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Abstract
The surge in technology is driving demands for real-time interactive applications and high-speed transmissions, necessitating
improved network throughput and energy efficiency (EE) for immersive experiences. The rise in industrial automation has led
to higher connectivity needs, straining fifth-generation networks. Sixth-generation networks aim to address these demands,
potentiallymaximizing throughput andEE through enhanced coverage. This paper introduces innovative techniques like phone
user clustering-based downlink hybrid multiple access in unmanned aerial vehicle-assisted heterogeneous networks (HetNets)
to jointly optimize phone user (PU) admission, cell association, throughput, and EE while ensuring PU fair association with
cell (PUFAC) and quality of service (QoS), i.e., minimum rate requirement of PUs. An outer approximation algorithm
solves the mixed integer non-linear programming (MINLP) optimization problem arising from the transformation of the
concave fractional programming optimization problem using the Charnes-Cooper transformation. The method’s effectiveness
is assessed, showcasing its superiority over existing macro-cell-only networks and HetNets concerning throughput, EE, PU
admission, PU-cell association, PUFAC, and QoS.

Keywords UAV · OMA · NOMA · H-MA · Throughput maximization · EE maximization · 6G · MINLP · OAA

1 Introduction

Over the recent decades, there has been a noteworthy surge
in the demand for wireless mobile communication system
services, resulting in an upsurge in data rates or throughput
and energy utilization within communication infrastructures
[1]. This situation has elicited concerns for operators and
the ecological surroundings. Predictions indicate a substan-
tial projected escalation, approximately ranging from 150
to 170%, in throughput and energy consumption within the
fifth generation (5G) and forthcoming sixth generation (6G)
wireless systems by 2026 [2]. Hence, network operators are
actively investigating technologies that are adept at reducing
energy consumption while augmenting the network through-
put [3]. Recent investigations have primarily concentrated on
optimizing energy efficiency (EE) to promote sustainability,
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instigating endeavors to formulate communication networks
centered around EE concepts [4, 5]. In this context, through-
put and EE are precisely defined as the attainable data rate
and the quotient of attainable data rate to power consumption,
respectively, with the primary approach being the maximiza-
tion of network throughput alongside the minimization of
energy utilization.

In the domain of wireless networks, the notion of hetero-
geneous networks (HetNets) has surfaced as a technology
capable of augmenting both throughput and EE in contrast
to networks comprising exclusively of macro cells (MCs).
A characteristic configuration of a HetNet involves inte-
grating a MC with small cell (SC). Exploiting SC within
HetNets, which exhibit reduced energy consumption due to
their lower power requirement, becomes advantageous. Plac-
ing SCs in closer proximity to phone users (PUs) in densely
populated areas heightens signal strength, diminishing the
dependence on high-power transmissions from distant MCs.
Strategically dispersed SC contribute to an overall reduction
in power usage by covering smaller areas with diminished
power demand [6, 7]. These SCs additionally alleviate traffic
congestion fromMCs, enabling them to function at decreased
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power levels and thereby elevating both throughput and
EE. Thus, HetNets offer a more energy-conscious approach
to network deployment, proficiently utilizing resources and
curbing superfluous power consumption when compared to
setups reliant solely on MCs [8, 9].

Incorporating unmanned aerial vehicles (UAVs) into Het-
Nets presents an opportunity for even more substantial
improvements in throughput and EE. UAVs can be deployed
as needed to offer temporary coverage in densely populated
or remote regions, providing targeted service without contin-
uous power consumption. Functioning as aerial base stations,
UAVs can relieve the load on ground-based cells during peak
periods, thus curbing their power usage. Intelligent routing
algorithms can optimize the flight paths of UAVs to ensure
network connectivity while conserving energy. Additionally,
UAVs can serve as mobile backhaul nodes, minimizing the
reliance on energy-intensive wired connections and facilitat-
ing data relay [10, 11]. The utilization of renewable energy
sources such as solar panels to power UAVs can simultane-
ously diminish the carbon footprint and operational costs.
Both ground-based cells and UAVs can employ communi-
cation protocols designed for EE, thereby further decreasing
energy consumption while upholding service quality. This
amalgamation of UAVs and HetNets, coupled with energy-
conscious approaches, holds the potential to elevate network
throughput and EE, trim operational expenditures, and miti-
gate environmental repercussions [12].

Effectively allocating limited radio resources among mul-
tiple PUs using a range of multiple access (MA) techniques
is crucial in the enhancement of throughput and EE within
wireless networks. These methods enable numerous PUs
to access the same frequency band simultaneously, result-
ing in improved resource distribution, minimized spectrum
wastage, and consequently heightened EE. Proficient man-
agement of MA also mitigates interference, lessening the
need for elevated transmission power and conserving energy
consumption [13]. Hybrid MA (H-MA) integrates non-
orthogonalMA(NOMA)with orthogonalMA(OMA), offer-
ing efficient resource allocation to PUs. It facilitates resource
sharing via NOMA while allocating orthogonal resources
when required, thereby optimizing resource utilization, par-
ticularly in fluctuating channel conditions. H-MA outper-
forms OMA in EE by capitalizing on the resource-sharing
advantages of NOMA while retaining orthogonal chan-
nels for specific PUs, harmonizing effectively with dynamic
scenarios and ultimately advancing overall EE. As an amal-
gamation of the strengths of NOMA and OMA, H-MA
emerges as a favored solution for energy-efficient wire-
less communication systems, adept in resource optimization,
interference reduction, and adaptability to diverse network
conditions [14, 15].

PU clustering, known as PUC, emerges as a pivotal strat-
egy for the optimization of both throughput and EE in

wireless communication systems. This methodology entails
the grouping of PUs based on factors such as proximity, chan-
nel conditions, or traffic patterns. Through the clustering of
PUs exhibiting similar attributes, the network gains the capa-
bility to finely calibrate resource allocation, ensuring the
efficient utilization of radio spectrum, power, and network
resources to curtail wastage while maximizing throughput
and EE [16]. These clusters reap the benefits of shared
channel conditions, which in turn diminish interference and
decrease the energy demand for reliable communication.
PUC also accomplishes the equitable distribution of traffic
across the network; during instances of heightened demand
within a cluster, load balancing diverts PUs to less congested
clusters, thereby optimizing energy consumption. PUC fos-
ters cooperative communication within clusters, allowing
closely situated PUs to collaborate in information exchange,
thereby mitigating transmission power for long-distance
communication [17]. On the whole, PUC augments resource
management, reduces interference, and nurtures a wireless
network marked by enhanced EE, ultimately contributing to
elevated throughput, and EE.

1.1 Existing works

This section presents a comprehensive examination of the
existing literature, summarizing noteworthyfindings andout-
comes, which are compiled and presented in Table 1.

The paper [18] focuses on maximizing the cost effi-
ciency subject to the imperfect alignment in millimeterWave
(mmWave) NOMA-HetNet. Learning-based Cost-efficient
Resource Allocation (LCRA) algorithm is employed to
achieve the objective by solving the problem formulated
as stochastic combinatorial optimization problem. A fresh
perspective combining OMA and HetNet [19] is developed
for the allocation and optimization of radio resources. This
approach adapts to evolving user quality of experience (QoE)
requirements and aims to decrease energy usage by solving
the formulated problem as non-convex optimization prob-
lem. By utilizing parked cars as roadside units (P-RSUs),
[20] establishes cellular-vehicle-to-vehicle HetNets (C-V2V
HetNets), thereby fortifying urban vehicular networks. This
is succeeded by an optimization framework concentrating
on achieving maximal EE in C-V2V OMA based HetNets
that involve parked cars. Examining energy harvestingwithin
NOMA HetNets, [21] delves into a combined subchannel
and power allocation scheme aimed at heightening the EE of
small cells subject to quality of service (QoS) constraint. In
[22], a pioneering algorithm called the energy consumption
optimization algorithm (ECOA) is introduced, whichmerges
cell selection andOMAassisted HetNet techniques to realize
the optimization of energy consumption while maintaining
network performance, i.e., QoS at the forefront.
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This work presents various inquiries in the domain of
communication networks that benefit from the assistance of
UAVs. In [23], aUAV-assisted data collectionmulti-objective
optimization problem (UAVDCMOP) is defined with the
objective of minimizing the average energy consumption by
refining the positions of UAVs in UAV assisted OMA based
MC-only network. The goal is to concurrently elevate the
average transmission rate, minimize the total time employed
by UAVs, and diminish the average energy consumption
of UAVs. In another context, [24] lays out a procedure to
identify UAVs that demonstrate energy-efficient traits, while
ensuring the achievement of a satisfactory probability of
successful UAV identification during the execution of the
algorithm in UAV assisted OMA based MC-only network.
Addressing a non-convex optimization problem that encom-
passes subtimeslot allocation and UAV route planning, [25]
endeavors to augment the EE of the system subject to QoS
requirements of PUs in OMA based UAV assisted MC-only
network.Moreover, [26] delves into the effective aggregation
of data frommachine-type communication devices (MTCDs)
through the strategic deployment of UAVs. The approach
minimizes overall energy consumption by intricately plan-
ning UAV trajectories while accommodating the constraints
related to dynamic adjustment ofUAVs for the limited energy
of both UAVs andMTCDs in OMAbased UAV assistedMC-
only network. With a deeper focus on UAV EE, [27] puts
forth an iterative algorithm that manages PU scheduling and
optimizes UAV trajectories to ultimately maximize the EE
of UAVs in OMA based UAV assisted MC-only network. In
an alternative scenario, [28] explores a setup where UAVs
aid in energy harvesting cognitive radio networks (UAV-EH-
CRN), assuming the role of cognitive PUs. The objective is to
adapt power levels based on outcomes from sensing primary
PUs and to actively replenish energy through harvesting, all
aimed at optimizing EE during outages while adhering to
constraints associated with energy, transmission power, and
interference in UAV assisted OMA based MC-only network.

