
 

0040-5795/05/3905-  © 2005 

 

MAIK “Nauka

 

/Interperiodica”0493

 

Theoretical Foundations of Chemical Engineering, Vol. 39, No. 5, 2005, pp. 493–502.
Translated from Teoreticheskie Osnovy Khimicheskoi Tekhnologii, Vol. 39, No. 5, 2005, pp. 523–532.
Original Russian Text Copyright © 2005 by Tovbin.

 

Mass transfer in one aggregation state or another
accompanies most chemical and thermophysical pro-
cesses. In terms of nonequilibrium thermodynamics [1,
2], the phenomenological descriptions of transfer phe-
nomena in the gas, liquid, and solid phases are identi-
cal; therefore, it is natural to assume that, at the molec-
ular level, the mathematical description of mass trans-
fer should also be unified. However, in molecular
models, kinetic theories developed for each of the
phases have to be used. This is because there is cur-
rently no unified kinetic theory for all the three phases
and the kinetic theories of gas [3–6], liquid, [7–9], and
solid [10–12] are based on specific properties of the
corresponding phases. For example, in gas, the main
role is played by the dispersion of molecular velocities,
whereas, in the dense phases (liquid and solid), of
prime importance is the spatial nonuniformity of the
distribution of molecules. Because of the absence of
crystalline order in gas and liquid, the transport of mol-
ecules in these phases is faster than that in the solid
phase; therefore, gas and liquid exhibit viscous proper-
ties, which are absent from a solid (up to its plastic
deformation and failure).

This paper was written for the following two rea-
sons. Previous works [13–19] were devoted to the
development of a microhydrodynamic approach to
describing single-component flows of simple mole-
cules in narrow (nanosized) pores in terms of the sim-
plest molecular model, namely, the lattice gas model
[20]. This approach allowed analysis, from a unified
standpoint, of flows of molecules at any densities (from
those inherent in gases to those characteristic of liq-
uids) in strong adsorption fields and expression of all
the dissipative coefficients directly through the atom–
atom potentials of interaction of molecules with the

pore walls and between one another (without introduc-
tion of any additional empirical parameters of the sys-
tem). This approach uses the master equations for the
dense phases. Naturally, the application of these equa-
tions to the gas phase is their extrapolation beyond the
domain of definition. Nonetheless, for single-compo-
nent fluids, good results throughout the density range
were obtained, which were consistent with the data of
both experiments and molecular dynamics simulations
[21–24]. This success was not accidental since the lat-
tice gas model is applicable to all the three phases and
has been actively used to calculate their characteristics
[7, 10–12, 25–28].

The first reason is that the generalization of this
approach to multicomponent gas mixtures [29] led to a
well-known contradiction in calculating the mutual dif-
fusion coefficient, expressions for which are derived by
describing the mutual diffusion from the standpoint of
a purely diffusion process and in terms of the rigorous
kinetic theory of gases [3–6, 30]. The contradiction is
that the diffusion description leads to the Meyer equa-
tion for the mutual diffusion coefficient, which is
inconsistent with experimental data. To remove this
contradiction, the Stefan–Maxwell hypothesis was
made [30], which formulates the rules of selection of
types of pairwise collisions that contribute to mutual
diffusion. Later, the kinetic theory [3–6] confirmed the
validity of this hypothesis. A natural question arises as
to how an expression for the mutual diffusion coeffi-
cient can be derived in terms of the lattice gas model so
that the advantages of the microhydrodynamic
approach can be simultaneously retained for a wide
range of practical applications (vapor and liquid flows
in narrow pores of adsorbents, membranes, catalysts,
etc.). It is necessary that the expression for the mutual
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—A modification of the elementary kinetic theory of a gas mixture in terms of the lattice gas model
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diffusion coefficient should be consistent with the
kinetic theory of gases and should be applicable to any
densities of a mixture (i.e., for any aggregation states).

The second reason is related to a deeper understand-
ing of the generality and difference of the elementary
(or phenomenological) and rigorous kinetic theory of
gases. It is universally accepted that the elementary the-
ory cannot give the correct result [3–6, 31] since it nec-
essarily leads to the Meyer equation. Nonetheless, the
question remains of to what extent the consideration of
the molecular velocity distribution determines the
essence of the mutual diffusion coefficient, or whether
or not it is possible to obtain a correct expression for the
mutual diffusion coefficient in terms of the mean ther-
mal velocities of molecules of components of a mixture
without using the Boltzmann equation for 

 

nonequilib-
rium

 

 molecular velocity distribution functions, and, if it
is possible, what the conditions for this are. Obviously,
the mean velocities of molecules of components that
are used in the elementary theory are obtained by aver-
aging over the 

 

equilibrium

 

 molecular velocity distribu-
tion function.

