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Abstract
Dense network deployment is now being evaluated as one of the viable solutions to meet the capacity and connectivity
requirements of the fifth-generation (5G) cellular system. The goal of 5G cellular networks is to offer clients with faster
download speeds, lower latency, more dependability, broader network capacities, more accessibility, and a seamless client
experience. However, one of the many obstacles that will need to be overcome in the 5G era is the issue of energy usage.
For energy efficiency in 5G cellular networks, researchers have been studying at the sleeping strategy of base stations. In this
regard, this study models a 5G BS as an M [X ]/G/1 feedback retrial queue with a sleeping strategy to reduce average power
consumption and conserve power in 5G mobile networks. The probability-generating functions and steady-state probabilities
for various BS states were computed employing the supplementary variable approach. In addition, an extensive palette of
performance metrics have been determined. Then, with the aid of graphs and tables, the resulting metrics are conceptualized
and verified. Further, this research is accelerated in order to bring about the best possible (optimal) cost for the system by
adopting a range of optimization approaches namely particle swarm optimization, artificial bee colony and genetic algorithm.
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1 Introduction

A cellular network, also known as a mobile network, is a
form of wireless communications that operates over discrete
geographic areas, or “cells”, each of which is connected
to the rest of the network by at least one permanently
installed transceiver called the base station (BS). Moreover,
the advent of 5G networks heralds a new era of connectiv-
ity, unprecedented speed, low latency and vast capacity for
data transmissions. Further, the evolution and merits of 5G
network have been illustrated in Figs. 1 and 2 respectively.
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Energy consumption by 5G base stations

As mobile data traffic has skyrocketed over the past decade,
BSs have been rapidly deployed to increase cellular system
capacity and expand network coverage. Large amounts of
power are required to run many BSs. Data servers, BSs,
and backhaul devices utilise considerable energy in cellu-
lar mobile radio networks. Holtkamp et al. [14] stated that
nearly 80% of the energy utilized by a network is used by
BSs. The rising demand for high-data-rate services and the
rise in the amount of small cell BSs are likely to cause BSs to
use even more energy and at higher frequencies, more anten-
nas and more dense layer of small cells are needed, driving
up energy costs even further. As a result, most attempts to
improve energy consumption in mobile radio networks are
focused on BSs.
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Fig. 1 Evolution of 5G cellular
network

Fig. 2 Merits of 5G cellular network

A brief note on sleeping strategies

A variety of strategies for awakening and falling asleep
were proposed. Obviously, it’s crucial to examine the var-
ious sleep methods employed by BSs with a view towards
maximising efficiency and minimising delay. Single sleep,
multiple sleeps, an N limited scheme, light sleep, deep sleep,
short sleeps, long sleeps, etc. are all common sleeping pat-
terns. In most cases, people’s sleeping habits are dictated
by the length of time they have to wait for service or by

how much client request (CR) they have accumulated. In
order to minimise power consumption, Hawasli and Colak
[13] implemented a sleeping strategy in 5G heterogeneous
small cell BSs. According to the CRs in the cellular BSs’
service region, Yang et al. [36] addressed two distinct sleeps
namely, light and deep. Despite this, implementing sleeping
methods in both 4G and 5G small cell BSs isn’t sufficient to
achieve significantly improved energy efficiency. Thus, the
energy efficacy of 5G small cell BSs could be optimized by
employing the N limited scheme. Pursuant to the N lim-
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ited approach, the BS will become active and initiate setup
or wake up if a certain threshold of accumulated CRs has
been attained. Raising N reduces power usage yet enhances
the delay. Zhang et al. [38] proposed that in 5G cellular
networks, BSs regularly shift into sleep mode and remain
inactive till N CRs have gathered in the queue. Even so,
N limited schemes that employ a sleeping technique might
trigger more CR delays. Therefore, one could showcase the
trade-off between power consumption, power savings, and
delay to locate the optimality with an N limited method.

Motivation

Although 5G BSs offer greater dependability, speed, and
reduced latency, they also consume four times asmuch power
as 4G BSs. That’s why there’s reason to be concerned about
5G BS’s high power consumption. Specifically, the authors
[8, 9, 19] have tackled this problem by simulating the BS
as a M/G/1 queue using a unique sleeping strategy. Cer-
tain circumstances, such as the bulk arrival of CR and retry
cases, are not considered, though. With this motivation, the
proposed model considers a queueing system with a sleep-
ing strategy and two unique factors: the retrial factor (i.e., if
any arriving CRs discover that the BS is already in use, they
will be redirected back to wait in a fictitious location known
as orbit, and after a few while, they will attempt the service
again) and the feedback factor (i.e., if any CRs are not satis-
fied with the service they received, they may retry repeatedly
until the job is completed to their satisfaction). Furthermore,
while we have discussed the bulk arrival of CR, authors in
the literature to date have solely examined the single arrival
of CR. In real life, we frequently encounter situations where
service stations maymalfunction and require repair, and thus
we have accounted for this possibility as well.

Research objective

Our objective in developing the system is to reduce fixed
energy usage through the efficient utilisation of BS down-
time. To accomplish this, the BS’s transceivers are disabled
during sleep mode but fully operational during active mode.
If implemented correctly, this feature can bring us closer to
our eventual goal of “very less energy consumption at zero
traffic”. Considering this, in the proposed work we find,

• The repercussions of implementing an N limited sleep-
ing strategy on a BS in 5G mobile systems which has
been characterized as a feedback retrial queueing system
depicted in Figs. 3 and 4.

• The probability-generating functions and steady-state
probabilities for various base station states were com-
puted employing the supplementary variable approach.

• The base station’s average energy consumption during a
certain time period has been estimated.

• A range of optimization approaches, namely PSO, ABC,
and GA, have been employed to obtain the best possible
(optimal) cost for the system.

Novelty

5GBSs cost around four times asmuch power as 4G but offer
significantly faster speeds, latency, dependability, and data
service availability. As a result, 5G BS’s excessive need for
power is a major cause for alarm. As a result, we characterize
the CR queue in a BS as a, M [X ]/G/1 feedback retrial queue-
ing systemwith sleeping andwaking approaches. Further, the
suggested layout incorporates two distinct sleep modes (two
distinct vacations) - sleep mode 1 (SM1) and sleep mode 2
(SM2) - with an active state and a set-up stage, respectively,
to maximize energy efficiency. The first sleep mode lasts for
a shorter amount of time than the second. SM1 has a limit
of M short sleeps, followed by SM2 having a lengthy sleep
with N policy. While in either of its slumber states, the BS
will not activate any CRs. It ought to be noticed that when a
service ends, the BS initiates SM1 if there are no CRswaiting
in the queue, or else it continues the next service. The system
wakes up once per SM1 sleep cycle to count the number of
CR waiting to be processed. The BS activates if the number
of CR is at least N ; else, it enters the second sleep in SM1
and continues sleeping for up to another M times. After M
cycles of SM1, the BS enters an SM2 (long sleep) if there
are less than N CRs in the queue. When there are N CRs
waiting to be dealt with, the SM2 BS wakes up and enters
setupmode. Once the initial setup is complete, the server will
begin serving the CRs.

1.1 Literature survey

Recently, a study of the underpinnings of 5G cellular net-
works was proposed by Zheng [37]. This review covered
aspects like its advantages, potential threats, bandwidth and
spectrum efficiency. López-Pérez et al. [25] highlightedmas-
sive multiple-input multiple-output, the lean carrier design,
and 5G sleep modes. According to Chih-Lin et al. [5], this
estimate of electricity usage was intolerable owing to the
associated financial and ecological impacts. Thereby, green
communication is feasible in 5G cellular networks through
increased energy efficiency. One simple sleeping conduct
was offered by Liu et al. [24] to maximize energy efficiency
in small cell BSs. Fatima et al. [30] addressed the potential
for adapting the various sleep mode enabling approaches to
ultra-dense networks and the resulting financial implications
as well as the impact on the global carbon footprint. Deepa et
al. [9] modelled the BS as a M/G/1 queue and covered how
a sleeping strategy and N policy might reduce the energy
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Fig. 3 5G base station during active mode

Fig. 4 5G base station during sleep mode

consumption of a BS in 4G/5G networks. Further, Kalita and
Selvamuthu [19] have analysed a 5G BS by using 2 distinct
sleep modes with N policy.

Despite the fact that BS needs some initial setup time by
default, this delay was not taken into account in any of the
aforementioned studies. Niu et al. [28] modelled the BS as an
M/G/1 queue with setup and close down times in order to
examine the sleep mode operations. Lately, an M/G/1 queue
in a 5GBSwith N policy in theMS schemewas addressed by
authors [6, 7]. Moreover, energy-saving strategies for virtual
machines in cloud data centers have been proposed by [27]
in order to improve the energy-saving capability of cloud
systems.

Research in a queue and retrial queue had been conducted
by several authors such as Falin and Templeton [10], con-
sidering a variety of combinations of shut down time, setup
time, feedback, repair, and N policy. Consumer’s impatience
with an unreliable bulk queuing system under vacation, setup
time close down time with N policy was analysed recently
by Ayyappan and Nirmala [2, 3]. A batch arrival sole server
retrial queue with modified vacations under N policy was
scrutinized by Haridass and Arumuganathan [12].Moreover,
experts like Jain andUpadhyaya [16], Jain andKaur [17], Jain
andKumar [18], Jain and Bhargava [15] and others have con-
ducted substantial investigations on the feedback and repair
situation as well. In this article, the CR retrial queue in a 5G
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BS with feedback CR, setup time, repair time, and N policy
in theMS scheme has been investigated by implementing the
supplementary variable technique.

And here’s how the balance of the paper pans out: The
proposed 5G BS is described in detail in Sect. 2. The prereq-
uisites for stability, steady state outcomes, and accompanying
equations are established in Sect. 3. In Sect. 4, we examine
some primary systemmetrics. In Sects. 5 and 6, we discussed
a few cases of exceptional significance and used statistical
analysis to understand the interplay between the system’s
underlying structure and its many components respectively.
An evaluation of the suggested model’s energy efficiency is
provided in Sect. 7. The analysis of cost optimization using
three differentmethods is addressed in Sect. 8. Finally, Sect. 9
concludes with an outline of the findings and future scope.

2 Description of themodel

In a cellular network, a signal (CR) from a mobile phone
is picked up by a BS antenna and sent via transceivers to
the destination. A stochastic model of the 5G BS’s sleeping
mechanismhas been built so that its energy consumptionmay
be analysed. The framework under discussion is illustrated
and depicted pictorially in Fig. 5 as follows:

Arrival process: CR streaming in batches from the out-
side abide aPoisson process,with an arrival rate ν. Presuming
that “Uk, k = 1, 2, 3, . . . ”follows a standard dist., let Uk be
the no. of CRs affiliated with the kth batch arrival. “Pr [Uk =
n] = An, n = 1, 2, 3, . . . ”and U(ε̆) indicate the PGF of U .
Further, the first and second factorial moments of r.v. U are
denoted by E(X1) and E(X2) respectively.

Retrial process: Any incoming CRs who encounter a
busy, on sleepmodes, on setup state, or downBS are assumed
to be promptly booted and thrown into a group of blocked
users known as an orbit. We presume that the CRs’ retrial
times distributed equally around the orbit with a random
dist.Q(�̂ )with a corresponding Laplace Stieltjes Transform
(LST) Q∗(t).

Service process: As soon as the CR reaches the BS and
begins to be transmitted, service has been established. If the
group of incoming CRs stumbles upon an unoccupied BS,
one of them will be given approval to start the service, and
the otherswill enter the orbit. Each incomingCR is processed
with first come, first served (FCFS) basis. It is assumed that
service time S is assumed to have dist. function L(�̂ ) with
a corresponding LST L∗(t) with finite kth moment lk, k =
1, 2, . . . .

