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ABSTRACT. A new approach to policy analysis is formulated within the
framework of the graph model for conflict resolution. A policy is defined as
a plan of action for a decision maker (DM) that specifies the DM’s intended
action starting at every possible state in a graph model of a conflict. Given a
profile of policies, a Policy Stable State (PSS) is a state that no DM moves
away from (according to its policy), and such that no DM would prefer to
change its policy given the policies of the other DMs. The profile of policies
associated to a PSS is called a Policy Equilibrium. Properties of PSSs are
developed, and a refinement is suggested that restricts DMs to policies that
are credible in that they are in the DM’s immediate interest. Relationships
with existing stability definitions in the graph model for conflict resolution
are then explored.
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1. INTRODUCTION

In a strategic conflict, a decision maker (DM) may declare in
advance what it intends to do at each state that could arise. For
example, in a potential military confrontation, one country
may announce in advance that it will go to war only if it is
invaded, while another may proclaim that it will launch an
attack if hostile troops are massed close to its border. Recently,
to eliminate nuclear development programs in the Korean pe-
ninsula, the Secretary of State of the United States, Colin Po-
well, stated on September 23, 2004 that ‘‘the sooner they return
to the six-party format and begin discussions again at the
fourth round of the six-party meeting, the sooner we will able to
help North Korea deal with its very serious economic
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problems’’(Bloomberg News Series, 2004). Such declarations,
or policies, are clearly intended to influence the outcome of the
conflict.

The objective of this paper is to design a unique paradigm
for defining stable states that are a direct consequence of DMs’
announced policies. To accomplish this in a realistic and
convenient fashion, the new approach to policy analysis uses
the graph model for conflict resolution (Fang et al., 1993) as a
foundation on which to construct the paradigm. Following an
overview of the graph model in Section 2, a Policy Equilibrium
and an associated Policy Stable State (PSS) are defined in
Section 3. In Section 4, some theorems are presented that relate
PSSs to existing stability concepts within the graph model
framework. A refinement is suggested in Section 5 that reduces
the number of equilibria. Section 6 considers the existence of
policy equilibria for conflict models in graph form.

2. THE GRAPH MODEL FOR CONFLICT RESOLUTION

The graph model for conflict resolution, a unique metho-
dology for modeling and analyzing real-world conflicts (Fang
et al., 1993; Kilgour et al., 1990), has some connections to
game theory (Hamilton and Slutsky, 1993; von Neuman and
Morgenstern, 1953). A graph model for a conflict consists of
a directed graph and a preference structure on the set of all
states for each DM who can affect the dispute. Although the
graph model is defined for general conflict having n DMs, for
simplicity this paper considers conflicts with two DMs only.
Let N ¼ f1; 2g denote the set of DMs. Sometimes a
representative DM of N is denoted by i and the other DM is
denoted by j. Furthermore, let S be the set of states or
possible scenarios in the model where jSj ¼ u. A finite
directed graph Di ¼ ðS;AiÞ, i 2 N, keeps track of the
movements among states that DM i can make in one step.
The vertices of each graph are the possible states of the
conflict and therefore the vertex set, S, is common to both
directed graphs. If DM i can unilaterally move (in one step)
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from state s1 to state s2, there is an arc with orientation from
s1 to s2 in Ai and state s2 is therefore reachable from state s1
by DM i. For i 2 N, DM i’s reachable list for state s 2 S is
the set RiðsÞ of all states to which DM i can move (in one
step) from state s.

The preference structure in the graph model is expressed in
terms of a pair of binary relations f�i;�ig on S, where s1 �i s2,
for s1; s2 2 S, indicates that DM i prefers s1 to s2, and s1 �i s2
that DM i is indifferent between s1 and s2, or equally prefers s1
and s2. The following properties are assumed:

(1) �i is asymmetric, i.e., s1 �i s2 and s2 �i s1 cannot hold true
at the same time, where s1; s2 2 S.

(2) �i is reflexive, i.e., s �i s for any s 2 S, and symmetric, i.e.,
if s1 �i s2 then s2 �i s1, where s1; s2 2 S.

(3) f�i;�ig is strongly complete, i.e., if s1; s2 2 S, then exactly
one of s1 �i s2, s2 �i s1 and s1 �i s2 is true.

