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Abstract
According to the theory of single channel blind source separation (SCBSS), the algorithm based on virtual channel expansion
must be established in a known source number, and most algorithms can only separate two source signals. When separating
multiple source signals, the performance will deteriorate sharply. Since the existing methods of this kind use only a single
algorithm for virtual channel expansion, they cannot retain all the source signals’ valuable information and effectively separate
the multiple source signals. From the perspective of making the constructed virtual multi-channel signal contain enough
information of the source signals as much as possible, this paper proposes a SCBSS algorithm based on improved wavelet
packet and variational mode decomposition (IWP-VMD-SCBSS). Firstly, the source number is estimated according to the
interval sampling method and the minimum description length (MDL) criterion. Secondly, the signal reconstruction method
based on improved wavelet packet decomposition (IWPD) is used to reconstruct multiple purer virtual signals. Then the
virtual signals are combined with the first intrinsic mode function (IMF) of two-level variational mode decomposition (VMD)
and the original single-channel observed signal to constitute a virtual multi-channel signal. Finally, the joint approximate
diagonalization of eigen-matrices (JADE) algorithm is used to process the virtual multi-channel observed signal to achieve
BSS and obtain estimated source signals. The simulation results indicate that the IWP-VMD-SCBSS algorithm can achieve a
lower symbol error rate (SER) than existing algorithms and lower computational complexity. It can solve the SCBSS problem
of multiple communication signals effectively under an unknown source number.

Keywords Single channel blind source separation · Virtual multi-channel · Wavelet packet decomposition · Variational mode
decomposition · Source number estimation

1 Introduction

Blind source separation (BSS) refers to recover each source
signal when only the observed signals are known. The
prior information of source signals and the characteristics
of the transmission channel are unknown in this case [1].
According to the relationship between the source signals’
number and the observed signals’ number, BSS can be
divided into underdetermined BSS, positive definite BSS and
overdetermined BSS. Moreover, single channel blind source
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separation (SCBSS) is extremely ill-conditioned in underde-
termined BSS, requiring only single channel to receive the
observed signal. Only this single-channel observed signal is
used to recover the collected source signals [2]. Estimating
many quantities with very few quantities is required, so it
is tough to solve this problem. Currently, most BSS algo-
rithms are aimed at the overdetermined mixed situation or
positive-definite mixed situation in multi-channel BSS. That
is, the known source number, and the number of observed
signals is not less than that of source signals. Unfortunately,
the source signals’ number is generally unknown, and the
observed signals’ number is also less than source number in
practical applications. Even in some scenarios, only a single
sensor can be placed to collect source signals, which is an
extremely ill-conditioned underdetermined mixed situation.
However, the advantage of the SCBSS technology is that the
required hardware equipment is significantly reduced, and
the installation and application are convenient. It is widely
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applied to communication countermeasures [3, 4], speech
signal separation [5–7], mechanical fault diagnosis [8–10],
biomedical signal processing [11, 12] and many other fields.
Therefore, the research of SCBSS algorithms has important
practical significance and broad application value.

Traditional BSS algorithms are not suitable for SCBSS.
At present, there are several ways to solve SCBSS problems:
methods based on virtual multi-channel [13–16], methods
based on transform domain filtering [17] and methods based
on a finite set of symbols [18, 19], etc. The methods based
on virtual multi-channel do not require the characteristic
information of source signals, which can use delay, interval
sampling, wavelet decomposition, variational mode decom-
position (VMD), empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD) and other
methods to construct a virtual multi-channel signal. Then,
themature independent component analysis (ICA) algorithm
[20] or the JADE algorithm [1, 21] is used to separate source
signals. The methods based on transform domain filtering
refer to the use of Fourier transform, discrete cosine trans-
formation (DCT) domainWiener filtering or cyclic spectrum
transform methods to transform the time-domain overlap-
ping signals to other domains to realize BSS in the transform
domain. However, this method requires source signals’ prior
information, which is not entirely blind in the real sense. In
addition, when the actual application environment becomes
more and more complex and source signals’ number is large,
how to use this algorithm to achieve the SCBSS needs fur-
ther research. The methods based on a finite set of symbols
can accurately describe communication signals by symbol
sequences and parameters according to the characteristics
of the limited symbol set. Therefore, the idea of sequence
detection and joint parameter estimation can realize the BSS,
among which the per survivor processing (PSP) algorithm
and particle filter algorithm are the most used. Neverthe-
less, the complexity of both algorithms is too high, so further
research is needed to improve the operation speed. Themeth-
ods based on a finite set of symbols are difficult to apply
in practice at present. In addition to those as mentioned
above mainstream SCBSS algorithms, recently proposed
some other practical separation algorithms, such as the non-
negative matrix factorization (NMF) algorithms [22–24] and
the current hot SCBSS algorithms based on deep neural net-
works [25, 26] etc. Nevertheless, the development of these
algorithms is not yet complete. There is no mature related
BSS theory as a support, so we do not carry out detailed
research on such methods in this paper.

Given the advantages that the methods based on virtual
multi-channel do not require prior information of the source
signals and have low complexity, they have beenwidely used.
Many scholars applied the EMD algorithm to deal with the
SCBSS problem, which does not need source signals’ prior

information, but with mode mixing and poor anti-noise per-
formance problems [13, 15, 27]. On this basis, some scholars
proposed EEMD algorithm, which can solve the problem
of mode mixing to a certain extent, but with large com-
putation cost. Moreover, the added Gaussian white noise
cannot be neutralized entirely, so the EEMD algorithm is
still affected by noise and cannot completely solve the prob-
lemsof endpoint effect andmodemixing [28–31].Konstantin
Dragomireskiy [32] proposed VMD algorithm, which has a
solidmathematical theoretical foundation and can essentially
solve the mode mixing problem. What is more, it has a fast
convergence speed and has been widely used in biomedical
signal processing and fault diagnosis, but the accuracy of
signal decomposition is corrupted by the penalty factor and
decomposition level [16, 33–35]. Pang et al. reconstructed the
virtual multi-channel signal using the optimal approximate
component obtained by wavelet decomposition and achieved
BSS through the FastICA algorithm. However, this method
is difficult to represent the signal containing a large amount
of detailed information [14]. In this regard, Zhao et al. used
wavelet packet decomposition (WPD) to improve the perfor-
mance of SCBSS when separating high-frequency signals
dominated by detailed information. However, how to select
proper wavelet basis and decomposition layers will directly
affect the separation performance of source signals [36].