For simplicity, let us consider the diffusion transfer
of components of a binary mixture of simple spherical
molecules of approximately identical shape. This case
is described by only one mutual diffusion coefficient;
therefore, this case is studied in the largest number of
works using molecular models in different phases and
is a good example to illustrate the gist of the matter.

DEFINITIONS OF THE MUTUAL DIFFUSION 
COEFFICIENT

 

Rarefied gas.

 

 In the first-order approximation of the
Chapman–Enskog theory of a gas mixture [3–7, 30–
32], the diffusion velocity 

 

V

 

i

 

 of component 

 

i

 

 at constant
pressure 

 

P

 

 and temperature 

 

T

 

 in the absence of external
fields is defined as
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 are the diffusion coefficients of
the multicomponent mixture, which are interrelated as
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volume (a characteristic set of particles is used)).
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is the mole-average flow velocity.
The mutual diffusion coefficient 
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obtained from the above equations by expressing all the
coefficients 
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 in terms of 
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 (in a fixed frame of ref-
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where D12 = D1, 2 > 0; i.e., the mutual diffusion coeffi-
cient depends on the gradients of composition and pres-
sure of the system and also on the contributions of
external fields.

In the hard sphere model, mutual diffusion coeffi-
cient D1, 2 is expressed as

D1, 2 = (3π/8nσ12)w12, w12 = (kT/2πµ12)1/2, (3)

where σij = π , d12 = (d11 + d22)/2 is the distance of
maximal approach of molecules, dii is the diameter of a
molecule of component i, µ12 = m1m2/(m1 + m2) is the
reduced mass of colliding molecules of components 1
and 2, and mi is the mass of a molecule of component i.

Solid phase. The mutual diffusion coefficient in
alloys is experimentally measured at constant pressure
and temperature. Two annealed samples of a binary
alloy whose molar compositions xi (x1 + x2 = 1) in the
initial (nonequilibrium) state are different are brought
into close contact, and the penetration of atoms through
the plane of contact of the samples (plane 0) to either
side of the plane is observed. The minimum of the
Gibbs potential corresponds to the equalization of the
alloy composition on either side of plane 0, which
causes mixing of the components. The alloy compo-
nents differ in mass mi; therefore, the difference in dif-
fusion mobility between atoms of different components
leads to macroscopic displacements of crystal planes
(the Kirkendall effect) [10–12, 33, 34], which are
detected by observing displacements of inert markers.
The displacements of the markers in the binary alloy
indicate displacements of crystallographic layers
(planes) as a whole. This is explained by the existence
of an uncompensated flow of vacancies, whose sinks
take place in the case of climb of dislocations (the Kirk-
endall effect proper) or formation of pores in crystals
(the Frenkel effect) [33]. The collapse of pores because
of mechanical instability of the solid or the climb of
dislocations sets the planes in macroscopic motion.

At the atomic level, the process develops so that
faster light atoms move toward the region with a higher
concentration of heavy atoms, whereas heavy atoms
move toward the region with a higher concentration of

xiv i

i

∑

dij
2
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light atoms in order to compensate a local increase in
the total concentration of atoms. The total lattice flow
velocity compensates the difference of the diffusion
flows of different atoms. An equation of the mutual dif-
fusion coefficient in solid alloys is derived using a
scheme of random walk of atoms [10–12, 33, 34]. This
scheme is common for all the phases; its equations for
gas are presented below. Atoms move by hopping to
neighboring vacancies. Within the framework of the
Darken theory [10–12], the following expression for
the mutual diffusion coefficient D1, 2 was obtained:

D1, 2 = x2D1 + x1D2, (4)

where Di is the diffusion coefficient of an atom of com-
ponent i in a fixed frame of reference. In alloys, expres-
sions for the individual diffusion coefficients are repre-
sented as Di = (1 + ∂lnγi/∂lnxi), where  and γi

are the self-diffusion coefficient and the activity coeffi-
cient of an atom of component i in an alloy, respec-
tively. Cross diffusion terms in expression (4) are
absent to simplify transport models. More rigorous
modes take into account the contributions of these terms
[11, 12, 34].

Meyer equation and Stefan–Maxwell hypothesis.
To analyze the relationship between the kinetic
approaches to the gas and solid phases, let us reproduce
the derivation of the Meyer equation for the mutual dif-
fusion coefficient in the gas phase (by describing the
diffusion process using the scheme of random walk of
atoms) and the Stefan–Maxwell hypothesis.

