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Abstract
The Internet of things (IoT) has become a cornerstone of the fourth industrial revolution. IoT sensor devices in the network are
provisioned with limited resources, such as little processing speed, minimal computing capacity, and less power. Furthermore,
IoT devices are battery-powered, which cannot provide battery sufficiently to some applications resulting in an energy scarcity
problem. Clustering is an efficient method in IoT networks to save energy. Nodes can coordinate communication by selecting
an optimal cluster head (CH) within the cluster and transmitting information to a central node or sink. The CH minimizes
energy consumption associated with communication overhead and extends the overall lifespan of the network by facilitating
coordination between clusters and the central server. Many existing optimization techniques have proposed CH selection to
improve the network’s lifespan but all the existing algorithms on CH selection are not practical due to the long convergence
time. This research paper proposes a novel fuzzy-based Harris Hawks Optimization (FHHO) algorithm that chooses optimal
CH consideringResidual energy (RER) and distance between sink and node. The fitness function is evaluated using fuzzy logic
over maximization and minimization network parameters. Extensive experimentations were conducted to test and validate the
performance of proposed FHHO algorithm on MATLAB 2019a tool. And, the results stated that the proposed method FHHO
has better results as compared to other CH selection techniques, namely, PSO-ECHS, FIGWO, and GWO-C, in network
lifespan by 18–44% and throughput by 5–20%.
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1 Introduction

Internet of Things (IoT) is a revolutionary innovation that
has attracted increasing research interest in academia and
industry in recent years [1–4]. IoT encompasses embedded
system technologies that use wireless or wired connections
as well as sensors, actuators, and physical objects that com-
municate with one another via internet [5–8]. According to
various forecasts, more than 75 billion devices will be uti-
lized in real time applications by 2025 [9–11]. Sensor nodes
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play a significant role in networks that can be operated with-
out human interaction [12–15]. The sensor nodes are mainly
used in IoT for industrial purposes to transfer collected data.
IoT creates the ecosystem to achieve enhanced efficiency by
communicating and sharing information with other devices.
The IoT applications include the smart grid, smart lighting,
smart door, self-driven vehicles, smart parking, smart wear-
able, smart farming, industrial automation, etc. [16–21].

Wireless Sensor Networks (WSNs) deploy nodes inde-
pendently and spatially to monitor the environment or track
real-time conditions. The network is created with various
physical sensor nodes deployed randomly in the network area
to collect scalar information. WSNs benefit from a low cost,
compact size, and ease of deployment, making them one of
the most effective technologies for real-time applications.
Energy consumption of sensor nodes become critical issue
in design ofWSNs. The fundamental function of theWSN is
to exchange collected data to the sink for analysis [22–25].
People lives can be improved with smart WSN technolo-
gies. WSNs is an enabling technology that can be applied in
environmental monitoring, smart building, healthcare, pre-
cision agriculture and animal tracking, etc. Nevertheless,
some WSNs contain a massive number of nodes, which
are challenging to manage collectively. Therefore, an effi-
cient algorithm is required to manage energy resources of
nodes and improving network duration. Moreover, the WSN
can be changed by external causes or a network system
designer, subsequently affecting the network routing, local-
ization, delay, Quality of Service (QoS), etc. as such, WSNs
must be often redesigned due to its dynamic nature [26–29].

Routing plays a vital role in resource-constrained net-
works like WSN and IoT. Routing is the process of trans-
ferring data from one place to another. Due to redundant
data transmission to sink by specific applications such as
environmental and temperature monitoring [30–34], cluster-
ing can be used to overcome this problem. Cluster creation,
CH election, and route formation are the three steps of the
clustering protocol, whereby choosing the right CH is crucial
to enhance a network’s life. The cluster formation technique
reduces energy consumption and increases network lifetime
bymanaging the energy utilization of sensor nodes. The clus-
tering process is achieved by dividing the deployment area
into various sub-deployment areas. Each cluster consists of
a group of sensor nodes and a CH node. CH collects and
sends data from sensor nodes to sink nodes. TheCH selection
methods include a single routing metric, composite routing
metric, as well as probability basis, mathematical models,
and optimization algorithms [35].

Optimization algorithms are performed until the opti-
mal solution is found. Some popular optimization algo-
rithms are Evolutionary Algorithm (EA), Genetic Algorithm
(GA), Fruit Fly Optimization (FFO), Butterfly Optimiza-
tion Algorithm (BOA), Harmony Search Algorithm (HSA),

Firefly Algorithm (FA), etc. Particularly, the meta-heuristics
approach is often used to obtain the optimal solution for CH
selection [36] and, thus, increase the network’s lifetime [37,
38].

This paper focuss on optimalCH selection to optimize net-
work lifespan through a proposed novel fuzzy-based Harris
HawksOptimization (FHHO) algorithm.Thefitness function
is calculated to choose the right CH in the network by apply-
ing fuzzy logic over constraints RER and Distance. Thus, the
FHHO algorithm improves the overall network performance
by means of throughput, increasing the network’s lifespan
and effective energy consumption.

Objectives of the paper
The objectives of the paper are:

• To conduct an extensive analysis on related works towards
CH selection that applied numerous optimization algo-
rithms to improve network lifespan and throughput;

• Topropose a novel FHHOalgorithm to identify the optimal
CH for increasing network longevity. And the fitness value
of Harris Hawks was computed using RER and distance;

• To test and validate the proposed algorithm on diverse
parameters like: calculating number of dead nodes, total
residual energy, and throughput;

• And, to compare the proposed FHHO with other existing
techniques such as GWO-C, PSO-ECHS and IFGWO.

Organization of paper The rest of the paper is organized
as: Sect. 2 presents related work. Section 3 describes system
preliminaries. Section 4 highlights proposed methodology.
Section 5 enlightens results and discussion. Section 6 elabo-
rates analysis. And, finally, Sect. 7 concludes the paper with
future scope.

2 Related works

In recent years, many researchers had proposed various
routing algorithms in IoT. Some IoT applications require
cluster-based routing protocols to increase the lifespan of a
network. The clustering protocol selects the appropriate CH
from a set of nodes in the network using the CH selection
method. The existing CH selection optimization algorithms
in IoT are discussed in this section.