In addition, the above-mentioned SCBSS algorithms
based on virtual multi-channel must be established with a
known source number. Most algorithms can only separate
two source signals. To solve the above problems, this paper
proposes a SCBSS algorithm based on improved wavelet
packet and variational mode decomposition (IWP-VMD-
SCBSS). On the one hand, the virtual signals reconstructed
by an improved method of wavelet packet signal reconstruc-
tion (IMWPSR) can better retain the information of source
signals.On the other hand, the virtualmulti-channel observed
signal which combined by the reconstructed signals, the first
intrinsic mode function (IMF) of two-level VMD and the
single channel observed signal can retain the information of
source signals both in the variable frequency domain and
wavelet domain, which makes the source signals’ informa-
tion more complete. The proposed algorithm can effectively
improve the performance when separating multiple source
signals, achievinghigher estimation accuracy and lower com-
putational complexity. In a word, the proposed algorithm can
effectively estimate source number and separate other doped
interference signals in the SCBSS problem. Moreover, the
proposed algorithm has more evident advantages in separat-
ing multiple signals than existing SCBSS algorithms, and it
has certain practicability.

The contents of this paper are organized as follows.
Section 2 provides a mathematical model of signal mix-
ing and problem-solving for SCBSS. In order to transform
the SCBSS mixed model into a virtual multi-channel BSS
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mixedmodel, Sect. 3 introduces the related theoretical frame-
work of WPD and VMD, and suggests the basic principles
of the JADE algorithm for subsequent BSS simultaneously.
Section 4 introduces the proposed IWP-VMD-SCBSS algo-
rithm in detail, including the source number estimation and
the realization of SCBSS. To verify its feasibility and effec-
tiveness, Sect. 5 evaluates the the proposed algorithm and
compares it with existing SCBSS algorithms. In the end, con-
clusions are summarized in Sect. 6.

2 Mathematical model of SCBSS

Assumingobserved signalsX(t)� [x1(t), x2(t), . . . , xN (t)]T

received by N sensors are obtained by the linear mixture
of M source signals s1(t), s2(t), . . . , sM (t) at a certain
instant. Suppose the source signal vector is s(t) � [s1(t),
s2(t), . . . , sM (t)]T , then the mathematical model of BSS can
be expressed as:

X(t) �
M∑

m�1

amsm(t) + v(t) (1)

It can also be equivalent to

X(t) � As(t) + v(t) (2)

where t � 1, 2, . . . , T indicates the sampling time, am ∈
RN×1 is mixed coefficient vector, A � [a1 a2 · · · aM ] is
the column full-rank mixed matrix with N in M order, and
v(t) is additive white Gaussian noise.

The problem of BSS can be described as making full
use of the different characteristics of the observed sig-
nals received by each sensor when the source signal vector
s(t) characteristics and the mixed matrix A are unknown,
using corresponding algorithm to process the multi-channel
observed signal X(t) and obtain separation matrix W. Then
according to Eq. (3) to estimate source signals are, so as to
realize the effective separation of each source signal.

ŝ(t) � WX(t) (3)

When the mixed coefficient matrix A rows are 1,
it becomes an extremely ill-conditioned underdetermined
mixed situation. That is, the SCBSS signal mixed model,
which can be expressed by Formula (4).

x(t) � as(t) + v(t) (4)

where x(t) is the single-channel signal, and a � [a1, a2, . . . ,
aM ] is mixed coefficient vector.

For the solution of the single channel mixed model, the
virtual channel expansion method is used to construct mul-
tiple virtual signals, so as to meet the basic requirements of
non-underdetermined BSS. Then the SCBSS problem can be
solved by using the relevant algorithm of multi-channel BSS
to separate each source signal.

3 Preliminaries and existingmethods

3.1 Signal reconstructionmethod based onWPD

Compared with wavelet decomposition, WPD can provide
a signal decomposition method with higher time–frequency
resolution, which can decompose signal with low-frequency
and high-frequency components simultaneously. There is
neither redundancy nor omission in this decomposition pro-
cess.

The essence of WPD is to divide the signal into arbitrary
frequency bands by a set of low orthogonal pass and high
orthogonal pass filters with the same bandwidth, and the
frequency information is stored in wavelet packet node coef-
ficients. For the convenience of expression, assuming that
the scale function and the corresponding wavelet function
are μ0(t) � ϕ(t) and μ1(t) � ψ(t) respectively, the scale
equation of WPD can be expressed as:

⎧
⎪⎪⎨

⎪⎪⎩

μ0(t) � √
2
∑

k∈Z
h(k)μ0(2t − k)

μ1(t) � √
2
∑

k∈Z
g(k)μ0(2t − k)

(5)

where h(k) and g(k) are the low and high pass filter coeffi-
cients respectively, and g(k) � (−1)kh(1 − k).

⎧
⎪⎪⎨

⎪⎪⎩

μ2n(t) � √
2
∑

k∈Z
h(k)μn(2t − k)

μ2n+1(t) � √
2
∑

k∈Z
g(k)μn(2t − k)

(6)

The function {μn(t)} defined recursively by formula (6) is
the wavelet packet determined by the scale function μ0(t) �
ϕ(t). The structure of the WPD tree can be represented by
Fig. 1.

Firstly, the optimal wavelet base is selected, and then we
determine the number of WPD layers on the basis of the
source number, taking into account the requirements of speed
and accuracy. The single channel signal x(t) is carried out by
M-layer WPD, and the M-th layer can get 2M WPD nodes,
from which 2M virtual signals can be reconstructed. When
choosing different wavelet packet nodes to reconstruct the
virtual signals, the performance of SCBSS will also be dif-
ferent. In general, nodes with larger energy contain more
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Fig. 1 Tree structure of wavelet packet decomposition

informationof the source signals, and thevirtual signal recon-
structed by the node with the largest energy has the highest
similarity with the source signals, and the performance of
SCBSS using this virtual signal is the best (for the specific
formula of energy calculation, see Sect. 4.2).

3.2 Variational mode decomposition

Unlike the EMD algorithm that only carries out cyclic fil-
tering [13, 15, 27], the essence of the VMD algorithm is
adaptive Wiener filtering [32]. By constructing a completely
non-recursive constrained variational model and solve its
optimal solution, the complex signal is adaptively decom-
posed to a series of narrow-band intrinsic mode functions
(IMFs), which surround each constantly varying center fre-
quency. The objective function of the VMD algorithm is to
minimize the sum of each estimated IMFs’ bandwidths, and
its constraint condition is to make the equation of each IMFs’
sum and the single-channel observed signal x(t) to be decom-
posed.

Firstly, each analytic signal is calculated by Hilbert trans-
form, and its spectrum is modulated to the fundamental band
of the estimated center frequency ωk .