Let there be a mixture of two gases with mole frac-
tions of molecules of x1 and x2 with different molecular
masses mi at constant pressure and temperature (P, T =
const). In a nonequilibrium state, the molar composi-
tion xi of the gas differs on either side of a certain
selected plane (plane 0). The situation is completely
identical to the case of an alloy in a nonequilibrium
state. Faster light molecules move toward the region
with a higher concentration of heavy molecules,
whereas heavy molecules move toward the region with
a higher concentration of light molecules in order to
compensate a local increase in the total concentration
of molecules. In the discussed process of mixing of
components of the binary mixture, the difference of the
opposite flows of both components creates conditions
for the flow of the entire gas; i.e., a convective flow with
mean velocity w0 is formed, which depends on the dif-
ference of the diffusion coefficients Di in a fixed frame
of reference. Let Ni be the numbers of molecules of com-
ponents i = 1 and 2; then, the kinetic equations for their
transport can be written as

 = dNi/dt = w0ni – 0.5{[niwili]I – [niwili]II}, (5)

where wi and i, li are the mean thermal velocity and the
mean free path of molecules of component i, respec-
tively. The expressions within the square brackets with
the subscripts I and II refer to the half-spaces on the left

Di* Di*

Ji
t

and the right of plane 0, respectively. Expansion of the
right-hand side of the equation in terms of grad(ni) in
the form ni(II) = ni(I) + ligrad(ni) yields

 = dNi/dt = w0ni – Didni/dZ, i = 1, 2. (6)

For simplicity, let Z be the coordinate along which mol-
ecules move. Below are the expressions for the coeffi-
cients Di that are derived in terms of the elementary
kinetic theory using the equilibrium molecular velocity
distribution function:

Di = wili/2, wi = (8kT/πmi)1/2. (7)

Since d(N1 + N2)/dt = 0 and n = n1 + n2, one can write

w0 = [D1dn1/dZ + D2dn2/dZ]/n. (8)

Equation (6) with allowance for expression (8) can
be transformed to the form

 = dNi/dt = –D1, 2dni/dZ, D1, 2 = x2D1 + x1D2, (9)

where D1, 2 is the mutual diffusion coefficient of the
binary mixture. As a result, Meyer equation (9) is
obtained, which is inconsistent with experimental data
on a rarefied gas if the quantity li is estimated by count-
ing the number of collisions of molecules of component
i with molecules of both components j = 1 and 2 [30]:

(10)

To avoid the problem of inconsistency of Eqs. (9)
and (10) with experimental data, Stefan and Maxwell
postulated that, in estimating li, account should be taken
only of collisions with molecules of the other compo-
nent j ≠ i; then, formula (10) can be represented in the
form [30]

(11)

As a result, formula (9) implies the known Stefan–
Maxwell formula

 = w12/(nσ12), w12 = (2kT/πµ12)1/2, (12)

which agrees well with experimental data, and the rig-
orous kinetic theory [3–7] substantiated this procedure
for selecting types of collisions.

Thus, although the particle transport mechanisms in
an ideal gas and a solid alloy differ, the mutual diffusion
coefficients in formulas (4) and (9) in a moving frame
of reference are identically expressed through the diffu-
sion coefficients Di of individual components in a fixed
frame of reference. Note also that the Kirkendall effect
was repeatedly used in the theory of gas flows in wide
channels to describe wall effects [35]. Hence, it follows
that the difference between formulas (4) and (9) is
determined by the procedure for constructing the

Ji
t

Ji
t

l1 21/2n1σ11 n2σ12 1 m1/m2+( )1/2+[ ] 1–
,=

l2 21/2n2σ22 n1σ12 1 m2/m1+( )1/2+[ ] 1–
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expression for D1, 2 rather than by the difference in
molecular migration mechanism between different
phases.

Analysis of definitions. Formal constructions of
irreversible thermodynamics [1, 2] lead to the same
structure of molecular transfer equations (they are dif-
fusion equations) in the gas, liquid, and solid phases,
although the mechanisms of elementary processes of
migration of components differ. In the gas phase, every-
thing is determined by pairwise collisions. In the solid
phase, displacements of molecules occur by a vacancy
mechanism and, for hopping of an atom in an alloy, the
atom should acquire, by a fluctuation mechanism, the
energy required to surmount the activation barrier. In
the latter case, the hopping involves (indirectly or
directly) all the neighboring atoms that affect the local
oscillation frequencies and the activation energy of the
migrating atom. In the liquid phase, the influence of
neighboring molecules is also significant.

Diffusion equations are generalizations of experi-
mental data in terms of Fick’s law. Their molecular
interpretation is based on the consideration of the
scheme of random walk of molecules over relatively
long time intervals. Such walk simulates the free
motion of molecules in gas between collisions or mod-
els the elementary hopping of atoms in the liquid and
solid phases. Such processes are described by analyz-
ing the opposite flows of particles, which give rise to a
resultant diffusion flow. The thermodynamics of irre-
versible processes [1, 2] gives an ordinary structure of
equations describing the flows of molecules at P, T =
const:

Ji = –Diigrad(ni) – Dijgrad(nj),  i = 1 and 2. (1‡)

If the diffusion velocities of components are
expressed in terms of the diffusion fluxes as Vi = Ji/ni,
then their difference can be written as

V1 – V2 = –(D11 – D12)/n1grad(n1) 

– (D22 – D21)/n2grad(n2) (2‡)

= –(x2D11 + x1D22 – D12)/(x1x2)grad(x1). 