This compilation encompasses a diverse array of investi-
gationswithin the domain of energy-efficient communication
networks. In [29], the focus is on multi-antenna orthogo-
nal frequency division MA (OFDMA) cellular networks,
exploring EE and addressing QoS concerns through a for-
mulated mixed integer non-linear programming (MINLP)
problem aimed at maximizing EE. In the exploration of
edge devices, [30] introduces two transmission protocols for
uploading machine learning parameters, employing NOMA
and time division MA (TDMA) methodologies. By jointly
optimizing variables such as transmission power, rates, and
central processing unit (CPU) frequencies, the objective is
to minimize overall energy consumption while adhering to
training accuracy requirements in MC-only network. Within
a NOMA MC-only system, [31] introduces a weighted
approach, i.e., sequential quadratic programming (SQP)

technique to enhance total weighted EE subject to total
power of the system. In [32], a NOMA-based free space
optical (FSO) MC-only communication system is com-
pared to an OMA counterpart, showcasing advantages in EE
performance. Exploring UAV-assisted full-duplex NOMA
technique along with PU clustering (PUC) in MC-only net-
work, [33] addresses EEmaximization subject to reduction in
interference among PUs, while [34] focuses on a cooperative
downlink full-duplex NOMA configuration in the presence
of imperfect self-interference cancellation in MC-only net-
work to maximize EE subject to QoS constraint. The impact
of hardware limitations on cooperative NOMA technique in
MC-only network featuring energy-harvesting relay nodes
and intelligent reflecting surfaces is studied in [35], aiming to
optimize EE subject to power allocation to PUs. In the propo-
sition of a reconfigurable intelligent surface-assisted hybrid
NOMA (H-NOMA) technique inMC-only network in [36], a
heuristic approach is explored to enhance the sum rate subject
to imperfect successive interference cancellation (ISIC). In
[37], EE using random access OMA and NOMA techniques
in MC-only network is investigated through mathematical
modeling and complementary geometric programming to
optimize EE performance.

The increasing energy usage of battery-powered mobile
devices, prompted by multimedia applications and growing
traffic demands, underscores the significance of EE within
mobile ad hoc networks (MANETs). To address this concern,
this study introduces a system for optimizing load distribu-
tion within MANET clusters, aimed at alleviating energy
depletion. The proposed heuristic approach, referred to as
HAMBO-CHLD, employs a hybrid algorithm that merges
artificial bee colony and monarch butterfly optimization
techniques with cluster head load distribution to establish
clusters, thereby mitigating energy fatigue in both cluster
heads (CHs) andmember nodes in PUC assisted OMA based
MC-only network [38]. By integrating a weighted cluster-
ing parameter, an adaptive clustering strategy is introduced,
which incorporates factors such as residual energy, queue
length, spectrumavailability, andnode coverage for the selec-
tion of CHs. The CH Weight (CHW) metric guides the
CH selection process, followed by an optimal relay selec-
tion algorithm based on fuzzy logic (FL) to ensure efficient
intra and inter-cluster communication. Parameters like traffic
index, link error rate, and channel quality provide inputs to
drive the fuzzy system for relay node selection. The proposed
heuristic method demonstrates superior performance com-
pared to existing cluster-based routing in sensor networks
(CRSN) clustering methods, as substantiated by comprehen-
sive simulation results evaluating residual energy subject to
QoS requirement in PUC assisted OMA basedMC-only net-
work [39].
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1.2 Research gaps and contributions

After an extensive literature review and meticulous exami-
nation of the data in Table 1, it becomes clear that the current
body of research has yet to produce optimal solutions for
effectively tackling the challenges posed by throughput and
EE, arising from the disparities in uniformity, diversity, and
power allocation between MC and SC in the context of 5G
and forthcoming 6G networks. This disparity has instigated
a shift in focus for researchers and the academic community,
redirecting attention towards the exploration of strategies
involving UAVs within HetNet configurations, which are
being considered as potential remedies for the intricacies
presented by 6G networks. The subsequent sections elab-
orate on the noteworthy gaps that continue to persist within
the ongoing research endeavors, as outlined in Table 2.

It motivates us to joint investigation of all these research
gaps. In this paper, we have explored the novel PUC-
based downlink H-MA strategy in UAV-assisted HetNet to
maximize both throughput and EE regarding performance
indicators (PIs). The main contributions of this paper are
summarized here in Table 3:

The subsequent sections are organized as follows: Sect. 2
presents the network model and formulates the problem.
In Sect. 3, a detailed exposition of the two-stage ε-optimal
algorithm is presented. Section4 illustrates the simulation
configuration and presents numerical results. Concluding in
Sect. 5, the paper summarizes the findings and engages in
discussions regarding potential future directions.

2 Networkmodel and problem formulation

A novel approach utilizing PUC-based downlink H-MA
is depicted in Fig. 1 for three distinct scenarios: networks
comprising solely MC-only network, HetNets, and UAV
assisted HetNet. In Fig. 1a, the PUC-based downlink H-MA
technique is exemplified in an MC-only network, assuming
precise knowledge of channel state information (CSI) at the
MC. This scenario accounts for uniformly distributed PUs,
enabling PUs to participate in various clusters and affiliate
with theMC. Based on the PUs’ channel gain values, clusters
of PUs are created who are close to each other, optimiz-
ing downlink communication for PUs in the same cluster
[40, 41]. Clusters associated with the MC are designated as
MC clusters (MCCs). To mitigate intercluster interference,
an orthogonal subcarrier is employed to serve all admitted
PUs within an MCC. Figure1b portrays the communica-
tion network model integrating the PUC-based downlink
H-MA approach for a HetNet configuration, encompassing
both MC and SC with accurate CSI. The inclusion of SC
further accommodates additional PUs within the MC’s cov-
erage area. In addition to MCCs, clusters associated with

SC are termed SC clusters (SCCs). Figure1c illustrates the
communication networkmodel incorporating thePUC-based
downlink H-MA method within a UAV-assisted HetNet set-
ting, involving MC, SC, and UAV with precise CSI. By
incorporating energy-efficient UAV, a larger number of PUs
can be accommodated within theMC’s coverage. In addition
to MCCs and SCCs, clusters tied to UAVs are designated as
UAV clusters (UAVCs). Across all network models, subcar-
riers are allocated based on the subsequent criteria: OMA
is employed when a subcarrier is allocated to a cluster with
only one PU, whereas NOMA is used when a subcarrier is
allocated to a cluster with multiple PUs.

Let N = {1, 2, ..., N } represent the set of all PUs
across each of the networks depicted in Fig. 1. The collec-
tion of MCCs is denoted as M = {M1, M2, ..., MC }, while
the assembly of SCCs is labeled as S = {S1, S2, ..., SC }.
Similarly, the array of UAVCs is symbolized as U =
{U1,U2, ...,UC }. In the context of the MC-only network,
the set B = {MC} signifies the cell comprising the MC.
For each MCC Mc, N Mc = {1Mc , 2Mc , ..., NMc } encom-
passes all the PUs admitted to Mc. Additionally, N Mc

b =
{1Mc

b , 2Mc
b , ..., NMc

b } designates the PUs admitted to MCC
Mc associated with MC b. It is ensured that the summa-
tion of PUs admitted within all MCCs linked with MC
does not surpass the total count of PUs in the network, i.e.,∑

Mc∈M NMc
b ≤ N .

Within the HetNet context, the set of base stations or
cells encompasses both a MC and a SC, denoted as B =
{MC, SC}. In addition to NMc , N Sc = {1Sc , 2Sc , ..., NSc }
signifies the PUs admitted to SCC Sc. Similarly, we utilize
the notationN Sc

b = {1Scb , 2Scb , ..., NSc
b } to represent the count

of PUs admitted within the SCC associated with SC b. The
summation of all PUs admitted inMCCs associated withMC
and SCCs associated with SC is defined as

∑
Mc∈M NMc

b +
∑

Sc∈S NSc
b . It is ensured that

∑
Mc∈M NMc

b +∑
Sc∈S NSc

b ≤
N , which ensures that the aggregate number of PUs admitted
within all MCCs linked to MC and all SCCs tied to SC does
not surpass the total number of PUs in the network.

Within the context of the UAV-assisted HetNet, the cel-
lular composition comprises a MC, a SC, and an UAV,
denoted as B = {MC, SC,U AV }. In addition to NMc and
NSc , NUc = {1Uc , 2Uc , ..., NUc } signifies the PUs admit-
ted to UAVC Uc. Correspondingly, we employ the notation
NUc

b = {1Uc
b , 2Uc

b , ..., NUc
b } to denote the count of PUs admit-

ted within the UAVC linked to UAV b. The summation of all
admitted PUs in MCCs associated with MC, SCCs linked
to SC, and UAVCs connected to the UAV is expressed as
∑

Mc∈M NMc
b + ∑

Sc∈S NSc
b + ∑

Uc∈U NUc
b . This ensures

that
∑

Mc∈M NMc
b +∑

Sc∈S NSc
b +∑

Uc∈U NUc
b ≤ N , ensur-

ing that the collective number of admitted PUs in all MCCs
related toMC, all SCCs tied to SC, and all UAVCs associated
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Table 2 Research gaps

Sr. No. Research gaps

i Present investigations have explored a range of dimensions, spanning from networks solely relying on MC to HetNet,
MA techniques, PUC, and the integration of UAVs. However, these elements have been individually studied without being
collectively assessed

i i A notable gap is evident in the comprehensive examination of the interplay between HetNet, H-MA, PUC, and UAV, as
highlighted by the findings presented in Table 1

i i i Furthermore, to the best of our knowledge, there has been a lack of research that simultaneously considers various facets,
encompassing PU admissionwithin clusters, PU-cell affiliation, PUpower distribution, PU fair associationwith cell (PUFAC),
and the optimization of throughput and EE, all integrated within the framework of PUC-based downlink H-MA within UAV-
assisted HetNet

Table 3 Contributions Sr. No. Contributions

i This research presents a novel mathematical model
and network framework designed to enhance the
efficiency of the network by employing the PUC-
based downlink H-MA approach. This methodology
is specifically tailored for application within UAV-
assisted HetNet to optimize both throughput and EE

i i The problem is formulated as concave fractional
programming (CFP) problem and Charnes-Cooper
transformation (CCT) is employed to convert it into
concave optimization problem, i.e., MINLP. The
MINLP problem is acknowledged for its status as a
non-deterministic polynomial-time hard (NP-hard)

i i i To achieve an approximation of optimal solutions
while reducing complexity, an OAA incorporating ε-
optimality is employed to tackle the MINLP issue

iv The efficacy of the PUC-based downlink H-MA
approach within UAV-assisted HetNet is evaluated

v PIs encompassing the optimization of throughput and
EE, the inclusion of PUswithin clusters, PU-cell affili-
ations, adherence tominimumQoS rate standards, and
the equitable allocation of PUs to cells (PUFAC) are
considered in this context

vi The Jain fairness index (JFI) is utilized to secure equi-
table allocation of PUs across MC and SC within
the HetNet and among MC, SC, and UAV within the
UAV-assisted HetNets, thereby ensuring fairness in
the process of cell-association

vi i A complexity assessment is conducted using F-Flops
and the Big O notation, comparing the proposed ε-
optimal OAA with an exhaustive search algorithm
(ESA) to analyze their computational complexities

vi i i The method presented, denoted as PUC-based down-
link H-MA, is thoroughly examined to assess its
efficacy in various scenarios, including networks com-
posed solely of MC, HetNet, and cases involving the
integration of UAV within HetNet

i x The proposed strategy, i.e., PUC-based downlink H-
MA in UAV assisted HetNet, is compared with the
most related work done in [21] to assess its per-
formance efficiency and validation of the theoretical
work
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Fig. 1 PUC based downlink H-MA

with the UAV does not exceed the total number of PUs in the
network.