ξk(t) �
[(

δ(t) +
j

π t

)
∗ uk(t)

]
e− jωk t (7)

Using Gaussian smoothing to estimate each IMF’s band-
width, the variational problem can be written as Eq. (8).

min
{ uk} { ωk}

{
∑

k

‖∂t (ξk(t))‖22
}

s.t.
∑

k

uk(t)�x(t)
(8)

where {uk} � {u1, . . . , uK} is the set of mode functions and
{ωk} � {ω1, . . . , ωK} is the set of center frequencies of each
variational mode function.

In order to obtain the optimal solution of the above con-
strained variational problem, the quadratic penalty factor α

andLagrangemultiplication operatorλ(t) are led to construct

an augmentedLagrange function, so that the constrainedvari-
ational problem can be transformed into an unconstrained
variational problem, namely Eq. (9).

L({uk }, {ωk }, λ) � α
∑

k

∥∥∥∥∂t
([(

δ(t) +
j

π t

)
∗ uk (t)

]
e− jωk t

)∥∥∥∥
2

2

+

∥∥∥∥∥∥
x(t) −

∑

k

uk (t)

∥∥∥∥∥∥

2

2

+

〈
λ(t), x(t) −

∑

k

uk (t)

〉

(9)

where the value of the quadratic penalty factor α can ensure
the reconstruction accuracy of the signal with Gaussian noise
to be decomposed, and the Lagrange multiplication operator
λ(t) can keep the constraint conditions strict.

Weuse alternate directionmethod ofmultipliers (ADMM)
to update uk , ωk and λ alternately in the frequency domain
to solve the augmented Lagrange function’s minimum point.
The introduction ofWiener filtering canmake theVMDalgo-
rithm more robust to noise. The Fourier transforms of u(t),
x(t) and λ(t) are denoted by û(ω), x̂(ω) and λ̂(ω) respec-
tively, and the iterative update formulas for obtaining the
mode functions uk and the center frequencies ωk are shown
in Formulas (10) and (11).

ûn+1k (ω) � x̂(ω) −∑i<k û
n+1
i (ω) −∑i>k û

n
i (ω) + λ̂n(ω)/2

1 + 2α(ω − ωn
k )

2

(10)

ωn+1
k

�
∫∞
0 ω|ûn+1

k
(ω)|2dω

∫∞
0 |ûn+1

k
(ω)|2dω

(11)

where ûn+1k (ω) is the mode function at n+1-th loop iteration,
and ωn+1

k
is the power spectrum’s center frequency of the

mode function ûn+1k (ω) at the n +1-th loop iteration. Perform
inverse Fourier transform on

{
ûk(ω)

}
and then take the real

part of them, the time-domain mode functions {uk(t)} can be
obtained.

The decision criterion for stopping the loop iteration is

∑

k

‖un+1k − unk‖22/‖unk‖22 < ε (12)

where ε is convergence tolerance.
When the iteration stop criterion is satisfied, the single

channel signal x(t) is decomposed into {uk(t)} � {u1(t),
. . . , uK(t)} by the VMD algorithm, which are used to form
the virtual multi-channel signal X(t).

3.3 Basic principles of JADE algorithm

JADE algorithm is an improved independent decomposi-
tion algorithm on the basis of the diagonalization of the
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Fig. 2 The schematic diagram of the JADE algorithm

fourth-order cumulant matrix proposed by Cardoso, which
can separate source signals well when the frequency differ-
ence between the signals is slight [1, 21]. This algorithm
constructs fourth order cumulant matrices of multiple vari-
ables based on the characteristic that the mutual cumulant
between independent signals is zero. Then the separation
matrix W is solved by joint approximate diagonalization of
cumulant matrices, which improves the robustness of separa-
tion results. In brief, the JADE algorithm include whitening
process and orthogonal transformprocess, as shown in Fig. 2.

The concrete steps of JADE algorithm are as follows:

(1) Whitening of observed signals.

We assume the virtual multi-channel signal X(t) is
obtained by multiplying a N ×M dimensional mixed matrix
A and M independent source signals s(t), the whitening
matrix Q can be obtained.

Q � [(μ1 − σ )−1/2α1, . . . , (μn − σ )−1/2αN ]
H (13)

where μ1, μ2, . . . , μN are the N largest different eigenval-
ues of the covariance matrix ofX(t), α1, α2, . . . , αN are the
eigenvectors corresponding to the different eigenvalues, and
σ is noise variance.

The signals after whitening can be formulated as

z(t) � QX(t) � Us(t) (14)

FromEq. (14), we can estimate unitary matrixU to realize
the estimation of mixed matrixA. Moreover, it can be known
that the unitary matrix U is orthogonal in paper [21].

(2) Calculation of the fourth-order cumulant of whitening
signal z(t).

The fourth-order cumulant of z(t) is expressed as:

Qz(i , j , e, f ) � cum(zi , z
∗
j , ze, z

∗
f ), i , j � 1, 2, . . . , N

(15)

For any N × N -order weight matrix P, define its fourth-
order cumulantmatrixQZ(P) related to z(t), then the element

in i-th row and j-th column of QZ(P) can be expressed as:

[Qz(P)]i j �
N∑

e�1

N∑

f �1

Cum(zi , z
∗
j , ze, z

∗
f )pef , 1 ≤ i , j ≤ N

(16)

where pef is the element corresponding to the e-th row and
f -th column of P, so the cumulant matrix V � Qz(P) can
be obtained.

Depending on the nature of the cumulant, Eq. (17) can be
obtained.

(17)

Qz(P) �
N∑

d�1

cum(sd , s
∗
d , sd , s

∗
d )(χ

H
d PØd )χdχ

H
d

� UH�PU ∀P

where cum(sd , s∗
d , sd , s

∗
d ) represents the fourth order cumu-

lant of the d-th column of source signals s(t), and χd is
the d-th column of the orthogonal unitary matrix U, and
�P � diag(k1χH

1 PØ1, k2χH
2 PØ2, . . . , kNχH

NPØN ).
From Eq. (17), it can be known that the orthogonal matrix

that makes the matrix UHQz(P)U diagonal to any matrix P
is the unitary matrix U to be sought.

(3) Selection of weight matrix Pn .

Assume (Q̃)hg � cum(zi , z∗j , ze, z∗f ), where g � k +
(l − 1)N and h � i + ( j − 1)N . It can be easily seen from
Eq. (15) that Q̃ is N 2 × N 2 dimension Hermit matrix. The
eigenvalue decomposition of Q̃ is carried out, and the N 2×1-
dimensional eigenvectors corresponding to the N maximum
eigenvalues of matrix Q̃ are selected, and they are rearranged
into N N × N -dimensional matrices, which can be used as
the weight matrices Pn , n � 1, 2, . . . , N .

