ð92Þ

implies

Uðx0Þ �Uðy0Þ
Uðx0Þ �UðyÞ <

S2ðE;C [DÞ
S2ðE [ C;DÞ : ð93Þ

In the latter calculations we use the fact that in the binary case,
idempotence yields S1 þ S2 ¼ 1.

Now, consider the conditions for a failure of lower CI to
hold. Using those conditions plus the facts that UðxÞ >
UðyÞ > Uðy0Þ we obtain

S1ðC[D;EÞ
S1ðC;D[EÞ

	Uðx0Þ�Uðy0Þ
UðxÞ�Uðy0Þ <

Uðx0Þ�UðxÞ
UðyÞ�Uðy0Þ<

S2ðC;D;EÞ
S1ðC;D;EÞ

:

ð94Þ
whence (66) is a necessary condition for lower CI to hold.
Suppose it is violated, then since U is onto a real interval and
CEs exist, we may choose x0 % x % y % y0 � e such that they
are as in (94), establishing the sufficiency.

Next consider upper CI. Note that the conclusion (93) is
equivalent to

UðyÞ �Uðy0Þ
Uðx0Þ �UðyÞ ¼

Uðx0Þ �Uðy0Þ
Uðx0Þ �UðyÞ � 1

<
S2ðE;C [DÞ
S2ðE [ C;DÞ � 1

¼ S2ðE;C [DÞ � S2ðC [ E;DÞ
S2ðE [ C;DÞ

, Uðx0Þ �UðyÞ
UðyÞ �Uðy0Þ >

S2ðE [ C;DÞ
S2ðE;C [DÞ � S2ðC [ E;DÞ :

Because Uðx0Þ > UðyÞ,
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Uðx0Þ �UðyÞ
UðyÞ �Uðy0Þ >

Uðx0Þ �UðxÞ
UðyÞ �Uðy0Þ ;

so a sufficient condition for the conclusion is that

S3ðE;C;DÞ
S2ðE;C;DÞ

P
S2ðE [ C;DÞ

S2ðE;C [DÞ � S2ðC [ E;DÞ :

It is also necessary because, otherwise, we may select conse-
quences so that

S2ðE;C [DÞ
S2ðE;C [DÞ � S2ðC [ E;DÞP

Uðx0Þ �UðyÞ
UðyÞ �Uðy0Þ

>
Uðx0Þ �UðxÞ
UðyÞ �Uðy0Þ

>
S3ðE;C;DÞ
S2ðE;C;DÞ

;

which means UCI fails. So the necessary and sufficient condi-
tions for UCI to hold is (67). (

COROLLARY TO PROPOSITION 21.
Proof. (i) Suppose that SEU holds. Then LCI and UCI

follow by the RDU result of part (ii).
(ii) Suppose RDU holds. Then by the Proposition, and

using the abbreviation WC[D[E :¼W, (66) is equivalent
to

WðC [DÞ
WðCÞ ¼ S1ðC [D;EÞ

S1ðC;D [ EÞ

P
S2ðC;D;EÞ
S1ðC;D;EÞ

¼WðC [DÞ �WðCÞ
WðCÞ ;

which obviously holds.
The upper CI condition (67) is equivalent to

1�WðC [ EÞ
WðC [ EÞ �WðEÞ ¼

S2ðE [ C;DÞ
S2ðE;C [DÞ � S2ðC [ E;DÞ

6
S3ðE;C;DÞ
S2ðE;C;DÞ

¼ 1�WðC [ EÞ
WðC [ EÞ �WðEÞ ;
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which is is trivially true.

(iii) Suppose that GDU holds. By the Proposition, lower CI is
equivalent to

WC[D[EðC[DÞ
WC[D[EðCÞ

¼ S1ðC[D;EÞ
S1ðC;D[EÞ

P
S2ðC;D;EÞ
S1ðC;D;EÞ
¼WC[D[EðC[DÞ½1�WC[DðCÞ�

WC[DðCÞWC[D[EðC[DÞ
,WC[DðCÞWC[D[EðC[DÞPWC[D[EðCÞ½1�WC[DðCÞ�

which is (68).
Upper CI is equivalent to

1�WC[D[EðC [ EÞ
WC[D[EðC [ EÞ �WC[D[EðEÞ

¼ S2ðC [ E;DÞ
S2ðE;C [DÞ � S2ðC [ E;DÞ

6
S3ðE;C;DÞ
S2ðE;C;DÞ

¼ 1�WC[D[EðC [ EÞ
WC[D[EðC [ EÞ½1�WC[EðEÞ�

,WC[D[EðC [ EÞ½1�WC[EðEÞ�6WC[D[EðC [ EÞ �WC[D[EðEÞ
,WC[D[EðC [ EÞWC[EðEÞPWC[D[EðEÞ:

which is (69)