Let gn
Mc
b = g̃n

Mc
b ξGo

(
do

dn
Mc
b

)α

symbolize the channel

coefficient between PU n admitted in MCC Mc and MC b.

In this context, g̃n
Mc
b denotes a Rayleigh random variable,

ξ represents Gaussian zero-mean shadowing, Go stands for
antenna gain, α signifies the path loss exponent, do is the

far-field reference distance, and dn
Mc
b stands for the distance

between admitted PU n in MCC Mc and MC b. Similarly,

gn
Sc
b = g̃n

Sc
b ξGo

(
do

dn
Sc
b

)α

signifies the channel coefficient

between PU n admitted in SCC Sc and SC b, where dn
Sc
b rep-

resents the distance between admitted PU n in SCC Sc and

SC b. Likewise, gn
Uc
b = g̃n

Uc
b ξGo

(
do

dn
Uc
b

)α

corresponds to

the channel coefficient between PU n admitted in UAVC Uc

and UAV b, with dn
Uc
b denoting the distance between admit-

ted PU n in UAVCUc and UAV b. The remaining definitions

for these terms remain consistent with those of gn
Mc
b [42, 43].

2.1 PUC based downlink H-MA for MC-only network

NOMA implements power domain transmission at the cell
to convey information, while the receiving end PUs employ
successive interference cancellation (SIC) to extract informa-
tion by eliminating interference from other PUs. The binary
indicator xn

Mc , depicted in Eq. (1), is assumed to indicate
whether PU n is admitted in Mc.

xn
Mc =

{
1, if n is admitted in Mc

0, otherwise
(1)

The binary indicator yn
Mc
b , as elucidated in eq. (2), is con-

sidered to signify whether PU n that has been previously
admitted to Mc is linked with MC b.

yn
Mc
b =

{
1, if n admitted in Mc is associated with b

0, otherwise
(2)

Within a cluster, PUs have the capability to employ SIC
for information decoding, subject to the following condition:

• PU n has the option to employ SIC if the signal-to-
interference-plus-noise ratio (SINR) received by PU n
for the signal from PU i is greater than or equal to the
SINR received by PU i .

For the successful decoding and removal of PU i’s signal
from the signal of PU n admitted in MCC Mc, it is essential
for the subsequent inequality to be satisfied, as illustrated in
eq. (3).

�nMc
b (i) ≥ �i Mc

b (i), ∀ i, n ∈ N
gi

Mc
b ≤ gn

Mc
b , ∀ i �= n

(3)

The PUs within MCC Mc are arranged in an ascending
sequence according to their channel gains, as specified in
Eq. (4).

g1
Mc
b ≤ g2

Mc
b ... ≤ ...gN

Mc
b (4)
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ThePUs admitted intoMCCMc receive power in the order
stipulated by Eq. (5).

p1
Mc
b ≥ p2

Mc
b ... ≥ ...pN

Mc
b (5)

In order to apportion the overall power of theMC, denoted
as PMC , across all the MCCs, it is postulated that the sum-
mation

∑MC
Mc=1 p

Mc
b remains within the bounds of PMC .

To establish fairness in power allocation while considering

diverse channel gains, a weighting factor 1 ≥ ln
Mc
b > 0 is

introduced. This coefficient assigns less power to PUs with
greater channel gains and conversely, as expressed in Eq. (6)
[44].

ln
Mc
b = 1 − xn

Mc yn
Mc
b gn

Mc
b

∑NMc

iMc=nMc+1 l
nMc
b

(6)

A value of ln
Mc
b equating to 1 signifies the absence of any

admitted PUs in MCC Mc linked with MC b. The received

power for each PU, labeled as pn
Mc
b , is derived by the multi-

plication of ln
Mc
b and pMc , representing the designated power

allocation for MCC Mc associated with MC b.

2.2 PUC based downlink H-MA for HetNet

For simplification purposes, a single SC has been introduced
alongside the MC in the HetNet to improve PU admission,
association, as well as throughput and EE enhancement [45].
Furthermore, we incorporate an additional binary indicator,
denoted as xn

Sc , in addition to xn
Mc , which signifies the

admission of PU n into SCC Sc, as outlined in eq. (7).

xn
Sc =

{
1, if nis admitted inSc
0, otherwise

(7)

Furthermore, as a complement to the already established

indicators yn
Mc
b , we introduce an additional binary indica-

tor denoted as yn
Sc
b . This indicator signifies whether PU n

has been admitted into Sc that is associated with SC s, as
illustrated in Eq. (8).

yn
Sc
b =

{
1, if nadmitted inSc is associated with b

0, otherwise
(8)

The JFI, as previously introduced in literature [46–48], is
utilized in this paper to ensure equitable PU association with
bothMC and SCwithin the HetNet. The incorporation of this
fairness index serves as a pivotal mechanism for maintaining
a well-balanced distribution of traffic loads among all cells

present in the network. The JFI is expressed by the following
formula:

�nb =

(
∑

n∈N
(yn

Mc
b + yn

Sc
b )

)2

N
∑

n∈N
(yn

Mc
b )2 + (yn

Sc
b )2

, ∀ b ∈ B (9)

Here, the variable �nb is constrained within the range
of 0 to 1. Similarly, the arrangement of PUs within Sc is
determined by sorting them in ascending order based on their
channel gains, as defined in Eq. (10).

g1
Sc
b ≤ g2

Sc
b ... ≤ ...gN

Sc
b (10)

Consequently, the sequence of power allocation for the
PUs admitted in Sc is defined by the Eq. (11).

p1
Sc
b ≥ p2

Sc
b ... ≥ ...pN

Sc
b (11)

The distribution of power among the SCCs adheres to the
constraint

∑SC
Sc=1 p

Sc
b ≤ P SC , where P SC signifies the total

power of SC. To ensure power allocation based on channel

gain, a weighting factor ln
Sc
b is introduced, satisfying the con-

dition 1 ≥ ln
Sc
b > 0. This factor guarantees that PUs with

higher channel gains receive proportionally less power allo-
cation and vice versa, as expressed in Eq. (12).

ln
Sc
b = 1 − xn

Sc yn
Sc
b gn

Sc
b

∑NSc

i Sc=nSc+1 g
nScb

(12)

The power allocation for the PUs admitted in the SCC

associated with SC is determined by the value of ln
Sc
b , where

ln
Sc
b = 1 indicates the absence of any admitted PU in that

particular SCC. The received power for the PUs admitted in

the SCC is calculated as pn
Sc
b = ln

Sc
b ∗ pScb . These weighting

factors, namely ln
Mc
b and ln

Sc
b , play a pivotal role in ensuring

fairness in the allocation of power among PUs based on their
respective channel gains. Their implementation is instrumen-
tal in achieving a well-balanced power distribution across the
network.

NOMA’s power domain multiplexing enables simulta-
neous resource sharing among PUs, leading to increased
throughput and EE. OMA provides resource allocation, opti-
mizing utilization based on channel conditions. This OMA,
combined with NOMA, facilitates efficient capacity offload-
ing from MC to SC, reducing congestion and enhancing
overall network efficiency. Additionally, NOMA’s inherent
interference management and power control contribute to
energy savings, while the combination of NOMA-OMA, i.e.,
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H-MA, ensures flexibility and adaptability in response to
changing network dynamics. Together, these integrated tech-
niques create a more resilient and efficient communication
environment in HetNet.

2.3 PUC based downlink H-MA for UAV assisted
HetNet

Toenrich the capabilities of theUAV-assistedHetNet in terms
of admission, association, throughput, andEE,we have intro-
duced UAVs alongside MCs and SCs. Moreover, to account
for the presence of UAVCs, a binary indicator xn

Uc has been
introduced in addition to xn

Mc and xn
Sc indicators. This new

indicator signifies the admission status of PU n in the UAVC
Uc, as elaborated in Eq. (13).

xn
Uc =

{
1, if nis admitted inUc

0, otherwise
(13)

Furthermore, as a complement to the pre-existing indi-

cators yn
Mc
b and yn

Sc
b , we introduce an additional binary

indicator denoted as yn
Uc
b . This indicator conveys the infor-

mation about the admission status of PU n in the UAVC Uc

associated with the entity labeled as b, as detailed in Eq. (14).

yn
Uc
b =

{
1, if nadmitted inUc is associated with b

0, otherwise
(14)

The JFI, as previously introduced in relevant research
works [46–48], is applied to ensure equitable association of
PU nwithMC, SC, andUAVwithin theUAV-assistedHetNet
framework. This fairness index assumes a vital role in pro-
moting an even distribution of traffic load among all the cells
within the network. The formula for the JFI is as presented
below:

�nb =

(
∑

n∈N
(yn

Mc
b + yn

Sc
b + yn

Uc
b )

)2

N
∑

n∈N
(yn

Mc
b )2 + (yn

Sc
b )2 + (yn

Uc
b )2

, ∀ b ∈ B (15)

The inequality 1 ≥ �nb ≥ 0 holds in the formula. Sim-
ilarly, the arrangement of PUs in Uc based on their channel
gains is depicted using ascending order in Eq. (16).

g1
Uc
b ≤ g2

Uc
b ... ≤ ...gN

Uc
b (16)

Consequently, the received power among the admitted
PUs in Uc adheres to the sequence specified in Eq. (17).

p1
Uc
b ≥ p2

Uc
b ... ≥ ...pN

Uc
b (17)

The power allocation among the UAVCs is governed by
the constraint

∑UC
Uc=1 p

Uc
b ≤ PU AV , where PU AV stands

for the total power available to UAVs. To assign power to
the PUs while considering their channel gains, a weighting

factor denoted as ln
Uc
b is introduced. This factor ensures that

PUswith higher channel gains receive relatively lower power
and vice versa. This relationship is expressed in Eq. (18).

ln
Uc
b = 1 − xn

Uc yn
Uc
b gn

Uc
b

∑NUc

iUc=nUc+1 g
nUcb

(18)

The power assigned to the PUs admitted in the UAVC

associated with the UAV is influenced by the value of ln
Uc
b ,

wherein ln
Uc
b = 1 signifies the absence of any admitted PU

in that specific UAVC. The power received by the admitted

PUs in the UAVC is computed as pn
Uc
b = ln

Uc
b ∗ pUc

b . These

weighting factors (ln
Mc
b , ln

Sc
b , and ln

Uc
b ) are vital in ensuring

an equitable distribution of power among the PUs based on
their respective channel gains, thereby contributing to a well-
balanced power allocation throughout the network.