Vacationprocess:After aCR’s service completion epoch,
BSs will enter SM1 with prob. p0 for a brief length of time
(S1) if there is no new CR been assigned. In this mode, the
BSs can sleep for up to M times. After first sleep in SM1, if
CR is less than N , then the BS will undergo M sleeps with
prob. pm . Prob. dist. function G1(�̂ ) with a corresponding
LST G∗

1 (t) with finite kth moment gk
1, k = 1, 2, . . . char-

acterize the distribution of S1’s duration, which is i.i.d. r.v.
After M sleeps through SM1, if noCRs are available, the BSs
will transition into SM2 with prob. s for an extended period
of time of random duration S2 or when N or more CRs have
been accumulated at the conclusion of any sleeping phase,
the BS reactivates with prob. 1 - s and begins its setup pro-
cedure, and S2 is an r.v with PDF G∗

2 (t) and a corresponding
LST G∗

2 (t) with finite kth moment gk
2, k = 1, 2, . . .

Fig. 5 A pictorial depiction of the model
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Fig. 6 State Transition Diagram for the proposed 5G BS system

Setupprocess:TheBSbegins its setup process if it detects
at least ‘N’ CRs waiting for service while it is in either of
its two sleep states. After initialization is complete, the BS
begins to process CRs. There is an implicit assumption that
setup time has the dist. function B(�̂ ) and a corresponding
LST B∗(t).

Feedback rule:OnceCR’s service is cut off, discontented
CR have a probability of r(0 ≤ r ≤ 1) that they will return
to the orbit as a feedback CR in order to undergo another
regular service, or a prob. of 1− r that they decide to exit the
system outright.

Breakdown process: While the BS is functioning, there
is always a chance that it will malfunction, leading to a tem-
porary loss of service (a server outage). The failures, or BS
lifetimes, are caused by exogenous Poisson processes with
rates η, which can be viewed as a catastrophic event.

Repair process: In the event of a BS failure, it is immedi-
ately dispatched for repair, at which point it stops serving CR
altogether until the corresponding service channel is restored
to working order. A CR who was being served when the BS
went down must now wait for the rest of their order to be
processed. The repair time of the BS is presumed to be arbi-
trarily distributed with dist. function S(ς̀) and LST S∗(t)
with finite kth moment sk .

All stochastic processes in the system are considered to
be unrelated of one another. In addition, the state transition
diagram for the proposed 5GBS system is presented in Fig. 6.

3 Steady state probability analysis

When formulating the SS diff. eqns. for the RQ system in
this section, we take the elapsed retrial times, elapsed ser-
vice times, elapsed vacation time, and elapsed repair times
as supplementary variables.

3.1 Steady-state equations

In SS, we take into consideration thatQ(0) = 0,Q(∞) = 1,
L(0) = 0, L(∞) = 1, G1,m(0) = 0, G1,m(∞) = 1,
G2(0) = 0, G2(∞) = 1, B(0) = 0, B(∞) = 1 are con-
tinuous at �̂ = 0 and S(0) = 0, S(∞) = 1 is continuous at
ς̀ = 0. Hence, the functions ϑ(�̂ ), θ(�̂ ), υ1,m(�̂ ), υ2(�̂ ),

ϕ(�̂ ) and ζ(ς̀) are the “conditional completion rates (hazard
rates)”for retrial, service, 1st and 2nd sleep modes, setup and
repair, respectively.

ϑ(�̂ )d�̂ = dQ(�̂ )

1 − Q(�̂ )
; θ(�̂ )d�̂ = dL(�̂ )

1 − L(�̂ )
;

υ1,m(�̂ )d�̂ = dG1,m(�̂ )

1 − G1,m(�̂ )
(m = 1, 2, . . . M);

υ2(�̂ )d�̂ = dG2(�̂ )

1 − G2(�̂ )
;

ϕ(�̂ )d�̂ = dB(�̂ )

1 − B(�̂ )
;

ζ(ς̀)dς̀ = dS(ς̀)

1 − S(ς̀)

At time ˜β, the elapsed retrial times, service times, vacation
times, and repair times are denotes asQ0(˜β),L0(˜β),G0

1,m(˜β),
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G0
2 (

˜β),B0(˜β) andS0(˜β) respectively.Additionally, construct
the random variable,
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0, in the situation when BS is under inactive

mode at time ˜β

1, in the situation when BS is in active mode

at time ˜β

2, in the situation when BS is under sleep

mode 2 at time ˜β

3, in the situation when BS is in set up at

time ˜β

4, in the situation when BS is under repair

at time ˜β

T0, in the situation when BS is taking 1st

sleep under sleep mode 1

at time ˜β

T1, in the situation when BS is taking 2nd

sleep under sleep mode 1

at time ˜β

...

Tm, in the situation when BS is taking mth

sleep under sleep mode 1

at tim e ˜β

We additionally highlight how the bivariate Markov process
{(˜β), �(˜β); ˜β ≥ 0 } can be applied to characterize the
state of the system at a specific instant of time ˜β, wherein
(˜β) symbolises the BS state (0, 1, 2, 3, 4, T0, T1, . . . Tm)

contingent upon whether the BS is inactive, engaged, under
sleeping modes, setup or under repair. At time ˜β, the no. of
CRs in the orbit is symbolised by �(˜β).

Further, the subsequent notations and probabilities were
defined:

P0(˜β) Probability that theBS is in its usual busy phase
and the BS is inactive at time ˜β

�n(�̂ , ˜β) Prob. of having precisely n CRs in the orbit at
time ˜β with the elapsed retrial time of the trail
CR undergoing retrial is �̂

�n(�̂ , ˜β) Prob. of having approximately n CRs in the
orbit at time ˜β and BS is engaged with batch of
CR with the elapsed service time of CR under-
going service is �̂

�1,n(�̂ , ˜β) Prob. of having exactly n CRs in the orbit that
at time ˜β in which the BS is under SM1 with
the elapsed vacation time is �̂

�2,n(�̂ , ˜β) Prob. of having exactly n CRs in the orbit that
at time ˜β where the BS is under SM2 with the
elapsed vacation time is �̂

�n(�̂ , ˜β) Prob. of having precisely n CRs in the orbit at
time ˜β and BS is under setup with the elapsed
setup time of CR experiencing service is �̂

Rn(�̂ , ς̀ , ˜β) Prob. of having identically n CR in the orbit
at time ˜β with elapsed essential service time of
the batch of CRs undergoing service �̂ and the
elapsed repair time of BS for repair ς̀

Let the collection of epochs whereby a regular ser-
vice period, vacation period, or repair period terminates be
{˜βn; n = 1, 2, . . . }. Thus, using a sequence of random
vectors Fn = {(˜βn+),�(˜βn+)}, an MC is created and
incorporated in the retry QS. Our system must thus be sta-
ble according to Appendix A, which states that Fn; n ∈ N
is ergodic iff ρ < 1, The probs. P0(˜β) = P{(˜β) =
1,�(˜β) = 0}; andprob. densities for themethod {�(˜β), ˜β ≥
0}, are stated below,

�n(�̂ , ˜β)d�̂ = P{�(˜β) = 0, (˜β) = n, �̂

≤ Q0(˜β) < �̂ + d�̂ }, for ˜β, �̂ ≥ 0, n ≥ 1

�n(�̂ , ˜β)d�̂ = P{�(˜β) = 1, (˜β) = n, �̂

≤ L0(˜β) < �̂ + d�̂ }, for ˜β, �̂ ≥ 0, n ≥ 0

�1,m,n(�̂ , ˜β)d�̂ = P{�(˜β) = Tm , (˜β) = n, �̂

≤ G0
1,m(˜β) < �̂ + d�̂ }, for ˜β, �̂ ≥ 0, n ≥ 0

�2,n(�̂ , ˜β)d�̂ = P{�(˜β) = 2, (˜β) = n, �̂

≤ G0
2 (

˜β) < �̂ + d�̂ }, for ˜β, �̂ ≥ 0, n ≥ 0

�n(�̂ , ˜β)d�̂ = P{�(˜β) = 3, (˜β) = n, �̂

≤ B0(˜β) < �̂ + d�̂ }, for ˜β, �̂ ≥ 0, n ≥ 0

Rn(�̂ , ς̀ , ˜β)d�̂ = P{�(˜β) = 4, (˜β) = n, ς̀

≤ S0(˜β) < ς̀ + dς̀/L0(˜β) = �̂ },
for ˜β ≥ 0, (�̂ , ς̀) ≥ 0, n ≥ 0

We presume that the sequel complies with the stability
requirements, thus we can assign limiting probs. for �̂ > 0,
n ≥ 0 and (i = 1, 2)

P0 = lim
˜β→∞P0(˜β);�n(�̂ )

= lim
˜β→∞�n(�̂ , ˜β);�n(�̂ )

= lim
˜β→∞�n(�̂ , ˜β);

�1,m,n(�̂ ) = lim
˜β→∞�1,m,n(�̂ , ˜β);�2,n(�̂ )

= lim
˜β→∞�2,n(�̂ , ˜β)

�n(�̂ ) = lim
˜β→∞�n(�̂ , ˜β); andRn(�̂ , ς̀)

= lim
˜β→∞Rn(�̂ , ς̀ , ˜β)

The eqns. below, which govern the dynamics of the system’s
behaviour, are generated by using a supplementary variable

123



668 R. Harini, K. Indhira

approach.

νP0 = p0

∫ ∞

0
�1,0,0(�̂ )υ1,0(�̂ )d�̂

+
∫ ∞

0
�1,1,0(�̂ )υ1,1(�̂ )d�̂ + . . .

+
∫ ∞

0
�1,M,0(�̂ )υ1,M (�̂ )d�̂ (1)

d�n(�̂ )

d�̂
+ (ν + ϑ(�̂ ))�n(�̂ ) = 0; n ≥ 1 (2)

d�n(�̂ )

d�̂
+ (ν + η + θ(�̂ ))�n(�̂ ) = 0; n < N (3)

d�n(�̂ )

d�̂
+ (ν + η + θ(�̂ ))�n(�̂ )

= ν

n
∑

k=1

ak�n−k(�̂ ); n ≥ N (4)

d�1,m,0(�̂ )

d�̂
+ (ν + υ1,m(�̂ ))�1,m,0(�̂ ) = 0; (5)

d�1,m,n(�̂ )

d�̂
+ (ν + υ1,m(�̂ ))�1,m,n(�̂ )

= ν

n
∑

k=1

ak�1,m,n−k(�̂ );

(m = 1, 2, . . . M); n ≤ N − 1 (6)

d�2,n(�̂ )

d�̂
+ (ν + υ2(�̂ ))�2,n(�̂ )

= ν

n
∑

k=1

ak�2,n−k(�̂ ); n ≤ N − 1 (7)

d�n(�̂ )

d�̂
+ (ν + ϕ(�̂ ))�n(�̂ ) = 0; n < N ; (8)

d�n(�̂ )

d�̂
+ (ν + ϕ(�̂ ))�n(�̂ )

=
n

∑

k=1

ak�n−k(�̂ ); n ≥ N ; (9)

dRn(�̂ , ς̀)

dς̀
+ (κ + ζ(ς̀))Rn(�̂ , ς̀)

= κ

n
∑

k=1

akRn−k(�̂ , ς̀); n ≥ 0 (10)

At �̂ = 0, ς̀ = 0 the SS boundary conditions are as follows:

�n(0) = r̄
∫ ∞

0
�n(�̂ )θ(�̂ )d�̂

+ r
∫ ∞

0
�n−1(�̂ )θ(�̂ )d�̂

+ p0

∫ ∞

0
�1,0,n(�̂ )υ1,0(�̂ )d�̂

+
∫ ∞

0
�1,1,n(�̂ )υ1,1(�̂ )d�̂

+ · · · + �1,M,n(�̂ )υ1,M (�̂ )d�̂ ; n ≥ 1 (11)

�1(0) =
∫ ∞

0
�1(�̂ )ϑ(�̂ )d�̂ + νa1P0; n = 0 (12)

�n(0) =
∫ ∞

0
�n+1(�̂ )ϑ(�̂ )d�̂ + νan+1P0

+ ν

n
∑

k=1

ak

∫ ∞

0
�n−k+1(�̂ )d�̂ ; n < N (13)

�n(0) =
∫ ∞

0
�n+1(�̂ )ϑ(�̂ )d�̂

+ νan+1P0 + ν

n
∑

k=1

ak

∫ ∞

0
�n−k+1(�̂ )d�̂

+
∫ ∞

0
�n(�̂ )ϕ(�̂ )d�̂ ; n ≥ N (14)

�1,0,0(0) = r̄
∫ ∞

0
�n(�̂ )θ(�̂ )d�̂ ; n = 0 (15)

�1,m,0(0) =

⎧

⎪

⎨

⎪

⎩

pm
∫ ∞
0 �1,0,n(�̂ )υ1,0(�̂ )d�̂ ;
(m = 1, 2, . . . M); n ≤ N − 1

0; n ≥ N

(16)

�2,n(0) = s

[

p0

∫ ∞

0
�1,0,n(�̂ )υ1,0(�̂ )d�̂

+
∫ ∞

0
�1,1,n(�̂ )υ1,1(�̂ )d�̂ + . . .