(iv) For TAX and lower CI, the necessary and sufficient condi-
tion is

TðC [DÞ þ x1;2ðC [D;EÞ
TðCÞ þ x1;2ðC;D [ EÞ � TðCÞ þ TðD [ EÞ

TðC [D;EÞ ¼ S1ðC [D;EÞ
S1ðC;D [ EÞ

P
S2ðC;D;EÞ
S1ðC;D;EÞ

¼ TðDÞ � x1;2ðC;D;EÞ þ x2;3ðC;D;EÞ
TðCÞ þ x1;2ðC;D;EÞ þ x1;3ðC;D;EÞ

:

And for upper CI, the necessary and sufficient condition is

TðDÞ�x1;2ðE[C;DÞ
½TðC[DÞ�x1;2ðE;C[DÞ�TðC[EÞþTðDÞTðC[DÞþTðEÞ�TðDÞþx1;2ðE[C;DÞ

¼ S2ðC[E;DÞ
S2ðE;C[DÞ�S2ðC[E;DÞ

6
S3ðE;C;DÞ
S2ðE;C;DÞ

¼TðDÞ�x1;3ðE;C;DÞ�x2;3ðE;C;DÞ
TðCÞ�x1;2ðE;C;DÞþx2;3ðE;C;DÞ

: (
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PROPOSITION 23.

Proof. Suppose that RWU holds, then by (6) we see that

UðAkÞ �UðBkÞ ¼ ½UðxÞ �UðyÞ�SkðC
!

nÞ;

UðA0kÞ �UðB0kÞ ¼ ½UðxÞ �UðyÞ�SkðD
!

nÞ;
whence (72). So kII holds iff SkðC

!
nÞ ¼ SkðC

!
nÞ. (

COROLLARY TO PROPOSITION 23.
Proof. (i) Suppose that SEU holds. Then,

SkðC
!

nÞ ¼WðCkÞ ¼WðDkÞ ¼ SkðD
!

nÞ;
and so, by the Proposition, kII holds.

(ii) Suppose that RDU holds. Then

UðAkÞ �UðBkÞ ¼ ½UðxÞ �UðyÞ�ðW½Ck [ Cðk� 1Þ� �W½Cðk� 1Þ�Þ;
UðA0kÞ �UðB0kÞ ¼ ½UðxÞ �UðyÞ�ðW½Ck [Dðk� 1Þ� �W½Dðk� 1Þ�Þ:

The ratio, which is (73), is independent of the consequences.
For lower II, Cn ¼ Dn and so Cðn� 1Þ ¼ Dðn� 1Þ and they are
clearly equal. For upper II, the weights reduce to
WðC1Þ ¼WðD1Þ and so they are equal. For other values of k,
the ratio is 1 means that

W½Ck [ Cðk� 1Þ� �W½Cðk� 1Þ� ¼ fðCkÞ:
The special case where Cðk� 1Þ ¼ / gives fðCkÞ ¼WðCkÞ and
so

WðCk [ Cðk� 1ÞÞ ¼WðCkÞ þWðCðk� 1ÞÞ;
which establishes that W is finitely additive, which case is ex-
cluded. So kII does not hold.

(iii) Suppose that GDU holds. By the Proposition and the
form of the weights (13), then (74) follows. Let k ¼ n in that
and because CðnÞ ¼ DðnÞ and Cn ¼ Dn, we have Cðn� 1Þ ¼
Dðn� 1Þ, so lower II follows immediately.
(iv) For TAX, by (19) of Proposition 6, a sufficient condition
for II to hold is clearly (75). (
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PROPOSITION 25.

Proof. Consider LTI and RWU. Introduce the following
notation:

UðAuðkÞÞ ¼
Xk

i¼1
UðxiÞSiðC

!
AÞ:

Note that while the sum is over i ¼ 1; . . . ; k, the terms SiðC
!

AÞ
depend upon the entire ordered partition for gamble A. The
other expression are defined similarly. Note that the sufficient
condition (76):

AlðkÞ ¼ BlðkÞ implies SiðC
!

AÞ ¼ SiðC
!

BÞ ði¼ kþ 1; . . . ;nÞ;

A0lðkÞ ¼ B0lðkÞ implies SiðC
!

A0 Þ ¼ SiðC
!

B0 Þ ði¼ kþ 1; . . . ;nÞ;

AuðkÞ ¼ A0uðkÞ implies SiðC
!

AÞ ¼ SiðC
!