Several key parameters such as precise knowledge of CSI,
channel gain values, transmission power, subcarrier alloca-
tion, and inter-cluster interference influence the effectiveness
of UAV assisted downlink communication and their dynamic
adjustment based on PUC is crucial. The precise knowledge
of CSI is pivotal, enabling accurate communication resource
allocation. The clustering strategy, needs careful considera-
tion to optimize coverage and manage interference based on
channel gain values. The transmission power and subcarrier
allocation based on PUC ensures efficient use of spectral
resources. According to the mentioned scenario, PUs are
clustered in MCC, or SCC, or UAVC based on channel gain
values. Inter-cluster interference is mitigated using orthogo-
nal subcarriers. Subcarriers are allocated based on OMA for
single PUcluster andNOMAformulti-PU clusters. Thus, the
mentioned approach adjusts these parameters dynamically in
real-time, informed by the evolving network conditions and
PU distribution, is essential for maximizing the effectiveness
of UAV-assisted downlink communication.

2.4 SINRmodel for MC-only network

The PUs situated within the MCC linked to MC encounter
interference stemming from other PUs coexisting within the
same MCC. The SINR [45] experienced by a PU admitted
in MCC Mc and associated with MC b can be expressed
using Eq. (19). This eq. effectively captures the SINR, which
serves as a metric for assessing the received signal quality,
accounting for both the influence of interference originating
from other PUs and the inherent noise inherent within the
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system.

�nMc
b = xn

Mc yn
Mc
b pn

Mc
b gn

Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 p
iMc
b + No

(19)

The SINR corresponding to a PU admitted within MCC
Mc and associatedwithMCb is influenced byvarious factors,

including the received power of the PU (pn
Mc
b ), the received

power of other PUs also admitted in the same MCC and

associated with MC b (pi
Mc
b ), the total count of admitted

PUs in Mc (NMc ), and the noise power spectral density (No).
These parameters collectively contribute to the calculation
of the SINR, a pivotal metric that gauges the quality of the
received signal amidst the presence of both interference and
background noise.

In each MCC, the last PU to be admitted is strategically
placed to experience the highest channel gain, enabling it to
effectively cancel out the signals of all other PUs within the
sameMCC. In scenarioswhere a particularMCChosts only a
single PU, interference is absent, thus leading to a power allo-
cation coefficient of 1. For MCCs containing more than one
PU, the signal-to-noise ratio (SNR) applicable to a single PU

is symbolized as �1Mc
b . The presence of multiple PUs within

a given MCC permits the utilization of SIC, enabling PUs
to decode and remove interfering signals, thereby improving
overall information reception quality.

2.5 SINRmodel for HetNet

Within the HetNet context, PUs encounter supplementary
interference originating from SCs, in addition to the inter-
ference considerations outlined in the MC-only network
scenario. More precisely, when a PU n secures admission
in MCC Mc connected to MC b, it confronts interference
stemming from SCs. This PU’s SINR [49, 50] can be quanti-
fied mathematically using the formula provided by Eq. (20).

�nMc
b = xn

Mc yn
Mc
b pn

Mc
b gn

Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 p
iMc
b + gn

Sc
b P SC + No

(20)

The SINR pertaining to the PU n that has been granted
admission in SCC Sc linked to SC b, while accounting for
the interference stemming from MC, is elucidated through
the expression provided by Eq. (21).

�nScb = xn
Sc yn

Sc
b pn

Sc
b gn

Sc
b

gn
Sc
b

∑NSc

i Sc=nSc+1 p
i Scb + gn

Mc
b PMC + No

(21)

2.6 SINRmodel for UAV-assisted HetNet

Within the context of UAV-assisted HetNet, PUs encounter
supplementary interference originating fromUAV, alongside
the interference elucidated in the MC-only network and Het-
Net scenarios. Concretely, when a PU n attains admission
withinMCCMc linked toMC b, it contendswith interference
emanating from SC and UAV. The mathematical expression
encapsulating the SINR for this PU is formulated by Eq. (22).

�nMc
b = xn

Mc yn
Mc
b pn

Mc
b gn

Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 pi
Mc
b + gn

Sc
b P SC + gn

Uc
b PU AV + No

(22)

The SINR of the PU indexed as n and accepted within
SCC Sc linked with SC b, considers the impact of both MC
and UAV signal disruptions. This SINR is denoted by Eq.
(23) and has been discussed in references.

�nScb = xn
Sc yn

Sc
b pn

Sc
b gn

Sc
b

gn
Sc
b

∑NSc

i Sc=nSc+1 pi
Sc
b + gn

Mc
b PMC + gn

Uc
b PU AV + No

(23)

The SINR of the PU identified as n and accepted within
UAVC Uc linked with UAV b, accounting for the disruption
caused by MC and SC, is formulated using Eq. (24) and has
been referenced in works.

�nUcb = xn
Uc yn

Uc
b pn

Uc
b gn

Uc
b

gn
Uc
b

∑NUc

iUc=nUc+1 pi
Uc
b + gn

Mc
b PMC + gn

Sc
b P SC + No

(24)

2.7 Achievable throughput model

The attainable throughput for the PU labeled as n within
the context of MCC Mc linked with MC b is formulated as
indicated in Eq. (25).

rn
Mc
b = log2(1 + �nMc

b ) (25)

The throughput attainable by the PU indexed as n within
the context of the SCC Sc linked with SC b is denoted by eq.
(26).

rn
Sc
b = log2(1 + �nScb ) (26)

The achievable throughput for the PU n within the context
of theUAVCUc linkedwithUAV b is formulated as indicated
in eq. (27).

rn
Uc
b = log2(1 + �nUcb ) (27)

123



Maximizing throughput and energy efficiency… 573

2.8 Problem formulation

Within this section, we establish original optimization chal-
lenges that encompass the inclusion of PU admission into
a cluster, the association of PUs with cells, power distribu-
tion, equitable PU-to-cell associations (PUFAC), and QoS,
all while accounting for downlink H-MA strategies, namely
OMA and NOMA schemes. This encompasses scenarios
within MC-only network, HetNet, and environments facil-
itated by UAV in conjunction with HetNet. The objective
function and associated limitations for formulating these
optimization inquiries across the three diverse settings are
delineated herein:

2.8.1 For PUC based downlink H-MA enabled MC-only
network

The maximization of PU admissions, PU-cell affiliations,
throughput, and EE is realized by employing resource dis-
tribution outcomes grounded in the subsequent limitations,
which are then integrated into the central goal function. By
amalgamating the specified goal function and associated lim-
itations, the optimization challenge centered on downlink
H-MA, specifically OMA andNOMA strategies for resource
allocation within a MC-only network can be structured as
follows:

max
x,y,p

∑N
n=1

∑B
b=1

∑MC
Mc=1 x

nMc
yn

Mc
b rn

Mc
b

Pct + ∑N
n=1

∑B
b=1

∑MC
Mc=1 pn

Mc
b

subject to

C1 :
MC∑

Mc=1

xn
Mc ≤ 1, ∀ n ∈ N

C2 : ynMc
b ≤ 1, ∀ n ∈ N

C3 : ynMc
b ≤ xn

Mc

C4 :
MC∑

Mc=1

pMc
b ≤ PMC , ∀ MC ∈ B, Mc ∈ M

C5 :
∑

n∈N
pn

Mc
b ≤ ln

Mc
b ∗ pMc

b

C6 : rnMc
b ≥ xn

Mc
yn

Mc
b Rn

min

C7 : xnMc ∈ {0, 1}
C8 : ynMc

b ∈ {0, 1}
C9 : pMc

b ≥ 0

C10 : pnMc
b ≥ 0

(28)

The objective underlying the Eq. (28) aims to maximize
PU admissions, PU-cell affiliations, throughput measured in
megabits per second (Mbps), and EE measured in Mbps

per watt (Mbps/watt), all while adhering to the constraints
denoted asC1 throughC10. ConstraintC1 ensures the exclu-
sive admission of a PU into aMCC Mc at any given instance.
Constraint C2 enforces the restriction that a PU can only
associate with a MC b. Ensuring the continuity of PU affilia-
tions within anMCC is the role of constraintC3, whileC4 is
responsible for regulating power distribution across the dif-
ferent MCCs Mc. Allocation of power to individual PUs n
within MC b is covered by constraint C5. Finally, constraint
C6 embodies the QoS aspect, stipulating the minimum data
rate prerequisites for PU n to be accepted into clusters linked
with their respective cells.

