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Abstract
As a revolution in the field of transportation, the demand for communication of vehicles is increasing. Therefore, how
to improve the success rate of vehicle spectrum access has become a major problem to be solved. The case of a single
vehicle accessing a channel was only considered in the previous research on dynamic spectrum access in cognitive vehicular
networks (CVNs), and the spectrum resources could not be fully utilized. In order to fully utilize spectrum resources, a
model for spectrum sharing among multiple secondary vehicles (SVs) and a primary vehicle (PV) is proposed. This model
includes scenarios where multiple SVs share spectrum to maximize the average quality of service (QoS) for vehicles. And the
condition is considered that the total interference generated by vehicles accessing the same channel is less than the interference
threshold. In this paper, a deep Q-networkmethodwith amodified reward function (IDQN) algorithm is proposed tomaximize
the average QoS of PVs and SVs and improve spectrum utilization. The algorithm is designed with different reward functions
according to the QoS of PVs and SVs under different situations. Finally, the proposed algorithm is compared with the deep
Q-network (DQN) and Q-learning algorithms under the Python simulation platform. The average access success rate of SVs
in the IDQN algorithm proposed can reach 98%, which is improved by 18% compared with the Q-learning algorithm. And
the convergence speed is 62.5% faster than the DQN algorithm. At the same time, the average QoS of PVs and the average
QoS of SVs in the IDQN algorithm can reach 2.4, which is improved by 50% and 33% compared with the DQN algorithm,
and improved by 60% and 140% compared with the Q-learning algorithm.
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1 Introduction

With the emergence and implementation of large-scale Inter-
net of things (IoT) [1], Internet of vehicles (IoV) [2] and
other technologies, a wider range of resources need to be
occupied by wireless communication services [3]. Although
the static spectrum allocation method can effectively avoid
the conflict and interference between different wireless ser-
vices, it cannot fully exploit the distribution characteristics
of radio signals in the time domain, frequency domain and
air domain. Dynamic spectrum access (DSA) [4] is a key
technology to realize the effective use of spectrum resources
in cognitive radio (CR) [5], which can solve the above prob-
lems. In DSA technology, secondary user (SU) is allowed
to access the current frequency band without affecting the
quality of service (QoS) [6] of the normal communication
of the primary user (PU). The spectrum hole of the current
frequency band is perceived by the SU and is accessed by the
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SU changing the access parameters under certain conditions
by DSA technology, so that the frequency band utilization
can be improved when the number of users is greater than
the number of channels [7].

Efficiently resolving the problem of lacking spectrum
resources caused by the explosive growth of vehicle commu-
nication services has become a matter of significant concern.
In recent years, cognitive vehicular networks (CVNs) [8]
have emerged as a promising solution, combining cognitive
radio (CR) technology with vehicular networks [9]. While
progress has been made in spectrum sensing technology for
the cognitive Internet of vehicles (CIoV), research on spec-
trum access technology is still in the developmental stage,
drawing attention from numerous scholars [10]. The fun-
damental idea behind CIoV’s spectrum access is to detect
the state of the PU spectrum and enable cognitive radios
(CRs) to opportunistically utilize idle portions of the PU
spectrum to improve overall spectrum utilization [11, 12].
As the PU’s spectrum state dynamically changes, the spec-
trum access of CIoV, based on CR technology, must adapt
accordingly to avoid interfering with normal communica-
tion among primary vehicles (PVs) [13]. This adaptability
is termed dynamic spectrum access (DSA) of CIoV. DSA
allows secondary vehicles (SVs) in CIoV to access available
spectrum in a timely manner. Idle spectrum can be efficiently
occupied by CIoV through spectrum coverage, while busy
spectrum can be accessed with limited interference power
through spectrum superposition [14]. Consequently, CIoV’s
dynamic spectrum access effectively addresses the problem
of insufficient spectrum resources in IoV communication
[15] To achieve spectrum efficiency in CIoV, it is crucial to
study dynamic spectrum access to adapt to varying spectrum
states and sensing results of the PU [16].

2 Related work

As dynamic spectrum access progressively becomes a chal-
lenge in extensive state spaces, the complex computational
issues stemming from large-scale state and action domains
are effectively addressed by deep reinforcement learning
(DRL) [17] agents. These agents obtain eigenvalues from
high-latitude raw data to formulate optimal action strate-
gies [18]. Consequently, within the framework of spectrum
resource allocation following Markov decision processes
(MDP), DRL has been widely adopted to address issues
such as low spectrum access rates [19]. Among these efforts,
an innovative resource allocation algorithm based on multi-
agent reinforcement learning (MARL) was introduced in
[20] and [21]. This algorithm aims to improve data packet
reception rates and tackle decentralized radio resource man-
agement challenges within 5G vehicle networks. Employing
actor-critic RL techniques, the algorithm facilitates optimal

time budget (TB) selection by individual agents. Further-
more, a centralized training mechanism enables the sharing
of observations across agents, effectively mitigating non-
stationarity in the multi-agent environment. In contrast to
conventional approaches, this algorithm enhances packet
reception rates by 18% and reward rates by 33% when com-
pared to the advanced MARL-based method [21].

Additionally, [22] introduces a hybrid strategy aimed
at maximizing network utility through efficient dynamic
spectrum access. A distributed deep reinforcement learning
(DRL)-based scheme is proposed, leveraging a deep recur-
sive reinforcement learning network with an integrated gated
recurrent unit (GRU) layer to optimize the network utility
function.

Furthermore, [23] proposes a distributed dynamic power
allocation scheme based on multi-agent deep reinforcement
learning (MADRL). This scheme caters to computational
complexity and instantaneous cross-channel state informa-
tion (CSI) demands. Each transmitter collects CSI and
quality of service information from multiple neighbors,
thereby facilitating individual transmit power adjustments.
To enhance the service quality of users in licensed networks
while minimizing interference, [24] suggests a distributed
dynamic spectrum access communication framework based
on MARL. In this approach, multiple units in a multi-user
multiple-input multiple-output (MU-MIMO) network act as
proxies, utilizing the average Signal-to-Interference plus
Noise Ratio (SINR) value as a reward to maximize average
SINR.

Some studies emphasize optimizing throughput [25–
29]. For example, [30] proposes a QoS-aware decentral-
ized resource allocation approach for vehicle-to-everything
(V2X) communication. Employing DRL, this approach aims
to maximize throughput, resulting in improved system and
device-to-device (D2D) throughput. The challenges posed
by severe interference between D2D and cellular users moti-
vate comprehensive considerations in [30]. The proposed
spectrum allocation scheme is built on distributed learn-
ing, allowing D2D users to independently select spectrum
resources. This decision-making process focuses on maxi-
mizing D2D user throughput while minimizing interference
with cellular users. While existing studies demonstrate the
efficacy of the DRL algorithm in dynamic spectrum alloca-
tion, many efforts focus on model improvement or optimiza-
tion targets. In contrast, [31] introduces a shared model and
optimizes both throughput and link payload transfer rates,
addressing spectrum sharing in vehicular networks based on
MARL. By modeling resource sharing as a MARL prob-
lem, multiple vehicle-to-vehicle (V2V) links can reuse the
spectrum occupied by vehicle-to-infrastructure (V2I) links.
The approach leverages a fingerprint-based deep Q-network
(DQN) for solving this challenge, effectively learning a dis-
tributed cooperative strategy among multiple V2V agents.
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This approach results in enhancedV2I link capacity andV2V
link payload transfer rates.