(4) Determination of the unitary matrix U.

For each selected weight matrix Pn , n � 1, 2, . . . , N , its
cumulant matrix set Vn � Qz(Pn)(n � 1, 2, . . . , N ) can be
obtained. By maximizing the cost function shown in formula
(18), the unitary matrix U can maximize the diagonalization
of each cumulant matrix Vn � Qz(Pn). The unitary matrix
U can be obtained.

d(U, V)
de f�

N∑

n�1

|diag(UHVnU)|2 (18)

(5) Estimation of the mixed matrix Â and the source sig-
nals ŝ(t)

Â � Q−1U, ŝ(t) � U−1QX(t) (19)
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Fig. 3 The flow chart of IWP-VMD-SCBSS algorithm

4 Proposed SCBSS algorithm

At present, SCBSS algorithms based on virtual channel
expansion must be established in a known source number,
and most algorithms can only separate two source signals,
and the performance will deteriorate sharply when multiple
source signals are separated. In order to solve the problem,
this paper proposes a SCBSS algorithm based on improved
wavelet packet and variational mode decomposition (IWP-
VMD-SCBSS). The flow-process diagram is shown in Fig. 3.
Firstly, the source number is estimated by interval sampling
method combined with MDL criterion (IS-MDL). Secondly,
we improve the traditional wavelet packet signal recon-
struction method, transforming to use multiple groups of
nodes with larger energy to reconstruct the virtual signals
Y(t) � [y1(t), y2(t), . . . , yM−1(t)] which can better retain
source signals’ information. Then, the reconstructed virtual
signalsY(t), the first IMF u1(t) of the two-levelVMDand the
original single channel observed signal x(t) are recombined
into a virtual multi-channel observed signal X(t) � [x(t),
y1(t), . . . , yM−1(t), u1(t)]. Finally, we apply the JADE algo-
rithm to process the X(t) to realize the BSS.

4.1 Source number estimation

The estimation of source number mainly relies on the the-
ory of spatial spectrum estimation, that is, the covariance
matrix is obtained by decomposing multivariate data under
certain conditions, whose large eigenvalues correspond to
source signals and small eigenvalues correspond to noise.
The number of large eigenvalues can preliminarily estimate

the source number. However, most estimation methods are
formulti-channel array signals, and the array signals’ number
should be more than that of source signals, so these methods
cannot be used to estimate the source number directly for the
single channel observed signal. Therefore, it is necessary to
expand the single channel signal intomultiple virtual signals.

In order to realize multi-channel expansion, we propose
an interval sampling method in this paper, which refers to
re-sampling the input signal to obtain some new data vec-
tors to form a multi-dimensional matrix. Assuming that the
received single channel observed signal is x(t), the discrete
form x̃(l) � x(lT1) of the x(t) is obtained by sampling it
at an interval of T1; then the discrete observed signal x̃(l) is
sampled once every B point, and the discrete single-channel
observed signal x̃(l) can be rearranged into B-channel virtual
signals x̃1(l), x̃2(l), . . . , x̃B(l) through interval sampling, as
shown in Eq. (20).

x̃b(l) � x̃((l − 1)B + b), b � 1, 2, . . . , B (20)

Then the expanded virtual multi-channel observed signal
matrix X̃B(l) can be obtained, as shown in Eq. (21).

X̃B(l) �

⎡

⎢⎢⎢⎢⎢⎣

x̃1(l)

x̃2(l)

...

x̃B(l)

⎤

⎥⎥⎥⎥⎥⎦
�

⎡

⎢⎢⎢⎢⎢⎣

x̃((l − 1)B + 1)

x̃((l − 1)B + 2)

...

x̃((l − 1)B + B)

⎤

⎥⎥⎥⎥⎥⎦
(21)

Finally, the expanded virtual multi-channel signal matrix
X̃B(l) can directly estimate the source signals’ number. The
advantage of this method is that the performance of each
channel signal obtained by multi-channel expansion is very
close, and it can accurately estimate the source number with
low complexity only by ensuring that the number of the X̃B (l)
is not less than that of source signals.

Given the limitation of carrier frequency interval (CFI)
and signal-to-noise ratio (SNR) in the specific working envi-
ronment, when the covariance matrix is decomposed into
eigenvalues under actual conditions, the noise eigenvalues
will be close to the signal eigenvalues, and the difference
between them is no longer noticeable. As a result, the source
number cannot be correctly distinguished, and the spatial
covariance matrix eigenvalue estimation method will be
invalid. To solve this problem, this paper discusses sev-
eral existing effective methods in source number estimation,
including the Akaike Information Criterion (AIC) [37] and
theMinimumDescriptionLength (MDL) [38] in Information
Theoretical Criteria (ITC), and the Gerschgorin Disk Esti-
mator (GDE) method based on Gerschgorin Disk theorem
[38]. After theoretical research and experimental simulation,
the MDL criterion is selected to process the X̃B(l) estimate
source number.
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Rissane proposed the principle of minimum description
length (MDL) in his work on general coding, which is based
on ITC. The mathematical model of ITC can be described
as: If the observed data is recorded as XB � [XB(1), XB(2),
· · · , XB(L)]T , and the parameterized probability model is
f (XB/θ ), then only the model with the best fitting degree
with the observed data XB needs to be found. Assuming
m source signals in the virtual multi-channel observed sig-
nal matrix X̃B(l), the covariance matrix of X̃B(l) is obtained
and denoted as RX. Then, the spectral decomposition of the
covariance matrix RX can be expressed as follows:

RX �
B∑

b�1

(λb − δ2)cbcHb + δ2I (22)

where λb is the eigenvalue of the covariance matrix RX after
singular value decomposition, and cb is the corresponding
eigenvector of λb, δ represents unknown scalar.

The method of ITC can be summarized as follows in a
unified functional formula.

J (m) � L(m) + P(m) (23)

where L(m) is the likelihood function, P(m) is the penalty
function, and J (m) is the random distribution function that
decreases at first and then increases. Taking different val-
ues of L(m) and P(m), different estimation algorithms on
the basis of ITC can be obtained. The formula of the MDL
criterion can be described as:

M̂MDL� argmin
m

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(B − m) ln
1

B−m
∑B

i�m+1 λ̂i (θm )
(

B∏
i�m+1

λ̂i (θm )

) 1
B−m

+
1

2
m(2B − m) ln L

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(24)

where L is the number of sample points and B is the array
signals’ number (that is, the number of signal paths of the
virtual multi-channel observed signal matrix X̃B(l)).

