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Abstract
In cognitive radio networks (CRNs), rendezvous is the vital step prior to the communication between two unlicensed secondary
users (SUs), where the SUs hop on the same channel at the same time to establish a link. With the dramatic fall in the cost
and size of wireless transceivers, it becomes more reasonable to apply multiple radios to achieve significant improvement in
the rendezvous performance. However, most of the existing multiradio rendezvous algorithms are proposed for homogeneous
CRNs where all the SUs are equipped with an equal number of radios and do not possess backward compatibility to SU with
a single radio. In reality, the CRNs are heterogeneous in nature as SUs may have different numbers of radios. In this paper, a
composite CH algorithm is proposed for an asynchronous and heterogeneous network to achieve blind rendezvous with full
rendezvous diversity. An SU with m number radios are categorized into three groups those follow different channel hopping
(CH) algorithms. The upper bound of the rendezvous latency is being evaluated with a brief theoretical and mathematical
analysis. Extensive simulations have conducted for different performance metrics, and the results are compared with the
state-of-art algorithms. Overall, the proposed algorithm shows better performance in heterogeneous CRNs.

Keywords Cognitive radio network · Blind rendezvous · Multiple radios · Channel hopping · Difference sets

1 Introduction

With the exponential development of smart wireless tech-
nology and the explosive spread of wireless devices, the
unlicensed spectrum has become overcrowded and a scarce
resource. At the same time, a significant portion of the
licensed spectrum remains underutilized. Cognitive radio
(CR)has gained attention in the past decade for efficiently uti-
lizing this underutilized licensed spectrum. The unlicensed
or secondary users (SUs) in the cognitive radio networks
(CRNs) opportunistically share the temporarily vacant spec-
trum of the primary users (PUs), also called the licensed
users [1]. Each SU in the CRN is equipped with a cog-
nitive transceiver, or CR, that is used to sense and access
the idle channels of PUs for data transmission. However,
before the data transmission between any pair of SUs, they
must share control information and establish a link on the
available channel, called the rendezvous of SUs. The con-
ventional rendezvous is achieved using a centralized unit
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or dedicated common control channels (CCCs), which have
security issues and also face scalability problems [2, 3].
Hence, blind rendezvous is widely adopted by the CRNs,
where SUs hop on their respective available channels follow-
ing certain channel hopping sequences (CHSs) until they find
the same channel at the same time. This channel rendezvous
is blind, as the SUs do not have any prior information about
others’ presence and available channel sets. The design of
the CH sequence that can achieve blind rendezvous also has
the following challenges [4–9]:

– Asynchronous clock Clock synchronization is unrealis-
tic and difficult to maintain for spatially scattered SUs
in distributed CRNs. CHSs must handle asynchronous
scenarios while ensuring rendezvous.

– Heterogeneity in CRN It is implicitly assumed that CRNs
are homogeneous, where each SU is equipped with an
equal number of CRs, and those can sense and access
all the available channels in the network. Nevertheless,
different SUs may have a different number of CRs, and
the available channels may also differ because of differ-
ent sensing capabilities. Hence, heterogeneous CRNs are
needed and should be focused on.
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– Symmetric CHS generationMany rendezvous algorithms
use asymmetric CHSs for a pair of SUs with the preas-
signed roles of transmitter and receiver. This method can
offer the lowest rendezvous latency, but the prior knowl-
edge or assignment of roles is unrealistic. In practice,
symmetric CHSs are generated for each SU with sym-
metric roles.

– Anonymous SUs’ information To achieve better ren-
dezvous results, ID-based CH algorithms are designed
with unique identifications of SUs, where the CHS length
is the function of the ID string. However, with increas-
ing numbers of SUs in the network, the rendezvous time
would also increase with the increasing length of ID
strings. Moreover, for security concerns, an ID indepen-
dent rendezvous algorithm is preferred.

With the challenges discussed above, any randomly
designed blind rendezvous algorithm cannot guarantee ren-
dezvous. To achieve guaranteed and fast rendezvous within
a finite time, the construction of CH sequences must focus
on the degree and latency of rendezvous. Three primary per-
formance metrics are Average Time to Rendezvous (ATTR),
Maximum Time to Rendezvous (MTTR), and rendezvous
diversity. When a pair of SUs start to hop with their CHSs,
which might be asynchronous, the time required for the first
rendezvous is called time to rendezvous(TTR). The expected
and maximum time required for the rendezvous under all
possible clock drifts between the SUs are considered as
ATTR and MTTR respectively. The upper bound of MTTR
is denoted as maximum conditional time to rendezvous
(MCTTR) in most of the literature, and it is the MTTR value
at the worst condition when only one channel is common
between sensed available channel sets of SUs. Rendezvous
diversity is the minimum number of distinct channels on
which two SUs can rendezvous. If they can rendezvous on
all the channels, they achieve optimum rendezvous diversity.
Hence,with full rendezvous diversity, a pair of SUs guarantee
rendezvous even in the worst conditions.

Most of the rendezvous schemes in the literature assume
that SUs are equipped with a single transceiver or radio [5,
6, 10–13]. The cost of transceivers has dropped dramatically
in recent years [7, 14, 15], and multiradio rendezvous has
become feasible to implement. In multiradio rendezvous,
SUs can hop in parallelly on multiple channels at the same
time, and the TTR can be shortened significantly. Some
previous works [16–24] attempted to design multiradio ren-
dezvous algorithms. However, many disadvantages are still
present in theseworks that need to be explored, such as (i) All
the SUs in the CRN are assumed to have an equal number of
radios, which is unrealistic for heterogeneous networks. (ii)
Each SU is implicitly assumed to be equippedwithmore than
one radio. In other words, the designed algorithms are not
backward compatible with single radio rendezvous. If at least

oneSU is usingone radio, rendezvous for a pair of SUs cannot
be guaranteed. (iii) Even though somemultiradio rendezvous
algorithms possess backward compatibility, they have a very
large MTTR for single radio rendezvous. (iv) With multira-
dios, a SUmay hop on the same radio at the same time, which
is just a waste of radio resources. Hence, by accessing dif-
ferent distinct channels with the radios at the same time, the
possibility of rendezvous will increase in each time slot. (v)
For some of the algorithms [16, 24], MTTR value is infinite
as they cannot guarantee rendezvous within finite time.

CHS period describes the repeating pattern of the CHS.
Studies show that it is faster to rendezvous for an SUpairwith
multiple radios within a short CHS period, which results in
a shorter TTR value. However, if an SU only has one radio,
the CHS period of the SU increases significantly, increas-
ing TTR value and computational complexity. In this paper,
the novelty lies in the use of a DDS-based CHS for a single
radio as the period length can be reduced by using a dis-
joint difference sets with minimum elements. A composite
channel hopping algorithm is introduced for heterogeneous
radios, focusing on the disadvantages discussed above for
guaranteed blind rendezvous. For the realistic network sce-
nario, the SUs are considered with no pre-assigned roles, and
the SUs have asynchronous local clocks, different numbers
of radios, and asymmetric available channel sets. Internet
of Things devices presently are constrained by their low
memory and processing power, which restricts the type of
computations they can perform. The limitation of resources
may serve as the primary constraint that imposes restric-
tions on IoT devices. The suggested CHRR method would
be more beneficial for device-to-device communication and
IoT applications that can save time andmemory in small sen-
sors and mobile devices due to the shortest CHS period and
rendezvous latency.