+�1,M,n(�̂ )υ1,M (�̂ )d�̂
] ; n ≤ N − 1 (17)

�n(0) = p0

∫ ∞

0
�1,0,n(�̂ )υ1,0(�̂ )d�̂

+
∫ ∞

0
�1,1,n(�̂ )υ1,1(�̂ )d�̂ + . . .

+ �1,M,n(�̂ )υ1,M (�̂ )d�̂

+
∫ ∞

0
�2,n(�̂ )υ2(�̂ )d�̂ ; n ≥ N ; (18)

Rn(�̂ , 0) = η�n(�̂ ); n ≥ 0 (19)

The normalizing condition is

P0 +
∞
∑

n=1

∫ ∞

0
�n(�̂ )d�̂ +

∞
∑

n=0

[

M
∑

m=1

∫ ∞

0
�1,m,n(�̂ )d�̂

+
∫ ∞

0
�2,n(�̂ )d�̂

+
∫ ∞

0
�n(�̂ )d�̂ +

∫ ∞

0
�n(�̂ )d�̂

+
∫ ∞

0

∫ ∞

0
Rn(�̂ , ς̀)dς̀d�̂

]

= 1
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3.2 The steady state solution

The retrial queueing framework’s SS solution is generated
with the aid of generating function strategy. In addition, to
solve the eqns. above the GFs for | ε̆ | < 1 are formulated as
below:

�(�̂ , ε̆) =
∞
∑

n=1

�n(�̂ )ε̆n; �(0, ε̆) =
∞
∑

n=1

�n(0)ε̆n;

�(�̂ , ε̆) =
∞
∑

n=0

�n(�̂ )ε̆n; �(0, ε̆) =
∞
∑

n=0

�n(0)ε̆n

�1,m(�̂ , ε̆) =
∞
∑

n=0

�1,m,n(�̂ )ε̆n; �1,m(0, ε̆) =
∞
∑

n=0

�1,m,n(0)ε̆n;

�2(�̂ , ε̆) =
∞
∑

n=0

�2,n(�̂ )ε̆n; �2(0, ε̆) =
∞
∑

n=0

�2,n(0)ε̆n;

�(�̂ , ε̆) =
∞
∑

n=0

�n(�̂ )ε̆n; �(0, ε̆) =
∞
∑

n=0

�n(0)ε̆n

R(�̂ , ς̀ , ε̆) =
∞
∑

n=0

Rn(�̂ , ς̀)ε̆n; R(�̂ , 0, ε̆) =
∞
∑

n=0

Rn(�̂ , 0)ε̆n;

a(ε̆) =
∞
∑

n=1

An ε̆n

From (2) to (19), multiply the SS eqns. and boundary con-
ditions by ε̆n and summing on n, and (n = 0, 1, 2, . . . ).

∂

∂�̂
�(�̂ , ε̆) + (ν + ϑ(�̂ ))�(�̂ , ε̆) = 0 (20)

∂

∂�̂
�(�̂ , ε̆) + [ν(1 − a(ε̆)) + η + θ(�̂ )]�(�̂ , ε̆)

=
∫ ∞

0
R(�̂ , ς̀ , ε̆)ζ(ς̀)dς̀ (21)

∂

∂�̂
�1,m(�̂ , ε̆) + [ν(1 − a(ε̆))

+ υ1,m(�̂ )]�1,m(�̂ , ε̆) = 0; (m = 1, 2, . . . M) (22)

∂

∂�̂
�2(�̂ , ε̆) + [ν(1 − a(ε̆)) + υ2(�̂ )]�2(�̂ , ε̆) = 0

(23)

∂

∂�̂
�(�̂ , ε̆) + [ν(1 − a(ε̆)) + ϕ(�̂ )]�(�̂ , ε̆) = 0 (24)

∂

∂�̂
R(�̂ , ε̆) + [ν(1 − a(ε̆)) + ϕ(�̂ )]R(�̂ , ε̆) = 0 (25)

�(0, ε̆) = (1 − r + r ε̆)

∫ ∞

0
�(�̂ , ε̆)θ(�̂ )d�̂

+ p0

∫ ∞

0
�1,0(�̂ , ε̆)υ1,0((�̂ )d�̂

+
M

∑

m=1

∫ ∞

0
�1,m(�̂ , ε̆)υ1,m(�̂ )d�̂ − νP0 − �1,0(0, ε̆)

(26)

�(0, ε̆) = 1

ε̆

∫ ∞

0
�(�̂ , ε̆)ϑ(�̂ )d�̂

+ ν

ε̆
A(ε̆)

∫ ∞

0
�(�̂ , ε̆)d�̂

+
∫ ∞

0
�(�̂ , ε̆)ϕ(�̂ )d�̂

+ A(ε̆)
νP0

ε̆
−

∫ ∞

0
�1(�̂ )ϑ(�̂ )d�̂ − νa1P0 (27)

�m(0, ε̆) = pm

∫ ∞

0
�1,0(�̂ , ψ̆)υ1,0(�̂ )d�̂ ;

(m = 1, 2, . . . M) (28)

�2(0, ε̆) = s

[

p0

∫ ∞

0
�1,0(�̂ , ε̆)υ1,0((�̂ )d�̂

+
M

∑

m=1

∫ ∞

0
�1,m(�̂ , ε̆)υ1,m(�̂ )d�̂

]

(29)

�(0, ε̆) = p0

∫ ∞

0
�1,0(�̂ , ε̆)υ1,0((�̂ )d�̂

+
M

∑

m=1

∫ ∞

0
�1,m(�̂ , ε̆)υ1,m(�̂ )d�̂

+
∫ ∞

0
�2(�̂ , ε̆)υ2(�̂ )d�̂ (30)

R(0, ε̆) = η�(�̂ , ε̆) (31)

From (5), by setting m = 0, we have,

�1,0,0(�̂ ) = �1,0,0(0)e
−ν�̂ [1 − G1,0(�̂ )] (32)

When we multiply the aforementioned eqns. by υ1,0(�̂ ) on
both sides and integrating with regard to �̂ from 0 to ∞ and
further, by utilizing (1) we get,

�1,0,0(0) = �1,0(0, ψ̆) = νP0

G∗
1,0(ν)

(33)

Solving the partial differential eqns. (20) to (25), we get

�(�̂ , ε̆) = �(0, ε̆)[1 − Q(�̂ )]e−ν�̂ (34)

�(�̂ , ε̆) = �(0, ε̆)[1 − L(�̂ )]e−(T (ε̆)�̂ ) (35)

�1,m(�̂ , ε̆) = �1,m(0, ε̆)[1 − G1,m(�̂ )]e−(C(ε̆)�̂ );
(m = 1, 2, . . . M) (36)

�2(�̂ , ε̆) = �2(0, ε̆)[1 − G2(�̂ )]e−(C(ε̆)�̂ ) (37)

�(�̂ , ε̆) = �(0, ε̆)[1 − B(�̂ )]e−(C(ε̆)�̂ ) (38)

R(�̂ , ε̆, ε̆) = R(�̂ , 0, ε̆)[1 − S(ε̆)]e−(C(ε̆)�̂ ) (39)

where, C(ε̆) = ν(1−A(ε̆)); T (ε̆) = C(ε̆)+η[1−S∗(C(ε̆))]
Theorem 1 Utilising ρ < 1 as the stability criterion, the sta-
tionary dist. of the system’s CR count when the BS is inactive,
engaged, under two sleep modes, setup and repair are esti-
mated by,
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�(ε̆) =
P0 {ε̆(1 − M) − (1 − r + r ε̆)L∗(T (ε̆))[A(ε̆)) − ε̆(1 − A(ε̆)))

+ε̆U (1 + sG∗
2 (C(ε̆)))B∗(C(ε̆))]} [1 − Q∗(ν)]

[(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν) + A(ε̆)(1 − Q∗(ν))] − ε̆] (40)

�(ε̆) =
νP0 {(1 − M)[Q∗(ν) + A(ε̆))(1 − Q∗(ν)) − ε̆] − [A(ε̆)) − ε̆(1 − A(ε̆)))

+ε̆U (1 + sG∗
2 (C(ε̆)))B∗(C(ε̆))]} [1 − L∗(T (ε̆))]

(T (ε̆))[(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν) + A(ε̆)(1 − Q∗(ν))] − ε̆] (41)

�1,0(ε̆) = νP0

G∗
1,0(ν)

[1 − G∗
1,0(C(ε̆)))]
C(ε̆)

(42)

�1,m(ε̆) = pm
νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆)))

[1 − G∗
1,m(C(ε̆))]
C(ε̆)

; (m = 1, 2, . . . M) (43)

�2(ε̆) = s[ νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆)))[p0 +

M
∑

m=1

pm G∗
1,m(C(ε̆)))]] [1 − G∗

2 (C(ε̆))]
C(ε̆)

(44)

�(ε̆) = [ νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆)))[p0

M
∑

m=1

pm G∗
1,m(C(ε̆)))]][1 + sG∗

2 (C(ε̆)))] [1 − B∗(C(ε̆))]
C(ε̆)

(45)

R(ε̆) = η ×

νP0 {(1 − M)[Q∗(ν) + A(ε̆))(1 − Q∗(ν)) − ε̆] − [A(ε̆)) − ε̆(1 − A(ε̆)))

+ε̆[1 − G∗
1,m(C(ε̆))]

}

[1 − L∗(T (ε̆))][1 − S∗(C(ε̆))]
(C(ε̆))(T (ε̆))[(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν) + A(ε̆)(1 − Q∗(ν))] − ε̆] (46)

where,

P0 = 1 − E(X1)[1 − Q∗(ν)] + r − νE(X1)[1 + ηE(S1)]E(L1)

r − 1 + [1 − Q∗(ν)][1 − r
G∗
1,0(ν)

] + [νE(L1)(1 + E(S1))η − 1]
[E(X1)[1 − Q∗(ν)] − M − U

′
(1 + s)] − νE(X1)E(L1)(1 + ηE(S1))

[1 − [1−Q∗(ν)]
G∗
1,0(ν)

] − 2νE(X1)E(L1)(1 + E(S1))η + [(1 − Q∗(ν))

−
ν (1 + E(L1)E(S1))η][ 1

G∗
1,0(ν)

[(1 + s)[1 − νE(X1)E(B1)] + νsE(X1)E(G1
2)]]

U = ν[p0 + ∑M
m=1 pm G∗

1,m(C(ε̆))]
G∗
1,0(ν)

G∗
1,0(C(ε̆))

M = [p0 + ∑M
m=1 pm G∗

1,m(C(ε̆)) − 1]
G∗
1,0(ν)

G∗
1,0(C(ε̆))

and U
′ = ν

[

νE(G1
1,0) + ν

∑M
m=1 pmE(G1

1,m)

G∗
1,0(ν)

]

(47)

Proof By substituting (57) to (61) mentioned in Appendix B
in (34) to (38) and further by integrating them with respect
to �̂ and further by formulating the PGF as

�(ε̆) = ∫ ∞
0 �(�̂ , ε̆)d�̂ ; �(ε̆) = ∫ ∞

0 �(�̂ , ε̆)d�̂ ;
�1,m(ε̆) = ∫ ∞

0 �1,m(�̂ , ε̆)d�̂ ; (m = 1, 2, . . . M);�2(ε̆) =
∫ ∞
0 �2(�̂ , ε̆)d�̂ ; �(ε̆) = ∫ ∞

0 �(�̂ , ε̆)d�̂

Similarly, by substituting (62) mentioned in Appendix B in
(39) and further by integrating it with regard to �̂ and ς̀ and
by determining the PGF as

R(�̂ , ε̆) = ∫ ∞
0 R(�̂ , ς̀ , ε̆)dς̀ , R(ε̆) = ∫ ∞

0 R(�̂ , ε̆)d�̂ ,

we get the above mentioned eqns.
Since the normalising condition can be used to compute

the single unknown, P0, the prob. that the server stays inac-
tive, if there aren’t any CR in orbit. As a result, by using
the rule of L-Hospitals whenever necessary and by utilising
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ε̆ = 1 in the eqns. (40)–(46), we get,

P0 + �(1) + �(1) + �1,0(1)

+
M

∑

m=1

�1,m(1) + �2(1) + �(1) + R(1) = 1.