Agrawal et al. [39] suggested a new optimization algo-
rithm called grey wolf optimizer-based clustering (GWO-C)
for CH selection in WSNs. In addition, the intra-cluster
distance, RER, and sink distance are used to compute the
objective function. The simulations were conducted in sev-
eral scenarios, and GWO-C was contrasted to FIGWO and
PSO-ECHS. And, the results state that GWO-C is better in
terms of throughput and network lifespan as compared to

123



Energy-efficient cluster head selection in wireless sensor networks-based internet of things… 121

other methods. However, it required more time to compute
the objective function and for coverage during the CH rota-
tion.

Mehta andSaxena [40] proposed aMulti-objectiveCluster
Head based Energy-aware Optimized Routing (MCH-EOR)
algorithm in aWSN,mainly concentrating on traffic overload
closest to the sink. MCH-EOR includes the following three
processes for data transmission: clustering, selection of CH,
and identification of the route. First, by using the division
rule, the cluster was created. Second, the CH was selected
according to probability. Third, the route identification was
performed using the SailfishOptimizationAlgorithm (SOA).
Then, SOA efficacy was compared to GWO, GA, PSO, and
ALO. The power consumption by the MCH-EOR algorithm
and the number of live nodes were 21.9% and 24.4%, respec-
tively, compared to GWO. The GWO approach extended the
network lifespan effectively, but the CH selection was not
optimal.

Karthick andPalanisamy [41] presented a novelKrillHerd
(KH) algorithm for choosing the right CH inWSNs, focusing
primarily on lifespan, network coverage, and data aggrega-
tion. The KH algorithm extended the network’s lifetime as
compared to the existing approaches, namely, LEACH and
GA. Although the KH algorithm increased the lifetime of the
network in WSN, the CH was usually a stationary node that
gradually lost all its energy.

Poluru and Ramasamy [42] proposed a new clustering
algorithm in IoT, which was divided into four stages: clus-
tering, division and fusion, CH selection, and transmission of
data. First, by using k-means algorithm the cluster was cre-
ated. Second, the split and merge operation were performed
in the cluster. Third, the Cyclic Rider Algorithm (C-ROA)
determined CH in IoT networks. The data fusion tree was
produced at the end of the procedure for data transmission.
The effectiveness of the suggested algorithm was assessed in
terms of the alive node, normalised energy, latency, and cost
function measurements. The results showed that the C-ROA
algorithm outperform the FF, WOA, ROA, and GWO algo-
rithms by increasing alive nodes by 6–21% and reducing the
delay by 6–8%. However, CH selection process needs to be
enhanced by modifying the C-ROA approach.

Ahmad [43] Introduced optimization algorithm termed
Artificial Bee Colony (ABC) for right CH selection inWSN.
Specifically, first, the cluster was created using the K-means
method, followed by the CH chosen by applying the ABC
algorithm. The fitness function played a vital part in the
optimization algorithm in the CH selection process. In the
objective function calculation, the developed ABC approach
considers the network parameters, namely Distance and
RER. The developed ABC algorithm extended network life-
time by 10–20% as compared to E-LEACH, LEACH, and
PSO-C. However, the ABC approach can perform well in a
small network only.

Alazab et al. [36] developed a fitness-weighted averaged
modified Rider Optimization Algorithm (ROA) for the selec-
tion of CH in IoT, aiming to identify the appropriate CH from
the network nodes, reduce delay, and enhance energy effi-
ciency. The objective function considered various network
parameters, namely delay, distance, and energy, to choose the
right CH in the adapted network. The modified ROA obtains
two sets of solutions: the first set maintains the average value
of follower and bypass riders, and the second set includes the
average over-taker and attacker rider’s value. The proposed
FA-ROA scheme extended network lifetime by 4–22% com-
pared toABC,PSO,GSA,GA,ROA, andMFO.However,As
the number of nodes in the network increased, the FA-ROA
increased the load and delay, taking more time to compute
the fitness value using the parameters load, temperature, data
traffic, and energy.

Pathak [44] proposed a WSN protocol called the Profi-
cient Bee Colony Clustering Protocol (PBC-CP) in order to
improve the network’s lifespan. Considering that clustering
is a suitable option to save energy, the WSN’s clustering
process relies heavily on the selection of CH. The objective
function considers various network parameters, namely the
number of nodes, node energy, and distance of a node from
the sink for the CHSelection process. The proposed PBC-CP
performance measured with PSO, PSO-HAS, and LEACH,
which showed to increase the network lifetime by 5–20%.
However, the CH selection was not optimal due to its prob-
ability selection.

Zhao et al. [50] proposed an algorithm termed Improved
Greywolf optimization for selecting optimal CH in WSN.
The novel algorithm fitness-based Improved GreyWolf opti-
mization (FIGWO) was proposed. The fitness value was
evaluated based on distance and energy to choose the right
CH in the cluster. Each node transmission range was recal-
culated when the CH node is selected. Thus, both energy
consumption and average transmission distancewas reduced.
The simulation of FIGWO was conducted using the MAT-
LAB tool. The performance of FIGWO in terms of stability
period was improved by 31.5 and 57.8% as compared to SEP
and LEACH protocols. However, the CH selection was not
optimal for massive networks.

In the reviewed works, some optimization strategies for
selecting the best CH in IoT networks have been presented.
However, these studies presented some limitations, which are
described as follows. Nodes closer to the sink deplete energy
faster due to inappropriate CH selection. Many optimization
strategies require more time to compute the fitness function.
Some optimization techniques are only suited for small-scale
networks, while some algorithms choose the CH based on
probability. This study selects CH in IoT networks by using
the FHHO approach. The objective function is calculated
over RER and Distance parameters to improve the network’s
performance.