In a word, we propose a source number estimationmethod
using the proposed interval sampling method combined
with the MDL criterion (IS-MDL method) to estimate the
source number in the SCBSS problem. Next, we verify
the effectiveness of the proposed source number estima-
tion method through experimental simulation. Perform 1000
Monte Carlo simulation experiments, and calculate the esti-
mation accuracy under different carrier frequency intervals
(CFIs, denoted as � f ) and the different source number
(denoted as M), as shown in Fig. 4.

Figure 4 shows the estimation accuracywhen the proposed
IM-MDL method estimates the different source number

Fig. 4 Estimation accuracy of IS-MDL method under different CFIs

when the signal CFI is from 0.3 to 0.7 MHz. As the results,
it can be seen that when the SNR is low, the estimation accu-
racy of the proposed IM-MDL method increases with the
increase of the signalCFI anddecreaseswhen the actual num-
ber of source signals increases. When the SNR increases, the
estimation accuracy will also increase. Even when the CFI
is 0.3 MHz, the proposed method can also achieve 100%
estimation accuracy. When M � 2, 3 and 4 respectively,
the estimation accuracy of the proposed IS-MDL method
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can reach 100% when the SNR is above − 9, − 5, and
0 dB respectively. In short, this paper proposes the IM-MDL
source number estimation method that combines the interval
sampling method with the MDL criterion, which lay a solid
foundation for the subsequent SCBSS process.

4.2 Single channel blind source separation process

4.2.1 Reconstruction of the virtual multi-channel observed
signal model

In order to better extract source signals’ information, this
paper starts from the variational frequency domain and the
wavelet domain to reconstruct the virtual signals which
is used to constitute the multi-channel observation signal
model.

Firstly, we make some appropriate improvements to the
signal reconstruction method based on WPD to reconstruct
M − 1 virtual signals with the complete information of
source signals. Before performing WPD, it is essential to
select the optimal wavelet basis, that is, a group of orthogo-
nal filters most suitable for the corresponding signal to be
decomposed. Since this paper is aimed at the blind sep-
aration of communication signals, we define the wavelet
function and scale function of the Meyer wavelet in the fre-
quency domain. In addition, the Meyer wavelet is not tightly
supported with fast convergence rate. The discrete Meyer
wavelet, namely Dmeyer wavelet, can be selected as the
wavelet packet generating function based on these charac-
teristics. It is an approximation of Meyer wavelet based on
finite impulse response (FIR), which is widely used to cal-
culate of fast discrete wavelets and is more suitable for the
decomposition of communication signals.

Considering the needs of decomposition speed and the
accuracy of reconstructed signals, the decomposition layers
is set as the source number M . Then WPD is performed for
the single channel observed signal x(t), and the M-th layer
can obtain 2M wavelet packet nodes.

In theWPD, theq-th node of them-th layer decomposition
is denoted as (m, q), and the i-th coefficient of node (m, q)
is denoted as dqm(i), and the energy value of the q-th node of
the m-th layer decomposition can be calculated by norm-2.

Eq �
√√√√

I∑

i�1

|dqm(i)|2 (25)

where I is the total number of coefficients of node (m, q).
The energy of the m-th layer of WPD is the sum of the

energy values of each node.

E �
2m∑

q�1

Eq (26)

Fig. 5 Energy proportion of each node in the third layer of WPD

Next, the proportion of the energy can be obtained for each
node.

ηq � Eq

E
, q � 1, 2, . . . , 2m (27)

Since the node with a smaller energy proportion contains
less information about source signals, these nodes can be
considered to be caused by noise, while the node with a
larger energy proportion contains more information about
source signals, which can be conducive to correct separation.
According to this theory, the threshold of energy proportion
is set in the nodes of the M-th layer of WPD, which is gen-
erally about 3%. Firstly, the nodes whose energy proportion
ηq is less than the energy threshold are eliminated. Then, the
nodes with high energy are selected asmany as possible from
the remaining nodes to reconstruct the M − 1 virtual signals
Y(t) � [y1(t), y2(t), . . . , yM−1(t)] with the same length as
the original single channel signal x(t) by different combina-
tions. The reconstructed virtual signals can better retain the
information of the source signals, and they have a narrower
bandwidth and higher SNR than the x(t). The above process
is an improvement of the signal reconstruction method based
on WPD in this paper, which is called the improved method
of wavelet packet signal reconstruction (IMWPSR).

In order to express the proposed IMWPSR more intu-
itively, take three communication signals (namely M � 3)
as an example to show the reconstruction process of the vir-
tual signals in detail. TheWPD is performed on the x(t)(The
SNR is 10 dB), and the energy proportion of each frequency
band in the M-th layer decomposition is drawn, as shown in
Fig. 5.

After removing the nodes whose energy proportion is less
than the threshold (the energy proportion threshold is set to
3% based on experience), that is to remove nodes 5 and 6
in the above figure. Then the third layer nodes 1–4, 7 and
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8 are selected to reconstruct the virtual signal y1(t), and the
third layer nodes 2–4, 7 and 8 are selected to reconstruct the
virtual signal y2(t). Thus, we can obtain two purer virtual
signals with the same length as the x(t).

Secondly, we use the VMD algorithm to decompose the
x(t) in variable frequency domain to generate other virtual
signals. VMD algorithm has a solid mathematical theoretical
basis, which can essentially overcomemodemixingwith fast
convergence speed and good noise resistance [32]. Firstly,
the relevant parameters of VMD are initialized, the penalty
factor α � 2000, bandwidth τ � 0, convergence tolerance
ε � 1×10−7, and the decomposition levels K is set to 2.Then
the x(t) is decomposed byVMD to obtain two intrinsic mode
functions (IMFs) u1(t) and u2(t). The first mode function
u1(t) is purer than the second mode function u2(t), that is, it
contains more information of source signals and less noise,
so that it can be selected as one virtual signal of X(t).

In the end, since the single channel observed signal x(t)
contains all the information of source signals, it can be used
as one of the virtual signals, combined with the virtual signal
matrixY(t) obtained by the IMWPSR and the first IMF u1(t)
decomposed by VMD to compose X(t) � [x(t), y1(t), . . . ,
yM−1(t), u1(t)].

4.2.2 The separability of the reconstruction model

Since there is almost no source signals’ prior knowledge and
the mixed channel, it is difficult to recover each source signal
based on the reconstructed virtual multi-channel observed
signal. In order to successfully separate each source sig-
nal, not only must the source signals meet specific statistical
characteristics, but the mixed channel model must also meet
certain prior conditions. Next, this paper demonstrates the
following points.

(1) Meet the essential requirement of positive definite BSS.
TheX(t) always satisfies that the number of signal com-
ponents is more than the source number. The dimension
of X(t) can be reduced to a positive definite BSS model
through thewhiteningmethod.At the same time, and the
correlation between each component can be removed to
simplify the BSS algorithm and improve the separation
performance.