	

Theorem 2 Assuming ρ < 1. as a stability constraint, we
can estimate the PGF of no. of CRs in the BS and orbit size
dist. at a fixed point in time as follows:

K (ε̆) = Nr(ε̆)

Dr(ε̆)

Nr(ε̆) = P0
{[(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν)

+ A(ε̆)(1 − Q∗(ν))] − ε̆]T (ε̆)[M + C(ε̆)

+ νU (1 + s − B∗(C(ε̆))(1 + sG∗
2 (C(ε̆))))]

+ ε̆(1 − M)[T (ε̆)C(ε̆)(1 − Q∗(ν))

+ ν(Q∗(ν) + A(ε̆)(1 − Q∗(ν)))[1 − L∗(T (ε̆))][C(ε̆)

+ [1 − S∗(C(ε̆))η]]] − [A(ε̆)

− ε̆(1 − A(ε̆))

+ U (1 + sG∗
2 (C(ε̆))B∗(C(ε̆))ε̆][(1 − r

+ r ε̆)L∗(T (ε̆))(1 − Q∗(ν))C(ε̆)

T (ε̆) + ε̆ν[1 − L∗(T (ε̆))][C(ε̆)

+ [1 − S∗(C(ε̆))η]]]}

Dr(ε̆) = [(1 − r + r ε̆)L∗(C(ε̆))[Q∗(ν)

+ A(ε̆)(1 − Q∗(ν))] − ε̆]T (ε̆)C(ε̆) (48)

H(ε̆) = Nre(ε̆)

Dr(ε̆)

Nre(ε̆) = P0
{[(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν)

+ A(ε̆)(1 − Q∗(ν))] − ε̆]T (ε̆)[M + C(ε̆)

+ νU (1 + s − B∗(C(ε̆))(1 + sG∗
2 (C(ε̆))))]

+ (1 − M)[T (ε̆)C(ε̆)(1 − Q∗(ν))

+ ν(Q∗(ν) + A(ε̆)(1 − Q∗(ν)))[1 − L∗(T (ε̆))][C(ε̆)

+ [1 − S∗(C(ε̆))η]]] − [A(ε̆)

− ε̆(1 − A(ε̆))

+ U (1 + sG∗
2 (C(ε̆)))B∗(C(ε̆))ε̆][(1 − r

+ r ε̆)L∗(T (ε̆))(1 − Q∗(ν))C(ε̆)

T (ε̆) + ν[1 − L∗(T (ε̆))][C(ε̆)

+ [1 − S∗(C(ε̆))η]]]} (49)

where P0 is represented by eqn. (47)

Proof The subsequent eqns. are utilized to calculate the PGF
for the no. of CRs in the 5G BS (K (ε̆)) and in the orbit
(H(ε̆)).
K (ε̆) = P0 + �(ε̆) + �1,0(ε̆) + ∑M

m=1 �1,m(ε̆) + �2(ε̆) +
�(ε̆) + ε̆[�(ε̆) + R(ε̆)]
and
H(ε̆) = P0 + �(ε̆) + �1,0(ε̆) + ∑M

m=1 �1,m(ε̆) + �2(ε̆) +
�(ε̆) + �(ε̆) + R(ε̆)

The eqns. (48) and (49) may be computed directly when
the eqns. (40) to (46) are substituted in the precedingfindings.

	


4 System performancemeasures

Note that the eqn. (47) gives the SS prob. when the BS is
empty but available in the system. Thus, the probabilities of
different BS state are derived from (40) to (46) whenever the
system meets the stability criterion ρ < 1, which is stated
below,

1. Let � represent the SS prob. when the BS is idle during
the retrial time

� = lim ε̆→1�(ε̆)

=

P0[1 − M
′ − 1

G∗
1,0(ν)

[r − νE(X1)E(L1)(1 + ηE(S1)) − νsE(X1)E(G1
2)]

− (1 + s)[U ′ − νE(X1)E(B1)+1
G∗

1,0(ν)
] − 2E(X1)][1 − Q∗(ν)]

r + E(X1)[1 − Q∗(ν)] − νE(X1)[1 + ηE(S1)]E(L1) − 1

(50)

2. Let � represent the SS prob. when the BS is active

� = lim ε̆→1�(ε̆)

=

νP0[E(X1)[1 − Q∗(ν)] − M
′ − 2E(X1) + U

′ + 1+s
G∗
1,0(ν)

[−νE(X1)E(B1) + 1] − νsE(X1)E(G1
2)

G∗
1,0(ν)

]E(L1)

r + E(X1)[1 − Q∗(ν)] − νE(X1)[1 + ηE(S1)]E(L1) − 1
(51)

3. Let �1,m represent the SS prob. when the BS is under
SM1

�1,m = lim ε̆→1�1,m(ε̆)

= pmνP0

G∗
1,0(ν)

E(G1
1,0)[νE(X1)E(G1

1,m)]; (m = 1, 2, . . . M)

(52)

4. Let �2 represent the SS prob. when the BS is under SM2

�2 = lim ε̆→1�2(ε̆)

= sP0
νE(G1

1,0) + ν
∑M

m=1 pmE(G1
1,m)

G∗
1,0(ν)

E(G1
2) (53)

5. Let � represent the SS prob. that the BS is under set up

� = lim ε̆→1�(ε̆)

= P0
νE(G1

1,0) + ν
∑M

m=1 pmE(G1
1,m)

G∗
1,0(ν)

sνE(X1)E(G1
2)E(B1)

(54)
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6. Let R represent the SS prob. that the BS is under repair

R = lim ε̆→1R(ε̆)

=

νηP0[E(X1)[1 − Q∗(ν)] − M
′ − 2E(X1) + U

′ + 1+s
G∗
1,0(ν)

[−νE(X1)E(B1) + 1] − νsE(X1)E(G1
2)

G∗
1,0(ν)

]E(L1)E(S1)

r + E(X1)[1 − Q∗(ν)] − νE(X1)[1 + ηE(S1)]E(L1) − 1
(55)

where,

M
′ = νE(G1

1,0) + ν
∑M

m=1 pmE(G1
1,m)

G∗
1,0(ν)

4.1 Mean size of a system and its orbit

When the system is in a SS,

(i) By differentiating (48) with regard to ε̆ and providing
ε̆ = 1 under stability conditions, themean no. of clients
in the orbit (Lq) is computed.

Lq = H
′
(1) = lim

ε̆→1

d

d ε̆
H(ε̆)

= P0

[

Nr
′′′′
q (1)Dr

′′′
q (1) − Dr

′′′′
q (1)Nr

′′′
q (1)

4(Dr ′′′
q (1))2

]

(ii) By differentiating (49) with regard to ε̆ and providing
ε̆ = 1 under stability conditions, themean no. of clients
in the system (Ls) is computed.

Ls = K
′
(1) = lim

ε̆→1

d

d ε̆
K (ε̆)

= P0

[

Nr
′′′′
s (1)Dr

′′′
q (1) − Dr

′′′′
q (1)Nr

′′′
q (1)

4(Dr ′′′
q (1))2

]

All the above mentioned values are given in Appendix
C.

(iii) With the aid of Little’s approach, it is possible to predict
the amount of time a user can expect to spend in the
system (Ws) and the amount of time a user can expect
to spend in the queue (Wq), (i.e) Ws = Ls

νE(X1)
and

Wq = Lq
νE(X1)

.

5 Special cases

Case (i): No batch arrival, no retrial, no repair, no feedback
and no setup. Pr [Uk = n] = 1, Q∗(ν) → 1, η = 0, r = 0,
ϕ(�̂ ) = 0. Then our model will be reduced to a M/G/1
queue with M short sleep and single long sleep under N
policy which coincides with the results of Deepa et al. [9].

Case (ii): No batch arrival, no retrial, no repair, no feed-
back and N=1. Pr [Uk = n] = 1,Q∗(ν) → 1, η = 0, r = 0.
Then our model will be reduced to a M/G/1 queue with M
short sleep and single long sleep which coincides with the
outcome of a Kalita and Selvamuthu [19].

6 Numerical examples

To demonstrate the many alternatives for the system’s
dynamic responsiveness, we’ll employ MATLAB in this
part. In addition, the exponentially distributed retrial times,
service, dual sleeps, setup, and repair times have been sig-
nificantly analysed. Random selection is made in order to
determine whether numerical measures meet the stability
requirements. The calculated values of certain aspects of the
model, including the prob. that the server is inactive �0, the
mean queue size (Lq), and the mean queue waiting time
(Wq), are presented in Tables 1, 2, 3, and 4.

Table 1 depicts that as retrial rate (ϑ) rises, Lq also rises,
whereas P0, �, R subsides for the value of ν = 0.4, η = 5,
r = 0.5, s = 0.9, θ = 5, p0 = 0.5, �1,m = 0.1.

Table 2 shows that for the as the arrival rate (ν) of CR
goes up, so does P0, Ls,Ws and � for the value of ν = 0.5,
η = 9, r = 0.2, s = 0.7, θ = 6, p0 = 0.5, �2 = 0.5,
υ2 = 4.5.

Table 3 demonstrates that for the mounting value of the
service rate (ϑ), Lq and Wq also mounts whereasP0, and�2

decline for the value of ν = 0.2, η = 4, r = 0.9, s = 0.1,
ϑ = 5, pm = 0.9, �2 = 0.5, ϕ = 4.5.

As illustrated in Table 4, if boost the SM2 rate (υ2), Ls ,
and Ws also rises but, � and � reduces for the value of ν =
0.1, η = 7, r = 0.2, s = 0.7, θ = 8, p0 = 0.5, ζ = 0.5,
ϑ = 4.5.

Here, Figs. 7 and 8 depict the 2D and 3D graphs, respec-
tively representing how the parameters ν, ϑ , υ2, θ influence
the key metrics. In Fig. 7a as the retrial rate ϑ rises, Lq also
rises, whereas P0 and R decline. The arrival rate ν mounts
for the increasing values of Ls , Ws and � is presented in
Fig. 7b. In Fig. 7c, for the mounting value of service rate
θ , Lq . Wq and �2 declines. Figure 7d depicts that as SM2
rate υ2 elevates, Ls and Ws also mount, whereas � diminish.