Nonetheless, certain shortcomings remain in the sharing
model outlined in previous studies. For instance, the limita-
tion of allowing only one secondary vehicle (SV) to access
the spectrum when occupied by a primary vehicle (PV) [32]
fails to consider the QoS for PVs and SVs. The advantages
anddisadvantages of related literature are compared as shown
in Table 1. Some literature does not consider shared spectrum
nor QoS of vehicles. Some literature only considers a single
SV and a PV sharing model and only considers the QoS of
secondary vehicles. To address these limitations and enhance
vehicleQoS, this paper refines and expands the systemmodel
proposed in [31]. It permits multiple SVs to access the same
spectrum, while also comprehensively considering the QoS
of PVs and SVs. QoS in this context primarily comprises
throughput and transmission delay. This research introduces
a dynamic spectrum sharing scheme for cognitive radio-
enabled vehicular ad hoc networks (CR-VANETs) based on
multi-vehicle DRL. This innovative approach allows multi-
ple SVs to access the same channel, significantly contributing
to efficient spectrum utilization. In summary, the paper’s key
contributions are as follows, and the explanation of terms is
shown in Table 2.

(1) First, comparedwith fewer SVs, considering that more
SVs access the same spectrum can make full use of existing
spectrum resources. Secondly, as there are more and more
vehicles and spectrum resources are limited, it is necessary to
consider that as many vehicles as possible can communicate
from the perspective of shared spectrum.Model the spectrum
access ofmultiple SVs as a cognitive radio-enabled vehicular
ad hoc networks (CR-VANETs) spectrum sharing problem,
permitting multiple SVs to share the same channel by setting
an interference threshold to enhance spectrum utilization.

(2)Design separateQoS functions for PVs andSVs, ensur-
ing communication quality in a spectrum-sharing context.
This involves adjusting the SVs’ spectrum selection strategy
to maximize QoS. The average QoS of PVs and the average
QoS of SVs in a deep Q-network method with a modified
reward function (IDQN) algorithm can reach 2.4, which is
improved by 50% and 33% compared with the DQN algo-
rithm, and improved by 60% and 140% compared with the
Q-learning algorithm.

(3) Improve the reward function based on the QoS func-
tions of PVs and SVs to better integrate the proposed
algorithmwith the model. The average access success rate of
SVs in the IDQN algorithm proposed can reach 98%, which
is improved by18%comparedwith theQ-learning algorithm.
And the convergence speed of IDQN is 62.5% faster than the
DQN algorithm.

The rest of this paper is organized as follows. The system
model is detailed in Sect. 3. An IDQN-based spectrum access
algorithm for CR-VANETs is proposed by us in Sect. 4. Our

Table 1 Comparison of relevant literature

References Advantages Disadvantages

[22] Maximize network
utility

No consideration of QoS

[23] Considered QoS of SVs Only the QoS of SVs is
considered

[24] Considered SINR No consideration of QoS

[25] Taking into account the
throughput between
D2D

Only the QoS of D2D users
is considered

[30] Consider D2D user
throughput and
interference

Only the QoS of D2D users
is considered

[31] Introduced sharing
model and optimized
throughput and link
payload transfer rate

No consideration of QoS

[32] Shared models
considered

Only a model shared
between SVs and PVs was
considered, and QoS was
not considered

experimental results are given in Sect. 5. Conclusions are
made in Sect. 6. And a final extensions is made in Sect. 7.

3 Systemmodel

Previous studies on spectrum sharing for CR-VANETs have
mostly focused on scenarios involving a single PV sharing
a channel with a single SV or two SVs sharing a chan-
nel, leading to suboptimal spectrum resource utilization. To
address this limitation, our study considers scenarios where
PVs share channels with multiple SVs share channels. Fig-
ure 1 illustrates a CR-VANETs environment comprising M
PVs, M channels, N SVs, and one base station (BS). Fig-
ure 1 shows two communication scenarios sharing spectrum.
When PVs occupy spectrum for communication, SVs and
PVs accessing the spectrum interfere with each other in a
scenario where a PV shares a channel with multiple SVs.
And at the same time, interference also occurs between SVs.
When PVs do not occupy the spectrum, interference occurs
between SVs accessing the spectrum in a scenario where
multiple SVs share a channel. It is necessary to limit mutual
interference to ensure the communication quality of PVs and
SVs. Our analysis assumes the use of a single antenna for all
transceivers in the CR-VANETs environment. Additionally,
we presume that the spectrum with fixed transmission power
has already been pre-allocated by M PVs, where the mth
PV occupies the mth channel. In this network, both PVs and
SVs have the capability to communicatewith theBS. In order
to enhance spectrum utilization, SVs are allowed to utilize
authorized channels, enabling them to share resources with
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Table 2 Explanation of terms

Abbreviation of terms Definition of terms Full name of term

DSA Dynamic spectrum access is a technique by
which a radio system dynamically adapts
to the local radio spectrum environment by
determining the spectrum available at spe-
cific locations and at a specific time

Dynamic spectrum access

CR Cognitive radio technology studies how
secondary users with sensing capabilities
can intelligently utilize spectrum holes
without interfering with the communica-
tion quality of primary users

Cognitive radio

PU In cognitive radio communication systems,
users who have priority to use a certain
fixed frequency band are defined as Pri-
mary users

Primary user

SU In cognitive radio communication systems,
users equipped with sensing devices are
defined as secondary users

Secondary user

CVN Introducing CR technology into vehicular
network can effectively solve the problem
of spectrum resource shortage in vehicular
network

Cognitive vehicular networks

CIoV Introducing CR technology into Internet of
vehicles can effectively solve the problem
of spectrum resource shortage

Cognitive Internet of vehicles

CR-VANETs By applying cognitive radio technology
to vehicle-mounted ad hoc networks, cog-
nitive wireless vehicle-mounted ad hoc
networks can alleviate the problem of
spectrum resource scarcity and effectively
improve the spectrum resource utilization
of vehicle-to-vehicle communications

Cognitive radio-enabled vehicular ad hoc
networks

PVs and achieve higher channel capacity. This paper focuses
on ensuring optimal spectrum sharing for vehicular commu-
nication, particularlywhen the interference generated by SVs
is lower than that produced by the PV. The paper is structured
around the examination of two key scenarios as follows.