Sometimes, the notation s1 �i s2 is used to indicate either
s1 �i s2 or s1 �i s2. Note that transitivity of preferences is not
assumed, so that the results in this paper are valid for both
intransitive and transitive preferences.

A unilateral improvement from a particular state for a spe-
cific DM is any preferred state to which the DM can uni-
laterally move. The unilateral improvement list for DM i from
state s is denoted as Rþi ðsÞ ¼ fs1 2 RiðsÞjs1 �i sg.

In a graph model, a strategic conflict begins at a status quo
state and progresses from state to state via state transitions
controlled by various DMs, who may act whenever they want
to. As described above, a graph model represents the state
transitions controlled by each DM as a directed graph with
the set of states as the vertex set. The graph model
incorporates a number of distinct submodels of how DMs
decide whether to move the conflict from its current state.
These submodels, called stability definitions, allow for varia-
tion in several aspects of decision style, such as level of
foresight, risk aversion, and so on. Among these submodels,
metarational stability (general and symmetric), sequential
stability and limited-move stability have computational
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advantages, and are widely used to analyze real-world
conflicts.

EXAMPLE 1. Consider a simple conflict of two interest
groups over the planned construction of a bridge to span a
river. DM 1, representing drivers of vehicles who will use the
bridge, would prefer that the bridge be built. However, DM
2, representing local residents, would prefer that the bridge
not be built to avoid increased noise and air pollution. As
depicted in Figure 1, there are two states in this illustrative
conflict—state s1 in which a bridge is built and state s2 in
which there is no bridge. The pair of numbers given in
brackets for each state represents the preferences of each
DM, where a higher number means more preferred, and the
first and second entries stand for the preferences of DMs 1
and 2, respectively. Hence, state s1 is preferred by DM 1 to
s2, while state s2 is preferred to s1 by DM 2. In the left-hand
graph of Figure 1 (DM 1’s graph), there are two vertices
representing the two states; the direction of the arc between
them indicates that DM 1 has the ability to build the bridge.
The right-hand graph in Figure 1 is DM 2’s graph; the
direction of the arc means that DM 2 can destroy the bridge
or block its construction. In other words, DM 1 can stay at
any state or move from s2 to s1, while DM 2 can stay at any
state or move from s1 to s2.

Figure 1. The bridge conflict in graph form.
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3. POLICY IN THE GRAPH MODEL PARADIGM

3.1. Definition of a Policy

A policy for DM i 2 N is a function Pi : S! S such that
PiðsÞ 2 RiðsÞ [ fsg for all s 2 S. The policy can therefore be
written Pi ¼ fPðiÞðsÞ : s 2 Sg. Note that a policy for DM i
specifies a plan of action for DM i from each state s, where i can
stay or move to any state reachable by i from s. We interpret a
policy as specifying what a DM will do at a state if that state
arises.

In the example in Figure 1, P1ðs1Þ 2 fs1g and P1ðs2Þ 2
fs1; s2g. Therefore, there are two policies for DM i, fs1; s1g and
fs1; s2g. For instance, at the first policy, fs1; s1g, DM i intends
to stay at state s1 if he is at state s1, and to move to state s1 if he
is at state s2.

3.2. Policy Equilibrium

It is assumed that no DM can move consecutively. In other
words, only alternating sequences of DMs are considered.
Given an initial state s�, an originating DM i, i’s policy Pi, and
j’s policy Pj, a sequence of moves and counter moves is com-
pletely specified as follows:

P0ðs�Þ � s�;Piðs�Þ;PjðPiðs�ÞÞ; . . . ;

PiðPjð� � � Piðs�Þ � � �ÞÞ;PjðPið� � � Piðs�Þ � � �ÞÞ; . . .

The above sequence can be rewritten as a series of elements.
Each element ðs; iÞ is composed of a state (s) and a DM (i) who
moves at that state. If DM i stays at state s according to its
policy, the sequence terminates at element (s; i) and is called a
terminated sequence. The result of a terminated sequence is
defined to be the state in the last element.

An element ðs; iÞ in a sequence is said to be repeating if the
same element ðs; iÞ appeared earlier. Evidently, there is no
repeating element in a terminated sequence. If there is a
repeating element in a sequence, then there exists a unique cycle
of even length containing the repeating element. Once a
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sequence encounters the first repeating element, the sequence
cycles among all the repeating elements.