This equation differs from Eq. (2) by the presence of
cross terms. Equations (2) and (2a) coincide at Dii = 0.
In this case, the flow velocity is written from Eq. (8) as
w0 = (D11 – D22)grad(x1) and is also zero, which signi-
fies the absence of convective flow of the mixture.

On the other hand, if D12 = D1, 2 and Meyer–Darken
equations (4) and (9) are valid, then the difference of
the diffusion velocities of both components is zero,
which indicates the flow of the mixture as a whole. This
takes place in the convective flow with respect to a fixed
frame of reference, whereas Eq. (2) was introduced for
the diffusion velocities of components in a frame of ref-
erence moving with the convective flow. Thus, the
validity of the Meyer–Darken equations means the
absence of mutual diffusion from the standpoint of the
kinetic theory of gases. In other words, the definitions

of the rigorous kinetic theory of gases and the purely
diffusion interpretation of the mutual diffusion coeffi-
cient according to the scheme of random walk of com-
ponents of a mixture are mutually exclusive.

The Stefan–Maxwell hypothesis suggests that the
elementary kinetic theory should take into account in
more detail the type of colliding molecules. But for-
mula (12) cannot be automatically extended to the
dense phases. Therefore, let us discuss a modification
of the elementary kinetic theory that follows from the
specificity of the theory of the dense phases and the
requirement of the Stefan–Maxwell hypothesis.

MODIFICATION OF THE RANDOM 
WALK SCHEME

To determine how the drawbacks of the Meyer for-
mula can be eliminated, let us discuss the scheme for
constructing this equation from the standpoint of the
theory of condensed media. The existing kinetic theory
of gases cannot be directly generalized to the dense
phases; therefore, the lattice gas model is used, which
is applicable to any media [20]. The purpose of this
consideration is to generalize the scheme of hopping in
the lattice gas model to a rarefied gas and to construct
an expression for the mutual diffusion coefficient in
terms of hopping of molecules.

Lattice gas model [20, 26–28, 36]. The volume V of
the system is divided into cells, where the volume of
each is on the order of the volume of particle, v0 = λ3

(where λ is the linear size of a cell), in order to rule out
the double occupation of a cell by different molecules.
Then, V = Nv0, where N is the number of cells in the
system (a fully occupied structure). Let z be the number
of nearest cells of the lattice structure. At each cell,
there can be only a single particle: either a molecule of
component i (if the center of mass of the molecule is
within the cell) or a vacancy v. The subscript i refers to
the type of a component of the mixture, and s is the
number of differently occupied states of a cell of the
system; i.e., the number of components is s – 1. The fact
that a molecule is within a cell does not mean that its
center of mass is fixed; the molecule has translational,
rotational, and vibrational degrees of freedom [37].
Such a description of the system is standard in analyz-
ing any interphase equilibrium processes (adsorption,
absorption, vapor–liquid equilibrium, etc.) [20, 25]. In
this case, the properties of the system are considered as
functions of the thermostat parameters. The relation-
ship between the states of the system and the thermostat
is expressed by isotherms following from the condition
that the chemical potentials of molecules in the system
and the thermostat are equal. The same point of view
turns out to be fruitful in studying a single-phase sys-
tem of arbitrary density [38].

The concentration of molecules of component i is
usually considered to be equal to the number of these
molecules Ni in a unit volume: ni = Ni/V. In the lattice
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gas model, the concentration of a component of a fluid
is characterized by the ratio θi = Ni/N of the number of
particles in a certain volume to the maximum possible
number of closely packed particles in the same volume;
i.e., θi = niv0. The full occupation of the volume is

defined as θ = . The relationship between the total

concentration n of molecules and the occupancy θ is
expressed by the formula n = θ/v0.

Isotherms determine the relationship between the
pressures {p} in the thermostat ({p} ≡ p1, …, ps – 1 is the
total set of all partial pressures pi of components of the
mixture, 1 ≤ i ≤ s – 1) and the partial occupancies {θi}
of the volume of the system. The isotherms have the
form [14–17, 20]

(13)

where the function Λi characterizes the intermolecular
interactions. The specific form of this function was pre-
sented earlier [20] in considering dense mixtures. If the
intermolecular interactions are ignored, Λi = 1 (an ideal
system).

The quantity ai = βFi/Fi0, where Fi and Fi0 are the
statistical sums of a molecule of component i in a cell
and the thermostat, respectively, and β = (kT)–1. In the
thermostat, as a rule, the gas is assumed to be ideal.

The equation of state of an ideal system in the lattice
gas model has the form [26, 27, 39]

βPv0 = –ln(1 – θ), (14)

which differs from a conventional virial expansion [3–7].
However, at low densities, from Eq. (14), the equation
of state of an ideal gas follows in the form βPv0 = θ or
βP = n.