A0 Þ ði¼ 1; . . . ;kÞ;

BuðkÞ ¼ B0uðkÞ implies SiðC
!

BÞ ¼ SiðC
!

B0 Þ ði¼ 1; . . . ;kÞ;

implies that

UðAlðkÞÞ ¼ UðBlðkÞÞ; ð95Þ

UðA0lðkÞÞ ¼ UðB0lðkÞÞ; ð96Þ

UðAuðkÞÞ ¼ UðA0uðkÞÞ; ð97Þ

UðBuðkÞÞ ¼ UðB0uðkÞÞ: ð98Þ
Thus,

A%B

, UðAÞPUðBÞ
, UðAuðkÞÞ þUðAlðkÞÞPUðBuðkÞÞ þUðBlðkÞÞ
) UðAuðkÞÞ þUðBlðkÞÞPUðBuðkÞÞ þUðBlðkÞÞ ð95Þ
) UðA0uðkÞÞ þUðBlðkÞÞPUðB0uðkÞÞ þUðBlðkÞÞ ð97Þ; ð98Þ

, UðA0uðkÞÞPUðB0uðkÞÞ
, UðA0uðkÞÞ þUðA0lðkÞÞPUðB0uðkÞÞ þUðA0lðkÞÞ
) UðA0uðkÞÞ þUðA0lðkÞÞPUðB0uðkÞÞ þUðB0lðkÞÞ ð96Þ

, UðA0ÞPUðB0Þ
, A0%B0;
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establishing that this condition is sufficient for LTI. The argu-
ment for the sufficiency of (77) for UTI is similar. (

COROLLARY TO PROPOSITION 25.
Proof.

(i) The SEU case follows from the RDU one.
(ii) Assume RDU. Key to the proof of LTI is the fact that all
gambles are based on the same universal event C. Let the
consequences be xi and the events in the common upper tails A,
A0 (resp., B, B0) be Ci (resp., Ei) and in the common lower tail of
A, B (resp., A0, B0) be Ci (resp, Di). So

CðkÞ ¼
[k

j¼1
Cj ¼

[k

j¼1
Ej ¼ EðkÞ;

and [n

j¼kþ1
Cj ¼

[n

j¼kþ1
Dj:

Define DCðkÞðjÞ :¼ CðkÞ [Dkþ1 [ . . . [Dj. Note that because
CðkÞ ¼ EðkÞ, the terms of the lower tail does not depend on
whether the upper tail is C or E based. Thus,

UðAÞ 
 UðBÞ

,
Xk

j¼1
UðxjÞðW½Cð jÞ� �W½Cðj� 1Þ�Þ

þ
Xn

j¼kþ1
UðxjÞðW½Cð jÞ� �W½Cðj� 1Þ�Þ

P
Xk

j¼1
UðxjÞðW½Eð jÞ� �W½Eðj� 1Þ�Þ

þ
Xn

j¼kþ1
UðxjÞðW½Cð jÞ� �W½Cðj� 1Þ�Þ

,
Xk

j¼1
UðxjÞ½WðCð jÞÞ �W½Cðj� 1ÞÞ�

P
Xk

j¼1
UðxjÞðW½Eð jÞ� �W½Eðj� 1Þ�Þ
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Using this,

UðA0Þ ¼
Xn

j¼1
UðxjÞðW½CðjÞ� �W½Cðj� 1Þ�Þ

þ
Xn

j¼kþ1
UðxjÞðW½DCðkÞð jÞ� �W½DCðkÞðj� 1Þ�Þ

P
Xk

j¼1
UðxjÞðW½Eð jÞ� �W½Eð j� 1Þ�Þ

þ
Xn

j¼kþ1
UðxjÞðW½DCðkÞð jÞ� �W½DCðkÞð j� 1Þ�Þ

¼ UðB0Þ:
The proof for UTI is parallel.

(iii) For GDU, consider the condition for LTI. Apply gains
decomposition to A and B recursively. By consequence mono-
tonicity, the order of each subgamble is maintained because the
terms ðxi;CiÞ; i ¼ kþ 1; . . . ; n are the same. So A % B,
Au % Bu. The argument is identical for the primed gambles.
Because Au ¼ A0u and Bu ¼ B0u, the result is immediate.