A sequence having h elements is called a sequence of length
h. This paper concerns sequences of infinite length. Because the
number of all states in a conflict is finite, there must exist a
repeating element in an infinite sequence. The result of an in-
finite sequence is defined to be the state in the first repeating
element. This definition can be justified by considering a move
to have an infinitesimal cost as reflected in the inertia as-
sumption (see Brams, 1994; Kilgour and Zagare, 1987; Zagare,
1984). Therefore, for a sequence of infinite length, the sub-
sequence between the initial element and the second appearance
of the first repeating is substantial, and we call this part a
complete sequence. The result of a sequence of infinite length is
also called the result of its complete sequence.

DEFINITION 1. Policies P1;P2 form a policy equilibrium
with respect to status quo state s� if

(i) Piðs�Þ ¼ s� holds for both DM i ¼ 1; 2,
(ii) 8i ¼ 1; 2, 8P0i such that P0iðs�Þ 6¼ s�, the result of any

terminated sequence or any complete sequence is not
preferred to s� by DM i.

A state s� satisfying the above two conditions is called a PSS.

The following procedure can be employed to determine whether
a state s� 2 S is a PSS under policies Pi and Pj. First, if
Piðs�Þ 6¼ s� or Pjðs�Þ 6¼ s�, then s� is not a PSS under policies Pi

and Pj. If Piðs�Þ ¼ s� and Pjðs�Þ ¼ s�, then given DM j’s policy
Pj, we construct a tree of all terminated or complete sequences
to see whether there is a more preferred result for DM i. At the
same time, given DM i’s policy Pi, we also construct a tree of
all terminated or complete sequences to ascertain if there is a
more preferred result for DM j. If, in both trees, there does not
exist a more preferred state, then s� is a PSS under Pi and Pj.
Otherwise, s� is not a PSS.

Figure 2 illustrates a tree for the case of DM i, given j’s
policy Pj. First, DM i tries every possible deviation from s� to
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s1. Then, a move by DM j is determined by policy Pj. If
Pjðs1Þ ¼ s1, then we obtain a terminated sequence. If
Pjðs1Þ ¼ s2 6¼ s1, then DM i can either stay at s2 or choose to
move to s3 2 Riðs2Þ. If s3 ¼ s�; s1, or s2, we obtain a complete
sequence. Otherwise, Pj determines the next state s4 ¼ Pjðs3Þ.
After proceeding in this manner for at most u� 1 steps, we
obtain all terminated or complete sequences.

The total number of policies for DM i is

pi ¼ p
i2S
ðjRiðsÞj þ 1Þ:

Therefore, the total number of pairs of policies for a conflict is
p1 � p2.

EXAMPLE 2. Consider the bridge example shown in Fig-
ure 1. When state s1 is taken as the status quo state, select the
following policies for DMs 1 and 2:

P1 ¼ fs1; s1g and P2 ¼ fs1; s2g:
The first condition in Definition 1 is satisfied because

P1ðs1Þ ¼ s1 and P2ðs1Þ ¼ s1:

Figure 2. Constructing all complete sequences.

POLICY STABLE STATES 351



For the second condition, one must examine other possible
policies from the status quo state s1 such that P1ðs1Þ 6¼ s1,
P2ðs1Þ 6¼ s1. Notice for DM i that every policy for state s1 is
P1ðs1Þ ¼ s1. However, for DM 2, there is another policy from
state s1 given by P02 ¼ fs2; s2g. Hence, P02ðs1Þ ¼ s2 6¼ s1. There
is no terminated sequence and there is only one complete
sequence, which is given by ðs1; 2Þ, ðs2; 1Þ and ðs1; 2Þ. The result
of this complete sequence is P1

�
P02ðs1Þ

�
¼ s1. Accordingly, no

result of a terminated or complete sequences is better than state
s1 for DM 2 (DM 2 equally prefers state s1 to state s1). Thus,
state s1 constitutes a PSS and the policies P1, P2 form a policy
equilibrium.

4. RELATIONSHIPS WITH STABILITY CONCEPTS IN THE
GRAPH MODEL

A range of stability concepts has been defined for use within the
graph model for conflict resolution in order to calculate the
stability of a state for a particular DM. A state that is stable
according to a specific stability concept for all DMs is com-
pared to a PSS in this section. The concept of Nash Stability is
based on the definition originally given by Nash (1950).