The contribution of this paper is summarized as follows.

(1) A composite CHS is proposed for the two-user ren-
dezvous, where the SUs may be equipped with a het-
erogeneous number of radios. For this, a DDS-based CH
algorithm and a stay-jump based CH algorithm are pro-
posed. The first one is used for single radio rendezvous,
while the combined form of the two CHSs is used for
multiradio rendezvous.

(2) The upper bounds of MTTR are derived for the CHRR
algorithm under all possible combinations of radios in a
heterogeneous CRN.

(3) The performance of the CHRR in terms of ATTR and
MTTR is evaluated through extensive simulations and
compared with other state-of-the-art multiradio and het-
erogeneous radio rendezvous algorithms.

The rest of this paper is organized as follows: In Sect. 2, exist-
ing multiradio rendezvous algorithms are briefly reviewed.
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Section 3 introduces the systemmodel and problem formula-
tion of our work. Section 4 presents the proposed composite
multiradio rendezvous algorithm. In Sect. 5, the theoreti-
cal analysis has been done for rendezvous diversity and the
upper boundofMTTRfor heterogeneous networks. Section6
demonstrates the simulation and the comparison with other
algorithms. Finally, the paper is concluded in Sect. 7.

2 Related works

The existing channel-hopping rendezvous algorithms are
implicitly classified based on the number of radios that the
SUs have.Most of the previous works have considered single
radio-based rendezvous. Several researchers are concentrat-
ing on multiple radios-based CH algorithms since multiple
radios have become more realistic in recent years. The CH
algorithms can be further characterized based on the CRN
type: homogeneous or heterogeneous. All the SUs in the
homogeneous networks are equipped with an equal number
of radios, whereas the number of radios is not the same in the
heterogeneous networks. The design of a CH algorithm for
heterogeneous networks is more challenging since it must be
amultiradio rendezvousmethodwith single radio rendezvous
backward compatibility. In this section, a detailed review of
recent multiradio rendezvous algorithms is presented.

The role-based parallel sequence (RPS) algorithm is pro-
posed in [16] for multiradio rendezvous in homogeneous
CRNs. The primary idea behind this article is to think of
one radio as a dedicated radio and the rest as jump radios for
an SU with m radios. The dedicated radio stays on a specific
channel for a certain number of timeslots, while the (m − 1)
jump radios hop continuously on the available channels in a
round robin manner. The ATTR and MTTR performance of
the RPS algorithm is further improved in adjustable multi-
radio rendezvous (AMRR) [21] by adjusting the number of
dedicated radios of an SU. If N1 and N2 be the number of
available channels of SU1 and SU2 respectively in a CRN
with N number of total available channels, thenMTTR value
of RPS andAMRRdepends on N and (N1, N2), respectively.
This shows that, unlike RPS, AMRR takes heterogeneity
into account. The general construction for rendezvous (GCR)
in [17] divides the total radios of an SU into pairs and the
available channels are distributed among them. Two-prime
modular clock concept is utilized here for rendezvous. The
disadvantage of this method is that an even number of radios
is necessary. Moreover, bounded MTTR is guaranteed for
RPS, AMRR and GCR only when the number of radios is
greater than one, and MTTR tends to infinity for a single
radio environment.

In [18], multiradio sunflower-set based rendezvous (MSS)
algorithm is suggested, which is inspired by the single-radio
sunflower-set based rendezvous (SSS) algorithm. For a sin-

gle radio, a periodic CH sequence is generated using the SSS
algorithm. For multiradio, the SSS-generated CH sequence
is assigned to the first radio, and for the remaining radios, CH
sequences are generated sequentially by cyclically rotating
the sequence of the previous radio by 2P timeslots. P is the
smallest prime integer that is not less than three or the num-
ber of available SU channels. ThoughMSS can be applied to
heterogeneousCRNs, theMTTR is high and increases signif-
icantly with the increase in the number of available channels.
Further, two SUs cannot guarantee rendezvous when they
start the rendezvous process simultaneously or when any
SU has only one available channel. A Chinese remainder
theorem-based multiradio rendezvous (CMR) is proposed in
[25]. This algorithmguarantees rendezvouswhen at least two
different prime numbers are used by an SU for the generation
of multiradio CH sequences. If both SUs are equipped with
a single radio, CMR cannot guarantee a rendezvous when
both employ the same prime integer to generate their CH
sequences. The adaptive rendezvous (AR) algorithm in [19]
guarantees rendezvous with a high probability, but the num-
ber of radios in each SU is assumed to be equal, which makes
it difficult to implement in heterogeneous CRNs.

In the algorithms [16–19], many radios of an SU may
hop on the same channel at the same time, wasting radio
resources. Hybrid radio rendezvous (HRR) algorithm,
enhanced HRR(EHRR) algorithm, and modified enhanced
heterogeneous radio rendezvous (MEHRR) algorithm in [22,
23, 26] respectively, ensure that different radios of an SU
access different channels at a given time-slot. The three
algorithms fully address the heterogeneity of the CRNs by
designing two separate algorithms for SUswith a single radio
and SUs with multiple radios. Here, rendezvous is also guar-
anteed when one SU is with one radio and the other is with
multiple radios. However, when the two SUs are equipped
with single radios, in the worst case, the upper bound of
MTTR would be 5P3, 4P3, and 3P3 in HRR, EHRR, and
MEHRR respectively. Despite the fact that these algorithms
work extremely well for multiradio rendezvous, the MTTR
values for single radio rendezvous scenario are notably very
high. Here, P is same as refereed in other algorithms.

The computational complexities of these rendezvous algo-
rithms are directly related to the period of the CH sequences
and the upper bound of MTTR. In [16, 17, 21], faster
rendezvous is guaranteed with a short CHS period, where
the SUs are with multiple radios and hence, complexities
are relatively lower as compared to others. In the case
of heterogeneous radios, if one of the SUs is equipped
with a single radio, the period length of the CH sequences
for HRR, MEHRR, and CHRR would be 5P2, 3P2, and
2P2 + � P

2 � × P , respectively. However, despite the fact that
the period lengths ofHRRandMEHRRare O(P2), their cor-
responding MTTR with full rendezvous diversity is O(P3),
as seen in Table 1. In contrast, CHRR achieves full ren-
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Table 1 Performance comparison of multi-radio rendezvous schemes

Algorithms Upper bound of MTTR Heterogeneous
multiple radios

Compatible to
single radio

Complexity for hetero-
geneous radios

RPS [16] O( N2

min(m A,m B )
) Yes No O( N2

min(m A,m B )
)

AMRR [21] O( NA NB
m Am B

) Yes No O( NA NB
m Am B

)

GCR [17] O( NA NB
m Am B

) Yes No O( NA NB
m Am B

)

MSS [18]† O(
max(P2

A PB ,P2
B PA)

m Am B
) Yes Yes O(

max(P2
A PB ,P2

B PA)

m Am B
)

AR [19] Unknown No No –

DS-ACH [20] 1 No No –

HRR [22] (i) 5P3∗
(ii) 5P2 + wB

∗∗
(iii) 2� NA−G

m AS
�wA + 2wB

•
Yes Yes O(P3)

MEHRR [23] (i) 3P3∗
(ii) 3P2 + wB

∗∗
(iii) � NA

m AS
�wA + wB

•
Yes Yes O(P3)

CHRR (i) 2P2 + � P
2 � × P

‡
(ii) � NA

m AS
�wA + wB

�
Yes Yes O(P2)

N : Total number of channels in the CRN; P: Smallest prime greater than N ; NA, NB : Number of available channels of SUA and SUB , respectively;
G: Number of commonly available channels between SUA and SUB ; m A, m B : Number of radios of SUA and SUB , respectively; m AS, m BS :
Number of stay radios of SUA and SUB , respectively; PA, PB : Smallest primes not smaller than NA and NB , respectively
†Rendezvous is guaranteed only when both SUs do not start their CH process at the same time
∗m A = 1, m B = 1
∗∗m A = 1, m B > 1
•m A > 1, m B > 1
‡m A = 1 or 2, m B ≥ 1
�m A > 2, m B > 2

dezvous diversity within the period for which its complexity
is O(P2) as compared to others.