(2) For the channel noise problem of BSS, this paper adopts
the additive noise model. The application of the IMW-
PSR, which uses higher energy nodes to reconstruct
the virtual signals, can effectively weaken the effect of
noise. The VMD algorithm has good anti-noise per-
formance, and the first IMF in the two-level VMD
corresponds to the source signals and almost contains no
noise. Therefore, combining these two algorithms can
reduce the influence of channel noise to a certain extent.

The JADE algorithm can also separate source signals
when the frequency difference is slight, its operation speed
is fast, and the separation result is robust [1, 21]. Therefore,
this paper selects this algorithm to perform BSS of the con-
structed virtual multi-channel observed signal X(t), and all
the estimated source signals ŝ(t) with high estimation accu-
racy can be obtained in the end.

In summary, this paper has proposed a SCBSS algorithm
based on improved wavelet packet and variational mode
decomposition (IWP-VMD-SCBSS), suitable for the con-
dition where the source number is unknown. The algorithm
steps are summarized as follows:

Step 1: The interval sampling method is proposed to expand
the single channel observed signal x(t) into B-channel sig-
nal, which is recorded as the virtual multi-channel observed
signal matrix X̃B(l), and the source number M is estimated
based on the MDL criterion.
Step 2: The single channel signal x(t) is decomposed by M-
layer WPD and the IMWPSR is applied to reconstruct the
virtual signalmatrixY(t) � [y1(t), y2(t), . . . , yM−1(t)]with
the same length as the x(t).
Step 3: Two intrinsic mode functions (IMFs) u1(t) and u2(t)
are obtained by two-level VMD of the x(t).
Step 4: The single channel signal x(t), the virtual signal
matrix Y(t) reconstructed by the IMWPSR and the first IMF
u1(t) decomposed by VMD are reorganized into the vir-
tual multi-channel observed signal X(t) � [x(t), y1(t), . . . ,
yM−1(t), u1(t)].
Step 5: The JADE algorithm is used to process the X(t), and
each source signal can be estimated.

5 Algorithm simulation and performance
analysis

In this section, the performance of the proposed IWP-VMD-
SCBSS algorithm is simulated and analyzed, and compared
with different SCBSS algorithms such as the VMD-SCBSS
algorithm [16], the WPD-SCBSS algorithm [36] and the
EEMD-PCA-SCBSS algorithm [28].

5.1 Experiment setup

The proposedmethod is demonstrated by separating commu-
nication source signals. The communication signals used as
the source signals are cyclostationary signals include BPSK
and QPSK signals with good anti-noise characteristics and
frequency band utilization. In the simulation, two QPSK sig-
nals and twoBPSK signals are used as the source signals. The
carrier frequencies of the four source signals are 60, 60.5, 61
and 61.5 MHz respectively (can be adjusted with different
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experiments), the signal amplitudes are all 1, the symbol rates
are all 0.25Mbit/s. The down-conversion method is adopted,
and the sampling frequency is set to 5 MHz or 7 MHz based
on the sampling theorem, which can ensure separation accu-
racy and increase calculation speed at the same time. (Due
to the increase of source signals to be separated, sampling
points need to increase, so the sampling frequency is changed
to 7 MHz when separating four source signals.) Then the
white Gaussian noise v(t) is added, the single channel signal
x(t) �∑4

m�1 amsm(t) + v(t) can be obtained.
Because the valuable information of communication sig-

nals is mainly contained in transmitted symbol sequences, it
is not necessary to thoroughly estimate each signal’s wave-
form. As long as the symbols of the recovered signals can
be guaranteed to be equal to that of the source signals, the
SCBSS algorithm can achieve the desired effect. Therefore,
after each recovered signal is obtained, the symbol sequence
obtained by its demodulation can be compared with the sym-
bol sequence of the source signal transmitted in each channel,
and we calculate the symbol error rate (SER) to measure the
performance of the corresponding SCBSS algorithm. For the
separation effect, the lower the SER, the better the perfor-
mance of the SCBSS algorithm.

5.2 Verification of the effectiveness of the proposed
algorithm

We apply the IWP-VMD-SCBSS algorithm to the separa-
tion of three source signals (a4 � 0), and its performance
is shown by the scatter diagrams, and the SER will be fur-
ther calculated. From Sect. 4.2, when three source signals are
separated at the SNR of 10 dB, we propose the IMWPSR can
obtain two virtual signals y1(t), y2(t) that can better retain
the information of source signals. Then, the virtual signals
y1(t), y2(t), the first IMF u1(t) decomposed by VMD, the
single channel observed signal x(t) are recombined into the
virtual multi-channel observed signal X(t) � [x(t), y1(t),
y2(t), u1(t)]. Finally, BSS is realized by the JADE algorithm,
which can obtain estimated three source signals ŝ1(t), ŝ2(t)
and ŝ3(t). The scatter diagrams of the three estimated source
signals and that of the x(t) are compared as follows:

Comparing the scatter diagram of the x(t) and the esti-
mated source signals, the mixed three source signals have
been successfully separated, and the SCBSS has achieved
the desired effect. It intuitively shows the effectiveness of
the IWP-VMD-SCBSS algorithm (Figs. 6, 7).

Next, we will further test and verify the effectiveness of
the IMPWSR and the IWP-VMD-SCBSS algorithm by cal-
culating SER, comparing the performance of the proposed
IWP-VMD-SCBSS algorithm, the traditional WPD-SCBSS
algorithm, and theWPD-SCBSS algorithm optimized by the
IMWPSR, which is called the IWPD-SCBSS algorithm. We

Fig. 6 Scatter diagram of the single channel signal

carry out 100 Monte Carlo simulation experiments to calcu-
late the average SER of the three estimated source signals as
shown in Fig. 8.