DEFINITION 2. A state sN 2 S is a Nash stable state for DM
i iff Rþi ðsNÞ ¼ /. A state is called Nash stable for the conflict iff
it is Nash stable for all DMs.

THEOREM 1. A Nash stable state for the conflict is a PSS.
Proof. Let sN be a Nash stable state for the conflict and Pi

be the policy of DM i ¼ 1; 2 of staying at each state. Since
PiðsNÞ ¼ sN, condition (i) of Definition 1 is satisfied. Further-
more, if DM i moves from s to another state s1, and DM j uses
policy Pj, then the resulting state will become s1, which is not
preferred to s for DM i according to the definition of a Nash
stable state. Therefore, the second condition of Definition 1 is
also satisfied. Hence, P1;P2 form a policy equilibrium with
respect to status quo state sN and sN is a PSS. (
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The original definitions for general and symmetric metar-
ationality were put forward by Howard (1971).

DEFINITION 3. A state sGMR is general metarational for DM
i iff for every s1 2 Rþi ðsGMRÞ there exists at least one s2 2 Rjðs1Þ
with sGMR �i s2. A state is called general metarational for the
conflict iff it is general metarational for all DMs.

Hence, for general metarationality, each DM i expects the
opponent will respond by hurting i if i moves to a better state.

The next result shows that policy stability is more restrictive
than general metarational stability.

THEOREM 2. A PSS is general metarational for the conflict.
Proof. The theorem can be proven by contradiction. Assume

that a PSS s� is not general metarational for the conflict.Without
loss of generality, we suppose that there exists s1 2 Rþi ðs�Þ such
that DM i cannot be sanctioned even if it moves from s� to s1. In
other words, for every s2 2 Rjðs1Þ, s2 �i s

�. Then, DM i can
change its policy to a new policy in which Piðs�Þ ¼ s1 and DM i
stays at all other states. This change creates amore preferred state
forDM i and, hence, s� is not a PSS. (

As demonstrated in the following example, the converse of
Theorem 2 is not true.

EXAMPLE 3. For each state in Figure 3, the DMs’ pre-
ferences are shown in brackets. By referring to these graphs, it is

Figure 3. A general metarational stable state for the conflict which is not PSS.
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easy to explain why s1 is general metarational for DM 1. Spe-
cifically, as indicated in the left graph, DM 1 has a unilateral
improvement from s1 to s2. However, from the right graphDM2
can move from s2 to s3. Because state s3 is less preferred than
state s1 by DM 1, DM 1’s original unilateral improvement is
sanctioned and hence s1 is general metarational for this DM.
Similarly, s1 is general metarational for DM 2. However, one
can now show that state s1 is not a PSS according toDefinition 1.
In fact, if DM 1 stays at s1, then DM 2 can change to the policy
P02 ¼ fs3; s3; s3g. For state s3, DM 1 can either stay at s3 or move
to s2. If DM 1 stays at s3, then s3 is the final result, which is
preferable for the deviating DM 2. If DM 1 moves to s2, then
DM 2 can move to s3 again. So according to the inertia as-
sumption, s3 is the result. In conclusion, given any policy of DM
1 for which it stays at s1, it will be better for DM 2 to deviate
from s1 to s3. This shows that s1 is not a PSS by Definition 1.

DEFINITION 4. A state sSMR 2 S is symmetric metarational
for DM i iff for every s1 2 Rþi ðsSMRÞ, there exists s2 2 Rjðs1Þ
such that sSMR �i s2 and sSMR �i s3 for all s3 2 Riðs2Þ. A state is
called symmetric metarational for the conflict iff it is symmetric
metarational for all DMs.

Thus, symmetric metarationality is like general metarationality
except that each DM i expects to have a chance to counter-
respond to j’s response to i’s original move.

The following result shows that a PSS lies somewhere
between general metarational stability and symmetric stability
for the conflict.

THEOREM 3. A symmetrical metarational for the conflict is a
PSS.