Table 1 compares state-of-the-art multiradio rendezvous
algorithms in terms of the upper bound of MTTR, com-
plexity, heterogeneity, and compatibility with single radio
rendezvous.

3 Systemmodel and problem formulation

3.1 Systemmodel

We consider a heterogeneous CRN with N non-overlapping
licensed channels, where the channel set C = {0, 1, 2, 3, 4,
. . . , N −1}. A subset of C is said to be accessible to an SU if
the user can communicate over these channels without inter-
fering with the PUs. The SUu is considered to be equipped
with mu radios, where mu ≥ 1. The set of available channels
sensed idle by the SUu is Cu ⊆ C and | Cu |= Nu .The net-
work divides time into timeslots of length 2ts , where ts is the
time necessary to create a link between two users by complet-
ing the beaconing and handshaking operations. According to
IEEE 802.22 standard, ts = 10ms [27].

In the heterogeneous network, if SU is equipped with a
single radio, i.e., m = 1, the radio is named as main radio.
When m = 2 for an SU, first radio is termed as main radio
with CHS same as that of m = 1, and the second radio
termed as stay radio. For the SU with m ≥ 3, the radios are
divided into three groups, one main radio, k stay radios, and

(m − 1) − k jump radios. The CHS generation algorithms
for different groups of radios are discussed in Sect. 4.

The rendezvous is considered between a pair of SUs, SUu

and SUv . Here, mu and Cu may not be equal to mv and Cv ,
respectively. The available common channels between SUu

and SUv is denoted by the set Guv = Cu ∩ Cv . Rendezvous
is possible between the users if Guv �= ∅. The CHS of SUu

is denoted as Su = {S1
u , S2

u , S3
u , . . . , Siu

u , . . . , Smu
u }, where

Siu
u = {Siu

u (1), Siu
u (2), Siu

u (3), . . . , Siu
u (t), . . . , Siu

u (T )} is the
CHS of i th radio with a length of T timeslots. Hence, Siu

u (t)
represents the channel accessed by the i th radio of SUu at t th
timeslot. A clock drift of δ is considered between the CHSs
of two SUs.

3.2 Problem formulation

The blind rendezvous problem for the heterogeneous CRN
can be formulated as follows:

For a pair of SUs, SUu and SUv , design the channel access
strategy for their radios at different timeslots Sir

r (t) ∈ Cr ,
where r ∈ {u, v} and ∀ Cu , Cv , δ, and ∀ R ∈ Guv , ∃ t ′, iu, iv
such that Siu

u (t ′ + δ) = Siv
v (t ′) = R

Here, the CH process of SUv starts δ timeslots later than
that of SUu , and the rendezvous is said to be achieved on
channel R at t ′th timeslot. The ATTR is the average times
required for the first occurrence of rendezvous and can be
represented as AT T R = E(min∀R

t ′).
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Fig. 1 Example of rendezvous process

Let �(Guv, δ) is the minimum TTR on all the commonly
available channels. Then MTTR with full rendezvous diver-
sity can be represented as:

MT T R = max∀δ
(�(Guv, δ))

In the worst-case scenario, where Guv = 1, the MT T R
would have its upper bound. Short MTTR represents two
SUs can rendezvous quickly even at the worst condition,
and short ATTR means two SUs can rendezvous quickly on
average. Hence, both are significant metrics for the design of
a CH rendezvous algorithm.

In Fig. 1, a rendezvous process is illustrated between SUu

and SUv with radios mu = 1 and mv = 3 respectively.
Here, C = {0, 1, 2, 3, 4, 5, 6}, Cu = {0, 1, 2, 3, 6}, Cv =
{0, 2, 3, 6}, and Guv = {0, 2, 3, 6}. The CH process of SUv

starts after δ = 5 timeslots. As TTR is calculated from the
instant when both the users start their CH, local clock of
SUv is considered for the TTRcalculation. The rendezvous at
channels {0, 2, 3, 6}occurred for thefirst time at 1st , 3rd , 7th,
and 15th timeslots. Hence, min∀R

t ′ or theminimum T T R = 1,

and �(Guv, 5) = 15.

4 Composite CH-based heterogeneous radio
rendezvous algorithm

To achieve fast rendezvous in heterogeneous CRN, a DDS-
based CH algorithm is proposed for SU with a single radio.
For SU with multiple radios, a composite CH algorithm is
introduced, where the DDS-based CH algorithm is used for
the generation of the CHS of its first radio and a Stay-Jump
CH algorithm is used for the CHSs of the remaining radios.

4.1 DDS-based channel hopping algorithm

4.1.1 Disjoint difference set

Definition 1 A set D = {a0, a1, a2, · · · , ak−1} ⊂ Zn is
referred as a relaxed cyclic difference set or simply (n, k)-
DS, if an order pair (ai , a j ) exists ∀ d ∈ (0, n) such that
(ai − a j ) ≡ d mod n. Here, ai , a j ∈ D and Zn is the set of
positive integers denoted as {0, 1, 2, . . . , n − 1}.

Corollary 1 If D is a (n, k)-DS, under Zn then rotate(D, i)
is likewise a (n, k)-DS, where i ∈ (0, n) and rotate(D, i)=
{a0 + i, a1 + i, . . . , ak−1 + i} mod n,

Proof The corollary has been proved in our previous work
[28]. As an illustration, if D = {1, 4, 5} ⊂ Z6 is a DS, then
rotate(D, 3) = {4, 1, 2} is also a DS.

Definition 2 A set Q = {A0, A1 . . . An−1} is referred as a
cyclic quorum system (CQS), if each set Ai ⊆ Zn and Q has
the following two properties for all i, j ∈ [0, n − 1]:

i) Ai = rotate(A0, i),
ii) Ai

⋂
A j �= ∅

Corollary 2 A CQS under Zn can be formed with a group of
n sets {A0, A1, . . . An−1}, if Ai = {(a0 + i)mod n, (a2 +
i)mod n, . . . , (ak−1 + i)mod n} ∀i ∈ [0, n) and set D = {
a0, a1, . . . , ak−1} is a (n, k)-DS.

Proof The corollary has been proved in our previous work
[28].