FromFig. 8, we can see that the separation performance of
the IWPD-SCBSS algorithm is better than that of the WPD-
SCBSS algorithm. The SER of the improved algorithm is
reduced by two orders of magnitude compared with that
before the optimization when the SNR is 10 dB. As the SNR
increases, the improvement effect becomes more apparent. It
indicates that the information of source signals is more com-
plete for separating three source signals whenmultiple nodes
with larger energy are used to reconstruct virtual signals than
when only the node with the largest energy is used to recon-
struct virtual signals. In other words, the IMWPSR is helpful
to improve the performance of SCBSS. In addition, when
the VMD algorithm is introduced for further improvement,
the average SER of the IWP-VMD-SCBSS algorithm pro-
posed in this paper is significantly reduced. When the SNR
is 10 dB, it can achieve accurate separation without sym-
bol error, far better than the 0.1% SER of the IWPD-SCBSS
algorithm. It shows that the IMWPSR combined with the
VMD algorithm can further improve the separation effect.
The reason is that the IWP-VMD-SCBSS algorithm simulta-
neously introducesWPDandVMDalgorithms to reconstruct
the virtual multi-channel observed signal, which can retain
the source signals’ information both in the variable frequency
domain and wavelet domain simultaneously. Moreover, the
application of the IMWPSR, which uses higher energy nodes
to reconstruct the virtual signals, can weaken the influence
of noise to a certain extent. The VMD algorithm also has
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Fig. 7 Scatter diagrams of the estimated source signals (from left to right are QPSK1, QPSK2 and BPSK signals)

Fig. 8 The SER curves of different optimization algorithms

good noise immunity. Therefore, the IWP-VMD-SCBSS
algorithm can effectively suppress noise and significantly
improve separation performance.

5.3 Comparison proposed algorithmwith other
existing SCBSS algorithms

5.3.1 Performance comparison under different source
number

In order to further demonstrate the superiority of the IWP-
VMD-SCBSS algorithm, we apply traditional WPD-SCBSS
algorithm [16], VMD-SCBSS algorithm [36] and EEMD-
PCA-SCBSS algorithm [28] to separate two source signals
(a3 � 0, a4 � 0), three source signals (a4 � 0) and four
source signals respectively, and the performance of these
three SCBSS algorithms in the separation of a different num-
ber of source signals (denoted as M) are compared with the
IWP-VMD-SCBSS algorithm. The average SER curves of
different algorithms, as shown in Fig. 9.

From Fig. 9, the VMD-SCBSS algorithm has a large SER
regardless of the source number, which cannot achieve the
desired separation effect. The reason is that the VMD algo-
rithmneeds to set a penalty factorα and decomposition levels
K in advance. When the source signals’ CFI is 0.5 MHz, the
decomposition levels K is directly set to the source number
M , leading to the information hybridity of decomposition
signals and the loss of some information of source signals,
and it will still be affected by noise. When the WPD-SCBSS
algorithm separates two source signals, the SER will gradu-
ally decrease as the SNR increases. It can achieve a fairly
good separation effect when the SNR increases to 6 dB.
However, when the source signals is more than two, only
reconstructing the virtual signals by the node with the largest
energy will lose some information of the source signals,
resulting in poor separation effect. The performance of the
EEMD-PCA-SCBSS algorithm is weaker than that of the
WPD-SCBSS algorithmwhen separating two source signals,
and the separation performance will further deteriorate when
separating multiple signals, which cannot achieve a good
separation effect. The reason is that the EEMD algorithm
fails to solve the edge effect and mode mixing problems
completely. Too few IMFs selected to reconstruct the vir-
tual multi-channel signal will miss some information of the
source signals, while too many IMFs selected to reconstruct
the virtual multi-channel signal will not achieve a good de-
noising effect.

Given themany shortcomings of existing algorithms, there
is an urgent need for a new SCBSS algorithm to solve
these above problems, especially an algorithm suitable for
multiple source signals separation. Therefore, this paper pro-
poses the IWP-VMD-SCBSS algorithm,which combines the
improved wavelet packet method and the 2-level VMD algo-
rithm. The average SER of the IWP-VMD-SCBSS algorithm
is significantly lower than other SCBSS algorithms regard-
less of M � 2, 3 and 4. When the SNR is 8 dB, the average
SER of the proposed IWP-VMD-SCBSS algorithm is at least
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Fig. 9 The average SER curve of different SCBSS algorithms under
different source numbers

three orders of magnitude lower than other algorithms. The
proposed algorithm can achieve accurate separation without
symbol error when the SNR is 10 dB.

In addition, when separated source signals increases, the
separation performance of existing algorithms will deteri-
orate. Especially, they cannot achieve effective separation
of the four source signals. As the SNR increases, the SER
remains high, indicating that these algorithms have failed.
However, the IWP-VMD-SCBSS algorithm can still main-
tain good separation effect when separate four source signals.
When the SNR is more than 8 dB, it can still realize the sepa-
ration of four source signals without SER. On the whole, the
proposed algorithm has the best separation performance. The
reason is that the IWP-VMD-SCBSS algorithm simultane-
ously introduces WPD and VMD algorithms to reconstruct
the virtual multi-channel observed signal X(t), which can
retain the source signals’ information both in the variable fre-
quency domain and wavelet domain simultaneously. It can
effectively prohibit noise without mode mixing and the lack
of some information of source signals in the EEMD-PCA-
SCBSS algorithm.

5.3.2 Performance comparison under different CFIs

Keep other conditions unchanged, and change the source
signals’ CFIs (denoted as � f ) to 0.3 MHz, 0.4 MHz and
0.5 MHz respectively. Since the VMD-SCBSS algorithm is
poor when comparing the performance of separating the dif-
ferent number of source signals, it will not be considered
when comparing the closer CFI. In addition, other existing
SCBSS algorithms have poor performance when separating
four source signals, so we only compare the performance of
different algorithms when separating two and three source
signals. Under different CFIs, the separation performance
of the IWP-VMD-SCBSS algorithm is observed with the
WPD-SCBSS algorithm and the EEMD-PCA-SCBSS algo-
rithm that have a good separation effect. The average SER
curves as shown in Fig. 10.

From Fig. 10 it appears that the separation effect of
all algorithms will deteriorate with the reduction of CFI.
The separation effect of the IWP-VMD-SCBSS algorithm
is significantly better than that of the EEMD-PCA-SCBSS
algorithm. The reason is that the separation effect of the
EEMD-PCA-SCBSS algorithm will be affected by the white
Gauss noise added in the EEMD process, which cannot be
completely neutralized. Furthermore, the problem of edge
effect and mode mixing cannot be solved entirely. All the
IMFs cannot be selected to reconstruct the virtual multi-
channel observed signal, resulting in lacking some source
signals’ information.