Conditions of the theory of condensed phases.
There are two features that distinguish between the
kinetic theories of gas and solid.

The first feature is the following. The kinetic theory
of dense systems does not consider collisions between
molecules but operates with the probabilities of transi-
tion of molecules from one point in space to another.
These transition probabilities are expressed through the
states of the thermostat and a selected group of mole-
cules. They depend on the lateral interactions between
all the components of the system.

To calculate the mutual diffusion coefficients, it
becomes necessary to explicitly take into account colli-
sions between molecules of different types. Taking this
into account is readily combined with constructing the
molecular transition probabilities if type j of component
with which a molecule i collided last within region I
(or II) before intersecting the selected plane (plane 0).
The conventional elementary kinetic theory implicitly
considers collisions of all molecules after intersecting
plane 0, i.e., molecules in the other region, region II
(or I) (in the rigorous kinetic theory of gas, this aspect

θi

i 1=

s 1–

∑

ai pi θiΛi/θv ,=

is not discussed, although the collision integral contains
the characteristics of molecules both before and after
collision, but all of them are related to a certain elemen-
tary gas volume without referring to the position of
plane 0).

The second feature is the following. From the stand-
point of the equilibrium distribution of molecules, an
ideal gas is a rarefied system in which, on the average,
all the particles are at an approximately equal distance
ρ. Otherwise, any deviation from the uniform distribu-
tion of molecules should lead to density fluctuations
only because of the difference in molecular mass
between components of the mixture. However, the lat-
ter are impossible without the effect of intermolecular
interactions, which are ruled out by the definition of an
ideal gas.

In the kinetic theory, there are two main molecular
linear sizes: the size σ of a molecule (which is uniquely
related to the cell size in the lattice gas model as λ ≈
21/6σ: the λ scale) and the mean free path li of a mole-
cule (the l scale). In addition, there is a third character-
istic linear quantity: the mean distance ρ between mol-
ecules of the gas phase (the ρ scale), which is defined

as ρ =  (v0 is the volume per molecule of the mix-
ture); in the lattice gas model, ρ = λ/(θ)1/3.

The quantity ρ is used [32] in the kinetic theories to
define the dimensionless density parameter as the ratio
(λ/ρ)3, in terms of which one can construct expansions.
But this quantity alone plays no functional role. In the
proposed modification of the lattice gas model, the fact
of the existence of the mean distance ρ between mole-
cules allows one to interpret ρ as an analogue of lattice
constant, which depends on the density θ of the mix-
ture. In the dense phases, l = ρ = λ. This enables one to
introduce a unified method for describing the system in
transition from the dense phase to the rarefied gas, for
which λ � ρ � li. The first sign � should be understood
rather conditionally since, for the rarefied gas at θ =
10−3–10–4, the difference is about an order of magni-
tude: ρ = (10–22)λ. At the same time, the differences
between ρ and li reach two orders of magnitude: li =

1/(21/2πn ) = ρ3/(21/2π ) ≈ (30–140)ρ.

Consequences of the lattice gas model. In the
dense phases, the number of feasible molecular transi-
tion probabilities is relatively small and depends on the
number of bonds between neighboring cells of the lat-
tice structure to which a particle can hop if there is a
vacancy. The lateral interactions are taken into account
completely. With an increase in the mean distance
between molecules, the number of probabilities of
molecular transitions between different points in space
abruptly increases and the consideration of the lateral
interactions is complicated. To simplify the description
of these probabilities, let us use the lattice gas model
constructed on the lattice with a constant on the ρ scale.
Then, the contributions of the lateral interactions on the

v 0
1/3

dii
2 dii

2
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l scale are replaced by the contributions on the ρ scale.
This significantly simplifies the calculation since, if
these contributions are small on the ρ scale, then they
are all the more negligible on the l scale.

In the lattice gas model, there is a strong proof of
self-consistency of describing the dynamics of molecu-
lar processes and the equilibrium state of a mixture at
any densities and temperatures [20]. The use of the ρ
scale allows one to retain this important property of the
lattice gas model, and on the l scale, one can describe
the dynamic processes occurring on the ρ scale (ρ an
equilibrium characteristic since it appears in the equa-
tion of state). Thus, one can retain all the advantages of
the lattice gas model and take into account the effect of
the lateral interactions on the dynamics of elementary
processes.

Combining the two features discussed, one can see
that, for a molecule of component f to move from cell f
in region I toward cell g in region II, this molecule
should preliminarily collide with a molecule of compo-
nent j at cell ξ within region I. To describe such motion,
instead of the mean velocity wi of a molecule of com-
ponent i (expression (7)), which is conventionally used
in the elementary kinetic theory, it is necessary to use
the mean relative velocity of a molecule of component
i after its collision with a molecule of component j. This
velocity of a molecule of component i is written as
wi(j) = (kT/2πµij)1/2.