Definition 3 A set S = {D0, D1, . . . , Dm−1} denotes a
group of disjoint difference sets (DDS) under Zn , where Di

is a DS and Di
⋂

D j = ∅,∀i, j ∈ [0, m − 1].
Corollary 3 If S = {D0, D1, . . . , Dm−1.} is a DDS with Di ⊂
Zn, then the set rotate(S, i) is likewise a DDS, where i ∈
(0, n) and rotate(S, i) = {rotate(D0, i), rotate(D1, i),
. . . , rotate(Dm−1, i)}.
Proof The corollary has been proved in our previous work
[28].

Corollary 4 If S = {D0, D1, . . . , Dm−1} is a DDS with Di ⊂
Zn, then S can be used to create a set of m number of CQS.

Proof The corollary has been proved in our previous work
[28].

4.1.2 Construction of DDS

An algorithm is established for the construction of a DDS
under Zn . In this paper, n = Pk, where P is the small-
est prime number greater than equal to the total number of
licensed channels in the CRN. k is the average number of
elements per DS. The set S = {D0, D1, D2, . . . , DP−1} is
constructed with P disjoint DSs, where each DS is of size k
and k = 2P + � P

2 �.
To start building a DDS under Zn , the Zn is parti-

tioned into P distinct sets of size k and is designated as
U0, U1, . . . , UP−1. This procedure is depicted in Fig. 2.
Here,Ul = {lk, lk+1, . . . , (lk+k−1)}, l ∈ [0, P−1]. Each
Ul is further split into two subsets, Xl and Yl . The subsets Xl
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Fig. 2 Construction of the i th difference set Di under Zn , ∀i ∈ [0, P −
1]
and Yl each have P and (k − P) number of elements, respec-
tively. Now, the i th DS of size k is constructed with the first
P elements selected from {X0, X1, . . . , X P−1} represented
with a set, DXi and the rest (k − P) elements are selected
from {Y0, Y1, . . . , YP−1} by using the concept of triangular
number. The selected (k − P) elements are presented with
the set, DY i . The term Tj , used in Fig. 2 is a triangular num-

ber and is defined as j( j+1)
2 for any non negative integer j .

Therefore, Di is given by

Di = DXi ∪ DY i ,
where
DXi = {xip}, xip = kp + i ,
DY i = {yiq}, yiq = k(Tq + i) + P + q,

Tq = q(q+1)
2 modP ,0 ≤ p ≤ P − 1 and 0 ≤ q ≤ k − P − 1

Algorithm 1 Construction of Disjoint Difference Sets
Require: P
Ensure: DDS S = {D0, D1, D2, . . . , DP−1}
1: S = ∅
2: k = 2P + � P

2 �
3: for i= 0 to (P − 1) do
4: for p= 0 to (P − 1) do
5: xip= k × p + i
6: DXi ={xip}
7: end for
8: for q = 0 to (k − P) − 1 do
9: v = q×(q+1)

2 mod P + i
10: yiq=k × v + P + q
11: DY i ={yiq }
12: end for
13: Di = DXi ∪ DY i
14: S = S ∪ {Di }
15: end for

In Algorithm 1, the construction of DXi and DY i are men-
tioned respectively in lines 4 ∼ 6 and lines 8 ∼ 11. The i th
difference set, Di is constructed in line 13 by combining DXi

and DY i and the final set S, obtained in line 14 is a DDS. The
proof for the constructed Di ’s being the disjoint difference
sets is given in the “Appendix”.

4.1.3 CH sequence generation based on DDS for the
rendezvous

As stated in Algorithm 2, a DDS-based CH sequence is gen-
erated for SUu . If C = {0, 1, 2, . . . , P − 1} is the set of

licensed channels in the network, and Cu is the available
channel set of SUu then the DDS S has P number of disjoint
sets Di , i ∈ C . These DSs are used to construct CH sequence
for the first radio with time period of n time slots as shown
in lines 6 ∼ 13.

Algorithm 2 Generation of DDS-based CH sequence
Require: C , Cv \\ for SUv , C =licensed channels set
Ensure: S1

v

1: P = smallest prime number ≥ |C |
2: Invoke Alg. 1 to construct a DDS S with P
3: n = Total elements in DDS, S
4: x = a random number in [0, n − 1]
5: S = rotate (S, x)

6: for t = 0 to n − 1 do
7: find Di ∈ S such that t ∈ Di
8: if i ∈ Cv then
9: C Hv[t] = i \\ i is accessed in slot t
10: else
11: C Hv[t] = Random channel ∈ Cv

12: end if
13: S1

v = C Hv

14: end for

Example A CRN network is considered with the licensed
channel set C = {0, 1, 2}. P = 3 for the given C . The
SUs SUu and SUv with C = Cu = Cv generate their CH
sequences using Algorithm 1 and 2. Figure 3 illustrates the
relevant CH sequences and the rendezvous between them in
an asynchronous environment.

4.2 Stay-jump channel hopping algorithm

When an SU is equipped with multiple radios, and |Cv| ≤
mv , each radio bydefaultwill act as a stay radio and access the
samechannel at every timeslots as shown inFig. 4b.However,
for |Cv| > mv , the CHS for the first radio is generated based
on DDS-based CH algorithm, and CHSs for the remaining
radios are generated using Jump-Stay CH algorithm. One
period of CHSs generated by the latter algorithm is consist
of η number of inner periods, each of length τv . Based on
the number of stay radios (mvs) and the jump radios (mv j ),
length of the periodic CHSs is T = η × τv , where η =
LC M(Cv,mvs )

mvs
and τv = �Cv−mvs

mv j
� as shown in Fig. 4a, and the

channel accessed by the radios in each time slot is derived in
Algorithm 3.

For each inner period, the set Cv is divided into distinct
disjoint sets, C S

v and C J
v , where |C S

v | = mvs . Throughout an
inner period, each stay channel stays on a particular channel,
c ∈ C S

v , and each jump radio hops to a different channel,
c ∈ C J

v at different timeslots. In line 8, C S
v and C J

v are
initialized to null sets for each inner period. In lines 11 ∼
12, |C S

v | = mvs distinct channels from Cv are assigned to
the stay radios and the selected channels are taken into C S

v
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Fig. 3 Rendezvous process
using DDS-based CH
sequences. a Illustration for
channel access at different time
slots using DDS S, Disjoint
difference sets when P = 3, b
Rendezvous between two SUs
while using DDS-based CHSs
with 6 time slots drift

Algorithm 3 Generation of Stay-Jump CH sequence
Require: Cv , m∗

v , mvs , mv j \\ for SUv , and m∗
v = mv − 1

Ensure: S∗
v = {S2

v , S3
v , . . . , Smv

u }
1: η = LC M(Cv ,mvs )

mvs
2: if mv j = 0 then
3: τ = Cv

4: else
5: τ = � Cv−mvs

mv j
�

6: end if
7: for t = 1 to η do
8: C S

v = ∅, C J
v = ∅

9: for q = 1 to τ do
10: for r = 1 to mvs do
11: i1 = ((t − 1) ∗ mvs + (r − 1)) mod |Cv | + 1
12: Sr = Cv(i1)
13: C S

v = C S
v ∪ Cv(i1)

14: end for
15: C J

v = Cv \ C S
v

16: z = (i1 − mvs) mod |Cv | + 1
17: if z > |Cv | then
18: for r = mvs + 1 to m∗

v do
19: i2 = (r − (mvs + 1) + (q − 1) ∗ mv j ) mod |C J

v | + 1
20: Sr = C J

v (i2)
21: end for
22: else
23: for r = mvs + 1 to m∗

v do
24: i2 = ((i1 − 1) + r − (mvs + 1) + (q − 1) ∗ mv j ) mod

|C J
v | + 1

25: Sr = C J
v (i2)

26: end for
27: end if
28: end for
29: S∗

v = Sr

30: end for

in line 13. C J
v is derived in line 15,and In lines 17 ∼ 25,

the jump radios hop on different channels of C J
v during the

inner period in such a way that their accessed channels are
different at one time slot. Finally, the required one period
of the CHSs of all the (mv − 1) radios is generated in line
29.