2.8.2 Alternative problem formulation

The challenge presented in Eq. (28) involves a concave
function in the numerator and a convex function in the
denominator, classifying it as a concave fractional program-
ming (CFP) issue, where the real-valued functions defined in

Rn are denoted as rn
Mc
b and pn

Mc
b . To address this, we employ

a Charnes-Cooper transformation (CCT) technique, which
converts the CFP problem in (28) into a concave optimiza-

tion problem by introducing substitutions rn
Mc
b =

(
w
nMc
b

z

)

and pMc
b =

(
w

Mc
b
z

)

. The resultant transformed concave opti-

mization problem is presented below:

max
x,y,z

z
N∑

n=1

B∑

b=1

MC∑

Mc=1

xn
Mc

yn
Mc
b

log2

(

1 + xn
Mc

yn
Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 wi Mc
b + zNo

)

subject to

C1 :
MC∑

Mc=1

xn
Mc ≤ 1, ∀ n ∈ N

C2 :
∑

b∈B

MC∑

Mc=1

yn
Mc
b ≤ 1, ∀ n ∈ N

C3 : ynMc
b ≤ xn

Mc

C4 :
MC∑

Mc=1

w
Mc
b ≤ PMCz, ∀ MC ∈ B, Mc ∈ M

C5 :
∑

n∈N
wnMc

b ≤ ln
Mc
b ∗ w

Mc
b

C6 : log2
(

1 + xn
Mc

yn
Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 wi Mc
b + zNo

)

≥ xn
Mc

yn
Mc
b Rn

min

C7 : xnMc ∈ {0, 1}
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C8 : ynMc
b ∈ {0, 1}

C9 : w
Mc
b ≥ 0

C10 : wnMc
b ≥ 0

C11 : Pct z +
∑

n∈N

∑

b∈B

∑

Mc∈M
wnMc

b = 1 (29)

2.8.3 For PUC based downlink H-MA enabled HetNet

The maximization of PU admissions, PU-cell affiliations,
throughput, and EE is realized by utilizing resource alloca-
tion outcomes guided by the subsequent specified limitations,
which are then integrated into the core objective function.
Integrating the mentioned objective function and outlined
constraints, the optimization challenge rooted in downlinkH-
MA, encompassingOMAandNOMA strategies for resource
allocation within a HetNet can be formulated as follows:

max
x,y,p

∑N
n=1

∑B
b=1

(
∑MC

Mc=1 x
nMc yn

Mc
b rn

Mc
b + ∑SC

Sc=1 x
nSc yn

Sc
b rn

Sc
b

)

Pct + ∑N
n=1

∑B
b=1

(
∑MC

Mc=1 pn
Mc
b + ∑SC

Sc=1 pn
Sc
b

)

subject to

C1 :
MC∑

Mc=1

xn
Mc +

SC∑

Sc=1

xn
Sc ≤ 1, ∀ n ∈ N

C2 :
∑

b∈B

( MC∑

Mc=1

yn
Mc
b +

SC∑

Sc=1

yn
Sc
b

)

≤ 1, ∀ n ∈ N

C3 : ynMc
b + yn

Sc
b ≤ xn

Mc + xn
Sc

C4 :
(

∑

n∈N

(

yn
Mc
b + yn

Sc
b

))2

− N
∑

n∈N

(

yn
Mc
b + yn

Sc
b

)2

≤ 0

C5 :
MC∑

Mc=1

pMc
b ≤ PMC , ∀ MC ∈ B, Mc ∈ M

C6 :
SC∑

Sc=1

pScb ≤ P SC , f orall SC ∈ B, Sc ∈ S

C7 :
∑

n∈N
pn

Mc
b ≤ ln

Mc
b ∗ pMc

b

C8 :
∑

n∈N
pn

Sc
b ≤ ln

Sc
b ∗ pScb

C9 : rnMc
b ≥ xn

Mc
yn

Mc
b Rn

min

C10 : rnScb ≥ xn
Sc
yn

Sc
b Rn

min

C11 : xnMc ∈ {0, 1}, xnSc ∈ {0, 1}
C12 : ynMc

b ∈ {0, 1}, ynScb ∈ {0, 1}
C13 : pMc

b ≥ 0, pScb ≥ 0

C14 : pnMc
b ≥ 0, pn

Sc
b ≥ 0 (30)

2.8.4 Alternative problem formulation

The challenge presented in Eq. (30) entails a concave
function in the numerator and a convex function in the
denominator, thereby categorizing it as a CFP problem.Here,

the real-valued functions in Rn are denoted as rn
Mc
b , pn

Mc
b ,

as well as rn
Sc
b and pn

Sc
b . To address this, a CCT technique is

employed to convert the CFP problem in (30) into a concave
optimization problem. This is achieved through the introduc-

tion of substitutions pn
Mc
b =

(
w
nMc
b

z

)

, pMc
b =

(
w

Mc
b
z

)

, and

pn
Sc
b =

(
w
nScb

z

)

, pScb =
(

w
Sc
b
z

)

. The equivalent problem is:

max
x,y,z

z
N∑

n=1

B∑

b=1

( MC∑

Mc=1

xn
Mc

yn
Mc
b

log2

(

1 + xn
Mc yn

Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc =nMc +1 wi Mc
b + gn

Sc
b P SC z + zNo

)

+
SC∑

Sc=1

xn
Sc
yn

Sc
b

log2

(

1 + xn
Sc yn

Sc
b wnScb gn

Sc
b

gn
Sc
b

∑NSc

i Sc =nSc +1 wi Scb + gn
Mc
b PMC z + zNo

))

subject to

C1 :
MC∑

Mc=1

xn
Mc +

SC∑

Sc=1

xn
Sc ≤ 1, ∀ n ∈ N

C2 :
∑

b∈B

( MC∑

Mc=1

yn
Mc
b +

SC∑

Sc=1

yn
Sc
b

)

≤ 1, ∀ n ∈ N

C3 : ynMc
b + yn

Sc
b ≤ xn

Mc + xn
Sc

C4 :
(

∑

n∈N

(

yn
Mc
b + yn

Sc
b

))2

− N
∑

n∈N

(

yn
Mc
b + yn

Sc
b

)2

≤ 0

C5 :
MC∑

Mc=1

w
Mc
b ≤ PMC z, ∀ MC ∈ B, Mc ∈ M

C6 :
SC∑

Sc=1

w
Sc
b ≤ P SC z, ∀ SC ∈ B, Sc ∈ S

C7 :
∑

n∈N
wnMc

b ≤ ln
Mc
b ∗ w

Mc
b

C8 :
∑

n∈N
wnScb ≤ ln

Sc
b ∗ w

Sc
b

C9 : log2
(

1 + xn
Mc yn

Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc =nMc +1 wi Mc
b + gn

Sc
b P SC z + zNo

)

≥ xn
Mc

yn
Mc
b Rn

min

C10 : log2
(

1 + xn
Sc yn

Sc
b wnScb gn

Sc
b

gn
Sc
b

∑NSc

i Sc =nSc +1 wi Scb + gn
Mc
b PMC z + zNo

)

≥ xn
Sc
yn

Sc
b Rn

min

C11 : xnMc ∈ {0, 1}, xnSc ∈ {0, 1}
C12 : ynMc

b ∈ {0, 1}, ynScb ∈ {0, 1}
C13 : w

Mc
b ≥ 0, wSc

b ≥ 0

C14 : wnMc
b ≥ 0, wnScb ≥ 0

C15 : Pct z +
∑

n∈N

∑

b∈B

( ∑

Mc∈M
wnMc

b +
∑

Sc∈S
wnScb

)

= 1 (31)
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2.8.5 For PUC based downlink H-MA enabled UAV assisted
HetNet

The goal of maximizing PU admissions, PU-cell affiliations,
throughput, and EE is accomplished by utilizing the out-
comes of resource allocation determined by the stipulated
constraints and integrated into the core objective function.
By integrating the specified objective function and outlined
constraints, the optimization problem rooted in downlink H-
MA, encompassingOMAandNOMA strategies for resource
allocation within a HetNet, can be formulated as follows:

max
x,y,p

∑N
n=1

∑B
b=1

(
∑MC

Mc=1 x
nMc yn

Mc
b rn

Mc
b + ∑SC

Sc=1 x
nSc yn

Sc
b rn

Sc
b + ∑UC

Uc=1 x
nUc yn

Uc
b rn

Uc
b

)

Pct + ∑N
n=1

∑B
b=1

(
∑MC

Mc=1 p
nMc
b + ∑SC

Sc=1 pn
Sc
b + ∑UC

Uc=1 pn
Uc
b

)

subject to

C1 :
MC∑

Mc=1

xn
Mc +

SC∑

Sc=1

xn
Sc +

UC∑

Uc=1

xn
Uc ≤ 1, ∀ n ∈ N

C2 :
∑

b∈B

( MC∑

Mc=1

yn
Mc
b +

SC∑

Sc=1

yn
Sc
b +

UC∑

Uc=1

yn
Uc
b

)

≤ 1, ∀ n ∈ N

C3 : ynMc
b + yn

Sc
b + yn

Uc
b ≤ xn

Mc + xn
Sc + xn

Uc

C4 :
(

∑

n∈N

(

yn
Mc
b + yn

Sc
b + yn

Uc
b

))2

− N
∑

n∈N

(

yn
Mc
b + yn

Sc
b + yn

Uc
b

)2

≤ 0

C5 :
MC∑

Mc=1

pMc
b ≤ PMC , ∀ MC ∈ B, Mc ∈ M

C6 :
SC∑

Sc=1

pScb ≤ P SC , ∀ SC ∈ B, Sc ∈ S

C7 :
UC∑

Uc=1

pUc
b ≤ PUC , ∀ U AV ∈ B, Uc ∈ U

C8 :
∑

n∈N
pn

Mc
b ≤ ln

Mc
b ∗ pMc

b

C9 :
∑

n∈N
pn

Sc
s ≤ ln

Sc
b ∗ pScb

C10 :
∑

n∈N
pn

Uc
b ≤ ln

Uc
b ∗ pUc

b

C11 : rnMc
b ≥ xn

Mc
yn

Mc
b Rn

min

C12 : rnScb ≥ xn
Sc
yn

Sc
b Rn

min

C13 : rnUcb ≥ xn
Uc
yn

Uc
b Rn

min

C14 : xnMc ∈ {0, 1}, xnSc ∈ {0, 1}, xnUc ∈ {0, 1}
C15 : ynMc

b ∈ {0, 1}, ynScb ∈ {0, 1}, ynUcb ∈ {0, 1}
C16 : pMc

b ≥ 0, pScb ≥ 0, pUc
b ≥ 0

C17 : pnMc
b ≥ 0, pn

Sc
b ≥ 0, pn

Uc
b ≥ 0 (32)

2.8.6 Alternative problem formulation

The challenge presented in Eq. (32) categorizes as a CFP
problem. In this context, the real-valued functions existing

in Rn are denoted as rn
Mc
b , pn

Mc
b , as well as rn

Sc
b , pn

Sc
b , and

additionally rn
Uc
b , pn

Uc
b . To address this challenge, a CCT

approach has been employed, converting the CFP problem
outlined in (32) into a concave optimization problem through

substitutions such as pn
Mc
b =

(
w
nMc
b

z

)

, pMc
b =

(
w

Mc
b
z

)

,
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pn
Sc
b =

(
w
nScb

z

)

, pScb =
(

w
Sc
b
z

)

, and pn
Uc
b =

(
w
nUcb

z

)

,

pUc
b =

(
w
Uc
b
z

)

. The equivalent concave optimization prob-

lem is presented below:

max
x,y,z

z
N∑

n=1

B∑

b=1

( MC∑

Mc=1

xn
Mc

yn
Mc
b log2

(

1 + xn
Mc yn

Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 wi Mc
b + gn

Sc
b P SC z + gn

Uc
b PU AV z + zNo

)