123



122 S. Sennan et al.

Table 1 CH selection approaches

S. no Authors Method/algorithm for CH
selection

Advantages Limitations

1 Agrawal et al. [39] Grey Wolf Optimizer-based
clustering (GWO-C)

Increased the throughput and
lifespan of the network

It is required more time to
compute the objective
function

2 Mehta and Saxena [40] Multi-objective Cluster Head
based Energy-aware
Optimized Routing
(MCH-EOR)

Increased the network lifetime CH selection process is not
beneficial

3 Karthick and Palanisamy
[41]

Krill Herd (KH) algorithm Increased the network lifetime CH was usually a stationary
node that gradually lost all
its energy

4 Poluru and Ramasamy [42] Cyclic Rider Algorithm
(C-ROA)

Improved data transmission
lifetime and latency

Improvements to C-ROA are
needed to enhance the CH
selection process

5 Ahmad [43] Artificial Bee Colony (ABC) Increased the network lifetime
by 10–20%

It is not optimal for large
networks

6 Alazab et al. [36] fitness-weighted averaged
modified Rider Optimization
Algorithm (ROA)

Increased the network lifetime
by 4–22%

It requires more time for
objective function
computation by using the
parameters, load,
temperature, data traffic, and
energy

7 Pathak [44] Proficient Bee Colony
Clustering Protocol (PBC-CP)

Network lifetime is improved
by 5–20%

CH selection was not optimal
due to its probability
selection

8 Zhao et al. [50] Fitness based Improved
grey-wolf optimization
(FIGWO)

Increased the network stability
15–20%

it is not optimal for large
networks

Table 1 summarizes the approaches, enhancements, and
limitations of the various optimization algorithms proposed
for CH selection.

3 System preliminaries

3.1 Networkmodel

The network is composed of N nodes that are randomly dis-
persed throughout the network. The sink can be placed in
three distinct locations: middle, corner, and outside. The pro-
posed FHHO includes two operations: cluster creation and
optimal CH selection [2]. The sink runs the CH selection
algorithm, which has an extensive processing and memory
capacity. The FHHO algorithm is used to choose the CH.
The Euclidean distance creates clusters in the later phases.
In Fig. 1, the network model is shown.

The following assumptions are made in the proposed
FHHO algorithm:

• The energy of every node is the same.
• All nodes are fixed and are distributed at random.

Fig. 1 Network model

• The distance between nodes in the network is calculated
by using Euclidean distance.

• The sink can be placed in three distinct locations: middle,
corner, and outside.
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Fig. 2 Energy model

3.2 Energymodel

Figure 2 depicts the FHHOenergymodel using the simplified
channel model [45]. The FHHO algorithm can use either a
free space ormulti-fading channelmodel. The channelmodel
is defined by distance between transmitter and the receiver.
The energy used by node c as it delivers data packets to node
d in relation to the distance dist(c,d) is determined using
Eq. (1):

ET X (n, dist) = n × Eelec + n × ε × dist(c, d)α

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n × Eelec + n × ε f r dist(c, d)2

wheredist(c, d) < dist0
n × Eelec + n × εmpdist(c, d)4

wheredist(c, d) ≥ dist0

(1)

The following dist0 threshold value is evaluated using
Eq. (2):

dist0 =
√

ε f r

εmp
(2)

The amount of energy necessary to receive n bits from
node x to node y is calculated with Eq. (3):

ERX (dist) = dist × Eelec (3)

4 Proposedmethodology: novel fuzzy-based
Harris hawks optimizations (FHHO)
algorithm for cluster head selection

The proposed novel fuzzy-based Harris Hawks Optimiza-
tion (FHHO) algorithm selects the best CH in IoT. The CH

Table 2 Nomenclature of FHHO algorithm

Notation Definition

RER Residual Energy

HH Harris Hawk

Srand (t) Randomly selected HH from population

S(t) Current position of HH

Srabbit (t) Rabbit’s position in the iteration t

LB Lower bound

UB Upper bound

Sm(t) Average position of the HH’s population in the
current iteration

Ener Escaping energy

Ener0 Initial state of HH’s energy

T Maximum number of iterations

J Random value

�S(t) The distance between position of the rabbit and
present HH’s position in t

selection process is mainly based on a fitness function. The
fitness function is calculated by applying fuzzy logic over
the network parameters such as RER and distance. Then, the
sink is executed by the CH selection algorithm, which has
higher computing environment than sensor nodes. A clus-
ter is formed after selecting the CH based on the Euclidean
distance. Table 2 presents the nomenclature of the FHHO
algorithm.

4.1 CH selection process

As mentioned, the primarily goal of the proposed FHHO
algorithm, population-based nature-inspired optimization
algorithm [46], is to increase the network’s lifespan. Fuzzy
logic is used in the FHHO to determine the fitness function
using RER and distance. The algorithm also includes Harris’
Hawks (HH) cooperation and chasing style (HH), where HH
cooperatively attacks the prey from different directions in
the intelligent attack strategy. Generally, HH exhibits chas-
ing behavior based on the situations, which is divided into
three phases: (1) exploration, (2) shift from exploration to
exploitation, and (3) exploitation.

4.1.1 Exploration phase

Before an attack, the HH must wait, observe, and monitor
to find the prey in the site. Comparatively, in a network,
every node represents a candidate solution, where the best
candidate solution acting as the prey in each iteration, t. For
instance, the HH perches in various locations and use one of
two strategies to locate a rabbit. In the first strategy, the posi-
tion of the HH perch relies on the prey and other HH family
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members. For this strategy, the random parameter q value
lies between 0 and 0.5 (q < 0.5). In the second strategy, the
HH perches on random tall trees, where the random param-
eter q is above or equal to 0.5 (q ≥ 0.5). These strategies are
computed using Eq. (4):

S(t + 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Srand(t) − rand1
×|Srand(t) − 2 × rand2 × S(t)| whereq ≥ 0.5

(Srabbit (t) − Sm(t))

−rand3×(LB + rand4×(UB − LB)) whereq < 0.5
(4)

where Srabbit (t) indicated position of rabbit’s in the iter-
ation t; S(t + 1) specifies the HH vector position in the
next iteration t; S(t) represents HH’s current position; rand2,
rand3,rand4 and q are random numbers; the upper and lower
specify UB and LB of the respective HH’s; Srand(t) denotes
theHHdetermined at random from the population; and Sm(t)
indicates the average position of the HH’s population in the
current iteration.

The suggested FHHO algorithm produces the LB and UB
at random within the home range locations of the group. The
first strategy is generated using a random location and various
other HH families. The rabbit’s position in the current itera-
tion, HH average position, LB, and UB generate the second
strategy. The average position of the HH is calculated with
Eq. (5):

Sm(t) = 1

N
×

N∑

i=1

Si (t) (5)

where Si (t) is each HH location and N indicates the total
network nodes.