Algorithm 4 CHRR Rendezvous Algorithm
Require: C , Cv , mv , mvs , mv j \\ for SUv

Ensure: Sv = {S1
v , S2

v , S3
v , . . . , Smv

u }
1: m∗

v = mv − 1
2: if mv = 1 then
3: Invoke Algorithm 2 to generate CHS,

Sv = Algorithm 2(C, Cv)

4: end if
5: if mv ≥ |Cv | then
6: for r = 1 to mv do
7: i = r mod mv

8: Sr = Cv(i)
9: end for
10: Sv = Sr

11: end if
12: if mv < |Cv | then
13: Invoke Algorithm 2 to generate CHS of first radio,

Sv1 = Algorithm 2(C, Cv)

14: Invoke Algorithm 3 to generate CHS for the rest mv − 1 radios,
Sv2 = Algorithm 3(Cv , m∗

v , mvs , mv j )

15: Sv = {Sv1, Sv2}
16: end if
17: Attempt rendezvous using Sv

4.3 CHRR algorithm

Lastly, as previously described, the composite-CH based het-
erogeneous radio rendezvous (CHRR)method is constructed
in Algorithm 4 to achieve full rendezvous diversity. The SUs
continue to access channels using their respective created
CHSs using Algorithm 4 and accomplish rendezvous regard-
less of their asynchronous clocks.

An example is discussed in Fig. 4 to make the algo-
rithms easier to follow. Here, the licensed channel set C =
{0, 1, 2, 3, 4, 5, 6, 7, 8} and two secondary users, say SUu

and SUv are considered which are equipped with multiple
radios of mu and mv respectively. The available channel
sets of SUu and SUv are Cu = {0, 1, 3, 4, 5, 7, 8} and
Cv = {3, 4, 6} respectively. Since mv > |Cv|, each radio of
SUv acts as a stay radio, and the channels in Cv are assigned
to each radio using the lines 6 ∼ 10 of Algorithm 4. The
generated CHS is shown in Fig. 4b. As mu < |Cu | for SUu ,
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Fig. 4 Generation of the CHS for an SU having multiple radios. a The
structure of one period of the CHSs generated by Stay-Jump CH Algo-
rithm. b An example of of CHS generated by CHRR Algorithm when

mv > |Cv | for SUv . (c) An example of of CHS generated by CHRR
Algorithm when mu < |Cu | for SUu

the CHS of each radio is generated using the lines 12 ∼ 15 of
Algorithm 4. In this case, a DDS-based CHS with the period
of 2P2 +� P

2 �× P = 297 timeslots is generated using Algo-
rithm 2 for the first radio, where P = 11 as |C | = 9. For
the rest 4 radios Stay-Jump CHS is generated using Algo-
rithm 3 with mus = 2 and mu j = 2. Here, the length of
each inner period is τu = �|Cu |−mus

mu j
� = � 7−2

2 � = � 5
2� = 3.

The length of one outer period of the Stay-Jump CHS =
LC M(|Cu |,mus )

mus
× τu = LC M(7,2)

2 × 3 = 21 timeslots. For the

first inner period,C S
u = {0, 1} andC J

u = {3, 4, 5, 7, 8}. Each
stay radio stays on a distinct channel of C S

u during the inner
period using lines 10 ∼ 13 of Algorithm 3. Then channels
of {3, 4, 5, 7, 8} are assigned to the two jump radios sequen-
tially using lines 16 ∼ 27 of Algorithm 3. Similarly, for the
next inner period the channels are assigned to the radios of
SUu with C S

u = {3, 4} and C J
u = {0, 1, 5, 7, 8}.

5 Performance analysis

In this section, the theoretical analysis of the MTTR with
optimal rendezvous diversity is obtained in heterogeneous
CRNs, and the upper bound of the TTR is derived for the
worst-case scenario. For a better understanding, Lemma 2
is presented first, and the performance is analyzed for the
rendezvous between SUu and SUv under two scenarios:

(i) mu ≤ 2, mv ≥ 1, ii) mu > 2, mv > 2.
For Lemma 2, some notations are used in the structure

of two adjacent inner periods of the Stay-Jump CHS and is

Fig. 5 Rendezvous between SUu and SUv when mu > 2, mv > 2

shown in Fig. 5. To analyze any contiguous τ time slots in
the CHS, two adjacent inner periods are considered in Fig. 5,
where l number of time slots fall in the front inner period
and (τ − l) timeslots fall in the subsequent inner period. The
channel sets covered by the Stay radios and Jump radios in the
front l time slots are denoted as C f S and C f J . Similarly CbS

and CbJ are the notations used for the back (τ − l) timeslots.
Here, τ is the length of one inner period and l ∈ [1, τ − 1].
Lemma 2 In the Stay-Jump CHS of an SU, all the available
channels of the SU are visited at least once during any con-
tiguous τ timeslots, where τ is the length of one inner period.

Proof According to the Algorithm 3, the total distinct chan-
nels visited by the radios of the SU in one inner period
are |C |, where C is the available channel set of SU. It
is cleared from the Algorithm that |C | is equivalent to
(S + J (τ − 1) + (|C | − S − 1) mod J + 1). Hence, all
the channels of set C with indexes {0, 1, 2, 3, . . . , (|C |−1)}
are assigned to stay and jump radios of SU in one inner period
and the channel assignment to different radios varies in differ-
ent inner periods. In the Fig. 5, let i is the index of the channel
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Fig. 6 All possible CHSs constructed with Algorithm 2 with the DDS
S as mentioned in Fig. 4a for available channel set, {0, 1, 2}

assigned to the first stay radio of the front inner period. Then
according to Algorithm 3, the indexes of the channels in the
following sets would be,

(1) for set C f S ⇒ i to (i + (S − 1)) mod |C |
(2) for set C f J ⇒ (i + S + J (τ − l)) mod |C | to (i + S +
J (τ − 1)) mod |C |
(3) for set CbS ⇒ (i + S) mod |C | to (i + (2 S − 1)) mod
|C |
(4) for set CbJ ⇒ (i +2S)mod |C | to (i + S + J (τ − l)−1)
mod |C |

For any value of l and i , the channel indexes covered by
the set C f S ∪ C f J ∪ CbS ∪ CbJ will be {i, (i + 1) mod
|C |, . . . , (i + S + J (τ −1)+ (|C |− S −1)) mod |C |} which
is equivalent to {i, (i + 1) mod |C |, . . . , (i + (|C |− 1)) mod
|C |} or {0, 1, . . . , (|C | − 1). Hence, it is proved that during
any τ timeslots in the CHS, all the channels in C are visited
at least once.