+
SC∑

Sc=1

xn
Sc
yn

Sc
b log2

(

1 + xn
Sc yn

Sc
b wnScb gn

Sc
b

gn
Sc
b

∑NSc

i Sc=nSc+1 wi Scb + gn
Mc
b PMCz + gn

Uc
b PU AV z + zNo

)

+
UC∑

Uc=1

xn
Uc
yn

Uc
b log2

(

1 + xn
Uc yn

Uc
b wnUcb gn

Uc
b

gn
Uc
b

∑NUc

iUc=nUc+1 wiUcb + gn
Mc
b PMCz + gn

Sc
b P SC z + zNo

))

subject to

C1 :
MC∑

Mc=1

xn
Mc +

SC∑

Sc=1

xn
Sc +

UC∑

Uc=1

xn
Uc ≤ 1,∀n ∈ N

C2 :
∑

b∈B

( MC∑

Mc=1

yn
Mc
b +

SC∑

Sc=1

yn
Sc
b +

UC∑

Uc=1

yn
Uc
b

)

≤ 1,∀n ∈ N

C3 : ynMc
b + yn

Sc
b + yn

Uc
b ≤ xn

Mc + xn
Sc + xn

Uc

C4 :
(

∑

n∈N
(yn

Mc
b + yn

Sc
b + yn

Uc
b )

)2

−N
∑

n∈N
(yn

Mc
b + yn

Sc
b + yn

Uc
b )2 ≤ 0C5 :

MC∑

Mc=1

w
Mc
b ≤ PMCz,∀MC ∈ B, Mc ∈ M

C6 :
SC∑

Sc=1

w
Sc
b ≤ P SC z,∀SC ∈ B, Sc ∈ S

C7 :
UC∑

Uc=1

w
Uc
b ≤ PU AVC z,∀U AV ∈ B,Uc ∈ U

C8 :
∑

n∈N
wnMc

b ≤ ln
Mc
b ∗ w

Mc
b

C9 :
∑

n∈N
wnScb ≤ ln

Sc
b ∗ w

Sc
b

C10 :
∑

n∈N
wnUcb ≤ ln

Uc
b ∗ w

Uc
b

C11 : log2
(

1 + xn
Mc yn

Mc
b wnMc

b gn
Mc
b

gn
Mc
b

∑NMc

iMc=nMc+1 wi Mc
b + gn

Sc
b P SC z + gn

Uc
b PU AV z + zNo

)

≥ xn
Mc

yn
Mc
b Rn

min

C12 : log2
(

1 + xn
Sc yn

Sc
b wnScb gn

Sc
b

gn
Sc
b

∑NSc

i Sc=nSc+1 wi Scb + gn
Mc
b PMCz + gn

Uc
b PU AV z + zNo

)

≥ xn
Sc
yn

Sc
b Rn

min

C13 : log2
(

1 + xn
Uc yn

Uc
b wnUcb gn

Uc
b

gn
Uc
b

∑NUc

iUc=nUc+1 wiUcb + gn
Mc
b PMCz + gn

Sc
b P SC z + zNo

)

≥ xn
Uc
yn

Uc
b Rn

min

C14 : xnMc ∈ {0, 1}, xnSc ∈ {0, 1}, xnUc ∈ {0, 1}
C15 : ynMc

b ∈ {0, 1}, ynScb ∈ {0, 1}, ynUcb ∈ {0, 1}
C16 : w

Mc
b ≥ 0, wSc

b ≥ 0, wUc
b ≥ 0

C17 : wnMc
b ≥ 0, wnScb ≥ 0, wnUcb ≥ 0

C18 : Pct z +
∑

n∈N

∑

b∈B
(

∑

Mc∈M
wnMc

b +
∑

Sc∈S
wnScb +

∑

Uc∈U
wnUcb ) = 1 (33)

The problems described in Eqs. (29), (31), and (33) exhibit
a NP-hard nature and fall into the category of MINLP. The
inclusion of discrete variables within polynomial time intro-
duces complexities in finding optimal solutions using any
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algorithm. This issue involves both binary variables, such as

xn
Mc , xn

Sc , xn
Uc , and yn

Mc
b , yn

Sc
b , yn

Uc
b , as well as continuous

variables like w
Mc
b , wSc

b , wUc
b , and wnMc

b , wnScb , wnUcb . As the
number of PUs (N) increases, the search space in problems
(29), (31), and (33) grows exponentially, leading to compu-
tational challenges. While an ESA could yield an optimal
solution through binary variable exploration, its complex-
ity is considerable, as it requires solving 2|N | optimization
problems for binary variable search space of 2|N |. Thus, to
address this, we propose the OAA to attain a near-optimal
solution ensuring convergence [51]. The detailed implemen-
tation of OAA [51] for the MINLP problems outlined in eqs.
(29), (31), and (33) is presented in the subsequent section.
Additional details and the complete transformation process
from CFP problem to MINLP problem using CCT can be
found in Appendix A. The symbols employed in the model
are elaborated in Table 4.

3 Proposed solution

Equations (29), (31), and (33) encompass a mix of integer,
binary, and continuous variables, which categorizes them as
instances of MINLP problems. The binary variables, encom-

passing xn
Mc , yn

Mc
b , xn

Sc , yn
Sc
b , xn

Uc , and yn
Uc
b , capture PU

admissions and associations within diverse network con-
texts. The integer variables capture PU counts admitted in
MCC, MCC/SCC, or MCC/SCC/UAVC, while continuous
variables such as received power, SINR, throughput, and
EE quantify pertinent metrics. This section introduces the
ε-optimal OAA as a resolution for tackling the formulated
problems in Eqs. (29), (31), and (33).

In Eqs. (29), (31), and (33), the objective function denoted
as A and the set of constraints βC1−Cv are collectively indi-
cated by θ = τ ∪ ψ , where τ encompasses the binary
variables linked with PU admissions in clusters and PU asso-
ciations with cells, and ψ involves the continuous variables
associated with the received power received by the admitted
PUs within clusters connected to the cells. Equations (29),
(31), and (33) constitute the problem formulations that adhere
to the ensuing propositions.

1) The setψ is bounded, convex, and not devoid of elements.
When the values of θ are held constant, both the objec-
tive function A and the constraints βC1−Cv demonstrate
convexity with respect to ψ .

2) The objective functionA and the constraints βC1−Cv pos-
sess continuous differentiability.

3) Each nonlinear, continuous subproblemcan be effectively
addressed by maintaining the values of θ in a manner that
fulfills the prescribed constraints.

4) Upon stabilizing θ , the nonlinear programming (NLP)
dilemma can be precisely resolved.

The issues delineated inEqs. (29), (31), and (33) alignwith
the MINLP category, in accordance with the outlined propo-
sitions. To address these challenges, an OAA methodology,
detailed in [52], is applied. OAA leverages linear approx-
imations to tackle the problems defined in Eqs. (29), (31),
and (33). By employing OAA, all four propositions pertain-
ing to these problems are fulfilled through the utilization
of ascending lower bounds and descending upper bounds.
The convergence of the OAA with a predefined tolerance
ε ensures its finite iterations and ultimate convergence, as
highlighted in [53].

To generate sequences of upper and lower bounds, the
MINLP challenges presented in Eqs. (29), (31), and (33) are
disassembled into primal and master problems. The primal
problemarises by establishing the value of the binary variable
θ as θ i during the i-th iteration. Formulated through theOAA
methodology [52, 53], the primal problem can be represented
as Eq. (34).

min
ψ

− A
(
θ i , ψ

)

subject to

βC1−Cv

(
θ i , ψ

)
≤ 0

(34)

The problem articulated in Eq. (34) is addressed to ascer-
tain the value of θ i , which is then employedwithin the context
of themaster problem [54]. The solution obtained through the
primal problem serves as an upper bound, while the master
problem is tackled to establish a lower bound. The adoption
of the OAA methodology involves linearizing the objec-
tive functionA and the constraint function βC1−Cv centered
around the primal solution ψ i [55, 56]. Solving the mas-
ter problem yields the integer variable θ i+1 for the ensuing
iteration. This iterative process continues until the disparity
between the upper and lower bound values is equal to or less
than a predetermined threshold ε. The issues introduced in
Eqs. (29), (31), and (33) are transformed as illustrated in Eq.
(35) [52, 53]. Algorithm 1, presents the pseudocode for the
application of the OAA to resolve the problems delineated
in Eqs. (29), (31), and (33).

min
θ

min
ψ

− A
(
θ i , ψ

)

subject to

βC1−Cv

(
θ i , ψ

)
≤ 0

(35)
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Table 4 Symbols

Symbol Definition

N Overall count of PUs uniformly distributed in the network

B Cells or base stations collection, i.e., MC in MC-only network, MC, and SC in and in
HetNet, MC, SC, and UAV in UAV assisted HetNet

M Set of MCCs

S Set of SCCs

U Set of UAVCs

Mc Cluster with MC, i.e., MCC

MC Total clusters with MC, i.e., MCCs

Sc Cluster with SC, i.e., SCC

SC Total clusters with SC, i.e., SCCs

Uc Cluster with UAV, i.e., UAVC

UC Total clusters with UAV, i.e., UAVCs

NMc , NSc , NUc Admitted PUs in Mc, Sc, Uc, respectively

NMc
b PUs admitted in Mc associated to b

N Sc
b PUs that are admitted into Sc and linked to b

NUc
b PUs that are admitted in Uc and associated with b

gn
Mc
b Channel gain between n admitted in Mc and MC b

g̃n
Mc
b PU’s channel rayleigh random variable with MC

gn
Sc
b Channel gain between the admitted n in Sc and the SC b

g̃n
Sc
b PU’s channel rayleigh random variable with SC

gn
Uc
b Channel gain between the admitted n in Uc and the UAV b

g̃n
Uc
b PU’s channel rayleigh random variable with UAV

α The numerical value of the path loss exponent

dn
Mc
b Admitted PU’s distance from the MC b

xn
Mc Binary variable denoting the admission status of n in Mc

dn
Sc
b Admitted PU’s distance from the SC b

xn
Sc Binary variable indicating the admission status of n in Sc

dn
Uc
b Admitted PU’s distance from the UAV b

xn
Uc Binary variable representing the admission status of n in Uc

yn
Mc
b Binary association variable for association of n with the MC

�nMc
b SINR of n admitted in Mc associated with b

�nScb SINR of n admitted in Sc associated with b

�nUcb SINR of n admitted in Uc associated with b

yn
Sc
b Binary association variable for association of n with SC

yn
Uc
b Binary association variable for association of n with UAV

ln
Mc
b , ln

Sc
b , ln

Uc
b Weighting factor for power allocation to n admitted in MCC, SCC, UAVC,

respectively

PMC ,P SC , PU AV The overall power at the MC, SC, UAV, respectively

do Reference distance used for far-field calculations

pMc
b Power allocated for Mc associated with b

No Power spectral density of the noise

pScb Power allocated for Sc associated with b

Go Gain of the antenna
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Table 4 continued