4.1.2 Exploration translation from exploration
to exploitation

The proposed FHHO algorithm may switch from the explo-
ration phase to the exploitation phase based on the escape
energy of Prey’s. In general, the energy of the prey declines
when attempting to escape. The prey’s energy is computed
using Eq. (6):

Ener = 2 × Ener0 ×
(

1 − t

T

)

(6)

where Ener , t, Ener0, and T indicate the prey’s escape
energy, current iteration, initial state of its energy, and max-
imum iterations, respectively.

At each iteration, the Ener0 value is adjusted at random
from − 1 to 1. Generally, the rabbit becomes physically

weaker when If Ener0 falls from 0 to − 1 and becomes
stronger when Ener0 increases from 0 to 1. Generally, the
escape energy (Ener) value dynamically decreases during
the iteration. If the escape energy |Ener | ≥ 1 is greater than
one, the HH seeks a new part of the site for the prey. There-
fore, it continues to perform the exploration phase. If the
escape energy |Ener | < 1, the FHHO algorithm shifts from
the exploitation to exploration phase.

4.1.3 Exploitation phase

During this phase, the HH makes a surprise attack on a
specific prey, which tries to escape. Here, four different chas-
ing strategies soft besiege, hard besiege, Soft Besiege with
Progressive Rapid Dive and Hard Besiege with Progressive
Rapid Dive are plausible in the proposed FHHO algorithm.
The prey is continually trying to flee the attack scenario, in
which the variable r is a number between 0 and 1 that is cho-
sen at random. The prey has a greater probability of escaping
if the r value is between 0 and 0.5 (r < 0.5) and a worse
chance if the r-value is greater than or equal to 0.5 (r ≥ 0.5).
The HH kills the prey if it tries to escape. In real situations,
the HH attempts to get closer to the prey, and all HH will
surprise attack the prey together. The prey will continue to
lose escape energy after a few minutes. Finally, the HH will
catch the weak prey by initiating besiege process. Depend-
ing on the prey’s escape energy, either a hard or soft besiege
will be performed. Specifically, a soft besiege occurs if the
escape energy value is |Ener|≥ 0.5, while a hard besiege is
performed if |Ener|< 0.5.

4.1.3.1 Soft besiege If r ≥ 0.5 and |Ener | ≥ 0.5, the prey
has more escape energy and will attempt to flee from the
HH. The HH ill then encircle the prey softly and enforce a
surprise attack when the prey exhausts its energy. The soft
besiege behavior is modeled and is provided in Eq. (7), (9):

S(t + 1) = �S(t) − Ener × |J × Srabbit (t)| − S(t) (7)

�S(t) = Srabbit (t) − S(t) (8)

As observed in Eq. (9), the jump J value changes at ran-
dom with each iteration to simulate the nature of the prey
directions.

J = 2(1 − rand5) (9)

where�S(t)measures the distance from the current iteration
t of the HH location to the vector position of the rabbit or
prey’s. J indicates the jump on the escaping behavior; and
rand5 is a random value from 0 and 1.
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4.1.3.2 Hard besiege If r ≥ 0.5 and |Ener | < 0.5, the prey
is tired and has little escape energy. After that, the HH cir-
cles the chosen victim in a hard behavior before performing
the surprise attack. The current location of the HH in this
circumstance is computed with Eq. (10):

S(t + 1) = Srabbit (t) − Ener × |�S(t)| (10)

4.1.3.3 Soft besiege with progressive rapid dive If r < 0.5
and |Ener | ≥ 0.5, the prey has enough escape energy, but
the HH will perform the soft besiege before the surprise
attack. The prey’s escape pattern follows the Lévy flight (LF)
idea,wherebyLF imitates the prey’s actual zigzagmisleading
motion during the escape phase. The HH forms a team and
makes a series of dives around the prey, constantly adjusting
their position and direction in relation to the prey. The FHHO
algorithm selects the best dive with respect to the prey. If the
HHwishes to catch the prey, a soft besiege is performed, then
the next location of the HH is computed with Eq. (11):

Y = Srabbit (t) − Ener × |J × Srabbit (t) − S(t)| (11)

Later, the HH compares its previous dive with respect to
the prey. If it was not correct, the HH performs erratic and
quick dives to catch the prey. The HH dives according to the
LF patterns, which is calculated in Eq. (12):

Z = Y + Ds × LF(D) (12)

where Ds is a size of dimension 1 ×D, which is a random
vector; LF indicates the Lévy flight function [18]; and D is
the dimension of the network space.

The fitness function is calculated in below section. In
the gentle besiege, the position of the HH is updated using
Eq. (13):

S(t + 1) =
{
Y i f Fitness(Y ) < Fitness(S(t))
Z i f Fitness(Z) < Fitness(S(t))

(13)

4.1.3.4 Hard besiege with progressive rapid dive If r < 0.5
and |Ener | < 0.5, the prey isweak and unable to escape from
one place to another. As a consequence, the HH established a
hard besiege before surprise attacking the prey. This strategy
is similar to the soft besiege with respect to the prey, but the
HH tries to come as close as possible to the prey on average.
The fitness function is computed in the below subsection. The
hard besiege with rapid dive is calculated using Eq. (15):

S(t + 1) =
{
Y i f Fitness(Y ) < Fitness(S(t))
Z i f Fitness(Z) < Fitness(S(t))

(14)

whereY andZ are computed usingEqs. (15) and (16), respec-
tively:

Y = Srabbit (t) − Ener × |J × Srabbit (t) − Sm(t)| (15)

Z = Y + Ds × LF(D) (16)

where Sm(t) is calculated from Eq. (5).

4.1.4 Fitness function computation

A fitness function gives the optimal solution by evaluating
the given input. In the FHHO algorithm, the fitness function
is determined using fuzzy logic over network parameters,
namely RER and distance, which are both maximization and
minimization network parameters. For effective CH selec-
tion,we can apply fuzzy logic to compute the fitness function.

4.1.4.1 Residual energy (RER) RER represents the quantity
of energy that network nodes contain and is determined by
Eq. (17):

RER(Ni ) = Ei−Ed

Ei
(17)

where Ni indicates the ith node; Ei is the node’s initial
energy; and Ed represents the node’s drained energy.