Table 1 The effect of retrial rate (ϑ) on P0, Lq , �, R

Retrial rate(ϑ) P0 Lq � R

2 0.0196 0.4945 0.0879 0.0698

2.5 0.0189 0.5167 0.0846 0.0692

3 0.0182 0.5375 0.0816 0.0687

3.5 0.0176 0.5572 0.0788 0.0683

4 0.0170 0.5757 0.0763 0.0679
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Table 2 The impact of arriving CR (ν) on P0, Ls , Ws , �

CR rate (ν) P0 Ls Ws �

0.4 0.0060 0.2038 3.0264 0.0060

0.5 0.0083 0.2452 3.2841 0.0077

0.6 0.0106 0.2775 3.6040 0.0084

0.7 0.0128 0.3045 4.0790 0.0089

0.8 0.0170 0.3304 6.6726 0.0096

Table 3 The effect of service rate (θ) on P0, Lq , Wq , �2

BS (θ) P0 Lq Wq �2

1 0.0128 0.2458 5.2427 0.0114

2 0.0114 0.2114 5.1412 0.0102

3 0.0110 0.2003 4.9921 0.0099

4 0.0108 0.1945 4.7298 0.0097

5 0.0107 0.1907 4.0680 0.0096

Table 4 The effect of SM2 (υ2) on Ls , Ws , �, �

SM2 (υ2) Ls Ws � �

1 0.5643 1.3490 0.0113 0.3877

1.5 0.6411 1.3861 0.0104 0.3021

2 0.6900 1.4493 0.0098 0.2203

2.5 0.7214 1.5599 0.0093 0.1409

3 0.7413 1.7721 0.0090 0.0763

Figure 8a depicts that as ϑ mounts, Lq mount, whereas P0

decreases. Figure 8b depicts that as ν rises Ls and Ws also
elevate. In Fig. 8c as θ mounts, Lq and Wq diminish. As υ2
elevates in Fig. 8d, Ls and Ws also rise.

The influence of diverse characteristics on the system’s
performance standards can perhaps be ascertained using the
numerical findings shown above.

7 Evaluation of energy conservation

7.1 Power savings factor

The percentage of total time that BSs remained in SM1 and
SM2 is the power savings factor. By using the (52) and (53),
we obtain the following,

PS = (�1,m + �2) × 100%

7.2 Expected energy conservation

The BS is portrayed as an M [X ]/G/1 feedback retrial queue
in the proposed framework,which includes dual sleepmodes,

Table 5 Energy consumption in
various states

Server states Values J/s

PO S 11,577

PSM1 5788.5

PSM2 1736.55

PSS 10,419.3

PR P 9840.45

setup, and repair phases. NewCRs show up at a constant rate,
ν, according to a Poisson distribution. The newly arrivedCRs
have an immediate active service time S. In the operation
state, it is believed that power consumption is PO S . The BS
will keep runninguntil there are nomoreCRson theBS.Once
the BS becomes empty, it will switch to sleep mode. PSM1

and PSM2 are the power consumedwhen the device is in sleep
modes 1 and 2 respectively. Until N CRs are discovered at the
endof any sleep, theBS sleepwill keep looping. If the amount
of gathered CRs is greater than N at the end of any sleep,
the BS will begin setting up. Setup time power conservation
is provided by PSS . Also, if there is any breakdown in the
BS, then it will be sent for repair immediately. Thus, the
energy consumed during repair time is denoted as PR P . For
simplicity, we’ll call BS’s power consumption as PC per
second. As a result, we may employ the following formula,
to estimate the BS’s average energy consumption during a
certain time period and moreover, based on analysis by [24,
28, 35] the energy consumption values for various states has
been addressed in Table5.

E(PC) = PO S� + PSM1�1,m + PSM2�2

+ PSS� + PR PR

When BS is fully functioning, all of its components will
be using energy at once. Hence, it will consume full energy.
Further, if a breakdown occurs and the damaged BS compo-
nents are sent for repair, the impact on energy consumption
will be reduced a bit during the repair stage since the repaired
components will not be functioning. Then, if there is no CR
available, BS will go to SM1. Energy usage is drastically
reduced in SM1 stage due to the fact that many non-essential
components will be disabled. At the end of the Mth brief
sleep period under SM1, if the number of requests remains
below the limit of N, the BS transitions from SM1 to SM2
(long sleep). In this state, nearly all of the system’s features
are deactivated to save energy. This results in a much more
reduction in power usage compared to SM1 stage. Hence
maximum energy will be saved in this stage. This is because
the BS will undergo sleep for a long period. However, even
in either of the two sleep modes, the energy spent will not
be zero because certain aspects, like the one that helps tally
the number of CRs in the queue, are still active. When the
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Fig. 7 2D representation of graphs

N CRs have gathered at the conclusion of any sleep, the BS
will use some energy to begin setting up and preparing for
service.

7.3 Expected delay

The amount of time a UR waits in queue before the service
starts is knownas the delay.Queuedelay occurswhen anewly
arrived CR must wait in queue to receive service if the BS is
already serving another CR. When the BS is in setup, sleep
or repair mode, the server in the proposed model won’t offer
service. We refer to this delay as an additional delay. For
an M [X ]/G(a, b)/1 queuing system with N-policy, multiple
vacations, and setup, Krishna Reddy et al. [22] computed

additional delay as the total of idle duration owing tomultiple
vacation processes and mean length of setup time.
As a result it is clear that queue delays are the sole thing
affecting CRs when BS is in active state. In the meantime,
sleep, queue and setup delays impact the arriving CRs during
both the sleep mode BS. Also, there will be setup and queue
delays for the CRs that show up during setup. Further, the
CRs will be impacted only by the queue delay when they are
in the repair mode. Therefore, in light of this, the expected
delay or the mean latency E(L) for a CR is determined as
follows:

E(L) = E(D) + E(AD) + E(SD) + E(RD)

123



Dynamical modelling and cost optimization of a 5G base station for energy conservation using… 675

Fig. 8 3D representation of graphs

where, E(D) = νE(X2)E(L2)

2(1−νE(X1)E(L1))
is the expected queue delay

stated byShortle et al. [32]; E(AD)denotes the expected addi-
tional delay (i.e.) delay due to both the sleep mode, E(SD)
represents the expected setup delay and E(RD) denotes the
expected repair delay.
Here, by differentiating eqns. (59), (60) and (61) w.r.t (ε̆) and
taking lim(ε̆)→1 and utilizing L’hospital rule, we have

E(AD) = pmν

G∗
1,0(ν)

E(G1
1,0)[νE(X1)E(G1

1,m)]

+νE(G1
1,0) + sν

∑M
m=1 pmE(G1

1,m)

G∗
1,0(ν)

E(G1
2)

and

E(SD) = νE(G1
1,0) + ν

∑M
m=1 pmE(G1

1,m)

G∗
1,0(ν)

sνE(X1)E(G1
2)E(B1)

E(R D) =
νη[ 1+s

G∗
1,0(ν)

[−νE(X1)E(B1) + 1] − νsE(X1)E(G1
2)

G∗
1,0(ν)

]E(L1)E(S1)

E(X1)[1 − Q∗(ν)] − νE(X1)[1 + ηE(S1)]E(L1)

Therefore, from the aforementioned three equations, we can
get the mean latency E(L) of the system from which the
maximumlatency that the systemexperience canbeobtained.
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7.3.1 Numerical analysis on expected delay

In this section, the mathematical investigation and compu-
tational study of different components of the delay in the
systems have been presented, along with the optimization of
E(PC) and E(L) which primarily aim to model, analyze, and
optimize their effects through numerical methods.
Tables 6, 7, 8, and 9 explore the influence of various system
parameters on different aspects of delay. It is evident from
Table 6 that as the arrival rate of the CR increases, E(D),
E(AD), E(SD), E(RD), and E(L) also increase. This relation-
ship is further illustrated in the 2D graph presented in Fig. 9a.
Notably, when the BS serves any CR, there is an automatic
reduction in delay. This is discussed in Table 7, which indi-
cates that as the service rate increases, both E(D) and E(L)
decrease. This trend is also depicted in the 2D graph shown
in Fig. 9b.

Furthermore, by examining Tables 8 and 9, it becomes
evident that an increase in SM1 results in a corresponding
rise in E(AD), E(SD), and E(L). This is attributed to the fact
that when theBS enters sleepmode, no services are provided,
consequently causing delays to escalate. Additionally, it is
noticeable that as the SM1 rate increases, the expected delay
E(L) also increases, albeit at a less pronounced rate compared
to the steep increase observed with the SM2 rate. This stark
rise in delay during SM2 is attributed to its longer duration of
sleep compared to SM1. However, a slight variation can be
observed inE(AD) andE(SD) betweenSM1andSM2as their
rates increase. Furthermore, the influence of SM1 and SM2
rates is illustrated through2Dgraphs inFig. 10a, b.Moreover,
Fig. 10c depicts the impact of E(L) by raising the number of
sleeps in SM1. It is clearly observed that by elevating the
number of sleeps in SM1, automatically increases the E(L)
due to the raise in the duration of sleep.

7.4 Numerical analysis

The implications of SM1 on expected energy conservation
[E(PC)] and power saving factor [PS] at various maximum
sleeps in SM1 of 5G BS are presented in Fig. 11a, b, by

Table 6 The effect of CR rate (ν) on E(D), E(AD), E(SD), E(R D),

E(L)

CR rate (ν) E(D) E(AD) E(SD) E(R D) E(L)

0.5 0.0632 1.8845 4.8632 0.9128 54.8795

0.6 0.0778 2.1201 5.4712 1.0269 62.7182

0.7 0.0941 2.4229 6.2528 1.1736 73.1700

0.8 0.1125 2.8267 7.2949 1.3692 87.8028

0.9 0.1333 3.3921 8.7538 1.6431 109.7523

Table 7 The effect of service rate (θ) on E(D), E(L)

Service (ν) E(D) E(L)

0.2 0.3522 65.0820

0.3 0.2045 64.6701

0.4 0.1125 63.6647

0.5 0.0555 62.6503

0.6 0.0220 61.6400

Table 8 The effect of SM1 rate (υ1) on E(AD), E(SD), E(L)

SM1 rate (υ1) E(AD) E(SD) E(L)

2 6.9367 12.7283 36.1828

3 8.9220 13.5650 39.3328

4 10.9033 15.0617 42.4828

5 12.8867 16.2283 45.6382

6 14.8700 17.9350 48.7828

Table 9 The effect of SM2 rate (υ2) on E(AD), E(SD), E(L)

SM2 rate (υ2) E(AD) E(SD) E(L)

2 8.9200 13.8950 55.6828

3 10.9050 17.8425 68.3470

4 12.8900 22.7900 81.6111

5 14.8750 29.7375 94.8753

6 16.8600 31.6850 108.1395

assuming the parametric values ν = 0.4, η = 5, r = 0.5,
s = 0.9, θ = 5, p0 = 0.5.