Theorem 2 The MTTR of the proposed composite algorithm
is upper bounded by 2P2+� P

2 �× P time slots when mu ≤ 2,
mv ≥ 1 with full rendezvous diversity.

Proof At least one radio of every SU follows DDS-based
CHS. The DDS S is constructed in Algorithm 1, and by using
rotate(S, x),∀x ∈ [0, n − 1] in Algorithm 2, n distinct CH
sequence can be generated that the SUs can employ. Let two
SUs generate their CH sequences using rotate(S, x) and
rotate(S, y) respectively, where x, y ∈ [0, n − 1]. Let the
second SU’s CH sequence be d time slots behind the first
SU’s CH sequence in an asynchronous environment. The
two non-synchronized CH sequences are equivalent to the
two synchronized CH sequences generated by rotate(S, x)

and rotate(S, y + dmodn). These two synchronized CH

sequences can be simply examined using the example in
Fig. 6. According to Algorithm 2, the n number of (n, k)-
DSs rotate(Di , 0), rotate(Di , 1), . . . , rotate(Di , n − 1)
are assigned to channel i , and in accordance with corollary
4, the n DSs would form a CSQ under Zn , ∀i ∈ [0, P − 1].
Now the twoCHsequences generated using rotate(S, x) and
rotate(S, y)will rendezvous on the channel i at the timeslot
t∈ rotate(Di , x)∩rotate(Di , y+dmodn), ∀i ∈ [0, P −1]
within one time period of CH sequence.

The proposed rendezvous algorithm ensures rendezvous
during the CH period of n timeslots on all N licensed chan-
nels. In this paper, n is the total number of elements of DDS
S, which is 2P2 + � P

2 � × P . As the algorithm has N degree
of rendezvous, in the worst-case scenario, when there is just
one channel common between the available channel sets of
two SUs, rendezvous takes place on that channel during a
CHS period. Hence, MCTTR= n = 2P2 + � P

2 � × P .

Theorem 3 For mu > 2, mv > 2, the MTTR of the proposed
composite algorithm with full rendezvous diversity is upper
bounded by τu × � Cu

mus
� + τv time slots when τv < τu or

τv = τu and � Cu
mus

� ≤ � Cv

mvs
�.

Proof The inner period length of SUv is smaller than SUu as
shown in the Fig. 7. All the available channels of SUv are vis-
ited during any continuous τv time slots as proved in Lemma
2, and a constant channel is accessed by the stay radio of SUu

during one inner period. Hence, rendezvous is guaranteed
on the stay channel during the τv timeslots if it is a com-
mon channel between the SUs. Similar manner rendezvous
occurs on all the commonly available channels during the
stay periods of SUu as the stay channels are changed in dif-
ferent stay periods. The possibilities of rendezvous are shown
by the blue-shaded regions in the figure. With � Cv

mvs
� num-

bers of inner periods containing all the distinct channels,
TTR for full rendezvous diversity will be � Cv

mvs
� × τu . For

some of the cases, the starting overlapping timeslots between
the SUs are not enough to achieve rendezvous as shown in
Fig. 7 with duration �. Hence the MTTR is upper bounded
by τu × � Cv

mvs
� + τv .

For τv = τu if � Cu
mus

� ≤ � Cv

mvs
� all the available channels

of SUv will be accessed by the stay radios within τv ×� Cv

mvs
�

time slots. For SUu , all the available channels are visited
during any τu time slots. Hence, the upper bound of MTTR
to achieve rendezvous on all commonly available channels
will be τu × � Cv

mvs
� + τv .

6 Performance evaluation and simulation
results

In this section, the performance of the proposed CHRR algo-
rithm is evaluated. Extensive simulations are conducted using
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Fig. 7 Rendezvous between
SUu and SUv when mu > 2,
mv > 2

Matlab, and the correctness of the theoretical analysis is
verified with the results. A CRN with N licensed channels
denoted with channel set C is taken into account. In the
network, the SU pair trying to rendezvous are denoted as
SUu and SUv and they are equipped with mu and mv radios,
respectively. For the heterogeneous CRN, different possibili-
ties of mu and mv pair are considered for the simulations and
the SUs may have different available channel sets denoted as
Cu andCv respectively, whereCu ,Cv ⊆ C . The SUs achieve
rendezvous on channels c ∈ Cu ∩ Cv by using their respec-
tive CHSs. Again, all the simulations are conducted in an
asynchronous environment by considering random time-slots
drift between the CHSs of the SUs. Thus, for a heterogeneous
and asynchronous CRN, the rendezvous performance of the
proposed CHRR scheme is observed under a different num-
ber of radios. In the multi radio rendezvous case, the effect
of allocated jump radios and stay radios on the TTR value
is evaluated. Moreover, the performance of CHRR is com-
pared with other state-of-the-art multi-radio CH algorithms
in terms of ATTR and MTTR with full rendezvous diversity.

6.1 Performance under heterogeneous numbers of
radios

The performance of CHRR is evaluated for different combi-
nations of radios (mu, mv). The simulations are conducted
by varying the total licensed channel N from 10 to 50.
The number of available channels for each SU is set as
0.7N and while considering the asymmetric model, the num-
ber of common channels between the SUs is set at 0.5N .
The simulated ATTR and MTTR values of the CHRR are
shown in Fig. 8a,b, respectively for the radio combinations
of (1, 1), (1, 3), (1, 5), (2, 2), (2, 3), (3, 3). For the multiple
radios case, the number of stay radios of the SUu and SUv

is set as mus = �mu
2 � and mvs = �mv

2 �, respectively. The
correctness of the theoretical analysis is verified with the
simulated results, as the values shown in the graphs are less
than the derived upper bound of the MTTR in the previous
section. TheATTR andMTTRvalues increase as the value of
N increases. The reason is that ATTR andMTTR are directly

proportional to the length of one period of the CHS, and the
length of the CHS of any SU is directly proportional to the
number of licensed channels and the number of available
channels to that SU.

Likewise, for a given N , the ATTR and MTTR for the
SU pair are relatively shorter when at least one is equipped
with a single radio than when both are equipped with a single
radio. If we consider three distinct cases, the firstcase, where
both SUs are equipped with single radios, the rendezvous is
performed with the DDS-based CHSs of both users, and the
TTR values are large since the CHS length is O(N 2). In the
second case, when one SUhas a single radio and the other has
multiple radios, guaranteed rendezvous happens owing to the
DDS-basedCHSs of bothSUs.However, there is a possibility
of a rendezvous between the first SU’s DDS-based CHS and
the other SU’s stay radios. In the third case, if both SUs are
equippedwithmultiple radios, the stay radios of one SU have
a high chance of colliding with the radios of the other SU.
Apart from these, both SUs also achieved rendezvous with
their first radio using DDS-based CHSs. Furthermore, as the
value of mu and mv increases in the third case, the period
length of stay-jumpCHSs decreases significantly, shortening
the ATTR and MTTR. The correctness of the rendezvous
performance for these three cases is reflected in Fig. 8a,b.