4.1.4.2 Distance The distance between the sink and the ith
node in the network is evaluated using Euclidean distance.
Its calculation is given in Eq. (18):

Distance(sink, Ni ) =
√
√
√
√

n∑

i=1

(Sink − Ni )
2 (18)

where Ni indicates the ith node.
The Fuzzy Inference System (FIS) has two essential

processes: fuzzification and defuzzification. In the FHHO
algorithm, the fuzzification process gets the crisp input, i.e.,
RER and distance. The fuzzification process includes lin-
guistic variables, which hold the value in the form of words
or sentences, and a member function that is used to evaluate
the linguistic variables [47]. The pictorial representation of
FIS is given in Fig. 3.

The trapezoidal and triangle membership functions are
used in the network parameters for computing the fitness
function. The real-valued membership function of the posi-
tion vector S is represented as a triangle curve. There are three
parameters, namely i1, j1 and k1. The parameters i1 and k1
are the base of the triangle, and j1 is the peak value of the tri-
angle. The generic representation of the triangle membership
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Fig. 3 Fuzzy inference system

Fig. 4 Membership function of RER

function is provided in Eq. (19):

μR1(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 S ≤ i1
S−i1
j1−i1

i1 ≤ S ≤ j1
k1−S
k1− j1

j1 ≤ S ≤ k1
0 k1 ≤ S

(19)

If the random vector S has a trapezoidal distribution, its
membership function has a true (i.e., measurable) value. The
parameters i2 and j2 define the curve’s lower limit, while k2
and l2 define its upper limit. The trapezoidal membership is
generically represented in Eq. (21):

μR2(S) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 S ≤ i2
S−i2
j1−i2

j2 ≤ S ≤ k2
1 j2 ≤ S ≤ k2
k2−S
k1− j2

k2 ≤ S ≤ l2
0 l2 ≤ S

(20)

Figure 4 depicts the membership function of RER, which
ranges from 0.1 to 1. Linguistic variables are Low, Medium,
and High. Medium indicates the triangle membership func-
tion, while Low and High refer to trapezoidal membership.

Figure 5 illustrates the distance membership function,
which ranges 0.1–1. The linguistic variables also include
High, Low, and Medium that indicate the trapezoidal mem-
bership function.

Figure 6 depicts the quality of the CH membership func-
tion, which ranges 0–1. The function gives an output variable
with five linguistic variables: Very good, Excellent, Good,

Fig. 5 Membership function of distance

Fig. 6 Quality of CH membership function

Table 3 Fuzzy rules

RER Distance Quality of the CH

Low Low Good

High High Good

Low High Awful

Medium High Bad

Medium Medium Good

Medium Low Very good

High Medium Very good

High Low Excellent

Low Medium Bad

Bad, and Awful. The membership function is being utilized
as a triangle.

The FHHO algorithm generates the nine rules, which are
created based on the linguistic variables and membership
functions. Table 3 shows the number of fuzzy rules, where
the quality of CH values range between 0 and 100. The
fuzzy number rules are entirely dependent on the applica-
tion requirements. In the FHHO algorithm, the If–Then rule
is used to check the condition, and the Mamdani model is
applied to evaluate the rules [48].

Defuzzification is an important operation in FIS since it
converts the representation into numerical values about the
CH. For defuzzification in FHHO, the center of area approach
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Fig. 7 Workflow of FHHO
algorithm

is utilized, which can be seen in Eq. (21).

COA(S) = ∫μR(S)SdS

∫ μR(S)dS
(21)

whereµR(S) denotes the output membership function; COA
(S) is the defuzzified output variable; S is the output fuzzy
variable; and R is a fuzzy region.

Figure 7 depicts the workflow of CH selection process
using FHHO strategy.

Algorithm 1 provides the proposed FHHO algorithm for
CH selection.
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Fig. 8 Cluster formation

4.1.5 Cluster formation

The cluster is formed by grouping all nearby nodes to the
CH. The distance between CH and its neighbor is computed
using Euclidean distance [48], as given in Eq. (22):

Distance(CH , Ni ) =
√
√
√
√

n∑

i=1

(CH − Ni )
2 (22)

where Ni indicates the ith node. In Fig. 8, the cluster forma-
tion with CH is shown.

5 Results and discussions

The performance of the proposed FHHO approach was
verified with similar algorithms, namely PSO-ECHS [49],
FIGWO [50], and GWO-C [39]. The simulation was accom-
plished in MATLAB 2019a, which included a total of 100
nodes randomly distributed throughout a network area of
100 × 100 m and 10 CHs. All nodes had the same begin-
ning energy of 0.5 J. The simulation was conducted in three

Table 4 Simulation Specifications

Parameter Value

Number of nodes 100

Network area 100 × 100 m

Cluster heads 10

Tool MATLAB2019a

Network area number of 100 × 100 m

Initial energy 0.5 J

Sink 1

Sink locations Center, corner and outside

Percentage of CH’s 10%

Amplifier coefficient (q < q0) 10pj/bit/m3

Energy for data aggregation EDA 5nj/bit/m4

Amplifier coefficient (q ≥ q0) 0.0013pj/bit/m4

Maximum network round 1500

Fig. 9 Number of dead nodes with center location of sink node

Fig. 10 Number of dead nodes with corner location of sink node

different scenarios based on the sink locations: in the center,
corner, and outside. Each scenario was ran 10 times, with the
average value being included in the performance evaluation
metrics. The values of the simulation specifications are listed
in Table 4.

5.1 Number of dead nodes

The network lifetime is an important performance metric
that is calculated by the number of nodes that dies during
a given round. The sink node in the scenario 1 was posi-
tioned at the center. Figure 9 depicts the connection between
the number of dead nodes and the number of rounds. It is
observed that the number of first dead nodes in PSO-ECHS,
FIGWO, GWO-C, and FHHO was 523, 697, 756, and 920,
respectively. Table 5 demonstrates the average results of sce-
nario 1. The overall performance of the proposed FHHO is
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Fig. 11 Number of dead nodes with outside location of sink node

Table 5 Number of dead nodes vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 0 0 0 0

100 0 0 0 0

200 0 0 0 0

300 0 0 0 0

400 0 0 0 0

500 0 0 0 0

600 3 0 0 0

700 20 0 0 0

800 40 2 0 0

900 60 10 0 0

1000 95 19 15 10

1100 97 20 40 15

1200 98 40 80 30

1300 98 95 93 90

1400 99 98 95 91

1500 100 100 96 92

compared against similar algorithms regarding the number of
dead nodes. The number of dead nodes increased while the
number of iterations increased. It is also noted that FHHO
enhanced the network lifespan by 44, 25, and 18% when
compared to PSO-ECHS, FIGWO, and GWO-C. Fast con-
vergence during theCH rotation and accurate fitness function
calculation is mainly responsible for this result.