3.1 In a scenario where a PV shares a channel with
multiple SVs

This scenario is shown in Fig. 2, wheremultiple SVs and PVs
share the same channel. As can be seen from Fig. 2, when a
PV occupies the mth channel, other SVs and PVs accessing
the channel interfere with each other, and SVs also interfere
with each other. If the interference generated by the SV is less
than themaximum interference that the PVcanwithstand, the
SV accesses the channel successfully, otherwise the access
fails. First, to satisfy the interference without affecting the
normal communication of PVs, multiple SVs can gain access
to the PVs’ channel, given that they adhere to the maximum
allowable interference threshold ξm[m]. This criterion can be
succinctly denoted using the following formula.

N∑

n=1

In[m] ≤ ξm[m] (1)

where In[m] is defined as the interference to the PV gener-
ated by the n th SV accessing the m th channel. And it is
specifically expressed as the following formula.

In[m] = ρn[m]Pn[m]H∼
n [m] (2)

where ρn[m] is the binary spectrum allocation indicator.
ρn[m] = 1 is defined as the authorized channel of the mth
PV is occupied by the nth SV. Otherwise, ρn[m] = 0. and are
respectively the transmission power of the nth SV on themth
channel and the interference channel gain of the nth SV on
the mth channel.

In order to satisfy the interference temperature constraints,
the SINR of the PV in the mth channel and SVs in the mth
channel can be expressed as (3) and (4).
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Fig. 1 CR-VANETs communication scenario
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Fig. 2 A scenario where a PV shares a channel with multiple SVs

γm[m] = Pm[m]Hm[m]
B0N0 + ∑N

n=1 In[m] (3)

γn[m] = Pn[m]Hn[m]
B0N0 + Im,n[m] + In′

,n[m] (4)

where Pm[m] is denoted as the transmission power of the PV
occupying the mth channel. Hm[m] is denoted as the chan-
nel gain of the PV in the mth channel. B0 is defined as the
bandwidth of the channel. N0 is defined as the power spec-
tral density of the background noise in the channel. Hn[m]
is the channel gain of the nth SV accessing the mth chan-
nel. Im,n[m] represents the interference caused by the PV
occupying the mth channel to the nth SV occupying the mth
channel. And In′

,n[m] is defined as the total interference of
other SVs in the channel to the nth SV. The details are as the
following formula.

Im,n[m] = ρn[m]Pm[m]H∼
m [m] (5)

In′
,n[m] =

∑

n′ �=n

ρn′ [m]ρn[m]Pn′ [m]H∼
n′ [m] (6)

where H∼
m [m] corresponds to the interference channel gain

of the PV in the mth channel. ρn′ [m] is the binary spectrum
allocation indicator. ρn′ [m] = 1 is defined as the authorized

channel of the mth PV is reused by the n
′
th SV. Otherwise,

ρn′ [m] = 0. Pn′ [m] is the transmission power of the n
′
th SV

occupying themth channel, and H∼
n′ [m] denotes the interfer-

ence channel gain of the n
′
th SV occupying themth channel.

Then, the throughput of the PV in themth channel and SVs
in the mth channel can be obtained according to Shannon’s
theorem. The specific formulas are as (7) and (8).

Cm[m] = B0 log2(1 + γm[m]) (7)

Cn[m] = B0 log2(1 + γn[m]) (8)
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Fig. 3 A scenario where multiple SVs share a channel

Finally, in order to guarantee the QoS of the PV and SVs
in this channel, the QoS function QoSm[m] of the PV and the
QoS function QoSn[m] of SVs can be obtained according to
(7) and (8). And they are composed of the transmission delay
and throughput. The specific formulas are as (9) and (10).

QoSm[m] = θ
Em[m]
Rm[m] + ηCm[m] (9)

QoSn[m] = θ
En[m]
Rn[m] + ηCn[m] (10)

where θ and η are defined as the preference parameters of
the two terms, which are used to unify the units and balance
the weights. Em[m] and Rm[m] represent the load of the PV
transmission data and data transmission rate in themth chan-
nel, respectively. En[m] and Rn[m] represent the payload and
data transmission rate of the nth SV transmission data in the
mth channel, respectively.

3.2 In a scenario wheremultiple SVs share a channel

This scenario is shown in Fig. 3, where multiple SVs share
the same channel. As can be seen from Fig. 3, multiple SVs
interfere with each other when accessing the channel. If the
interference generated by the SV is less than the maximum
interference that the SV can withstand, the SV accesses the
channel successfully, otherwise the access fails. Under the
premise of satisfying the interference constraint, the SINR
of accessing the nth SV in the mth channel can be expressed
as the following formula.

γ
′
n[m] = Pn[m]Hn[m]

B0N0 + In′
,n[m] (11)

Multiple SVs can gain access to the PVs’ channel, given
that they adhere to the maximum allowable interference
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threshold ξn[m]. This criterion can be succinctly denoted
using the following formula.

N∑

n=1

I
′
n[m] ≤ ξn[m] (12)

Then, according to Shannon’s theorem, the throughput of
accessing the nth SV in the mth channel can be obtained as
the following formula.

C
′
n[m] = B0 log2(1 + γ

′
n[m]) (13)

Finally, the QoS function QoS
′
n[m] of the PV in this chan-

nel can be obtained as the following formula.

QoS
′
n[m] = θ

En[m]
Rn[m] + ηC

′
n[m] (14)

In this environment, the QoS functions of PVs and SVs
are designed to ensure the communication quality of vehicles
and improve the reliability of vehicle information transmis-
sion. the access failure rate of SVs can be reduced and the
spectrum utilization can be improved by designing a proper
reward function. Furthermore, the QoS of PVs and SVs can
be maximized of the method proposed in this paper. More
details are discussed in Sect. 4.

4 Spectrum access based on improved DRL

In the depicted VANETs spectrum access scenario illustrated
in Fig. 1, numerous SVs endeavor to utilize the constrained
spectrum resources. This intricate process can be modeled
as a multi-vehicle deep reinforcement learning (DRL) prob-
lem. DRL, a fusion of deep learning (DL) and reinforcement
learning (RL), offers a potent framework for effective imple-
mentation of the spectrum resource allocation mechanism.
DL is adept at resolving the modeling problem between
value functions and policies, while RL is used to effectively
define problemandoptimizes objectives.As can be seen from
Fig. 4, reinforcement learning mainly consists of environ-
ment, agent, current state, action selection, reward value and
new state. The specific learning process can be expressed as
follows.

First, in the current system environment, the agent per-
ceives the state of the current environment and obtains all
sensing results as a state set. Secondly, after obtaining the
sensing state, the agent selects actions based on the action
selection strategy. Then, after the action is selected, the state
of the environment changes. At the same time, the environ-
ment also feeds back a reward to the agent based on the action
chosen by the agent as away to judge the quality of the action.
And the environment state changes from the current state to

Fig. 4 The learning process of RL

the new state. Finally, after receiving the reward, the agent
combines the state and action to iteratively update the action
selection strategy. The multi-vehicle spectrum access prob-
lemmay be seen as a competitive game. But, it is transformed
into a mutual cooperative problem by designing different
rewards for all SVs in different situations for the overall net-
work performance. Each SV acquires experiences through
interactions within unknown communication environments,
with channel selection being influenced by these acquired
experiences.