Another consequence of the lattice gas model is that
the distance (measured in units of the ρ scale) between
regions I and II, over which density gradients for both
components are considered, is the same for all compo-
nents (this condition was used in deriving Eq. (4) [10–
12, 34]). Therefore, in constructing a diffusion equation
for an ideal gas, the condition li = l = const should be
met. This condition directly implies that, for a mixture,
unlike formula (11), l is expressed just as for a single-
component system: l ~ (n〈σ〉)–1, where 〈σ〉 is the mean
section of colliding molecules in the mixture, although
the l value, as in Eq. (10), can depend through 〈σ〉 on the
molar composition of the mixture.

Consideration of collisions. Let us construct equa-
tions of the type of the Meyer equation with allowance
for the noted refinements for the case of comparable
sizes of molecules of components of a gas mixture. The
flow of molecules of component i that intersects plane
0 consists of two contributions. These molecules move
at relative velocities wi(j) after collision with molecules
of components j = 1 (the first contribution) and j = 2
(the second contribution). Correspondingly, it is neces-
sary to take into account the mole fraction xj of each
component j with which molecules of component i col-
lide. For this reason, instead of the mean velocity wi,
Eqs. (5) and (6) should involve the sum wi(1)x1 + wi(2)x2.
Expression (5) for the flux of the first component is
rewritten as

(5‡)

As above, the expressions within the square brackets
with the subscripts I and II refer to the half-spaces on
the left and the right of plane 0, respectively. Expansion
of the right-hand side of the last equation in terms of
grad(n1) gives (for clarity, the quantity li is retained,
which will be concretized below)

(15)

Or, taking into account that grad(x2) = –grad(x1), one
can write the expression in the general form for both
components (j ≠ i):

(16)

As above, hence, it follows that

(17)

Then, instead of formula (9), a new expression for
the mutual diffusion coefficients is obtained:

(18)

In formula (18), let us replace li by l and, by analogy
with expression (7), introduce Di(j) = wi(j)l/2—the diffu-
sion coefficients of molecules of component i that are
involved in transport after the last collision with a mol-
ecule of component j. As a result, the final expression is
obtained:

D1, 2 = x2(x2 – x1)D1(2) + x1(x1 – x2)D2(1) 

+ 2x1x2(D1(1) + D2(2)) = D1(2)(x1 – x2)2 (19)

+ 2x1x2(D1(1) + D2(2)).

The second equality takes into account that, since
w1(2) = w2(1), the condition D1(2) = D2(1) is met (however,
in the dense phases, the last equality may be invalid).

ANALYSIS OF THE NEW EQUATION

In the limiting cases of low mole fractions of the
first or second component, the contribution of the sec-
ond term in expression (19) is minimal and this expres-

sion appears as expression (12), D1, 2 = , within the
framework of the Meyer scheme. Note that it is funda-
mentally impossible to reduce Eq. (9) to formula (12).
Even at a low concentration of one of the components,
the mutual diffusion coefficient is expressed through
the velocity wi rather than the relative velocity wi(j) (the
velocity wi ignores the mass of the second component).

J1
t  = dN1/dt = w0n1 0.5 n1 w1 1( )x1 w1 2( )x2+( )[ ]I{–

– n1 w1 1( )x1 w1 2( )x2+( )[ ]II }.

J1
t w0n1=

– 0.5l1 2w1 1( )x1 w1 2( )x2+( )dn1/dz w1 2( )x1dn2/dz+[ ].

Ji
t w0ni 0.5li 2wi i( )xi wi j( ) 1 2xi–( )+[ ]dni/dz,–=

i 1 and 2.=

w0 l1 2w1 1( )x1 w1 2( ) 1 2x1–( )+[ ]dn1/dz{=

+ l2 2w2 2( )x2 w2 1( ) 1 2x2–( )+[ ]dn2/dz }/ 2n( ).

D1 2, l1w1 2( )x2 l2w2 1( )x1+{=

+ 2x1x2 l1 w1 1( ) w1 2( )–( ) l2 w2 2( ) w2 1( )–( )+[ ] }/2.

D1 2,
SM
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Comparison of the expressions for D1, 2 and  at
low mole fractions xi allows one to formally define the
rule of replacement of the partial mean free paths li by l.
The replacement is performed by the formula l = l1x2 +
l2x1 if, instead of formulas (10), their lattice analogues
li = 1/(n〈σi〉) are used. These analogues include the
mean sections of collisions of molecule i with mole-
cules of other components of the mixture, which are
defined as 〈σi〉 = σi1x1 + σi2x2.

However, in the general case, formula (19) differs

from expression (12) for . Equation (19) involves
a quadratic dependence on the molar composition of a
mixture, which is symmetric about x1 = x2 = 0.5. For an
equimolar composition, the coefficient D1, 2 is minimal
since the tendency for mixing of components is mini-
mal. The maximal deviation of D1, 2(x1 = 0.5) from

 depends on the ratio between the masses and the
sizes of components.