6.2 Performance with different allocation of radios

The influence of varied radio allocation on the performance
of the CHRR is investigated in this subsection. The notation
(mus, mvs) denotes the number of stay radios for SUu and
SUv , and the number of jump radiosmaybe determined using
the provided notation. As a result, the notation (mus, mvs)

might be interpreted as different radio allocations. In the
simulation, the total number of radios in SUu and SUv is
set to 5 and 5, respectively. We have six distinct allocation
choices here, marked as (1, 1), (1, 2), (1, 3), (2, 2), (2, 3),
and (3, 3).

The performance of all the six types of allocations is com-
pared in Fig. 9a, b for the different numbers of licensed
channels varying from10 to 50. It is observed from the graphs
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Fig. 8 Performance comparison for different numbers of radios

that theATTRandMTTRare comparatively higherwhen one
of theSUs is equippedwith themaximumpossible stay radios
or the minimum possible jump radios. Here, the radio allo-
cations (3, 3), (2, 3) and (1, 3) are showing higher values,
while the allocations (1, 1), (1, 2), and (2, 2) are showing
shorter TTR values. The reason is that the increase in jump
radios leads to a decrease in the length of the CHS period,
andMTTR is directly related to the period length. For a sym-
metrical model, the available channels set for all SUs are
the same. Hence, the (1, 1) radio allocation can be used to
achieve minimum TTR. However, the SUs have a different
set of available channels in an asymmetric model. Though,
the (3, 3) and (1, 1) radio allocations in Fig. 9a show higher
and shorter ATTR, respectively, the same allocations may
not have the maximum and minimumMTTR respectively, as
shown in Fig. 9b.

6.3 Comparison with other algorithms

In this section, the proposed CHRR algorithm’s performance
is compared to that of other current blind rendezvous meth-
ods.When one of the SUpairs is equippedwith a single radio,
the heterogeneous radio rendezvous techniques, theMEHRR
algorithm [23], and the HRR algorithm [22] are evaluated for
comparison. However, when both the SUs are equipped with
multiple radios, in addition to [22, 23], the RPS algorithm
[16] and the AMRR algorithm [21] are compared with the
proposed algorithm. An asymmetric model is considered,
where the number of available channels of each SU and the
number of commonly available channels between any two
SUs are set at 0.7N and 0.5N , respectively. The simulation

results are obtained for various N values ranging from 10 to
50.

Figure 10a–f show the comparisons of MTTR with full
rendezvous diversity for the (mu, mv) combinations (1, 1),
(1, 3), (1, 5). When both SUs have a single radio, the MTTR
of HRR and MEHRR are much higher than CHRR, as illus-
trated in Fig. 10a). The reason for this is that the CHSs of
HRRandMEHRRfor a single radio rendezvoushave a longer
period duration thanCHRR, and the length of theCHSperiod
grows significantly for HRR and MEHRR as N increases.
Under the worst-case scenario of an asymmetric model, the
upper bound of the MTTR is related to the CHS period, as
shown in Table 1. By adopting DDS-based CHS for single
radio rendezvous, the MTTR of CHRR is considerably low-
ered. In Fig. 10b, c, it is seen that when one of the SUs
has multiple radios, the MTTR values of the algorithms are
decreased, and the values decrease further as the number of
multiple radios increases.Despite the fact that theMTTRval-
ues of HRR and MEHRR for the radio combinations (1, 3)
and (1, 5) have reduced dramatically when compared to the
combination (1, 1), they are still greater than CHRR, as seen
in the graphs.

The comparisons of MTTR with complete rendezvous
diversity of several multiradio rendezvous algorithms for
the radio combinations (2, 2), (2, 3), (3, 3) are shown in
Fig. 10d, f. In all graphs, theRPS scheme has a greaterMTTR
than the other schemes. The reason for this is that in PRS,
CHSs are generated based on all licensed channels, but in
the other four schemes, CHSs are generated based on the
SUs’ available channel sets. As a result, the period length
of CHS is substantially longer than that of PRS, resulting
in a high MTTR. The AMRR scheme performs better with a
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Fig. 9 Performance comparison with different allocations of radios

shorter MTTR. Nevertheless, both the RPS and AMRR algo-
rithms are inapplicable to heterogeneous CRNs where each
SU may have a single radio. The figures show that MTTR
grows as N increases, since the inner period length of the
CHS increases as well. The inner period length of CHSs of
the SUs is longer in the case of the HRR algorithm than
in the MEHRR and CHRR for a particular radio combina-
tion, allocation, and available channel sets. As a result, the
MTTR for HRR is greater. MEHRR has a shorter MTTR
for multiradio rendezvous than the proposed CHRR scheme.
The reason for this is that the greater the number of radios
used to generate CHS for an SU, the shorter the inner period
of the CHS. In the MEHRR scheme, all SU radios partic-
ipate in the creation of stay-jump based CHS, whereas in
the CHRR scheme, one SU radio follows DDS-based CHS
and the remaining radios follow stay-jump based CHS. As
a result, the inner period of the stay-jump based CHS is
somewhat shorter in the case of MEHRR than in the case
of CHRR. But, if the number of radios increases, the dif-
ference will become insignificant. Due to the small MTTR
values as seen in the graphs of Fig. 10, the overall rendezvous
latency for CHRR would be significantly reduced in the sit-
uation of heterogeneous radio. This improves the scheme’s
suitability for device-to-device communication and Internet
of Things applications by maintaining the time and memory
of the tiny devices, which are constrained by their limited
processing power and memory.

The ATTR of several rendezvous methods is evaluated in
Fig. 11 for heterogeneous radio combinations (1, 1), (1, 3),
(2, 5), (4, 4). Because the CHS period duration is substan-
tially longer for the (1, 1) radio combination, the ATTR

values of the schemes are larger for SUs with a single radio
than SUs with multiple radios. In Fig. 11a, CHRR per-
forms better because to its shorter CHS time. The ATTR
values of the schemes are more or less near to each other
in Fig. 11b–d. Despite the ATTR of CHRR is greater for
situations owing to the asymmetric model, as shown in
the graphs, the difference is minimal since the ATTR val-
ues for multiradio rendezvous scenarios are comparatively
small.

7 Conclusion

In this paper, we have proposed a blind rendezvous scheme
for heterogeneous CRNs, where the SUs may own either
a single or multiple radios. The proposed CHRR algo-
rithm, in contrast to other multiradio rendezvous schemes,
exhibits backward compatibility with the single radio ren-
dezvous method. In this scheme, the radios of an SU were
assigned a combination of DDS-based CHS and Stay-jump-
based CHS for this objective. When compared to the HRR
and MEHRR algorithms, the CHRR algorithm resulted in a
considerable reduction in MTTR with complete rendezvous
diversity for the case, where at least one SU of the SU pair
was equipped with a single radio. Although the MTTR for
the CHRR was greater than that of the HRR and MEHRR
in the context of multiradio rendezvous, the difference was
not significant when compared to the difference observed in
rendezvous involving SU with only one radio The CHRR
algorithm has been examined theoretically for various pos-
sible combinations of radios within a pair of SU, and
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Fig. 10 MTTR comparison of different rendezvous algorithms

its performance was established by comprehensive simula-
tions.
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Appendix: Supporting Lemma and Theorem
for DDS

Lemma 1 For a pair of numbers (a1, a2) under Zn, with a
difference value d such that (a1 − a2)mod n = d and if d
mod k = d ′, there also exits a difference value (n − d) for
the same (a1, a2) pair, and (n − d) mod k = (k − d ′).