In Fig. 11a E(PC) falls as SM1 rate rises. This occurs
because the majority of the components are not in a working
state and just a few of the components operate in SM1. Sim-
ilarly, Fig. 11b depicts that as PS of the 5G BS falls as SM1
rate increases. This occurs because a shorter SM1 results in
a reduced PS.
Further, the implication of SM2 on expected energy conser-
vation [E(PC)] and power saving factor [PS] is presented in
Fig. 11c, d. It is clear from Fig. 11c that there is a drastic fall
in E(PC) compared to Fig. 11a as the SM2 rate elevates.
This is because most of the components will be in sleep
mode during SM2, and since it is longer sleep, the E(PC)
declines drastically compared to SM1.However,PS initially
declines andgradually rises as theSM2elevates,which is pre-
sented in Fig. 11d. This is due to a longer sleep mode (SM2),
which leads to a higher power saving of the 5G BS, while a
shorter sleepmode (SM1) leads to a lower power saving. The
effects of SM2 on three distinct system state probabilities are
depicted in Fig. 11e. It turns out that while the probability
of the BS under active state (�) decreases as the SM2 rate
increases, the probability of the BS under retrial state (�)
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Fig. 9 Implications of arrival and service rate on distinct components of delay

and setup state (�) rises. This is because the longer the BS
is in sleep mode, the less service it provides, which causes �

to decrease while � and � to increase.
Figure12 depicts the impact of SM1 and SM2 on E(PC)

and PS at different setup rates in a BS. Here, Fig. 12a, b
clearly address the fact that as SM1 rate increases, E(PC)

declines, howeverPS rises. Similarly, as SM2 rate increases,
E(PC) declines, but PS rises which is depicted in Fig. 12c,
d respectively. This occurs because, as the 5G setup rate
evolves, it takes longer for the 5G network to begin serv-
ing the request, which lowers the 5G BS’s average power
consumption and raises its power saving factor. Also, from
the above Fig. 12b, d, we can state that between SM1 and
SM2 more power has been saved in SM2 due to the long
sleep duration in SM2 compared to SM1.
Fig. 13a illustrates how the arrival rate affects the probability
of the BS under the setup state (�) at various set-up rates.
It is clear from Fig. 13a that the probability of the BS in the
set-up state reduces as the arrival rate increases for different
set-up rate. This is triggered by the fact that as the arrival
rate increases, there is a greater chance that the BS will stay
in an active state, which lowers the probability that it will
be in a set-up state. Moreover, we know that the probability
of the BS under set-up state increases with set-up duration.
As a result raises the system’s additional latency will also
increase.
Fig. 13b addresses the effect of the arrival rate on various
system state probabilities namely �, �, �1,m , �2 and �.
The probability that the BS under both the active (�) and
retrial (�) states rises with an elevation in arrival rate, while
the probability of other system states such as �1,m , �2 and

� falls. This is due to the fact that as the arrival rate rises,
the BS undergoes a set-up time transition, which leads them
to go into a frequent off-on (sleep-active) state. Yet, we find
that the amount of time spent in this state is quite small when
compared to the amount of time spent in the other states.
Therefore, it can be inferred from Fig. 13a, b that there is a
negligible additional latency in relation to the on-off (sleep-
active) state.

7.5 Comparative analysis

This subsection juxtaposes the suggested model’s perfor-
mance outcomes with the existing literature. Sleeping meth-
ods, which enable part of the components to be turned off
when there is minimal traffic, are adopted to reduce power
usage. Kalita and Selvamuthu [19] have analysed 5G BG
by using a M/G/1 queue with a distinct sleeping strategies.
According to theirmodel, BSwill reactivate if anyCR arrives
while it is in the sleep phase. Instead of waking for a single
CR, the BS can bemade to wake up after accruing a predeter-
mined amount of CRs in order to save power. In such cases,
N policy can be very beneficial to conserve energy which
was addressed by Deepa et al. [9] and Deena Merit et al. [7].
However, bulk arrival was not taken into account in any of
the aforementioned works. Though, authors [2] and [3] have
addressed the bulk arrival, they haven’t analysed with a real
life example. In the light of this, the proposed study aimed
to analyse a 5G BS for energy conservation by implement-
ing N policy in two different sleep modes while accounting
for bulk arrival. Additionally, consideration was given to the
feedback case and the retrial case.
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Fig. 10 Implications of SM1 and SM2 rate on distinct components of delay

A numerical comparison with the existing work has been
offered to illustrate the efficacy of the suggested model by
defining the following two models,
Existing Model: An M/G/1 queue with M short sleep, a
long sleep, and setup time without N policy was employed
to depict a 5G BS by Kalita and Selvamuthu [19].
Proposed Model: An M [x]/G/1 retrial queue with M short
sleep, a long sleep, and setup time under N policy subjected
to feedback and repair was proposed to simulate a 5G BS.
We are able to observe the effect of SM1 and SM2 on E(PC)

and PS at different maximum sleeps in a BS based on the
Fig. 11 and the existing figure. We can infer from the data
that, in contrast to the previous study, there is a significant
decrease in E(PC) and PS with an increase in SM1 rate

which is presented in Fig. 11a, b respectively. Moreover,
E(PC) likewise falls when the rate of SM2 rises as shown
in Fig. 11c. Nevertheless, PS gradually rises after declin-
ing first presented in Fig. 11d. This occurs because a SM2
(long sleep) duration results in a higher power saving than
SM1 (shorter sleep). Therefore, it turns out that the suggested
approach will be more beneficial for energy conservation in
the actual 5G networks based on the aforementioned obser-
vation and calculation.
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Fig. 11 Implications of SM1 at various maximum sleeps and SM2
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Fig. 12 Implications of sleep modes at various setup rate

7.6 Enhancing the efficiency of E(PC) and E(L)

The percentage of fluctuation (PF), as shown in Table 10, is
computed using the formula below,

PF = Measure without N-policy − Measure with N-policy

Measure without N-policy

We know that, increasing the threshold value, raises the
E(L), however decreases the E(PC). Thus, to strike a bal-
ance between these factors - E(PC) and E(L) - we assess the

percentage of fluctuation. This metric reveals the percentage
difference between the energy consumption/delay with and
without the N-policy. Higher N values tend to elevate the
mean delay while minimizing the anticipated power usage.
Therefore, selecting an appropriate value for N effectively
reduces power usage while maintaining a reasonable latency.
By implementing the proposed sleep and wake schedule
results in at least an 16.5% reduction in energy usage.
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Fig. 13 Implication of arrival rate ν

Table 10 Impact of N on E(L)
and E(PC)

Parameters N E(PC) E(L)
E(L) % of fluctuation E(PC) % of fluctuation

Sleep without N policy 1 28.6390 22.2 637.4583 16.5

2 31.3168 28.7 876.5941 21.7

3 34.0007 35.4 1129.4655 27.2

Sleep with N policy 4 36.6847 41.1 1396.2974 33.1

5 39.3686 49.2 1677.2982 42.3

6 42.0525 58.5 1972.6581 51.2

8 Cost optimization: a perspective

Assuming a model has been built and is poised to go into
functioning, the initial query amanufacturer or analystwill be
curious about is whether it is cost-effective. Therefore, “cost
analysis ”is a key consideration in determining amodel’s ade-
quacy. System designers are aided in their decision-making,
and risk is mitigated as a result. Considering the impor-
tance and pressing requirement for cost minimization in
this study, we implemented three distinct optimization meth-
ods namely particle swarm optimization (PSO), artificial bee
colony (ABC) and genetic algorithm (GA). Since cost is the
most vital variable in establishing economic interpretation in
a system, we have provided a cost analysis that will help us
avoid this issue. First, aworkable cost function is constructed,
and then the optimal parameters are determined using the
above acceptable optimization method. Cost-cutting strate-
gies such as those listed above have been widely used by
researchers [23, 26, 34] in recent years.

8.1 Cost analysis

The cost optimization approach is employed to estimate the
optimal parameters for the service rates (τb, τ1). It presumes
that the estimated cost function has a linear form in terms of
cost components tied to diverse system activities.
For per unit of time (PUT), the succeeding cost components
are included in the expected total cost function T C (τb, τ1):

Dh Each CR’s holding cost per unit time spent within the
BS

Db Cost per unit time provided the BS is normally active
Dv Cost per unit time provided the BS is under vacation

(both sleep modes)
D f Cost per unit time provided the BS is under repair
D1 Cost per CR served during busy hours
D2 Cost per CR served during BS’s sleep modes

Therefore, the expected cost function is defined as,
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T C = Dh Lq + Db� + Dv(�1,m + �2) + D f R
+ D1τb + D2τ1 (56)

The difficulty in analytically optimizing the cost function
described by (56) stems from its considerable non-linearity.
Thus, we infer that total cost is a function of service rates
(τb, τ1) and employ a heuristic method to optimize it.

8.2 Cost optimization

For any given objective function, “optimization ”refers to the
process of discovering its “optimal ”or “ minimal ”collection
of inputs. Cost optimization is a firm-centric, iterative pro-
cess that seeks to lessen outlays and boost profitability. Our
primary goal is to minimise the total cost function to find out
what service rates τ ∗

b and τ ∗
1 should be set at for the server’s

busy mode and its vacation mode, respectively.
The cost-minimization problem can be expressed mathemat-
ically as:

T C(τ ∗
b , τ ∗

1 ) = Minimize
τ∗

b ,τ∗
1

T C(τb, τ1)

Table 11 contains the values of the cost elements used to
conduct a graphical analysis of the cost function’s sensitivity.

Plenty of optimization strategies have been constructed
since the 1960s. Each of these algorithms has proven its
mettle in implementing various optimization problems. We
ought to employ a local optimization strategy when we have
an inkling that we are close to the global optimum, or when
our objective function has a single optimum, as in the case
of a unimodal distribution; we should use a global optimiza-
tion method when we have a poor idea of the structure of
the objective function, or when the function has multiple
local optimums. When a situation calls for a nationwide
search algorithm, a local search might be tricked by local
optima into producing subpar outcomes. We conducted this
research using certain global search optimization approaches
like PSO, ABC, GA given that we acknowledge the necessity
and virtue of cost.

Each one of these three algorithms has advantages and
disadvantages of its own. Compared to certain other opti-
mization techniques, PSO, ABC, and GA are comparatively
easy to implement. They are usable by users of different skill
levels due to their simple ideas and intuitive parameters.
They don’t require much changes to be applied to a vari-
ety of optimization situations. They are adaptable and have
been effectively applied in an array of fields, notably biol-
ogy, machine learning, technology, and business. PSO draws
inspiration from the social interactions of fish and birds, ABC
from honeybees’ foraging habits, and GA from genetics and
the process of natural selection. These algorithms’ biological
roots frequently result in sensible exploration-exploitation

Table 11 Different cost sets for cost analysis

Cost sets Dh Db Dv D f D1 D2 D3

Set 1 15 95 35 20 15 12 10

Set 2 20 75 45 10 25 15 12

Set 3 25 65 55 5 30 20 17

trade-offs when looking for optimal solutions. It’s crucial to
remember that no optimization technique is inherently better
than any other, even though PSO, ABC, and GA all offer
benefits. The particulars of the problem, the computational
power at hand, and the method’s user-friendliness all play a
role in the selection of an algorithm.

8.3 Particle swarm optimization (PSO)

In 1995, Kennedy and Eberhart [21] introduced the world to
PSO, a technique for optimizing continuous non-linear func-
tions that was driven by initial research on the behaviour of
bird flocks as simulated in computer programmes. Personal
bests (pbest) and global bests (gbest) are obtained by assign-
ing a fitness value to each particle. After then, the ’pbest’
value of a particle is utilised to replace the ’gbest’ value if
it is more precise. Until the optimum amount of iterations
has been achieved, this procedure is repeated. A substantial
quantity of power is used by 5G BS. Radio transmitters and
processors are a couple of base station components whose
power consumption can be optimized with the use of PSO.
PSO can assist in lowering the consumption of energy while
preserving network performance by modifying parameters
like transmission power and duty cycles.

Upadhyaya [33] elaborated on this method to talk about
cost optimization in a discrete-time retrial queue with
Bernoulli feedback and starting failure. For further informa-
tion on how PSO works, the study by Malik et al. [26] has
been referred to. Algorithm 1 lays out the PSO algorithm’s
pseudo coded sequence of operations. In addition, Table 12
details the effects of ν, r , ϕ on total minimal cost TC using
PSO optimization approaches, on the optimal service rate
pairs (τb∗, τ1∗).