Proof. Let sSMR be symmetric metarational for the conflict.
Then for any s1 2 Rþi ðsSMRÞ, there exists s2 2 Rjðs1Þ such that

sSMR �i s2 and sSMR �i s3 for all s3 2 Riðs2Þ: ð1Þ
Then we specify a policy Pj of DM j by moving from all such s1
to the corresponding s2, and staying at all other states. Simi-
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larly, we can define a policy Pi of DM i to stay at all states
except for those actions to sanction possible improvements of
DM j from sSMR. Given this kind of policy Pj, DM i has no
policy that can create a loop in a complete sequence. In fact,
given two movements specified by Pj: s2 ¼ Pjðs1Þ, s20 ¼ Pjðs10Þ,
we have s1 �i s

SMR, sSMR �i s1, s01 �i s
SMR and sSMR �i s

0
2.

Hence, s1
0 62 Riðs2Þ and s02 62 Riðs1Þ from (1). In conclusion,

given the other DM’s specified policy, if a DM deviates from
sSMR to a more preferred state, each complete sequence does
not contain any loop, and the final result is not more preferred
to the deviating DM. If a DM deviates from sSMR to a less or
equally preferred state, then the other DM’s specified policy is
to stay at the state and the result is not better than sSMR for the
deviating DM. Therefore, these two policies form an equili-
brium and s is a PSS. (

A PSS is not necessarily symmetrical metarational for the
conflict as shown by the following example.

EXAMPLE 4. As displayed in the conflict in Figure 4,
from status quo state s1, DM 1 can move to s2 and DM 2
may sanction DM 1 by moving from s2 to s3. However, DM
1 can further move to s4, which is more preferred by DM 1
to s1. Hence, s1 is not symmetrical metarational for the
conflict. However, since DM 2 can ultimately move from s4
to s5, which is worse for DM 1 than s1, the first move of

Figure 4. A graph model in which a PSS is not symmetrical metarational for the

conflict.
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DM 1 is not a good choice if DM 2 uses a policy of moving
from s2 to s3 and moving from s4 to s5. When combined with
a policy of DM 1 to stay at every state, these two policies
form an equilibrium and s1 is a PSS.

The above relationships established in Theorems 1–3 are
illustrated in Figure 6.

5. REFINEMENT OF POLICY

In Section 3.1, a policy for DM i from state s allows i to stay at
state s or move to a state which is an element of RiðsÞ, which
may contain more preferred, equally preferred or less preferred
states. A DM’s policy is deemed to be credible, if it always
moves to a more preferred state. Hence, a credible policy of DM
i Pc

i is defined as Pc
i ðsÞ 2 Rþi ðsÞ [ fsg. Definition 1 can be

modified using this concept. Therefore, the altered definition
for Definition 1 defines a state to be a credible PSS if there is a
credible policy equilibrium consisting of credible policies for
staying at this state. Following a similar procedure to that
described in Section 3.2, a procedure can be formulated to
determine whether a state s 2 S is a credible PSS. Figure 5

Figure 5. Constructing all complete sequences for credible policies.
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depicts how to construct all terminated or complete sequences
for credible policies. The proof of Theorem 1 actually shows
that a Nash stable state for a conflict is a credible PSS.

EXAMPLE 5. The chicken game. In the game of chicken, two
drivers, called DMs 1 and 2, are racing towards each other at
high speed. Each DM has the choice of swerving or ‘‘chickening
out’’ (denoted by C), thereby avoiding a collision, or continuing
to drive straight ahead and thus selecting the strategy of ‘‘don’t
swerve’’ (D). The normal form of chicken is shown below in
which DMs 1 and 2 control the row and column strategies,
respectively. The four possible states in the game are
represented by the four cells in the matrix. The pair of numbers
in each cell gives the relative preferences of DMs 1 and 2,
respectively. Hence, the worst state for both DMs occurs at
ðD;DÞ and (D;C) is the most preferred state for DM 1.

States ðD;CÞ and ðC;DÞ are credible PSSs because they are
Nash stable for the conflict. State ðC;CÞ is a PSS with the
following policies:

However, in the above policies, both DMs contain a move
from a better state to a worse state (DM 1 from (C;D) to (D;D)
and DM 2 from (D;C) to (D;D)). Hence, the policies are not
credible. Fang et al. (1993) show that ðC;CÞ is actually
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nonmyopically stable for both DMs, so we know that a
nonmyopically stable state for the conflict may not be a credible
PSS. In fact, in the definition of nonmyopic stability (Kilgour,
1984; Fang et al., 1993), each DM i is supposed to behave
assuming that its opponent j will only maximize j’s own utility.
Therefore, anticipating j’s action, i may temporarily move to a
worse state on purpose.