Next, we compare the proposed algorithm with theWPD-
SCBSS algorithm. For the separation of two source signals,
the SER of the IWP-VMD-SCBSS algorithm is higher than
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Fig. 10 The average SER curves under different CFIs

that of the WPD-SCBSS algorithm when the SNR is lower
than 3 dB, and the separation effect is no better than that of
the WPD-SCBSS algorithm. The IWP-VMD-SCBSS algo-
rithm has lower SER and better separation performance than
the WPD-SCBSS algorithm when the SNR is higher than
4 dB. The reason is that when the SNR is low, there will
be some noise mixed in the first IMF of VMD added to
the IWP-VMD-SCBSS algorithm. The reconstructed virtual
multi-channel signalX(t) is contaminated by noise, resulting
in a poor separation effect. Although the performance of the
IWP-VMD-SCBSS algorithm is not as good as that of the
WPD-SCBSS algorithm when the SNR is below 3 dB, the
SER of both algorithms is high. The separation performance
of both algorithms is poor in this case, so it is not easy to carry
out practical applications. In comparison, when the SNR is
above 4 dB, the separation effect of the IWP-VMD-SCBSS
algorithm is significantly better than that of theWPD-SCBSS
algorithmwith low SER, which has good practical value. For
the separation of three source signals, the WPD algorithm
will not achieve a good separation as the SNR increases, and

Fig. 11 The average SER curve with the increase of CFI (M � 3)

its performance will worsen with the reduction of CFI. For
the proposed IWP-VMD-SCBSS algorithm, when the CFI
of source signals is 0.3 MHz, the average SER is very high,
and the reduction of the SER with the increase of the SNR is
not apparent, so the separation effect is unsatisfactory. When
the CFI of source signals is higher than 0.4 MHz, the aver-
age SER gradually decreases as the SNR increases, and the
separation effect is fairly good. The reason is that when the
SNR and CFI increase, the virtual multi-channel observed
signal reconstructed by WPD and VMD can contain more
information of the source signals without frequency mixing
between the source signals and almost no noise.

Based on the comprehensive analysis, the proposed IWP-
VMD-SCBSS algorithm perform more superior than other
SCBSS algorithms when separating source signals with
different CFIs and holds application values and excellent
foreground.

To further explore the performance of the IWP-VMD-
SCBSS algorithm in separating source signals with more
CFIs, taking the separation of three source signals as an
example, we study the performance changes when the CFI
continues to increase. The average SER with the change the
SNR is as drawn as Fig. 11.

Figure 11 shows that when the CFI increases to more
than 0.5MHz, the separation performance of the IWP-VMD-
SCBSS algorithm basically reaches the maximum excellent.
It is less affected by the CFI but is greatly affected by the
SNR at this time. The reason is that when the CFI is 0.5MHz,
it has reached twice the symbol rate, there is no frequency
mixing between the source signals, and the reconstructed
virtual multi-channel signal X(t) can retain all the informa-
tion of each source signal well. The proposed algorithm has
been able to separate three source signals effectively, so the
improvement of separation performance is not obvious when
the CFI increases continously.
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Table 1 Comparative analysis of computational time

SCBSS algorithms Number of source signals

M � 2 M � 3 M � 4

WPD-SCBSS 0.55 s 0.69 s 1.05 s

VMD-SCBSS 19.10 s 29.44 s 111.71 s

EEMD-PCA-SCBSS 104.56 s 123.62 s 187.03 s

Proposed
IWP-VMD-SCBSS

19.27 s 21.02 s 21.81 s

5.4 Computational time complexity analysis

Wecompare and analyze the computational complexity of the
IWP-VMD-SCBSSalgorithmandvarious traditional SCBSS
algorithms in this section. The simulation is performed on
the platform of MATLAB R2018b with the same computer,
which has AMDRyzen 5 3550H processor and 16 GBmem-
ory. The average calculation time required for one execution
of various SCBSS algorithms is compared and recorded in
Table 1.

Table 1 shows that compared with the WPD-SCBSS
algorithm, the IWP-VMD-SCBSS algorithm has a longer
computation time and higher complexity. However, the sep-
aration performance of the IWP-VMD-SCBSS algorithm is
significantly improved regardless of separating two, three
or four source signals, which is significantly better than the
WPD-SCBSS algorithm. Compared with the VMD-SCBSS
algorithm, the computational time of the IWP-VMD-SCBSS
algorithm is comparable to that of the VMD-SCBSS algo-
rithmwhen separating two source signals. The computational
time of the IWP-VMD-SCBSS algorithm is shorter than that
of the VMD-SCBSS algorithm when separating multiple
source signals. The reason is that when separating mul-
tiple source signals, the preset number of decomposition
modes of the VMD process in the VMD-SCBSS algorithm
should be set to the source number M , so its complexity will
increase sharply.However, theVMDprocess’s preset number
of decompositionmodes in the IWP-VMD-SCBSSalgorithm
is always 2, reducing the computational time complexity to a
certain extent. When the source number increases, the com-
plexity of the IWP-VMD-SCBSS algorithm decreases more
noticeable compared with the VMD-SCBSS algorithm, and
the separation effect of the IWP-VMD-SCBSS algorithm
is significantly better than that of the VMD-SCBSS algo-
rithm. Compared with the EEMD-PCA-SCBSS algorithm,
nomatter howmany source signals are separated, the running
time of the IWP-VMD-SCBSS algorithm will be signifi-
cantly less, and the IWP-VMD-SCBSS algorithm has better
separation performance. Therefore, from the perspectives of
algorithm complexity and separation effect, compared with

other existing SCBSS algorithms, the comprehensive perfor-
mance of the IWP-VMD-SCBSS algorithm is the best. It can
effectively separatemultiple source signals and has low com-
putational time complexity and the most superior separation
performance.

6 Conclusion

In this paper, we proposed the IWP-VMD-SCBSS algorithm
with high separation performance. Firstly, the source num-
ber is estimated by the interval sampling method combined
with the MDL criterion. Secondly, the signal reconstruction
method based on WPD is improved and combined with the
VMD algorithm to reconstruct multiple virtual signals that
can better retain the source signals’ information. Then the
single channel observed signal is used as one of the virtual
signals, combined with other virtual signals to compose a
virtual multi-channel signal. Finally, we use the JADE algo-
rithm to process the virtual multi-channel signal to obtain
the estimated source signals. The simulation results show
that the IWP-VMD-SCBSS algorithm can effectively solve
the SCBSS problem of multiple communication signals,
with superior performance and good anti-noise performance.
Moreover, the proposed algorithm yields outstanding per-
formance over the existing SCBSS algorithms. It has low
computational complexity and is feasible.

(1) An interval sampling method combined with MDL cri-
terion is proposed to realize source number estimation,
which can estimate the source number with 100% accu-
racy in a noisy environment, providing a foundation for
the subsequent SCBSS process.

(2) We improve the signal reconstruction method based on
wavelet packet decomposition, transforming to usemul-
tiple nodes with larger energy to reconstruct the virtual
signals, which can better retain the information of the
source signals and effectively improve the separation
effect.

(3) From the point of view of joint excellence, a new virtual
channel expansionmethod is proposed,which combines
the IMWPSR and the VMD algorithm. It can effec-
tively retain the information in the variable frequency
domain and the wavelet domain and suppress the noise
component simultaneously, effectively improving the
performance of SCBSS.
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