In scenario 2, the sink was located at the corner. Figure 10
depicts the number of nodes that died this location. It is
observed that the 423, 620, 810 and 901 nodes died in PSO-
ECHS, FIGWO, GWO-C, and FHHO, respectively. Table

Table 6 Number of dead nodes vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 0 0 0 0

100 0 0 0 0

200 0 0 0 0

300 0 0 0 0

400 0 0 0 0

500 50 0 0 0

600 90 0 0 0

700 96 7 0 0

800 96 20 0 0

900 99 50 3 0

1000 100 80 20 10

1100 100 90 45 25

1200 100 93 85 75

1300 100 95 92 90

1400 100 97 98 92

1500 100 99 98 95

Table 7 Number of dead nodes vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 0 0 0 0

100 0 0 0 0

200 80 0 0 0

300 100 25 0 0

400 100 60 0 0

500 100 70 2 0

600 100 80 20 0

700 100 90 30 20

800 100 91 55 50

900 100 95 75 70

1000 100 96 80 75

1100 100 96 85 80

1200 100 97 92 85

1300 100 97 94 90

1400 100 99 98 95

1500 100 100 99 98

6 demonstrates the average results of scenario 2. The over-
all performance of the proposed FHHO is compared against
similar algorithms regarding the number of dead nodes. The
number of dead nodes increased while the number of iter-
ations increased. It was also seen that FHHO enhanced the
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Fig. 12 Total residual energy with center location of sink node

network lifetime by 54, 22, and 11%when compared to PSO-
ECHS, FIGWO, and GWO-C, respectively.

In scenario 3, the sink was located at outside the network.
In Fig. 11, 423, 620, 810, and 901 nodes died in PSO-
ECHS, FIGWO, GWO-C, and FHHO, respectively. Table
7 demonstrates the average results of scenario 3. The over-
all performance of the proposed FHHO is compared against
similar algorithms regarding the number of dead nodes.
The number of dead nodes increased while the number of
iterations increased. In addition, FHHO enhanced the net-
work lifetime by 71, 60, and 28% compared to PSO-ECHS,
FIGWO, and GWO-C, respectively.

5.2 Total residual energy

As one of the prominent performance evaluation metrics, in
IoT, total residual energy indicates the quantity of remain-
ing energy in the nodes in a particular round. The sink
node in scenario 1 was positioned at the center, the total
residual energy in FHHO was high in all rounds compared
to other PSO-ECHS, FIGWO, and GWO-C, as seen in
Fig. 12. It is also noted that the total residual energy in PSO-
ECHS, FIGWO, GWO-C, and FHHO was 2, 7, 8, and 10 J
respectively, for 1000 network rounds. The proposed scheme
demonstrated better performance in terms of residual energy
compared against similar algorithms as shown in Table 8
(Scenario 1). As the number of iterations increased, the RER
of the node decreased. The network parameters for the fit-
ness computation, RER, and distance, aremainly responsible
for the higher energy of FHHO. Therefore, it is evident that
distance plays a significant impact on the sink.

Figure 13 depicts the total residual energy when sink is
located at the corner (scenario 2). As seen, the total residual
energy in FHHO was higher in all rounds when compared to
PSO-ECHS, FIGWO, and GWO-C. The proposed scheme
demonstrated better performance in terms of residual energy

Table 8 Total residual energy (J) vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 50 50 50 50

100 48 49 49 49

200 40 43 44 47

300 30 38 39 45

400 25 32 34 40

500 18 28 29 32

600 14 22 23 25

700 10 18 20 22

800 5 15 17 19

900 4 9 10 15

1000 2 7 8 10

1100 0 5 7 8

1200 0 2 3 5

1300 0 2 2 3

1400 0 0 0 2

1500 0 0 0 0

Fig. 13 Total residual energy with corner location of sink node

compared against similar algorithms as shown in Table 9
(scenario 2). As the number of iterations increased, the RER
of the node decreased. The total residual energy in PSO-
ECHS, FIGWO, GWO-C, and FHHP was determined to be
2, 3, 5, and 7 J, respectively, for 1000 network rounds.

In the scenario 3, the sink node is located at outside the
network. According to Fig. 14, the total residual energy in
FHHOwas higher in rounds than that in the other algorithms.
The proposed scheme demonstrated better performance in
terms of residual energy compared against similar algorithms
as shown in Table 10 (scenario 3). As the number of iterations
increased, the RER of the node decreased. the total residual
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Table 9 Total residual energy (J) vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 50 50 50 50

100 48 48 49 49.5

200 35 43 45 45

300 25 38 40 42

400 15 32 35 39

500 8 25 27 29

600 4 18 25 27

700 2 12 18 20

800 0 8 12 14

900 0 6 8 10

1000 0 3 5 7

1100 0 0 3 5

1200 0 0 2 3

1300 0 0 0 2

1400 0 0 0 0

1500 0 0 0 0

Fig. 14 Total residual energy with outside location of sink node

energy in PSO-ECHS, FIGWO, GWO-C, and FHHP was 1,
2, 3, and 5 J, respectively, for 1000 network rounds.

5.3 Throughput

The throughput specifies how many data packets the sink
has successfully received rely on RER and network lifetime.
Figure 15 shows the packets received by the sinkwith respect
to the sink’s position. In the PSO-ECHS, FIGWO, GWO-
C, and FHHO algorithms, the sink received 2.3 × 104, 3.2
× 104, 3.8 × 104 and 4.2 × 104 packets when located at

Table 10 Total residual energy (J) vs number of rounds

Number of
rounds

PSO-ECHS FIGWO GWO-C FHHO

0 50 50 50 50

100 38 45 48 49

200 5 35 43 44

300 2 18 47 38

400 2 8 25 27

500 2 5 13 15

600 2 4 10 12

700 2 3 7 10

800 0 2 5 7

900 0 2 4 5

1000 0 2 3 5

1100 0 2 2 5

1200 0 2 2 4

1300 0 0 2 3

1400 0 0 0 2

1500 0 0 0 0

Fig. 15 Packets received by the Sink vs. Sink position

the center, 2.8 × 104, 3.1 × 104, 3.7 × 104 and 3.8 × 104

packets when at the corner, and 2.1 × 104, 3 × 104, 3.5 ×
104 and 3.7× 104 packets when located outside the network,
respectively. It can be observed that when the sink received
a higher number of packets when located in the center as
shown in Table 11. In this location, all nodes in the cluster
can easily communicate with the sink.