This section unfolds in twodistinct segments. Thefirst part
proposed the improved reinforcement learning (IRL) algo-
rithm and designed the foundational elements of the model.
This encompasses defining the state and action spaces, aswell
as formulating a novel reward function. The design of this
reward function is primarily rooted in the objective function
of QoS established within this paper. In the second part, the
focus shifts to introduce the deep Q-learning algorithm. This
involves solving the mapping relationship between obser-
vations and value functions, and deducing an optimization
strategy.

4.1 Improved reinforcement learning

As illustrated in Fig. 5, the RL framework comprises both
the vehicle and the environment, which can dynamic interact
with each other. Throughout this interaction process, at time
t , the channel occupancy state in the CR-VANETs environ-
ment is denoted by snt and is observed by the nth SV. And a
channel is selected for access represented ant . SVs can con-
tinuously learn according to the environment, the optimal
action is selected, and finally the dynamic spectrum access
of the CR-VANETs is completed. The pivotal components
of the IRL model are outlined below.

4.1.1 State and state space

For CR-VANETs spectrum access, the agent can perceive the
external environment and generate its state based on its inter-
actions with the environment. This is specifically expressed
as follows.

st = {It [m], Ht [m], Tt [m], Et [m]}m∈M (15)
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Fig. 5 Vehicle-environment
interaction for RL

where It [m] =
{
In[m], Im,n[m], In′

,n[m]
}
represents the

total interference generated in the mth channel at time t .

Ht =
{
Hm[m], H∼

m [m], Hn[m], H∼
n [m], H∼

n′ [m]
}

m∈M rep-

resents the channel gain at time t . Tt [m] and Et [m] =
{Em[m], En[m]} represent the duration and load of SVs’
transmission information at time t , respectively. At differ-
ent time periods, different states are observed by each SV.
And the state space S is composed of all possible states. The
size of the state space is |S| = M ∗ N .

4.1.2 Set of action

In the CR-VANETs, a channel is chosen to be accessed by the
SV at time slot t . The state of the environment is observed by
the SV, and the action at at ∈ A is chosen according to policy
π . Policy π is defined as the mapping function from the state
space S to the action space A, and the action selection is
determined by the policy π in each state. And at represents
the selected channels, which can be expressed as follows.

at = m (16)

where m ∈ {0, 1, 2, . . .m, . . . , M}, m = 0 means that no
channel is selected. After the complexity of DQN and the
needs ofSVs are comprehensively considered, the casewhere
the vehicle does not take any action must be considered.
In different time periods, each SV takes different actions,
and the action space A is composed of all possible actions.
Therefore, the size of the action space |A| (i.e., the number
of different actions) can be expressed as follows.

|A| = M + 1 (17)

After an agent takes an action, the environment is affected
by that action. The state of the environment changes from
st to st+1, and an immediate reward rt+1 is fed back to the
agent. The details are as the following formula.

(st+1, at+1, rt+2, st+2) ←− (st , at , rt+1, st+1) (18)

4.1.3 Improved reward function

To identify the impact of selected actions on the system, the
reward function is defined as the weighted QoS of PVs and
SVs by us. Not just QoS or throughput related to agent. Since
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the algorithm needs to be combined with the model, the per-
formance of vehicle communication must be linked to the
algorithm. Because the paper is to ensure the communica-
tion service quality of the vehicle, the QoS of the vehicle is
set as the reward value of the algorithm. In this way, the QoS
of the vehicle is positively related to the reward value. There-
fore, the immediate reward rt are denoted as rt1, rt2 and rt3
respectively. The details are expressed as the following two
scenarios.

(1) In a scenariowhere a PV shares a channelwithmultiple
SVs, the reward function obtained by choosing SVs with
different actions are expressed as a, b and c below.

a. The QoS of both PVs and SVs needs to be consid-
ered in this scenario. When the interference generated by the
accessed SVs to the PV is less than the interference thresh-
old, the SVs are successfully accessed. The reward function
at time t is set as the following formula.

rt1 = λQoStm[m] + (1 − λ)QoStn[m] (19)

where λ ∈ [0, 1] is the weight factor. QoStm [m] represents
the QoS of the PV in the mth channel at time slot t . And
QoStm [m] represents the QoS of SVs occupying the mth
channel at time slot t .

b. When the interference generated by the accessed SVs
to the PV exceeds the interference threshold, the SVs are
access failed. Setting the reward value to a negative value is
equivalent to setting a penalty for SVs. The reward function
is set as the following formula.

rt2 = − {
λQoStm[m] + (1 − λ)QoStn[m]} (20)

c. If no channel is selected by SVs, the reward function is
set as the following formula.

rt3 = 0 (21)

(2) In a scenario where multiple SVs share a channel,
the reward function obtained by choosing SVs with different
actions are expressed as d, e and f below.

d. Because the channel is not occupied by PVs, only the
QoS of SVs needs to be considered in this scenario. When
the interference generated by the accessed SVs to the SV is
less than the interference threshold, the SVs are successfully
accessed. The reward function at time slot t is set as the
following formula.

rt1 = QoStn[m] (22)

e. When the interference generated by the accessed SVs
to the SV exceeds the interference threshold, the SVs are
access failed. Setting the reward value to a negative value is

equivalent to setting a penalty for SVs. The reward function
is set as the following formula.

rt2 = −QoStn[m] (23)

f . If no channel is selected by SV, the reward function is
set as the following formula.

rt3 = 0 (24)

In the realm of RL, it becomes imperative to account not
only for immediate rewards but also for the long-term aver-
age cumulative rewards. The average cumulative rewards
are defined as the cumulative sum of rewards earned by all
vehicles over a significant period of time. This consideration
holds particular significancewithin theCR-VANETs context,
where sustaining stable long-term rewards is instrumental
in securing the enduring success rate of secondary vehicle
access. Therefore, the ultimate goal of this paper is to obtain
long-term cognitive vehicle success access rates based on
the average cumulative rewards of optimized SVs. However,
within the CR-VANETs scenario, the absence of a definitive
final state within the environment results in the total reward
stretching to infinity. To address this quandary, we introduce
a discount factor γ , which allows us to regulate the weight-
ing of long-term rewards. This leads us to define the average
cumulative rewards 	n as the following formula.

	n =
∞∑

t=1

γ t−1rnt+1, (rt+1 ∈ rt1, rt2, rt3) (25)

where rnt+1 represents the reward value of the nth SV at dif-
ferent time t +1, γ ∈ [0, 1]. When γ is close to 1, long-term
rewards are considered more important by the agent. And
when γ is close to 0, the current reward becomesmore impor-
tant. The performance of the system is controlled in RL by
designing a reward function, and learning a policy to maxi-
mize the expected discounted reward is regarded as the goal.