For UTI no such argument based on gains decomposition
works. Indeed, the following is a counter example. Consider the
simplest case of UTI, namely i ¼ 2, n ¼ 4 with objective a and b
as shown:

By repeated application of GDU we see that

x1 x2 x3 x4

A: a 0 b 1)a)b
B: a 0 1)a)b b

A¢ 0 a b 1)a)b
B¢ 0 a 1)a)b b
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A � ðx1; 1; x2; 0Þ
a

aþ b
; x3;

b

aþ b

� �

; aþ b; x4; 1� a� b

� �

:

The other three cases are similar. Thus by repeated applications
of the binary RDU representation

UðAÞ �UðBÞ

¼ Uðx1Þ W
a

aþ b

� �

Wðaþ bÞ �W
a

1� b

� �
Wð1� bÞ

� 	

þUðx3Þ 1�W
a

aþ b

� �� �

Wðaþ bÞ
�

� 1�W
a

1þ b

� �� �

Wð1� bÞ
	

þUðx4Þ½Wð1� bÞ �Wðaþ bÞ�;
UðA0Þ �UðB0Þ

¼ Uðx2Þ W
a

aþ b

� �

Wðaþ bÞ �W
a

1� b

� �
Wð1� bÞ

� 	

þUðx3Þ 1�W
a

aþ b

� �� �

Wðaþ bÞ
�

� 1�W
a

a� b

� �� �
Wð1� bÞ

i

þUðx4Þ½Wð1� bÞ �Wðaþ bÞ�:

Although the dependence on x3 and x4 is identical in the two
equalities, the first depends on x1 and not x2 whereas the second
depends on x2 and not x1. Therefore, from the fact that
UðAÞ �UðBÞP0, we cannot conclude anything about the sign
UðA0Þ �UðB0Þ.
(iv) Assuming Tax, the sufficient condition for lower TI fol-

lows immediately from (19) and Part (i). (
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completed while Marley was a Visiting Researcher at Systems, Orga-
nizations and Management of the University of Groningen and sup-
ported by the Netherlands’ Organization for Scientific Research for the
period July 1, 2003, to June 30, 2004. We thank Michael Birnbaum for
discussing his work with us and for feedback on an earlier version of the
paper.

1. The source of the order is discussed below.
2. Karamarkar (1978) used the term ‘‘subjectively weighted utility’’ for a

special case of our unranked usage. Chew (1983) used ‘‘weighted utility’’
for a different representation. We introduced our usage in Marley and
Luce (2001) and will continue to use it as defined in Definition 1.

3. Birnbaum has typically called them ‘‘configural weight models’’ but we
feel our term is a bit more accurate.

4. We have changed their notation in two ways. First, we have reversed the
order of the indices, and second, we have changed (18) on the right from
xi;jðgnÞ to xi;jðC

!
nÞ because we do not believe that they really want these

TAX weights to depend on the consequences, beyond the ranking that
they impose on the indices, as well as the event partition. If they do
depend on gn, then the model imposes no constraint at all.

5. If the x’s depended on the consequences as well as the event partition,
this assertion would not be true.

6. PEST is used effectively in psychophysics because, compared to the
domain of gambles, it is far easier to obtain large numbers of re-
sponses. Thus, one can afford to use a more demanding stopping rule
that is less susceptible to premature termination and misestimates of
CEs.

7. In what follows, when we say RDU or GDU we exclude SEU, which is
stated separately.

8. BI assumes that x � y � e and x0 � y0 � e. Given these constraints, if
we had either x % x0 and y% y0 or x0%x and y0% y then in the
restricted case the equivalence of (32) and (33) would follow from
stochastic dominance. Thus for the conditions to add additional
constraints over stochastic dominance, we require either x0 � x and
y � y0 which gives x0 � x � y � y0 � e (the condition in the Defini-
tion) or x � x0 and y0 � y which gives the notational variant
x � x0 � y0 � y � e:

9. In the literature, this is typically called co-monotonic independence. We
consider this a misnomer because monotonicity is playing no role in the
definition. Also, Birnbaum and McIntosh (1996) and Birnbaum and
Navarrete (1998) use the term ‘co-monotonic’ for restricted and co-
ranked BI both holding, but we do not use that term here for the same
reason.
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10. Birnbaum was led to formulate 3-DI and 4-DI as properties that dis-
tinguish between the predictions of RAM and the special case of TAX
of (30). Personal communication, March 30, 2004.

11. Birnbaum et al. (1999) write xk and yk where we have written x and
y. Their notation seems a bit confusing in making these arguments.
Also, they formulate the condition in terms of judged strength of
preference and demand that strength of preference be identical for A,
B and A0;B0. We interpret this to be a statement about equality of
utility diferences.

12. Birnbaum (personal communication, March 30, 2004) has suggested
that we restrict UTI to the special cases investigated by Wu and use
UOI for the general definition. We have chosen not to do this.

13. This trap is set whenever one thinks that money lotteries can be rep-
resented by random variables – in which case coalescing is automatically
assumed.

14. Personal communication January 13, 2003.
15. Personal communication January 13, 2003.
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