6 Analysis

The proposed FHHO approach is simulated and compared
with existing systems showing better lifetime and through-
put in the network. The simulation was run in three different

123



132 S. Sennan et al.

Table 11 Number of packets received (J) vs Sink position

Sink position PSO-ECHS FIGWO GWO-C FHHO

Center 23,000 32,000 38,000 42,000

Corner 28,000 31,000 37,000 38,000

Outside 21,000 30,000 35,000 37,000

scenarios with the sink located in various positions across
the network, including the center, corner, and outside. It
is concluded that the sink placement plays a vital role in
data collection as well as the entire network’s performance.
According to the scenarios discussed above, placing the sink
in the center is more effective for improving network lifespan
and throughput. Additionally, the proposed FHHO technique
was executed at the sink and selected CH more effectively
compared to the other optimization algorithms. The fitness
functions are determined using fuzzy logic based on distance
and RER network properties. Thus, the FHHO improved
the network lifetime by 18–44% and throughput by 5–20%.
However, the proposed FHHO algorithmwas applied only to
a static network environment and is suitable for only single
and multi-objective problems.

7 Conclusion and future scope

Conserving energy in the context of IoT is a complex
challenge due to the interconnection of IoT devices with
resource-constrained devices. In addition, the battery source
that powers IoT devices in most IoT applications cannot be
charged; therefore, energy is a valuable resource. Thus far,
clustering has proven to be the best method to save energy
in IoT networks. However, The existing CH selection algo-
rithms experience prolonged convergence due to the unstable
balance between exploration and exploitation, two global
search constraints. To solve these problems, this work pro-
poses a novel FHHO algorithm for choosing optimal CH
in network. The fitness functions are determined using fuzzy
logic based on distance and RER network properties. Herein,
the sink was positioned in three various locations, includ-
ing the center, corner, and outside the network, to determine
the optimal location for CH selection. The FHHO method
enhanced network lifespan by 18–44% and throughput by
5–20% when the sink is positioned at the network’s cen-
ter. The performance of the FHHO algorithm is improved
comprehensively in various scenarios using homogeneous
sensor nodes. However, a few challenges are observed dur-
ing the simulation, such as the FHHO approach working well
in environments with homogeneous sensor nodes and its cur-
rent architecture unable to manage scenarios with multiple
node failures.

In the near future, it is planned to enhance the proposed
FHHO algorithm by further increasing the network lifespan
via implementation in real-time scenarios and also to com-
bine FHHO with other algorithms to improve other aspects,
such as throughput, network lifetime, latency, and packet
delivery ratio. In addition, there are plans to implement the
FHHO algorithm in a real-time environment.
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Računarstvo i Komunikacije, 60(3), 340–348.

42. Poluru, R. K., & Ramasamy, L. K. (2020). Optimal cluster head
selection usingmodified rider assisted clustering for IoT. IETCom-
munications, 14(13), 2189–2201.

43. Ahmad,T. (2020).EnergyEC:Anartificial bee colonyoptimization
based energy efficient cluster leader selection for wireless sen-
sor networks. Journal of Information and Optimization Sciences,
41(2), 587–597.

44. Pathak, A. (2020). A proficient bee colony-clustering protocol to
prolong lifetime of wireless sensor networks. Journal of Computer
Networks and Communications, 2020(1), 1236187.

45. Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasub-
bareddy, S., Chilamkurti, N., & Nam, Y. (2019). Energy and delay
aware data aggregation in routing protocol for Internet of Things.
Sensors, 19(24), 5486.

46. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M.,
& Chen, H. (2019). Harris hawks optimization: Algorithm and
applications. Future generation computer systems, 97, 849–872.

47. Lata, S., Mehfuz, S., Urooj, S., & Alrowais, F. (2020). Fuzzy clus-
tering algorithm for enhancing reliability and network lifetime of
wireless sensor networks. IEEE Access, 8, 66013–66024.

48. Panchal, A., & Singh, R. K. (2021). EHCR-FCM: Energy efficient
hierarchical clustering and routing using Fuzzy C-Means for wire-
less sensor networks.Telecommunication Systems, 76(2), 251–263.

49. Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm
optimization based energy efficient cluster head selection algorithm
forwireless sensor networks.Wireless networks, 23(7), 2005–2020.

50. Zhao, X., Zhu, H., Aleksic, S., & Gao, Q. (2018). Energy-efficient
routing protocol for wireless sensor networks based on improved
greywolf optimizer.KSII Transactions on Internet and Information
Systems (TIIS), 12(6), 2644–2657.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Dr Sankar Sennan received the
M.E. degree from Anna Univer-
sity and the Ph.D. degree from
VIT University, Vellore, India,
in 2019. He is currently working
as an Assistant Professor with
the Sona College of Technology,
Salem. He has published various
articles in international journals
and conferences. His research
interests include the IoT, WSNs,
and machine learning.

Dr Somula Ramasubbareddy
received the Ph.D. degree in
computer science and engi-
neering from VIT University,
Vellore, India, in 2022. He was
a Postdoctoral Research with
the Department of Information
and Communication, Sunchon
National University, South Korea,
in 2024. His academic and
research achievements have
earned him a place among the
top 2% of scientists globally, a
recognition bestowed upon him
by Elsevier and Stanford Univer-

sity. He is currently an Assistant Professor with the Department of
Information Technology, Vallurupalli Nageswara Rao Vignana Jyothi
Institute of Engineering and Technology, Hyderabad. He has more
than 40 publications in reputed journals and conferences. His research
interests include mobile cloud computing, the IoT, machine learning,
and edge computing.