4.2 Deep Q-learning algorithm

Many effective algorithms have been proposed to achieve
the goal of RL, and the Q-learning algorithm is currently one
of the commonly used algorithms. The problem of channel
selection for CR-VANETs is solved using Q-learning. How-
ever, if there are too many vehicles and channels, the vehicle
usingQ-learningmay not be able to select the optimal action.
The Q-value table for Q-learning is replaced by the neural
network in this section. The strategy π is optimized by Q-
learning using the Q-value. The Q-value is closely related to
the observed state st of the vehicle and the selected channel
action at , denoted as Q(st , at ). It can be approximated as the
expected total rewards for an SV choosing an action in state
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st . The action with the largest Q-value is chosen to update
the policy π by the SV. The Q-value is then updated using
the new policy. And this process is repeated until the Q-value
converges to the optimal Q-value Q∗. Once Q∗ is obtained,
the optimal strategy π∗ can be found. The iterative formula
of the Q-value is defined as the following formula.

Q(st , at ) ←− Q(st , at ) + α(rt+1+
γ max

at+1
Q(st+1, at+1) − Q(st , at ))

(26)

where α is denoted as the learning rate. In Q-learning, Q-
values are stored in a Q-value table, and the size of the
Q-value table is |A||S|. As the state-action space increases,
the size of the Q-value table also increase significantly. In
the spectrum sharing problem of SVs communication, the
state space |S| is large and uncertain. So, classical Q-learning
cannot be applied to solve the problem in the proposed
CR-VANETs environment. This problem can be effectively
solved by using a neural network. The neural network con-
sists of an input layer, a hidden layer, and an output layer,
as shown in Fig. 6. In CR-VANETs, the observed state of
SVs is considered as the input to the neural network, and
the Q-value of each action is outputted from the output layer
of the neural network through the hidden layer of the neural
network. smt represents the state of themth channel observed
by SVs at time t , and an represents the nth action taken.
Q-value tables are replaced by neural networks that can be
called Q-networks.

In the spectrum access problem for CR-VANETs, actions
at ∈ A are discrete and finite. The network structure of the
deep Q-network is shown in Fig. 6. The output of the Q-
network can be expressed as the following formula.

Qφ(st ) =
⎡

⎢⎣
Qφ(st , a1t )

...

Qφ(st , ant )

⎤

⎥⎦ (27)

where φ is denoted as the weight value in the Q-network.
Qφ(st ) refers to the Q-value output by the Q-network whose
weight is φ, and ant refers to the action taken by the nth
SV. The Q-network is trained to ensure that Qφ(st ) is close
to the true Q-value. And it is guaranteed to be close to the
real Q-value through learning. There are two problems in the
learning process. One reason is that the target is unstable,
and the target of parameter learning depends on the param-
eters themselves. The other reason is that there is a strong
correlation between training samples. Therefore, the DQN
algorithmneeds to be adopted to solve these two problems. In
order to solve the spectrum access problem of multiple SVs,
the DQN algorithm is improved into the IDQN algorithm
proposed in this paper. Specifically, the reward functions of
all SVs are designed according to the different QoS in dif-

Fig. 6 Structure of deep Q-network

ferent situations. Each SV takes an action according to the
policy π after sensing the environment state in each time
slot, and stores the action, environment state, reward value
and new environment state into the experience pool of rein-
forcement learning. In order to obtain the maximum reward
value, some samples are taken from the experience pool for
training at regular intervals, and SVs make optimal actions
based on the trained optimal strategy. In the long run, SVs
and PVs can successfully share channels to improve spec-
trum utilization. The learning process of IDQN is described
in Algorithm 1.

In the IDQN training process, the ε-greedy method is
adopted to fully explore the channel occupancy for SVs in a
CR-VANETs environment. The agent selects the action with
the largest Q-value with a probability of 1−ε, and randomly
selects an action from A with a probability of ε. Specifically,
it is denoted by the following formula.

at+1 =
{

argmaxa Q(st , at ), wi th probabili t y 1 − ε

Choose random action, wi th probabili t y ε
(28)

where at+1 represents the action taken by SVs in time slot
t + 1. argmaxa Q(st , at ) represents the action at with the
largest Q-value in state st . ε is a decimal number between 0
and 1. And the Q-value and strategy are iteratively updated
to gradually converge to the optimal strategy. Upon com-
pletion of training, the Q-value reaches convergence. Within
the spectrum access framework, actions taken by one SV
in the present time frame remain unknown to other SVs.
Consequently, multiple SVs might inadvertently reuse the
same channel, leading to increased interference resulting
from channel congestion. Excessive interference detrimen-
tally impacts communication quality, leading to reduced
rewards and hampering overall system performance. To mit-
igate this challenge, an approach is adopted where the effects
of an agent’s chosen actions on the environment are observed
by other vehicles across various time instances. This dynamic
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Table 3 Algorithm 1

Algorithm 1: The process of IDQN algorithm

Input: State space S, action space A, discount

rate γ , learning rate α

Output: Deep Q-network

1 Initialize simulation environment and

parameters about Q-networks;

2 Initialize replay memory D to capacity O;

3 Randomly initialize the weights φ of the

Q-network;

4 Randomly initialize the weights of the target

Q-network φ̂ = φ;

5 for episode = 1 : j do

6 Initialize state st for each n ∈ N ;

7 for step = 1 : i do
8 for n ∈ N

9 In state st , select action at with policy π ;

10 Take action at , observe the reward rt+1

and a new state st+1;

11 Save st , at , rt+1, st+1 into D;

12 Uniformly sample mini-batches from D;

13 yt = rt + γ maxat+1 Qφ̂ (st+1, at+1);

14 Train the deep Q-network with the loss

function Loss(φ) = (yt − Qφ(st , at ))2;

15 end for

16 Every C steps φ̂ ← φ;

17 end for

18 end for

Table 4 Parameter settings for communication environment

Parameter Environment 1 Environment 2

Number of PVs M 20 20

Number of SVs N 20 20,25,30

Transmit power of PV 40mW 40mW

Transmit power of SV 20mW 20mW

Carrier frequency 5.9Ghz 5.9Ghz

Bandwidth B0 108 Hz 108 Hz

Noise spectral density N0 10−8 mW/Hz 10−8 mW/Hz

observation of actions allows SVs to make decisions based
on their environmental perception, thereby mitigating the
occurrence of multiple vehicles simultaneously occupying
a single channel, thereby enhancing rewards and avoiding
undue channel congestion.

In summary, the spectrum access predicament within sce-
narios involving multiple SVs can be effectively addressed
through the utilization of the IDQN algorithm introduced in

Table 5 Algorithm parameter settings

Parameter Environment 1 and 2

Number of neuron 64

Memory size 500

Batch size 100

Epsilon update period 200

Total episode 30,000

Discount rate γ 0.9

Learning rate α 0.001

θ , η and λ 0.5, 0.5 and 0.5

this paper. A comprehensive performance analysis is elabo-
rated in Sect. 5.