For the case of comparable sizes of components
(σ11 ≈ σ22 ≈ σ12), 〈σ〉 = σ12 according to formula (12);
then, at any molar composition of the mixture,

l = 1/(nσ12). (20)

In this case, the difference between formulas (19)
and (12) depends only on the mass ratio m21 = m2/m1.
The use of formula (20) leads to the maximal deviation

(as m21  ∞) of D1, 2 (expression (19)) from 
(expression (12)), which is equal to (1 – 1/21/2) < 0.3,
i.e., smaller than 30%. Obviously, the condition m21 �
1 is in poor agreement with the assumptions σ11 ≈ σ22 ≈
σ12. For mixtures with comparable sizes and masses of
molecules of components, e.g., for a He–Ar mixture (at
m21 = 10 and σHeHe = 0.26, σArAr = 0.34 nm [7]), the
maximal deviation between formulas (19) and (12) is
~11%; for an ç2–Ar mixture (at m21 = 20 and  =
0.29 nm), the maximal deviation is ~16%; and, for an
Ar–Kr mixture (at m21 = 2.1 and σKrKr = 0.36 nm), the
maximal deviation is only 1.2%.

These deviations are on the same order as the maxi-
mal discrepancy between formula (12) and experimen-
tal data; e.g., for a He–Ar mixture, the discrepancy is
~10% [3]. As a rule, in the experimental data, with an
increase in the fraction of the heavy component, the
mutual diffusion coefficient increases (by 8–13%) [3–
5, 7]. A more accurate analysis in the second approxi-
mation of the rigorous kinetic theory can explain such
an increase only within 4% [5], which is no more than
half as much as the experimentally observed increase.
Note that formula (19) describes the experimental
dependence of the mutual diffusion coefficient on the
mole fraction with an accuracy up to 10%.

Finally, as above, let us consider the difference V1 –
V2 of the diffusion velocities. Taking into account the
collisions of molecules leads to an expression for the

D1 2,
SM

D1 2,
SM

D1 2,
SM

D1 2,
SM

σH2H2

flux of molecules that is similar to formula (1a). How-
ever, according to formula (15), the coefficients Dij

depend on the molar composition: Dii = 2Di(i)xi + Di(j)xj

and Dij = Di(i)xi. As a result, one can obtain

V1 – V2 = –(D11 – D12)/n1grad(n1) 

(2b)

= –D1, 2/(x1x2)grad(x1). 

Thus, the modified scheme of random walk leads to
full agreement with the rigorous kinetic theory, which
determines the relationship between the difference of
the diffusion velocities of components and the mutual
diffusion coefficient.

Let us also discuss the behavior of the convective
flow velocity in the new modification of the lattice gas
model: w0 = 2Kgrad(x1), where K = (D1(1) – D1(2))x1 –
(D2(2) – D2(1))x2. The form of the proportionality factor
K suggests that the convective flow velocity w0 is deter-
mined by all the types of collisions of molecules
throughout the range of compositions of the mixture.
At a low fraction of one of the components, e.g., com-
ponent 2, K = D1(1) – D1(2) and the flow depends on the
difference of the contributions made by collisions of
molecules of component 1 with molecules of compo-
nents 1 and 2. For an equimolar composition, K =
(D1(1) – D2(2))/2 and the convective flow is determined
only by collisions between molecules of the same com-
ponent, which corresponds to the maximal deviation

from . Nonetheless, this deviation is small
(approximately up to 15%) since the contributions of
collisions between molecules of the same component
significantly compensate one another.

Formula (19) shows that the correct expression for
the molecular transport can be obtained without using
the Boltzmann equation (only through the mean ther-
mal velocity of molecules) at low mole fractions of one
of the components of a binary mixture. The case m21 � 1
at x2 ~ 1 corresponds to a Lorentzian mixture (a light
admixture among heavy particles), which has been well
studied in the rigorous kinetic theory of gases [3–5].
For such a mixture, the new approach correctly
describes the temperature dependence and the effect of
the mass. Numerical differences (1/2 and 1/3) between
formulas (19) (or (12)) and the exact theory [3–5] for a
Lorentzian mixture are because the dispersion of veloc-
ities is taken into account, but this systematic difference
plays no role in analyzing the experimental temperature
and concentration data (and is reduced to a shift of the
reference point for these data). Similarly, the new
approach gives a correct result for the case m21  0 at
x2 ~ 0, which corresponds to an anti-Lorentzian mixture
(a heavy admixture among light particles).