8.4 Artificial bee colony optimization (ABC)

ABC techniquewas proposed byKaraboga and Basturk [20],
and it is a swarm-based solution for optimization issues that
takes its cues from the smart conduct of honey bees during
foraging. There are two main parts to the algorithm: “ forag-
ing ”and “ food source.”Foraging bees might be classified as
workers, observers, or scouts, depending on their roles in the
current situation. Bothworking and jobless bees use foraging
to find good food sources. In this algorithm (a good answer), a
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Table 12 Effect of ν, r , ϕ on (T C, τ ∗
b , τ ∗

1 ) using PSO

Parameters (T C, τ ∗
b , τ ∗

1 )

Cost set 1 Cost set 2 Cost set 3

ν 0.52 (2.3543,1.8555,210.7060) (1.9452,2.3343,276.2257) (1.5449,3.1892,343.1923)

0.53 (2.3792,1.7524,210.5543) (1.9585,2.2353,276.2904) (1.5467,3.0631,343.4782)

0.54 (2.4096,1.6281,210.3284) (1.9790,2.1699,276.2596) (1.5497,2.8620,343.6415)

r 0.3 (2.3715,1.6953,209.7231) (1.9833,2.1181,272.8109) (1.6246,2.6779,344.9708)

0.4 (2.3560,1.7432,209.4125) (1.9590,2.1661,276.2585) (1.5526,2.9239,344.3083)

0.5 (2.3306,1.7595,209.0943) (1.9531,2.1583,275.6982) (1.5598,2.8132,343.6436)

ϕ 8.5 (2.3258,1.7700,209.0945) (1.9809,2.1363,276.8108) (1.6242,2.8420,344.9317)

8.6 (2.3276,1.8896,210.6988) (1.9866,2.2412,278.8914) (1.6038,2.8928,347.0337)

8.7 (2.3381,1.9831,212.2810) (2.9895,2.3275,279.9473) (1.6384,3.0862,349.1272)

Algorithm 1 Pseudo Code for PSO Algorithm
INPUT: Objective function =T C(τb, τ1),

OUTPUT: The cost function’s value T C(τ ∗
b , τ ∗

1 )

Initialization
for each particle j=1,2,…N, do

Start with a uniform distribution of particle positions as M j (0) ∼
(L B, U B), in which L B and U B are the lower and upper limits of
the search area.

Setup abest to its starting position abest( j, 0)= M j (0.)
Initialize cbest to the minimal value of the swarm:cbest(0) =

argmin f [M j (0).]
end for
Initiate the velocity: Vj ∼ U (−|U B − L B|, |U B − L B|).
Iterate until the endpoint is reached
for each particle j=1,2,…N do

Choose arbitrary numbers:s1, s2 ∼ U (0, 1).
Enhance the particle’s velocity.
Enhance the particle’s position.
Suppose [M j (0).]≤ [abest( j, t)(0)]
Update the particle’s current predicted position. j : abest( j, t) =

M j (t).
Suppose [M j (0)]≤ [cbest(t)(0)], enhance the swarm’s best known

position: j : abest(t) = M j (t). t ←(t+1;)
end for
cbest(t) holds the optimal found solution.

colony of robotic forager bees searches for plentiful synthetic
food sources. In order to optimize the objective function
with this method, the correct parameter vector must be used.
Then, the robotic bees find a random distribution of start-
ing solution vectors. The closest neighbour search method is
employed during the iterative process of reducing the error.
ABC can be utilized to maximize the choice of locations for
the installation of 5G BS. ABC can assist in determining the
best sites for BS to save deployment costs by taking into
account variables such as population density, signal cover-
age needs, and the expense of infrastructure implementation.
The findings indicate that ABC is either superior to, equiva-
lent to, or offers the advantage of fewer control factors than
some of the other population approaches. The phases of the
ABC method are described in pseudocode in Algorithm 2.

Moreover, the impacts of ν, r , ϕ on optimal service rate pairs
(τ ∗

b , τ ∗
1 ), respectively, as well as total minimal cost TC via

ABC optimization methods are laid out in Table 13.

Algorithm 2 Pseudo Code for ABC Algorithm
INPUT: Objective function =T C(τb, τ1),

OUTPUT: The cost function’s value T C(τ ∗
b , τ ∗

1 )

Generate an assembly of outcome Mi , i = 1
Check out the assembly, period 1, h = 0
Choose the optimal outcome, M best and fix M best1 = M best
Redo
Obtain a new way out Mnew = Mi for the worker bees and to get
them.
Use the greedy selection method for the worker bees.
Give each result a grade, and then choose the best one.
Find the probability Pi of the solution Mi .
With P1 as a starting point, generate a fresh outcome Mi for the
onlookers.
Use the greedy selection method to the onlookers.
If the scout’s result has been cancelled, then proceed with a newly
created result Mi .
Keep in mind the M new conclusion you’ve reached thus far.
Put h = h + 1 period = period + 1.
Until (the end condition has been met, i.e., period = MCN)

8.5 Genetic algorithm (GA)

During the 1960s and 1970s, Bremermann, Holland [4, 11]
and their colleagues developed the GA, an approach for
solving optimization issues inspired by natural selection,
the process through which organisms evolve. They come in
handy for effective remedies for unreliable search queries.
The full algorithm depicts the parameters incorporated to
pick the healthiest and most successful people to have chil-
dren. Natural selection is simulated by genetic algorithms,
which favour organisms with the ability to survive, repro-
duce, and pass its traits on to offspring. In order to find a
remedy to a problem, researchers replicate “ the survival of
the fittest ”through multiple human generations. In addition,
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Table 13 Effect of ν, r , ϕ on (T C, τ ∗
b , τ ∗

1 ) using ABC

Parameters (T C, τ ∗
b , τ ∗

1 )

Cost set 1 Cost set 2 Cost set 3

ν 0.52 (2.7571,2.8115,273.6573) (2.6282,3.1965,376.1871) (2.5425,3.594,467.7676)

0.53 (2.7476,2.7313,272.9675) (2.5826,3.1089,375.9223) (2.5394,2.9736,467.4577)

0.54 (2.7208,2.6261,272.1762) (2.5348,3.0374,375.4594) (2.5297,2.9190,466.9847)

r 0.3 (2.8241,2.6030,275.8688) (2.8104,3.0323,378.2474) (2.4807,3.0349,469.9546)

0.4 (2.8031,2.6469,275.5177) (2.6337,3.2465,377.1020) (2.5352,3.0774,468.8927)

0.5 (2.7895,2.6791,275.1595) (2.5887,3.2744,376.3267) (2.5536,3.2535,468.0455)

ϕ 8.5 (2.7281,2.8117,273.6499) (2.7577,2.9492,376.6902) (2.5093,2.9237,462.1726)

8.6 (2.7488,2.8852,275.9271) (2.6884,3.3789,379.0621) (2.5308,2.9902,466.0346)

8.7 (2.7701,2.9570,278.1969) (2.6518,3.4546,382.1096) (2.5510,3.0522,469.8845)

Arqub [1] has detailed how a continuous genetic algorithm
was used in his study. Research analysts are drawn to the
aforementioned method due to its potential value in a broad
variety of areas, including data centres, cryptanalysis, elec-
trical circuit design, etc. Moreover, the deployment of 5G
base stations is limited by things like financial constraints,
technological limits, and regulatory regulations. GA can be
modified to efficiently manage these limitations, guarantee-
ing that the solutions produced are workable and meet the
required standards. Algorithm 3 provides the pseudocode
for the GA algorithm’s order of procedures. Moreover, the
influence of ν, r , ϕ on optimal service rate pairs (τ ∗

b , τ ∗
1 ),

respectively, as well as total minimal cost TC via GA opti-
mization methods, are laid out in Table 14.

Algorithm 3 Pseudo Code for GA Algorithm
INPUT: Objective function =T C(τb, τ1),

OUTPUT: The cost function’s value T C(τ ∗
b , τ ∗

1 )

Calculate the objective function (OF)
Set the number of generations to 0 (t = 0)
Generate an initial sample of users at random P(t)
Evaluate an assembly of users by employing OF
while termination criterion is not satisfied do

t=t+1
Choose the users to assemblyP(t) from P(t − 1)
Alter users of P(t) by employing crossover and mutation
Evaluate an assembly of users by employing OF

end while
Return the best user found during the evaluation

At the outset of any optimization method- PSO, ABC or
GA-the particles are not stable, and it is vital to knowwhether
or not they return to normal and whether or not they roam
around in search of a better solution. That’s why convergence
is so important to cost analysis. Here Fig. 15 depicts the
convergence of the cost function via PSO, ABC and GA
techniques. In addition, by employing the aforementioned
techniques, we have been able to arrive at combined optimum

values, which offer the lowest predicted costs. Moreover, we
have made an effort to investigate the cost model through the
use of 3D graphs, which is presented in Fig. 14.

8.6 Comparative analysis within PSO, ABC, and GA

Here we examine three methods, namely PSO, ABC and
GA to estimate the lowest possible cost using their respec-
tive MATLAB programmes. In this case, we analyse three
distinct sets of costs, depicted in Table 11. The MATLAB
programmes for each of these algorithms are then exe-
cuted in turn. As a result of carrying this approach forward,
Tables 12, 13, and 14 have been created.

There was considerable similarity between the outcomes
of the three programmes, but there was also a bit of deviation.
Thus, the optimal solutions and associated lowest costs of
those three strategies are adjacent to one another. This proves
that the aforementioned heuristics provide trustworthy, opti-
mal solutions. Based on the data shown in Tables 12, 13,
and 14, PSO has the lowest ideal cost value. Thus, we can
use any strategy to determine the ideal cost; nevertheless, as
we juxtapose for the proposed framework, PSO is a highly
profitable approach for determining the best feasible cost. It
is simple to configure, performs admirably in global queries,
and is insensitive to scaling changes in design variables. PSO
tends to lead to a slow and quick convergence in mid-optimal
locations, as well as a ponderous convergence in a widened
search domain.

8.7 Convergence in PSO, ABC and GA

Knowing whether or not a particle lays off and how it will
wander over in search of a more effective outcome is actu-
ally crucialwhen applying optimization techniques like PSO,
ABC, or GA, because the constituent parts (people, groups,
or signals) are inherently out of equilibrium. Hence, cost
analysis convergence is crucial here since it eliminates all
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Table 14 Effect of ν, r , ϕ on (T C, τ ∗
b , τ ∗

1 ) using GA

Parameters (T C, τ ∗
b , τ ∗

1 )

Cost set 1 Cost set 2 Cost set 3

ν 0.52 (2.8614,3.0806,322.5623) (2.4458,3.2909,429.3605) (2.5115,3.0575,535.6779)

0.53 (2.8760,3.0591,322.7222) (2.4596,3.2713,429.6836) (2.5234,3.8366,535.8236)

0.54 (2.8897,3.0370,322.7863) (2.4726,3.2512,429.8757) (2.5347,3.0152,535.8118)

r 0.3 (2.9027,3.0145,322.7551) (2.5302,3.2005,432.4459) (2.4988,3.0779,535.3740)

0.4 (2.8802,3.0285,321.9419) (2.5079,3.2154,431.1988) (2.4737,3.0911,533.8794)

0.5 (2.8572,3.0427,321.1204) (2.4850,3.2306,429.9371) (2.4480,3.1044,532.3252)

ϕ 8.5 (2.8167,3.0112,318.0792) (2.4602,3.1671,423.6458) (2.4480,3.1044,532.3252)

8.6 (2.8378,3.0609,321.1670) (2.4792,3.2160,427.5879) (2.4672,3.1527,537.2758)

8.7 (2.8589,3.1106,324.2572) (2.4980,3.2650,431.5319) (2.4863,3.2010,542.2288)

Fig. 14 Optimality of the cost function
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of these challenges. Tables 12, 13, and 14 display the typi-
cal outcomes of applying the methods PSO, ABC, and GA
to every one of the cost sets listed in Table 11. Further, as
shown in Fig. 15, particles converge to the optimal solution
following certain trials (generations) in PSO, ABC, and GA.
After a brief amount of instances (generations), the parti-
cles in all three methods converge on the minimum possible
cost. Overall, the cost study above suggests that PSO con-
verges faster.We acknowledge that the overall estimated cost
is sensitive to the parameters chosen for priority, voluntary
service, and vacation, and that admins should exercise great
caution when making these choices. According to the results
of the analysis, the model we have outlined works very well
with the 5G BSmodel. The analysts can afford this system in
its entirety, which will help alleviate some of their financial
strain. Besides demonstrating the reliability of our model,
the cost analysis’s close resemblance to real-world examples
helps system designers and analysts minimise problems.