Dr Rajesh Kumar Dhanaraj
is a distinguished Professor at
Symbiosis International (Deemed
University) in Pune, India. Before
joining Symbiosis International
University, he served as a Profes-
sor at the School of Computing
Science & Engineering at Galgo-
tias University in Greater Noida,
India. His academic and research
achievements have earned him
a place among the top 2% of
scientists globally, a recognition
bestowed upon him by Elsevier
and Stanford University. He

earned his B.E. degree in Computer Science and Engineering from
Anna University Chennai, India, in 2007. Subsequently, he obtained
his M.Tech degree from Anna University Coimbatore, India, in 2010.
His relentless pursuit of knowledge culminated in a Ph.D. in Com-
puter Science from Anna University, Chennai, India, in 2017. He has
authored and edited over 60 books on various cutting-edge technolo-
gies and holds 23 patents. Furthermore, he has contributed over 150
articles and papers to esteemed refereed journals and international
conferences, in addition to providing chapters for several influential
books.

Dr. Anand Nayyar received
Ph.D (Computer Science) from
Desh Bhagat University in 2017
in the area of Wireless Sensor
Networks, Swarm Intelligence
and Network Simulation. He
is currently working in School
of Computer Science-Duy Tan
University, Da Nang, Vietnam
as Professor, Scientist, Vice-
Chairman (Research) and
Director- IoT and Intelligent
Systems Lab. A Certified Pro-
fessional with 125+ Professional
certifications from CISCO,

Microsoft, Amazon, EC-Council, Oracle, Google, Beingcert, EXIN,
GAQM, Cyberoam and many more Published more than 200+

123



Energy-efficient cluster head selection in wireless sensor networks-based internet of things… 135

Research Papers in various High-Quality ISI-SCI/SCIE/SSCI Impact
Factor- Q1, Q2, Q3, Q4 Journals cum Scopus/ESCI indexed Journals,
80+ Papers in International Conferences indexed with Springer,
IEEE and ACM Digital Library, 50+ Book Chapters in various
SCOPUS/WEB OF SCIENCE Indexed Books with Springer, CRC
Press, Wiley, IET, Elsevier with Citations: (Google Scholar): 14500+,
H-Index: 64 and I-Index: 228; (Scopus): 7500+; H-index: 47.
Member of more than 60+ Associations as Senior and Life Member
like: IEEE (Senior Member) and ACM (Senior Member). He has
authored/co-authored cum Edited 60+ Books of Computer Science.
Associated with more than 600+ International Conferences as Pro-
gramme Committee/Chair/Advisory Board/Review Board member.
He has 18 Australian Patents, 15 German Patents, 4 Japanese Patents,
40 Indian Design cum Utility Patents, 13 UK Patents, 1 USA Patent,
3 Indian Copyrights and 2 Canadian Copyrights to his credit in the
area of Wireless Communications, Artificial Intelligence, Cloud
Computing, IoT, Healthcare, Drones, Robotics and Image Processing.
Awarded 48 Awards for Teaching and Research—Young Scientist,
Best Scientist, Best Senior Scientist, Asia Top 50 Academicians
and Researchers, Young Researcher Award, Outstanding Researcher
Award, Excellence in Teaching, Best Senior Scientist Award, DTU
Best Professor and Researcher Award- 2019, 2020-2021, 2022,
2022-2023 Distinguished Scientist Award by National University of
Singapore, Obada Prize 2023, Lifetime Achievement Award 2023;
Asian Admirable Achievers 2024; Distinguished Academic Leader
2024 and many more. He is listed in Top 2% Scientists as per
Stanford University (2020, 2021, 2022) , Ad Index (Rank No:1 Duy
Tan University, Rank No:1 Computer Science in Viet Nam) and
Listed on https://research.com/ (Top Scientist of Computer Science
in Viet Nam- National Ranking: 2; D-Index: 42; World Ranking:
6968).

Prof Balamurugan Balusamy is
currently working as Associate
Dean Student in Shiv Nadar Insti-
tution of Eminence , Delhi-NCR.
Stanford University has recently
released an update of the list
that represents the top 2 percent
of the most-cited scientists in
various disciplines. He is part of
the Top 2% Scientists Worldwide
2023 by Stanford University in
the area of Data Science/AI/ML.
He is also an Adjunct Professor,
Department of Computer Sci-
ence & Information Engineering,

Taylor University, Malaysia. Prior to this assignment he was Pro-
fessor, School of Computing Sciences & Engineering and Director
International Relations at Galgotias University, Greater Noida, India.
His contributions focus on Engineering Education, Block chain and
Data Sciences. His Academic degrees and twelve years of experience
working as a Faculty in a global University like VIT University,
Vellore has made him more receptive and prominent in his domain.
He does have 200 plus high impact factor papers in Springer, Elsevier
and IEEE. He has done more than 200 Edited and authored books and
collaborated with eminent professors across the world from top QS
ranked university. Prof. Balamurugan Balusamy has served up to the
position of Associate Professor in his stint of 15 years of experience
with VIT University, Vellore. His passion is teaching and adapts
different design thinking principles while delivering his lectures.
He has published 80+ books on various technologies and visited
15 plus countries for his technical course. He has several top-notch
conferences in his resume and has published over 200 of quality
journal, conference and book chapters combined. He serves in the
Expert Advisory Panel Member for several start-ups and forums and
does consultancy work for industry on Industrial IOT. He has given
over 210 talks in various events and symposium. He has travelling
more than 15 countries for his academic and research assignments
and talks.

123

https://research.com/

	Energy-efficient cluster head selection in wireless sensor networks-based internet of things (IoT) using fuzzy-based Harris hawks optimization
	Abstract
	1 Introduction
	2 Related works
	3 System preliminaries
	3.1 Network model
	3.2 Energy model

	4 Proposed methodology: novel fuzzy-based Harris hawks optimizations (FHHO) algorithm for cluster head selection
	4.1 CH selection process
	4.1.1 Exploration phase
	4.1.2 Exploration translation from exploration to exploitation
	4.1.3 Exploitation phase
	4.1.4 Fitness function computation
	4.1.5 Cluster formation


	5 Results and discussions
	5.1 Number of dead nodes
	5.2 Total residual energy
	5.3 Throughput

	6 Analysis
	7 Conclusion and future scope
	References