Thus, the consideration of the transport of mole-
cules in an ideal gas from the standpoint of condensed

– D22 D21–( )/n2grad n2( ) D1 2( ) x1 x2–( )2[–=

+ 2x1x2 D1 1( ) D2 2( )+( ) ]/ x1x2( )grad x1( )

D1 2,
SM
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phases causes noticeable modification of the expression
for the mutual diffusion coefficient. The presented pro-
cedure for deriving the mutual diffusion coefficient
using relations (9)–(11) is purely formal and has no
physical meaning because formulas (11) diverge as x1
or x2 tends to zero. Unlike formulas (11), the new
approach within the framework of the elementary
kinetic theory does not operate with nonphysical quan-
tities and gives D1, 2 that are close to a constant value
(see expression (12)) at any composition of the mixture,
which is in satisfactory agreement with experimental
data.

CONCLUSIONS

The analysis of the definitions demonstrated that
one and the same term, mutual diffusion coefficient, is
used for gases and alloys in different senses under dif-
ferent conditions (in the absence and the presence of a
convective flow). The rigorous kinetic theory substanti-
ates the Stefan–Maxwell hypothesis in the first-order
hydrodynamic approximation, in which direct differen-
tiation with respect to the change in the properties of a
mixture over distances l is not performed and the selec-
tion of “necessary” collisions is ensured by the fact that
the collision integral for identical components of the
mixture is zero. The Meyer–Darken scheme explicitly
considers the concentration gradients of both compo-
nents in two different local volumes that are at a dis-
tance l from each other and are separated by plane 0. In
principle, the Meyer–Darken scheme is applicable to
all the phases in which there is a convective flow caused
by the difference of the diffusion flows of components;
this has found use in the theory of solid alloys.

The constructed modified elementary theory for gas
is actually intermediate between the rigorous kinetic
theory and the purely diffusion approach. The con-
structed theory simultaneously uses the notion of con-
vective flow caused by diffusion and takes into account
molecular collisions, which give rise to flows of walk-
ing molecules. By and large, diffusion becomes a non-
single-particle process of walk of molecules in a gas or
solid thermostat. As a result, the flows of molecules in
gas become nonlinear in concentrations, which deter-
mines the concentration dependence of the phenome-
nological coefficients of the thermodynamics of irre-
versible processes. The nonlinearity of collisions deter-
mines a qualitative change in the character of the
mutual diffusion coefficient through the presence of the
relative velocities wi(j) of molecules in Di(j) in compari-
son with wi in the coefficients Di, which corresponds to
the definition of D1, 2 for the gas phase. The modifica-
tion of the lattice gas model ensured consistency with
the rigorous kinetic theory at low mole fractions of any
of the components and provided the correct determina-
tion of the mutual diffusion coefficient at any composi-
tions of a mixture. The quantitative deviations from the
rigorous theory for molecules of components that are

quite close in size to one another are less than 15% and
are comparable to deviations of experimental data and
to deviations obtained using the Stefan–Maxwell for-
mula (~10%).

The constructed modification of the elementary
kinetic theory can be generalized to dense gas and liq-
uid mixtures, which enables one to use microhydrody-
namic equations [29] for describing the flows of mix-
tures at any densities.
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NOTATION

ai—ratio of the statistical sums of a molecule of
component i in the system and the thermostat;

Dij—diffusion coefficient of a multicomponent mix-
ture;

Di(j)—diffusion coefficient of molecules of compo-
nent i that are involved in transport after the last colli-
sion with a molecule of component j;

D1, 2—mutual diffusion coefficient of a binary mix-
ture;

dii—diameter of a molecule of component i;
Fi, Fi0—statistical sums of a molecule of component

i in a cell and a thermostat;
k—Boltzmann constant;
Ji—diffusion flux of molecules of component i;

—total flux of molecules of component i;

li—mean free path of a molecule of component i;
mi—mass of a molecule of component i;
N—number of cells in the system;
Ni—number of molecules of component i;
h—total number density of all the components of a

mixture;
ni—number density of component i in a unit volume

(n = n1 + n2);
P—pressure;
pi—partial pressure of component i in the thermo-

stat;
s—occupancy of a cell;
T—temperature;
V—volume of the system;
Vi—diffusion velocity of component i;
v —vacancy;
v0—volume of a cell;
wi—mean thermal velocity of molecules of compo-

nent i in the gas phase;

Ji
t
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wi(j)—mean relative velocity of a molecule of com-
ponent i after collision with a molecule of component j;

w0—convective flow velocity;
xi—mole fraction of component i;
Z—coordinate along which the flow of molecules

moves;
z—number of nearest cells;
β = 1/kT—inverse thermal energy;
θ—full occupation of a volume;
θi—concentration of component i of a fluid;
λ—linear size of a cell;
µij—reduced mass of colliding molecules of compo-

nents i and j;
ρ—mean distance between molecules;
σ—diameter of the hard sphere of a molecule;
σij—distance of maximal approach of molecules of

components i and j.

SUBSCRIPTS AND SUPERSCRIPTS

i, j—components of a mixture;
SM—Stefan–Maxwell hypothesis;
1, 2—components of a binary mixture.
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