The sequential stability concept (Fraser and Hipel, 1984)
given below permits only credible moves (or unilateral im-
provements) by the DMs. More specifically,

DEFINITION 5. For a two-DM conflict having the set of
DMs N ¼ fi; jg, a state SSEQ 2 S is sequentially stable for DM i
iff for every s1 2 Rþi ðSSEQÞ there exists s2 2 Rþj ðs1Þ with
sSEQ �i s2. A state is sequentially stable for the conflict iff it is
sequentially stable for both DMs.

In the definition of a policy equilibrium, we require a se-
quence to be complete. The concept of a credible PSS is
more restrictive than sequential stability in the sense that the
latter concerns a sequence in which each DM appears at
most once. However, the concept of PSS in Section 3 is
weaker than the sequential stability because the other DM’s
policies are fixed when we check DM i’s policy. The above
example in Figure 3 also shows that a sequentially stable
state for the conflict need not be a PSS. The following
example shows that a PSS need not be sequentially stable for
the conflict.

EXAMPLE 6. Consider a normal form game as follows:

State ða1; b1Þ is a PSS with the policies P1 and P2 for DMs 1
and 2, respectively, as follows:
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P1ða2; b2Þ ¼ ða3; b2Þ and P1ðsÞ ¼ s for all other states.

P2ða1; b2Þ ¼ ða1; b1Þ;
P2ða2; b1 ¼ ða2; b2Þ; and P2ðsÞ ¼ s for all other states:

However, ða1; b1Þ is not sequentially stable for the conflict,
because a2 is a unilateral improvement for DM 1 and DM 2
cannot sanction DM 1 in one step without moving to a less
preferred state.

The following result shows that a credible PSS is a strictly
stronger stability concept than sequential stability.

THEOREM 4. If s 2 S is a credible PSS, then s is sequentially
stable for the conflict.

Proof. Suppose that a credible PSS s is not sequentially
stable for DM i. Then there exists s1 2 Rþi ðsÞ, such that for all
s2 2 Rþj ðs1Þ, it holds that s2 �i s. Since Pj is credible,
Pjðs1Þ 2 Rþj ðs1Þ [ fs1g. Therefore, if DM i changes its policy
from Pi to another policy P0i which moves from s to s1 and stays
at all such s2, then the result is more preferred. This contradicts
the fact that Pi and Pj form a policy equilibrium. (

The relationships discussed in this section among various sta-
bility concepts are shown in Figure 6.

In certain conflict situations, DMs in the process of con-
sidering moves and counter-moves may prefer never to harm

Figure 6. Relations among different stability concepts.

POLICY STABLE STATES 359



themselves. Why, for example, should a specific military policy
be adhered to if it will result in a large number of casualties
when a safer policy involving reduced losses could essentially
produce the same result? Hence, the concept of credibility of
actions can be important in many situations. Nevertheless, in
certain circumstances, DMs may be willing to move to less
preferred states in the hope of ending up at a better overall
outcome. To allow for both of these types of situations, credible
(Section 5) and regular (Section 3) policies are proposed in this
paper. By comparing the results obtained using both proce-
dures, one can ascertain any differences that may arise, which in
turn may furnish insightful strategic advice. As explained
above, in the graph model for conflict resolution, sequential
stability captures the notion of credibility in DMs’ behavior
under conflict, while other stability concepts such as general
and symmetric metarationality, limited-move stability and
nonmyopic stability sometimes permit movement to less
preferred situations.

6. EXISTENCE OF A PSS AND A SEQUENTIALLY STABLE
EQUILIBRIUM

Fraser and Hipel (1984) prove that a conflict that can be
modeled in option form in which every DM has transitive
preferences contains at least one sequentially state for the
conflict. The general graph model for conflict resolution does
not assume transitivity of preferences or transitivity of move-
ment. The counterexample in Figure 7 demonstrates that an
existence theorem does not hold when transitivity of movement
is not assumed. Specifically, no state is sequentially stable for
both DMs. For example, as shown in the left graph in Figure 7,
state s1 is stable for DM 1, because this DM has no movement
from s1. However, as depicted in the right graph, DM 2 has a
unilateral improvement from s1 to s2 and this unilateral
improvement is not sanctioned by DM 1’s unilateral improve-
ment from s2 to s3, shown in the left graph in Figure 7. Thus,
state s1 is not sequentially stable for the conflict. Moreover, a
counterexample can be easily constructed to demonstrate that a
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sequentially stable state for the conflict does not exist for a two-
DM conflict having intransitive preferences but transitivity of
movement.