Proof For any number pair, (a1, a2) under Zn if (a1−a2)mod
n = d, then (a2 − a1) mod n will be (−d) mod n which is
equal to (n−d). If d mod k = d ′ then for the other difference
value (n − d), we can prove that

(n − d)mod k = (Pk mod k − d mod k)mod k
= (0 − d ′)mod k
= (k − d ′).

Theorem 1 In Algorithm 1, the constructed set S = { D0,
D1, D2, . . . , DP−1 } is a DDS.

Proof The set S must satisfy the two properties stated in
Definition 3. For this, we need to demonstrate that each set
in S is a difference set and all are disjoint from one another.

Triangular numbers and the modular idea are used to create a
set that satisfies the DS properties using the numbers picked
from Zn . The required range of difference values, d ∈ [1, n−
1] for each set, as stated in Definition 1 can be reduced to a
narrower range of d ′ ∈ [1, k−1] using themodular approach
d ′ = d mod k. Now, it has to be verified that ∀d ′ ∈ [0, k −1],
there exists a pair of numbers (ai , a j ) in each set of S such
that (ai -a j ) mod n = d ′ + rk, ∀r ∈ [0, P − 1].
1. For k = 2P + � P

2 �:
Case 1.1 d ′ = 0. All Di has a number pair (ai j1 , ai j2 ) such

that ai j1 , ai j2 ∈ DXi , 0≤ j1, j2 ≤ P − 1 and the difference
d = (ai j1 − ai j2) mod n
d = ((k j1 + i) − (k j2 + i))mod Pk
= (k( j1 − j2) + 0) mod Pk
= (k( j1 − j2) + 0), for 0≤ j1 − j2 ≤ P − 1
= kr + d ′
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Fig. 11 ATTR comparison of different rendezvous algorithms

Case 1.2 1 ≤ d ′ ≤ � P
2 � and 2P ≤ d ′ ≤ 2P + � P

2 � − 1.
All Di has a number pair (bi j1 , bi j2 ) such that bi j1 , bi j2 ∈ DY i

and 0 ≤ j1, j2 ≤ k− P −1 and the difference of the numbers
bi j1 and bi j2 is d = bi j1 − bi j2 mod n
= (k(Tj1 + i) + P + j1) − (k(Tj2 + i) + P + j2))mod n
= (k(Tj1 − Tj2) + ( j1 − j2)mod Pk
= (k(Tj1 − Tj2)mod Pk + ( j1 − j2)mod Pk)mod Pk
= (k((Tj1 − Tj2)mod P) + ( j1 − j2))mod Pk
= (kr + d ′)mod Pk
Here r = (Tj1 − Tj2) mod P

= (
j1( j1+1)

2 - ( j1−d ′)( j1−d ′+1)
2 )mod P

= ( j1d ′ − d ′2−d ′
2 )mod P

In this case, d ′2−d ′
2 is a whole number and P is a prime

numbermaking, d ′ and P as co-prime.Hence, r will attain all
the values from 0 to P − 1 for all P continuous values of j1.
For a given d ′, if 0 ≤ j2 ≤ P −1 ⇒ d ′ ≤ j1 ≤ (P −1)+d ′
and since themaximum value of j1 is P +� P

2 �−1, therefore,
the range of d ′ can be derived as 1 ≤ d ′ ≤ � P

2 �. Moreover,
the range of d ′ can be expressed as 2P ≤ d ′ ≤ 2P +� P

2 �−1
using Lemma 1.

Case 1.3 � P
2 � < d ′ ≤ 2P − 1. Every Di has a pair of

numbers, (ai j1 , bi j2 ) such that ai j1 ∈ DXi , bi j2 ∈ DY i and
0 ≤ j1 ≤ P − 1, 0 ≤ j2 ≤ k − P − 1. The difference is
given by d = (bi j2 − ai j1)mod n
= ((k(Tj2 + i) + P + j2) − k( j1 + i)) mod n
= (k(Tj2 + i − j1) + (P + j2 − i))) mod Pk
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= (k((Tj2 + i − j1)mod P) + (P + j2 − i)) mod Pk
= (kr + d ′)mod Pk

Here, r = (Tj2 + i − j1) mod P = (
j2( j2+1)

2 + i − j1) mod
P and d ′ = (P + j2 − i).

For a given i and j2, the expression (
j2( j2+1)

2 + i) will be
a constant and a whole number. Consequently, for P contin-
uous values of j1, i.e, 0 ≤ j1 ≤ P − 1, r covers all values in
[0, P − 1]. For a given range of j2 in set DY i , the range of
d ′ is derived for different values of i . If 0 ≤ i ≤ � P

2 � for a
given d ′, then d ′ − P ≤ j2 ≤ d ′ − P + � P

2 �, which denotes
P ≤ d ′ ≤ 2P − 1. Further, the range of d ′ can be expressed
as � P

2 �+1 ≤ d ′ ≤ P +� P
2 � using Lemma 1. Similarly, for a

given d ′ if � P
2 � ≤ i ≤ P−1 then d ′−� P

2 �−1 ≤ j2 ≤ d ′−1,
which implies � P

2 �+1 ≤ d ′ ≤ P +� P
2 �. The range can also

be expressed as P ≤ d ′ ≤ 2P − 1, using Lemma 1. The
range of d ′ for all Di is therefore, � P

2 � < d ′ ≤ 2P − 1.
Hence, all Di are DS as each has a pair of numbers with
d = d ′ + rk, ∀d ′ ∈ [0, k − 1] and ∀r ∈ [0, P − 1] with the
three cases mentioned above.

Algorithm 1 states that Di = DXi ∪ DY i and D j = DX j ∪
DY j and with this the next three cases will be examined to
demonstrate that Di ∩ D j = ∅.
Case 1Subsets X andY are used to choose the elements of the
subsets DXi and DY j , respectively (Fig. 2) and X ∩ Y = ∅.
Hence, DXi ∩ DY j = ∅ and DX j ∩ DY i = ∅.
Case 2 DXi = (kp1 + i) and DX j = (kp2 + j), where
p1, p2 ∈ [0, P − 1]. So any element in DXi and DX j are
the i th and j th element of Up1 and Up2 respectively (Fig. 2).
Since i �= j , therefore, DXi ∩ DX j = ∅.
Case 3 DY i = (k(Tq1 + i)+ P +q1) and in DY j = (k(Tq2 +
j) + P + q2), where q1, q2 ∈ [0, k − P − 1]. The elements
in DY i and DY j are therefore (q1 + P)th and (q2 + P)th
elements, respectively of the setUTq1+i andUTq2+ j . To prove
via contraction, assuming that there is a common element
in DY i and DY j , therefore, (q1 + P)th number of UTq1+i

is equals to (q2 + P)th element of UTq2+ j and since all U
are disjoint, which implies Tq1 + i = Tq2 + j and q1 =
q2. Hence, the contraction i = j is formed. It concludes,
DXi ∩ DY j = ∅ for i �= j .

As a result, the three scenarios above demonstrate that all
sets in S are disjoint to one another.
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