Symbol Definition

pUc
b Allocated power for Uc associated with b

ξ Zero-mean Gaussian random variable

pn
Mc
b Power received by n in Mc associated with MC

rn
Mc
b Throughput achievable for n in Mc associated with MC

pn
Sc
b Power received by n in Sc associated with SC

σ Spread or standard deviation

rn
Sc
b Throughput achievable for n in Sc associated with SC

pn
Uc
b Power received by n in Uc associated with UAV

rn
Uc
b Attainable data rate for n in Uc linked with UAV

Rn
min Minimum throughput needed for the PU n

�nb JFI

Algorithm 1: Outer approximation algorithm
1: i ← 1
2: Initialize θ

3: ε ← 10−3

4: Convergence ← FALSE
5: while Convergence == FALSE do

6: ψ i ←
{
arg min

ψ

−A (θ, ψ)

subject to βC1−Cv (θ, ψ) ≤ 0;
7: Upper Bound ← A (

θ i , ψ∗)

8: (θ∗, ψ∗, ϒ∗) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
θ,ψ,ϒ

ϒ

subject to
ϒ ≥ −A (

θ i , ψ i
)

−∇A (
θ i , ψ i

) (ψ−ψ i

θ−θ i

)

βC1−Cv

(
θ i , ψ i

)

−∇βC1−Cv

(
θ i , ψ i

) (ψ−ψ i

θ−θ i

) ≤ 0
9: Lower Bound ← ϒ

10: if Upper Bound − Lower Bound ≤ ε then
11: Convergence ← T RUE
12: else
13: i ← i + 1
14: θ i ← θ∗
15: end if
16: end while

The challenge described in Eq. (35) is revised and show-
cased in the form of Eq. (36).

min
θ

− ϒ (θ)

such that:

ϒ (θ) = min
ψ

− A
(
θ i , ψ

)

subject to

βC1−Cv

(
θ i , ψ

)
≤ 0

(36)

Equation (36) stands as the projection of Eqs. (29), (31),
and (33) onto the τ space. Equation (34), representing the pri-
mal problem, guarantees the fulfillment of all constraints for
each value of θ i . The solution extracted from the projection
problem is identified as Eq. (37).

min
β

min
ψ

− A
(
θ i , ψ i

)
− ∇A

(
θ i , ψ i

)(
ψ − ψ i

θ − θ i

)

subject to

βC1−Cv

(
θ i , ψ i

)
− ∇βC1−Cv

(
θ i , ψ i

)(
ψ − ψ i

θ − θ i

)

≤ 0

(37)
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The task of minimizing can be reformulated through the
introduction of a novel variable ϒ , as illustrated in eq. (38).

min
β,ψ,ϒ

ϒ

subject to

ϒ ≥ −A
(
θ i , ψ i

)
− ∇A

(
θ i , ψ i

) (
ψ − ψ i

θ − θ i

)

βC1−Cv

(
θ i , ψ i

)
− ∇βC1−Cv

(
θ i , ψ i

) (
ψ − ψ i

θ − θ i

)

≤ 0

(38)

The master problem, as presented in Eq. (38), serves the
purpose of establishing the lower bound values. This mas-
ter problem is tantamount to the original issues delineated
in eqs. (29), (31), and (33), subject to the stipulation that
propositions 1, 2, and 3 are satisfied for the master problem
articulated in Eq. (38). To effectively address the mixed-
integer linear programming (MILP) predicament outlined in
Eq. (38), an iterative method termed the branch and bound
algorithm is implemented [57].

3.1 Algorithm convergence and optimality

The OAA algorithm showcases a linear convergence rate, a
fact supported by existing literature on mixed-integer pro-
gramming [56]. The incorporation of the branch and bound
framework empowers the ε-optimal OAA approach to attain
nearly optimal outcomes, attaining a precision of ε = 10−3.
Throughout the procedure, the discrete values of θ remain
constant, and the OAA algorithm concludes with an optimal
solution reached within a finite number of iterations, con-
tingent on the satisfaction of all mentioned conditions and
the confinement of the number of discrete variables θ . The
ε-optimal algorithm ensures a solution within a range of ε

from the optimal solution for any ε > 0. Reducing the value
of ε leads to more precise solutions. The optimality of ψ

within the master problem hinges on the specific selection of
discrete variables θ i .

• A workable solution is realized when ϒ ≥ −A (
θ i , ψ i

)
.

• Asolution is considered infeasiblewhenϒ ≤ −A (
θ i , ψ i

)
.

The objective of the algorithm is to secure convergence
by discarding infeasible solutions for the master problem,
thereby guaranteeing finite convergence. Although the algo-
rithm ascertains optimality for constant θ values due to the
convex nature of both the objective and constraint functions,
the escalating computational burden of the ESA curtails its
feasibility in practical scenarios. The complexity of ESA can
be denoted as CESA and computed using Eq. (39) [52].

CESA = 2|i | (39)

Nonetheless, leveraging the OAA methodology enables
the acquisition of an ε-optimal outcome within a defined

Fig. 2 Computational complexity of outer approximation algorithm
and exhaustive search algorithm versus number of PUs

number of iterations [53]. The computational intricacy of
the OAA, denoted as COAA, can be computed using Eq. (40),
resulting in a more feasible computational load when com-
pared to algorithms that provide precise solutions.

COAA = i2κ

λ
(40)

OAA ensures an ε-optimal outcome within a designated
error threshold λ relative to the worldwide optimal solution,
positioning it as a superior alternative toESA.The constraints
denoted as κ are actively incorporated in the optimization
procedure. Figure2 visually demonstrates the computational
intricacy pattern of both OAA and ESA.

3.2 Complexity of�-optimal algorithm

This section furnishes a comprehensive analysis of the com-
plexity inherent in the proposed algorithm. The intricacy is
gauged by quantifying the number of floating-point opera-
tions (flops) demanded by various procedures encompassing
simple addition, complex addition, elementary multiplica-
tion, intricate multiplication, division, set operations, matrix
multiplications, assignment operators, and logical operators.
Every mathematical operation incurs a specific tally of flops,
with fundamental actions like addition, multiplication, and
division incurring one flop each. More intricate actions such
as complex addition and complex multiplication necessi-
tate two and four flops, correspondingly. The inclusion or
exclusion of an element from a set entails one flop. Matrix
multiplications involving matrices of dimensions e × f and
f × y contribute a total of 2e f y flops. Both assignment oper-
ators and logical operators each contribute one flop. This
meticulous analysis of complexity affords valuable insights
into the algorithm’s computational efficiency.

The complexity of the proposed algorithm is gauged
through specific guidelines. The initialization phase of the
algorithm contributes 5 flops. Solving the NLP problem and
obtaining the upper bound of the optimal solution entails
2NCB flops, whereas the computation of theMILP problem
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and acquisition of the lower bound of the optimal solution
necessitates 4NCBβ flops. The comparison between the
lower and upper bounds adds 2 flops. The introduction of
fresh binary variables introduces 4 flops. The comprehen-
sive complexity of the algorithm is defined by the cumulative
flops count F , as exemplified by Eq. (41). This complexity
analysis yields valuable insights into the algorithm’s compu-
tational demands.

FOAA = 5 + 2NCB + 4NCBβ + 4NCBβ + 2NCBβ + 4

FOAA = 9 + 2NCB + 10NCBβ

FOAA ≈ 2NCB + 10NCBβ

(41)

The computational intricacy of the ε-optimal OAA tech-
nique can be concisely characterized using Big O notation as
O(N ×C× B) + O(N ×C × B × β), where N signifies the
number of PUs, C denotes the number of MCCs, SCCs, or
UAVCs, B represents the count of cells, and β refers to the
constraints. This complexity analysis furnishes an approx-
imation of the computational resources demanded by the
OAA algorithm contingent on the dimensions of the specific
problem instance.

3.3 Proposed strategy for future scope of 6G
networks

3.3.1 Factors involved in the proposed strategy to
determine the size and composition of PU clusters

In determining the size and composition of PU clusters to
maximize throughput and EE within the given scenario, fac-
tors such as geographical distribution and density of PUs play
a crucial role, influencing the formation of clusters based on
channel gain values. The dynamic nature of PU traffic and
channel conditions should be accounted for, enabling adap-
tive clustering to accommodate varyingdemandpatterns. The
integration of SC and UAV introduces additional dimensions
to cluster composition, necessitating careful consideration of
the network infrastructure’s capabilities and the EE benefits
offered by UAV. Channel gain-based PUC, guided by pre-
cise CSI, enables the formation of clusters likeMCCs, SCCs,
and UAVCs. Dynamic adjustment of cluster sizes based on
real-time channel conditions and PU distributions is essential
[58, 59]. Additionally, the allocation of subcarriers using a
H-MA approach and the integration of energy-efficient UAV
contribute to optimizing throughput and EE. The network
should adaptively balance cluster sizes, leveraging accurate
information on channel gain values and channel states, to
ensure efficient downlink communication across diverse net-
work scenarios. Furthermore, effective resource allocation,
such as the use of OMA and NOMA based on the number of
PUs in a cluster, is essential for optimizing both throughput
and EE.

3.3.2 Proposed strategy with power control mechanism
and sleep scheduling algorithms

With the proposed strategy, the power control mechanisms
and sleep scheduling algorithms play pivotal roles in achiev-
ing overall energy savings in 6G networks. Power control
mechanisms dynamically adjust transmit power levels based
on real-time channel conditions and PU requirements, opti-
mizing energy usage [60]. Sleep scheduling algorithms
strategically deactivate certain network components during
periods of low demand, reducing idle power consumption
[61]. By synchronizing sleep schedules with PU activity pat-
terns and leveraging advanced powermanagement strategies,
the method aims to achieve significant EE gains in the 6G
network, ensuring optimal resource utilization and environ-
mental sustainability [62].