5 Simulation analysis

In this section, we evaluate the performance of the IDQN-
based dynamic spectrum access method proposed, compar-
ing it with DQN and Q-learning. Overall, the proposed
IDQN method can guarantee maximum QoS for commu-
nication quality of PVs and SVs. Furthermore, the IDQN
method’s strong adaptability to dynamic environments is ver-
ified through simulation.

5.1 Simulation analysis

The spectrum access problem in the IDQN-based CR-
VANETs communication environment is studied in this
paper. To verify the superiority and adaptability of the IDQN
method in dynamic environments, the following two environ-
ments are studied by us. Environment 1 is a communication
environment inwhich the number of channels is fixed, but the
number of SVs remains constant. Environment 2 is a com-
munication environment in which the number of channels is
fixed, but the number of SVs changes. In the two communi-
cation environments, the bandwidth is set to 1× 108 Hz, and
the noise spectral density is 1 × 10−8 mW/Hz. The neuron
value of the IDQN method is set to 64, and the learning rate
is 0.001. The specific parameter settings are shown in Table
4 and Table 5 below. As shown in Figs. 7, 8 and 9, the effect
of the IDQN algorithm is compared when the parameter λ is
set to 0.3, 0.5 and 0.7. It can be found that when λ is 0.5, the
proposed algorithm has the best effect.

Figure 7 shows the average access success rate obtained
by the IDQN algorithm when λ is different values. Figure 8
shows the average cumulative reward value obtained by the
IDQN algorithm when λ is different values. Figure 9 shows
the averageQoS value obtained by the IDQNalgorithmwhen
λ is different values. It can be seen from these three figures
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Fig. 7 Access success rate for
different λ

that when λ is 0.5, the convergence speed and convergence
value of the IDQN algorithm are optimal. In particular, the
convergence speed is the fastest, because the reward function
set in this paper equally considers the QoS values of PVs
and SVs. Regardless of whether λ is high or low, one of
PVs and SVs is not fully considered. This affects the better
combination of IDQN algorithm and model. For example,
when λ is 0.3, the system’s average cumulative reward takes
more into account theQoSofPVs, causingSVs to ignore their
own QoS values in order to obtain higher rewards. When λ

is 0.7, the system’s average cumulative reward considers the
QoS of SVs more, causing SVs to ignore the QoS value of
PVs in order to get higher rewards.

5.2 Performance analysis

5.2.1 Environment 1

The dynamic spectrum access for multiple SVs in CR-
VANETs is discussed in this section. In a real environment,
multiple vehicles simultaneously access the spectrum for
communication. So, in the current situation, a CR-VANETs
scenario with 20 channels and 20 SVs is considered. And this
part of the training time took 4546s. The feasibility of the
model established and the objective function set in this paper
has been verified from the following six aspects, which are
average access success rate, average access failure rate, aver-
age cumulative reward, average QoS, average QoS of PVs,
and average QoS of SVs. And as shown in Figs. 10, 11, 12,

13, 14 and 15, the DQN method and Q-learning method are
compared with the proposed IDQNmethod in order to verify
the effect of the proposed IDQN method.

As shown in Fig. 10, it can be clearly seen that the aver-
age access success rate of the IDQN algorithm is higher
than that of the DQN algorithm and the Q-learning algo-
rithm. After the training times reach about 9000, the best
average access success rate convergence value of 98% was
obtained by SVs using the IDQN algorithm, while the Q-
learning algorithm only achieved an average access success
rate of 80%. Because the IDQN algorithm is set with dif-
ferent reward functions based on the QoS obtained by the
SV’s access. In order to obtain a superior reward value, all
vehicles choose to access the optimal spectrum, thus avoid-
ing access failures and improving the average access success
rate. As shown in Equation (29), when the number of chan-
nels remains unchanged, the higher the access success rate of
each SV, the higher the average access success rate obtained
by the final IDQN algorithm. This allows SVs to choose
the optimal action in order to obtain higher reward values.
Although the final convergence value of the DQN algorithm
achieved 97%, the convergence speed is very slow. The Q-
learning algorithm can reach the optimal value in a short time
but falls into a local optimumas the training time increases. In
addition, the effect of IDQN is worse than that of Q-learning
before training 6000 times. Because a good policy was not
trained by the IDQNmethod to select a more correct channel
before training 6000 times. However, IDQN has been fully
trained, and the optimal channel can be selected for access
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Fig. 8 Average cumulative
rewards for different λ

after training 6,000 times. The action with the largest Q-
value selected by Q-learning according to the Q-value table
is not the optimal action. Therefore, the average access suc-
cess rates of the IDQN and Q-learning methods are equal at
6000 times. And the formula is expressed as follows.

AS = 1

bs

bs∑

bs=1

1

k

k∑

k=1

ksuccess (29)

where ksuccess represents the sum of successful accesses in a
single training. bs represents the batch size, and k represents
the number of SVs.

As can be seen fromFig. 11, the average access failure rate
of the IDQN algorithm is lower than that of the DQN algo-
rithmand theQ-learning algorithm in the casewheremultiple
vehicles access the same channel considered in this paper.
Because channel state information can be quickly learned by
SVs using the IDQN algorithm to avoid sharing failures. The
details are as follows. After training 9,000 times, the aver-
age access failure rate rapidly converges to 2% of the IDQN
algorithm, while the Q-learning algorithm only achieved an
average access failure rate of 20%. Because the IDQN algo-
rithm is set with different reward functions based on the QoS
obtained by the SV’s access. This allows SVs to avoid col-
lisions for higher reward values. Although the final access
failure rate of the DQN algorithm is also very low, the con-
vergence speed is very slow. The Q-learning algorithm can
reach the optimal value in the fastest time, but the conver-
gence value becomes worse as the training time increases.

But before training 6000 times, the IDQNmethod is not fully
trained, and the optimal channel cannot be selected by SVs.
Therefore, the effect of IDQN was worse than that of Q-
learning previously. However, the failure rate of spectrum
sharing between SVs and PVs, as well as spectrum shar-
ing among multiple SVs, is effectively reduced because the
IDQN algorithm is fully trained after training for 6000 times.
So the effect of IDQN is clearly better. And the formula is
expressed as follows.

AF = 1

bs

bs∑

bs=1

1

k

k∑

k=1

k f ailure (30)

where k f ailure represents the sum of failed accesses in a
single training.