Nonetheless, the following theorem establishes an existence
theorem for sequential stability for the conflict when both the
transitivity of movement and transitivity of preferences are
assumed.

THEOREM 5. If movements and preferences are transitive, then
there is at least one sequentially stable state for the conflict in the
graph model for a two-DM conflict.

Proof. If the theorem is false, each state is not sequentially
stable for at least one DM. Without loss of generality, let s1
be a state most preferred by DM i which is not sequentially
stable for it. Then there is at least one move of DM i to a
more preferred state s2. Since s2 is preferred to s1 by DM i, s2
should be sequentially stable for DM i. If it is also sequen-
tially stable for DM j, then the proof is complete. Otherwise,
DM j has a move to a better state s3. By use of the transitivity
of preference of DM j, suppose that s3 is the most preferred
state by DM j among those deviations from s2. It must hold
that s3 �i s1, since otherwise, a move from s2 to s3 is a credible
sanction against DM i. Therefore, s3 is again sequentially
stable for DM i. If it is sequentially stable for DM j, then the
proof is complete. If it is not sequentially stable for DM j,
then DM j can move to a better state s4. Because of the

Figure 7. An example without any sequentially stable state for the conflict.
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transitivity of movement, DM j has a move from s2 to s4
directly, which contradicts the assumption that s3 is most
preferred by DM j. (

However, even if a graph model is fully transitive, it may
happen that there is no PSS. Consider the graph in Figure 8.
Specifically, in this example, if the status quo state is s1, then no
policy of DM 1 can sanction deviations by DM 2 if DM 2 uses
policy fs2; s2; s3; s2g. If the status quo state is s2, then no policy
of DM 2 can sanction deviations by DM 1 if DM 1 uses policy
fs1; s3; s3; s4g. A similar result holds for s3 and s4.

In game theory, the concept of Nash equilibrium is extremely
important because its existence is ensured in finite games (using
mixed strategies). Since we do not assume utilities to represent
DMs’ preferences, we do not consider mixed strategies in our
framework. Therefore, the existence of a sequentially stable
equilibrium is very important, because it guarantees a solution
of every graph model provided preferences and movements are
transitive. Comparatively, the nonexistence of a PSS is due to
the fact that a policy looks very far into the future. Within the
stability concepts defined for the graph model, the same thing
happens with nonmyopic stability—graph models exist with no
nonmyopic equilibria. Intuitively, this means that contemplat-
ing moves and counter-moves far into the future can restrict the
ways in which sanctioning and potential equilibria can arise, and
there may be no existence theorem. To allow for the fact that
moves further into the future should perhaps be discounted in

Figure 8. A fully transitive graph with no PSS.
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terms of their effects on immediate preferences, one can examine
stability concepts that do not have long foresight. In this way,
one can appreciate the strategic impacts of alternative conflict
behavior involving short, medium and long foresight.

Within the limited move and nonmyopic definitions of stabi-
lity, backward induction is employed for defining and calculating
stability. But backward induction is not without paradoxical
features (Brams and Kilgour, 1998). If an analyst feels that this
approach is not realistic in some conflict situations, the stability
definitions of general and symmetric metarationality in which
sanctioning DMs can move to less preferred states, or sequential
stability, which permits only credible moves by all DMs, can be
employed. For each of these stability definitions, backward in-
duction is not used and states are compared only in a pairwise
fashion when stability is calculated.

7. CONCLUSIONS

A novel approach to policy analysis is defined using the graph
model for conflict resolution as a launching pad. To put this
new methodology into perspective, comparisons are made to
existing stability definitions and the idea of credibility of moves
is entertained. The authors believe that continued research on
policy analysis is of great import because policies are often
adopted by DMs in practical situations. For example, a union
may proclaim before negotiations that it will go on strike if the
company does not meet its wage demands while the company
may state that it will lock out the workers if the union demands
high wage increases. In international trade, a country may
threaten not to abide by rulings of the World Trade Organiza-
tion that are detrimental to it. The foregoing and other
examples reinforce the need for more research in policy analysis.
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