9 Conclusion

By simulating the 5G BS sleeping mechanism, we were able
to lower the 5G BS’s average power usage and achieve the
greatest possible power savings. In order to develop a better-
performingmodel that can be employed in real time systems,
we blended the 5G BS with the concepts of

• Retrial queue
• Feedback
• Repair

simultaneously which is worth emphasizing. Combining a
sleeping strategy with an N policy and a retrial queuing
framework is a comprehensive and very successful way
to address issues with energy usage in 5G BSs. When
the sleeping strategy and N policy work together, BSs
are able to dynamically switch between sleep and active
modes according to the arrival of the CR, which maximizes
energy efficiency without sacrificing acceptable service lev-
els. The useful analytical results for 5G BS are validated by
the numerical examples. Moreover, cost minimization tech-
niques such as PSO, ABC, and GA are also employed. The
outcomes are evaluated across methods, and the lowest pos-
sible price is determined.

Future research could expandon this studyby charactering
various sleeping strategies. Moreover, the proposed QS can
also be analysed with 6G network BS. The research could
potentially be extended to discrete systems as well. Further,
the matrix geometric method was not applied to the study of
these systems, which is also a promising avenue for future
investigation.

Appendix A

In the case where ρ < 1, the embedded Markov chain (MC)
{Fn; n ∈ N } can be said to be ergodic, where ρ = E(X1)[1−
Q∗(ν)] + r − νE(X1)[1 + ηE(S1)]E(L1)

Proof It is straightforward to verify that ergodicity is a suf-
ficient condition by applying Foster’s criteria [29], which
points out that the chain might be irreducible and aperiodic.
If a non-negative fn. c(d), d ∈ N and ε > 0, exists that guar-
antees that the mean drift ςd = H [c( fn+1)− c( fn)/ fn = d]
is limited for all d ∈ N and d ∈ N and ςd ≤ −ε, excluding
possibly for a finite no. of d ′s, then the MC is ergodic. When
considering the function c(d) = d in our scenario, we get

ςd =

⎧

⎪

⎨

⎪

⎩

r − νE(X1)[1 + ηE(S1)]E(L1), if c = 0

E(X1)[1 − Q∗(ν)] + r − νE(X1)[1 + ηE(S1)]
E(L1) − 1, if c = 1, 2, . . .

It is clear that ergodicity must exist in order for the inequality
below to exist.

E(X1)[1 − Q∗(ν)] + r − νE(X1)[1 + ηE(S1)]E(L1) < 1

If theMC {Fn; nεN }meetsKaplan’s criterion, wemay easily
ensure non-ergodicity in accordance with Sennott et al. [31]
particularly ςd < ∞ for all d ≥ 0 and ∃ d0 ∈ N s.t ςd ≥ 0
for d ≥ d0. The fact that “Kaplan’s condition”is met in our
scenario is underscored by the existence of a w such that
gld = 0 for d < l − m and l > 0, in which gld is the one-
step transition matrix of {Fn; n ∈ N }. Consequently, it is
indicated that the MC is non-ergodic by

E(X1)[1 − Q∗(ν)] + r − νE(X1)[1 + ηE(S1)]E(L1) ≥ 1

	


Appendix B

By substituting the eqns. (35), (36) and (33) in (26) and per-
forming some calculations, we eventually arrive at,

�(0, ε̆) =
νP0 {ε̆(1 − M) − (1 − r + r ε̆)L∗(T (ε̆))[A(ε̆)) − ε̆(1 − A(ε̆)))

+ε̆U (1 + sG∗
2 (C(ε̆)))B∗(C(ε̆))]}

(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν) + A(ε̆)(1 − Q∗(ν))] − ε̆

(57)

Here, by substituting the eqns. (35) to (39) into the eqns. (27)
to (31), we get,
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Fig. 15 Convergence of the cost function

�(0, ε̆) =
νP0 {(1 − M)[Q∗(ν) + A(ε̆))(1 − Q∗(ν)) − ε̆] − [A(ε̆)) − ε̆(1 − A(ε̆)))

+ε̆U (1 + sG∗
2 (C(ε̆)))B∗(C(ε̆))]}

(1 − r + r ε̆)L∗(T (ε̆))[Q∗(ν) + A(ε̆)(1 − Q∗(ν))] − ε̆
(58)

�1,m(0, ε̆) = pm
νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆))); (m = 1, 2, . . . M) (59)

�2(0, ε̆) = s

[

νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆)))

[

p0 +
M

∑

m=1

pm G∗
1,m(C(ε̆)))

]]

(60)

�(0, ε̆) =
[

νP0

G∗
1,0(ν)

G∗
1,0(C(ε̆))) [p0

+
M

∑

m=1

pm G∗
1,m(C(ε̆)))

]]

[1 + sG∗
2 (C(ε̆)))] (61)

R(0, ε̆) = η�(0, ε̆)[1 − L(�̂ )]e−(T (ε̆)�̂ ) (62)
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Appendix C

Nr
′′′
q (1) = −6νE(X1)(1 + sE(S1))[r + E(X1)(1 − Q∗(ν))

− νE(X1)(1 + ηE(S1))E(L1)

− 1][M
′ − νE(X1) + ν

G∗
1,0(ν)

[νE(X1)(1 + s)E(B1)

+ νsE(X1)E(G1
2)]]

− 9M
′
νE(X1)(1 + sE(S1))νE(X1)(1 − Q∗(ν))

+ 2νE(X1)(1 + ηE(S1))E(L1)[−νE(X1)

+ ηE(X1)E(S1)]] − 9[2E(X1) + U
′
(1 + s)

+ (1 + s)

G∗
1,0(ν)

− ν

G∗
1,0(ν)

[νE(X1)(1 + s)E(B1)

+ νsE(X1)E(G1
2)]][2(1 − Q∗(ν))νE(X1)(1

+ sE(S1))νE(X1) + ν[2E(X1)(1

+ sE(S1))νE(L1)[−νE(X1) + ηE(X1)E(S1)]]]
Nr

′′′′
q (1) = −6[(νE(X1))

2(1 + sE(S1))][(1 − Q∗(ν))[M
′′

− 4M
′ + 4r [2E(X1) + U

′
(1 + s) + ν

G∗
1,0(ν)

(1 + s)

− ν

G∗
1,0(ν)

[ν(1 + s)E(X1)E(B1)

+ νsE(X1)E(G1
2)]]] − 12[2E(X2)

+ 2E(X1) + U
′′
(1 + s) − 2[ν(1 + s)E(X1)E(B1)

+ νsE(X1)E(G1
2)][U

′ + ν

G∗
1,0(ν)

] + 2U
′
(1 + s)

− ν

G∗
1,0(ν)

[(1 + s)B∗′′
(1) + sG∗′′

2 (1)]

+ 2
ν

G∗
1,0(ν)

ν(1 + s)E(X1)E(B1)νsE(X1)E(G1
2)]]

− 12ν[M
′ + [2E(X1) + U

′
(1 + s) + ν

G∗
1,0(ν)

(1 + s)

− ν

G∗
1,0(ν)

[ν(1 + s)E(X1)E(B1) + νsE(X1)E(G1
2)]]]

[(1 − Q∗(ν))E(X1)T
′′
(1)

+ L∗′′
(1)[−νE(X1) + ηνE(X1)E(S1)]]

− 12[M
′ + ν[2E(X1) + U

′
(1 + s)(U

′ + ν

G∗
1,0(ν)

)

− ν

G∗
1,0(ν)

[ν(1 + s)E(X1)E(B1)

+ νsE(X1)E(G1
2)]]]νE(X1)(1 + ηE(S1))(E(L1)

+ (1 − Q∗(ν))νE(X2))

− 12νE(X1)(1 + ηE(S1))E(L1)[[−νE(X1)

+ ηνE(X1)E(S1)][ν[2E(X2)

+ 2E(X1) + U
′′
(1 + s) − 2[ν(1 + s)E(X1)E(B1)

+ νsE(X1)E(G1
2)][U

′ + ν

G∗
1,0(ν)

]

+ 2U
′
(1 + s) − ν

G∗
1,0(ν)

[(1 + s)B∗′′
(1) + sG∗′′

2 (1)]

+ 2
ν

G∗
1,0(ν)

ν(1 + s)E(X1)E(B1)νs

E(X1)E(G1
2)]

+ (1 − Q∗(ν))[M
′′
ν − 12M

′
νE(X1)]]

+ 12(1 − Q∗(ν))(1 + ηE(S1))(E(X1))
2[2E(X1)

+ [U ′ + ν

G∗
1,0(ν)

](1 + s)

− ν

G∗
1,0(ν)

[ν(1 + s)E(X1)E(B1) + νsE(X1)E(G1
2)]]]

− 12[r + E(X1)(1 − Q∗(ν))

− νE(X1)(1 + ηE(S1))E(L1) − 1][−νE(X1)(1 + ηE(S1))][M
′′

− νE(X2) + ν[2U
′ [ν(1 + s)E(X1)E(B1) + νsE(X1)E(G1

2)]
+ ν

G∗
1,0(ν)

[(1 + s)B∗′′
(1)

+ sS∗′′
(1)]]] + 12[M

′ − νE(X1)

+ ν

G∗
1,0(ν)

[ν(1 + s)E(X1)E(B1)

+ νsE(X1)E(G1
2)]][T

′′
(1)(r − 1)

+ νE(X1)(1 + ηE(S1))[(1 − Q∗(ν))E(X2) + L∗′′
(1)]

− νE(X1)(1 + ηE(S1))E(L1)[T ′′
(1)

− 2νE(X1)(1 + ηE(S1))[r + (1 − Q∗(ν))E(X1)]]
+ (1 − Q∗(ν))E(X1)[2rνE(X1)(1 + ηE(S1))

+ T
′′
(1)]]

Dr
′′′
q (1) = 6νE(X1)(1 + ηE(S1))νE(X1)[r + E(X1)(1

− Q∗(ν)) − νE(X1)(1 + ηE(S1))

E(L1) − 1]
Dr

′′′′
q (1) = 12[[r + E(X1)(1 − Q∗(ν))

− νE(X1)(1 + ηE(S1))E(L1) − 1][T ′′
(1)E(X1)

+ E(X2)νE(X1)(1 + ηE(S1))]
+ νE(X1)(1 + ηE(S1))E(X1)[2[rE(X1)(1 − Q∗(ν))

− νE(X1)(1 + ηE(S1))E(L1)[r
+ E(X1)(1 − Q∗(ν))]]
+ E(X2)(1 − Q∗(ν)) − T

′′
(1)]]

Nr
′′′′
s (1) = Nr

′′′′
q (1) − 6νE(X1)(1 + ηE(S1))E(L1)[νE(X1)

+ νE(X1)ηE(S1)][1 − 4M
′ ] + 24M

′
(νE(X1))

2(1

+ ηE(S1))(1 − Q∗(ν))

T
′′
(1) = νE(X2)(1 + ηE(S1)) + (νE(X1))

2ηE(S2)

L∗′′
(1) = ν(E(X2)E(L1) + E(X1)E(L2)); B∗′′

(1)

= ν(E(X2)E(B1) + E(X1)E(B2))

S∗′′
(1) = ν(E(X2)E(S1) + E(X1)E(S2)); G∗′′

2 (1)

= ν(E(X2)E(G1
2) + E(X1)E(G2

2))

U
′′ = (ν)2

G∗
1,0(ν)

[E(G2
1,0)

+ 2
M

∑

m=1

pmE(G1
1,m)E(G1

1,0) +
M

∑

m=1

pmE(G2
1,m)]

M
′′ = ν

G∗
1,0(ν)

[E(G2
1,0) + 2

M
∑

m=1

pmE(G1
1,m)E(G1

1,0)
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+
M

∑

m=1

pmE(G2
1,m)]
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