As shown in Fig. 12, first of all, the average reward value
obtained by the IDQN algorithm is higher than that of the
DQN algorithm and the Q-learning algorithm in the CR-
VANETs environment after training 9000 times. In the end,
the average cumulative reward value obtained by the IDQN
algorithmwas 2.7, while theDQNandQ-learning algorithms
only obtained 2.0 and 0.4. Because the failure rate of spec-
trum sharing between SVs and PVs, as well as spectrum
sharing between multiple SVs, can be effectively avoided by
SVs using the IDQN algorithm to achieve the fastest con-
vergence speed and highest reward value. The final average
cumulative reward value obtained by the DQN algorithm
is also very high, but the convergence speed is very slow.
The Q-learning algorithm can obtain the optimal average
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Fig. 9 Average QoS for
different λ

cumulative reward value in the fastest time, but the final
convergence value is very low. Secondly, the reward values
obtained by the IDQN and DQN algorithms are equal when
training 3000 times. Because both algorithms’ strategies are
in the exploratory stage. Finally, when training 6000 times,
the action selection strategy of the Q-learning method was
changed for the first time. However, the effect of Q-learning
on selecting actions by looking up the Q-value table of large
states is not good. It can be seen that the highest reward
and fastest convergence speed can be obtained by applying
the proposed IDQN algorithm to the CR-VANETs spectrum
sharing model established in this paper.

In order to ensure the communication quality of all vehi-
cles, the optimization of QoS should also be considered in
the process of spectrum access. The average QoS obtained
by the IDQN algorithm is higher than that of the DQN algo-
rithm and the Q-learning algorithm, as shown in Fig. 13.
According to formula (31), the final average QoS obtained
by the IDQN algorithm is 4.9, while the DQN andQ-learning
algorithms only obtain 3.4 and 2.5. Since the IDQN algo-
rithm is set with different reward functions based on the QoS
obtained by the SV’s access. This allows SVs to choose the
optimal action in order to obtain higher QoS. The average
QoSfinally obtained by theDQNalgorithm is also very good,
but the convergence speed is very slow. The QoS obtained by
the Q-learning algorithm is very stable, but the final conver-
gence value is relatively low. Since the best channel can be
selected by the SV using the IDQNmethod, the highest QoS
is obtained by vehicles. Therefore, the average QoS obtained

by the IDQN algorithm begins to converge when training
9000 times, while the average QoS obtained by the DQN
algorithm begins to converge when training 21000 times.
In addition, the same QoS was obtained by the DQN and
Q-learning when the training times reached approximately
6000. Because SVs randomly select channels to access using
the DQN algorithm at this time. It can be seen from this per-
formance index that the proposed IDQN algorithm is applied
to the spectrum sharing model for CR-VANETs established
in this paper, ensuring the communication quality of vehicles.

QoS = 1

bs

bs∑

bs=1

(
1

M

M∑

m=1

QoSm + 1

N

N∑

n=1

QoSn

)
(31)

where QoSm represents the QoS of the mth PV in a single
training. QoSnrepresents the QoS of the nth SV in a single
training.

As shown in Figs. 14 and 15, respectively, both the QoS of
PVs and the QoS of SVs should be considered in this paper.

The relationship between the average QoS of PVs and the
training time of SVs in CR-VANETs is shown in Fig. 14. It
can be seen from the figure that the IDQN algorithm outper-
forms both the DQN algorithm and the Q-learning algorithm
in terms of convergence speed and the average QoS conver-
gence value for PVs. The final average QoS of PVs obtained
by the IDQN algorithm is 2.4, while the DQN andQ-learning
algorithms only obtain 1.6 and 1.5. In order to obtain the
optimal reward value and avoid sharing failure with PVs, the
interference caused by SVs is relatively small, so PVs obtains
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Fig. 10 Access success rate for
different algorithms

the optimal average QoS. As shown in formula (32), if the
number of channels remains unchanged, the greater the QoS
obtained by every PV, the greater the QoS of the average SVs
obtained by the final IDQN algorithm. There is no sudden
change in the entire training process of the DQN algorithm,
but the convergence speed is very slow. The training process
of theQ-learning algorithm changes relatively slowly, but the
values fluctuate high and low and the final convergence value
is relatively low. And when training 9000 times, IDQN has
learned the optimal policy and started to converge. The pro-
posed IDQN algorithm guarantees the average QoS of PVs.
And the formula is expressed as follows.

QoSPV = 1

bs

bs∑

bs=1

1

M

M∑

m=1

QoSm (32)

As shown inFig. 15, first, the averageQoSof SVsobtained
by the IDQNalgorithm converges to the optimal value during
training 9000,which is higher than that of theDQNalgorithm
and the Q-learning algorithm. The final average QoS of SVs
obtained by the IDQN algorithm is 2.4, while the DQN and
Q-learning algorithms only obtain 1.6 and 1.0. In order to
obtain the optimal reward value and avoid sharing failure,
the interference caused by SVs is relatively small, so the
SVs themselves obtain the optimal averageQoS.As shown in
formula (33), if the number of channels remains unchanged,
the greater theQoS obtained by every SV, the greater theQoS
of the average SVs obtained by the final IDQN algorithm.
The entire training process of the DQN algorithm has no

mutations, but the convergence speed is very slow. The Q-
learning algorithm can obtain the optimal value quickly after
training, but the final convergence value is low. Secondly, the
average SVs QoS of the DQN algorithm remains unchanged
before training 6,000 times. From 6,000 to 21,000 times,
the average SVs QoS rapidly rises to convergence. Finally,
the QoS of the SVs obtained through the Q-learning method
reached its highest level when it was trained 6000 times. And
the formula is expressed as follows.

QoSSV = 1

bs

bs∑

bs=1

1

N

N∑

n=1

QoSn (33)

5.3 Environment 2

In the scenario where the number of channels and the number
of SVs is fixed at 20, the proposed IDQN algorithm out-
performs the DQN algorithm and the Q-learning algorithm.
This is evident from the various indicators displayed in the
simulation diagram above. The performance change of the
IDQN algorithm is analyzed in the following simulation sec-
tion when the number of channels is fixed at 20, and the
number of SVs varies from 20 to 25 and 30. The specific
details are shown in Figs. 16, 17, 18, 19, 20 and 21.

Overall, it can be seen from Fig. 16 that the convergence
speed and average access success rate of the IDQN method
decrease as the number of SVs increases. Specifically, when
the number of SVs increases from20 to 25, the average access
success rate of the IDQN algorithm drops from 98% to 87%
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Fig. 11 Access failure rate for
different algorithms

due to the increased probability of multiple SVs selecting
the same channel. And when the number of SVs increases
to 30, the average access success rate of the IDQN algo-
rithm drops to 77%. Therefore, there are more cases where
SVs in the channel generate excessive interference, result-
ing in a decrease in the average access success rate of SVs.
When the number of SVs increases to 30, this phenomenon
becomes more apparent, resulting in increased interference
caused by SVs. Finally, it is evident that when the number
of SVs increases from 25 to 30, the average access success
rate of the IDQN method remains high at 77%, with only a
slight decrease of about 11%. The strong applicability of the
IDQN method in dynamic environments is also verified by
this figure.

Figure 17 illustrates a trend in which the convergence
speed of the IDQN method slows down and the average
access failure rate increases as the number of SVs increases.
Specifically, when the number of SVs increases from 20 to
25, the average access failure rate of the IDQN algorithm
increases from 2% to 11% due to too many SVs selecting
the same channel. When the number of SVs increases to 30,
the average access failure rate of the IDQN algorithm rises
to 20%. When the number of SVs increases from 20 to 25,
multiple SVs end up selecting the same channel for access,
resulting in channel access failure for these SVs. When the
number of SVs increases to 30, the probability of channel
access failure for SVs also increases. But when the number
of SVs increases from 20 to 25, the average access failure

rate of the IDQN method only increases by approximately
9%.

Figure 18 shows that the average cumulative reward value
obtained by SVs in the CR-VANETs environment deterio-
rates as the number of SVs increases. First, when the number
of channels is 20 and the number of SVs increases from
20 to 25, the average cumulative reward value obtained by
the SVs decreases. Specifically, when the number of SVs
increases from 20 to 25, the average cumulative reward value
of the IDQN algorithm drops from 2.7 to 2.0.When the num-
ber of SVs increases to 30, the average cumulative reward
value of the IDQN algorithm drops to 1.3. As the number
of SVs increases, the probability of spectrum sharing fail-
ure between SVs and PVs and between multiple SVs also
increases. Therefore, the reward value obtained by SVs is
low. When the number of SVs increases to 30, the probabil-
ity of failure for SVs accessing the channel also increases,
resulting in a decrease in the average cumulative reward value
obtained. However, when the number of SVs increases from
20 to 25, the final average cumulative reward by the IDQN
method decreases by only approximately 12%.

As can be seen from Fig. 19, the average QoS obtained by
the IDQNmethod decreases as the number of SVs increases.
When the number of SVs increases from20 to 25, the average
QoS of the IDQN algorithm drops from 4.9 to 4.1. When the
number of SVs increases to 30, the average QoS of the IDQN
algorithm drops to 3.0. Specifically, when the number of SVs
increases from 20 to 25, there is an increase in the number of
SVs accessing the same channel. As a result, the total inter-

123



L. Chen et al.

Fig. 12 Average cumulative
rewards for different algorithms

Fig. 13 Average QoS for
different algorithms
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Fig. 14 Average QoS of PVs
for different algorithms

Fig. 15 Average QoS of SVs
for different algorithms
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Fig. 16 Average access success
rate (M = 20, N = 20, N = 25,
N=30)

Fig. 17 Average access failure
rates (M = 20, N = 20, N = 25,
N = 30)
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Fig. 18 Average cumulative
rewards (M = 20, N = 20, N =
25, N = 30)

Fig. 19 Average QoS of
vehicles (M = 20, N = 20, N =
25, N = 30)
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Fig. 20 Average QoS of PVs (M
= 20, N = 20, N = 25, N = 30)

Fig. 21 Average QoS of SVs (M
= 20, N = 20, N = 25, N = 30)
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ference on the same channel increases, leading to a decrease
in the SINR of PVs. When the number of SVs increases to
30, the total interference accessing the same channel also
increases, leading to a decrease in SINR for PVs. This situ-
ation ultimately results in a lower average QoS received by
vehicles. But when the number of SVs increases from 20 to
30, the average QoS of the IDQN method decreases by only
approximately 38%.

As shown in Fig. 20, the average QoS of PVs in the CR-
VANETs scenario decreases as the number of SVs increases.
When the number of SVs increases from20 to 25, the average
QoS of PVs by the IDQN algorithm drops from 2.4 to 2.1.
When the number of SVs increases to 30, the average QoS of
PVs by the IDQN algorithm drops to 1.6. The increase in the
number of SVs leads to more SVs accessing the same chan-
nel. Such a phenomenon results in increased interference to
PVs, which decreases the SINR of PVs. Thus, the conver-
gence value of the average QoS of the final PVs decreases.
But when the number of SVs increases from 20 to 25, the
average QoS of PVs decreases by only approximately 12%.

It can be seen from Fig. 21 that the convergence speed
and convergence value of the IDQN method deteriorate as
the number of SVs increases. When the number of SVs
increases from 20 to 25, the average QoS of SVs by the
IDQN algorithm drops from 2.4 to 2.0. When the number of
SVs increases to 30, the average QoS of SVs by the IDQN
algorithm drops to 1.4. Because multiple SVs access the
same channel. Therefore, the interference between the SVs
becomes larger, resulting in a decrease in the convergence
value of the average SVs’ QoS. However, when the number
of SVs increases to 1.5 times, the QoS of SVs only decreases
by about 40%. The strong applicability of the IDQN method
in dynamic environments is further verified by this figure.

6 Conclusions

Aiming at the problem of spectrum resource shortage, a spec-
trum resource sharingmodel based onmulti-SVs is proposed
in the CR-VANETs scenario, where a PV and SVs share
spectrum and multiple SVs share spectrum. It satisfies the
interference constraint condition that the interference gener-
ated by SVs accessing the same channel is less than PVs or
SVs. In order to achieve the purpose of improving spectrum
utilization, the QoS functions of PVs and the QoS functions
of SVs are designed separately.An IDQNmethod is proposed
to solve the problem of low success rate of SVs accessing the
channel. The failure probability of SVs accessing the spec-
trum can be effectively reduced by the IDQN method with
designing four reward functions related to QoS functions for
SVs. In order to prove the effectiveness of this algorithm, it
was compared with the DQN algorithm and Q-learning algo-
rithm under the Python platform. The results show that when

compared to the other two methods, not only the dynamic
environment can be better adapted to the proposed IDQN
method, but also the average access success rate and average
QoS performance of SVs can be improved. In particular, the
average access success rate of SVs has reached 98%,which is
improved by 18% compared with the Q-learning algorithm.
And the convergence speed is 62.5% faster than the DQN
algorithm. At the same time, the average QoS of PVs and
the average QoS of SVs in the IDQN algorithm can reach
2.4, which is improved by 50% and 33% compared with the
DQN algorithm, and improved by 60% and 140% compared
with the Q-learning algorithm. Moreover, when the number
of SVs in the communication environment increases from 20
to 30, the average access success rate of the IDQN method
only decreases by 20%. And the average QoS of PVs only
dropped by 33%.

7 Extensions

Although the proposed IDQN algorithm to improve the QoS
and success rate of SVs spectrum access in the established
CR-VANETs model, the impact of the distance between
vehicles on spectrum access is not carefully considered in
this paper. Since there is often a distance between driving
vehicles in real life, and the distance changes in real time.
Communication quality is certainly affected by the distance
between vehicles, so the distance between vehicles will be
taken into account in spectrum access in future work. And in
complex CR-VANETs scenarios, the IDQN effect decreases.
In futurework,wewill considerwhether the IDQNalgorithm
can achieve better results by changing the network structure
in more complex CR-VANETs scenarios. For example, the
IDQN algorithm adds a neural networkwith a hidden layer to
the Q-learning algorithm. So whether increasing the number
of hidden layers can adapt to more complex environments
requires further research. In addition, the improved IDQN
algorithm is compared with advanced professional methods
in the field to study the advantages and disadvantages of this
method.
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