3.3.3 Proposed strategy with machine learning algorithms

By analyzing historical data and PU patterns, machine learn-
ing models can anticipate PU behaviors and adaptively
adjust resource allocations in real-time. This enables the
network to dynamically allocate resources based on pre-
dicted PU demands, optimizing throughput, and minimizing
energy consumption. The integration of machine learning
algorithms in the resource allocation process enhances the
network’s ability to proactively respond to changing PU
needs, contributing to the overall efficiency and performance
in terms of both throughput and energy consumption [63, 64].

3.3.4 Influence of proposed strategy with UAV’s altitude,
mobility, and deployment strategy

The overall performance of downlink communication is sig-
nificantly influenced by the UAV’s altitude, mobility, and
deployment strategy. The UAV’s altitude plays a crucial role
in coverage and signal strength, affecting the communication
range, potential interference and quality [65]. UAV mobil-
ity influences adaptability to changing network conditions,
allowing for dynamic positioning to optimize coverage and
serve PUC efficiently, impacts the UAV’s ability to dynam-
ically adapt to varying PU demands [66]. The deployment
strategy, encompassing the location of deployed UAV, deter-
mines the UAV’s effectiveness in serving specific areas or
clusters of PUs, which directly impacts the overall network
coverage and capacity [67]. By carefully adjusting these
parameters, the UAV can enhance coverage, throughput, and
EE, ensuring the effectiveness of overall performance of
downlink communication.
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Table 5 Input parameters

Parameters Values

do 10m

Go 50

α 2

ξ 10 dB

Minimum PUs 20

PUs Increment 20

Maximum PUs 100

PUs Distribution Uniform

Rn
min {0.5, 1.5, 2.5, , 3.5} Mbps

MC Coverage 1000m

SC Coverage 500m

U AV Coverage 300m

Minimum transmit power 12 dBm

Maximum transmit power 60 dBm

4 Results and discussions

This paper conducts a comprehensive evaluation of the intro-
duced method, which entails PUC-based downlink H-MA,
across various network paradigms, encompassing MC-only
networks, HetNets, and UAV-assisted HetNets. The newly
formulated MINLP problem instances elucidated in Eqs.
(29), (31), and (33), grounded in innovative network models
depicted in Fig. 1a, b, and c, are effectively solved utiliz-
ing the OAA approach. The performance scrutiny of the
proposedmethodologywithin these diverse networks encom-
passes an analysis of crucial PIs, including PU admission,
association, PUFAC, network achieved throughput, and EE.
Moreover, a comparative assessment of the method’s perfor-
mance is conducted across all network categories and also
with the existingmost relatedwork in [21] to validate our the-
oretical work. To implement the ε-optimal OAA technique,
a basic open-source non-linear mixed-integer programming
(BONMIN) solver is employed [57].

Table 5 presents a comprehensive overview of the input
parameters harnessed in this study. The lower limit for the
count of PUs is initialized at 20, escalating incrementally by
20 PUs until reaching the permissible maximum of 100 PUs.
The utmost coverage spans are delineated as 1000m for HC,
500m for SC, and 300m for UAV. The antenna gain Go is
established at 50, alongside a shadowing Gaussian random
variable ξ amounting to 10 dB, a path loss exponentα set to 2,
and a far-field reference distance do established at 10m. Cells
are postulated to possess a minimum transmission power of
12 dBm and a maximum transmission power of 50 dBm.
For the PUs, the minimum QoS Rn

min is diversified across
{0.5, 1.5, 2.5, 3.5} Mbps.

Fig. 3 Admitted PUs distribution in clusters in MC only network, Het-
Net, and UAV assisted HetNet

Figure3 depicts the dispersion of admitted PUs within
clusters, encompassingMCCs coupled withMC inMC-only
networks, MCCs coupled with MC, SCCs linked with SC
in HetNets, and MCCs coupled with MC, SCCs linked with
SC, UAVCs coordinated with UAV inUAV-assisted HetNets,
where the total number of PUs considered are 40.The illustra-
tion notably reveals that the aggregate of PUs admittedwithin
UAV-assisted HetNet clusters surpasses that of both conven-
tionalMC-onlynetworks andHetNets. This prevalence arises
from the inherent benefits facilitated by UAVs in HetNets.
UAVs, functioning as aerial base stations effectively extend-
ing coverage in regions characterized by coverage gaps or
heightened PU concentrations. Furthermore, the admission
of solitary PU within any cluster entails the utilization of
OMA,whereas the admissionofmultiplePUswithin a cluster
entails the employment ofNOMA.The conjoined application
of both techniques culminates in the deployment of H-MA.

Illustrated in Fig. 4 is the trajectory of the cumulative
admitted PUs across all clusters in MC-only networks,
HetNets, and UAV-assisted HetNets, while progressively
augmenting the count of PUs in each network from 20 to 100,
with intervals of 40. The cumulative admitted PUs exhibit
an upward trend in all cluster configurations, spanning MC-
only networks, HetNets, and UAV-assisted HetNets, aligning
with the escalation in the number of PUs. Notably, the pro-
posed methodology employed within UAV-assisted HetNets
emerges as superior in terms of cumulative admitted PUs
within clusters, compared to other network configurations. In
MC-only networks, there exists a likelihood of capacity satu-
ration, resulting in a restricted number of PUs accommodated
due to resource limitations and potential congestion. In Het-
Nets integrating both MC and SC, the added capacity from
SCs could alleviate congestion, permitting an enhanced PU
count, albeit the introduction of interference amid distinct
cell types might impede performance. In contrast, UAV-
assisted HetNets harness the attributes of UAVs, enabling
potentially higher PU admission rates, as UAVs can match
demand and optimize coverage.
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Fig. 4 Total PUs admitted in all clusters versus number of PUs in MC
only network, HetNet, and UAV assisted HetNet

Displayed in Fig. 5 is the evolving trend of affiliated PUs
and throughput (in Mbps) juxtaposed against the increas-
ing number of PUs within MC-only networks, HetNets, and
UAV-assisted HetNets. With the progressive augmentation
of PUs in these network configurations, both affiliated PUs
and throughput exhibit an ascending trajectory, primarily
attributed to augmented resource exploitation and extended
network coverage. Within MC-only networks, the alloca-
tion of resources becomes more efficient as the PU count
escalates, enabling the accommodation of additional PUs.
In the realm of HetNets, characterized by the integration
of MC and SC, elevated capacity ensues from SCs alle-
viating traffic from MC, thereby fostering heightened PU
association and subsequent throughput. InUAV-assistedHet-
Nets, the adaptable deployment of UAV cells optimizes both
coverage and capacity, proficiently absorbing a larger num-
ber of PUs within regions marked by heightened demand
or coverage voids. Notably, the proposed technique within
UAV-assisted HetNets outperforms its counterparts in terms
of affiliated PUs and throughput as PU numbers surge.
This superiority can be attributed to the effectiveness of H-
MA in managing interference and harnessing multiplexing
gains. This orchestration results in the judicious utilization of
resources, escalated PUcapacity, augmented throughput, and
an increased tally of associated PUs as PU numbers expand.
Consequently, this technique emerges as a robust solution for
enhancing network performance within scenarios featuring
burgeoning PU populations.

Illustrated in Fig. 6 is the trajectory of affiliated PUs and
throughput (in Mbps) in correlation with escalating required
QoS (inMbps) acrossMC-onlynetworks,HetNets, andUAV-
assisted HetNets. As the requisitioned QoS of PUs amplifies
within these network contexts, a characteristic decline is
observed in both affiliated PUs and throughput. This diminu-
tion can be attributed to the intensified resource demands
that ensue. In MC-only networks, the augmented QoS pre-
requisites engender resource scarcity, culminating in the
curtailment of the PU count that can be serviced at the
stipulated QoS. Analogously, HetNets grapple with analo-

Fig. 5 Associated PUs and throughput (Mbps) versus number of PUs
in MC only network, HetNet, and UAV assisted HetNet

Fig. 6 Associated PUs and throughput (Mbps) versus required QoS
(Mbps) in MC only network, HetNet, and UAV assisted HetNet

gous challenges, wherein augmented QoS requisites strain
resources, adversely affecting the performance of both MC
and SC. This, in turn, begets a reduction in PU associa-
tion and throughput.WithinUAV-assistedHetNets, escalated
QoS requisites can impose resource allocations that may
prove untenable, primarily due to energy constraints inher-
ent to UAVs. However, intriguingly, the proposed technique
within UAV-assisted HetNets excels in terms of affiliated
PUs and throughput in the face of heightened required QoS.
This commendable performance is rooted in H-MA’s adept
allocation of resources and effective interference mitigation.
Consequently, an improved resource utilization are achieved,
culminating in a superior performance concerning affiliated
PUs and throughput as the requisitioned QoS escalates. This
endorses H-MA as a robust strategy for adeptly addressing
escalating QoS demands within network contexts.

Depicted in Fig. 7 is the trajectory of throughput (inMbps)
and EE (in Mbps/Watts) as a function of escalating PU num-
bers across MC-only networks, HetNets, and UAV-assisted
HetNets. The observed trend reflects an upward trajectory of
both throughput and EE, as the PU count increases. This
augmentation is underpinned by heightened resource uti-
lization and network densification. In MC-only networks,
an augmented PU population stimulates a more efficient
exploitation of available resources. Within HetNets, the syn-
ergy of both MC and SC fosters an equitable distribution
of traffic, thereby engendering an upswing in both through-
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Fig. 7 Throughput (Mbps) and EE (Mbps/Watts) versus number of PUs
in MC only network, HetNet, and UAV assisted HetNet

put and EE. In the context of UAV-assisted HetNets, the
strategic deployment of UAVs enables targeted coverage
enhancement in zones characterized by elevated PU demand.
Notably, the proposed technique within UAV-assisted Het-
Nets serves to accentuate these advantages by orchestrating
interference management and capitalizing on multiplexing
gain. This yields a resource allocation mechanism that opti-
mizes power utilization and fosters the judicious use of
available resources. As a result, with the elevation of PU
numbers, the PUC approach rooted in H-MA contributes to
a heightened throughput and EE. This effect is attributed to
the intelligent resource allocation and interferenceminimiza-
tion tactics, which collectively culminate in a comprehensive
amelioration of network performance.

Illustrated in Fig. 8 is the pattern of throughput (in Mbps)
and EE (in Mbps/Watts) concerning the intensification of
required QoS (in Mbps) within MC-only networks, Het-
Nets, and UAV-assisted HetNets. An evident decline in
both throughput and EE is observable across these network
paradigms as the requisitioned QoS of PUs escalates. This
phenomenon is underpinned by an aggravated resource com-
petition and the challenges of complying with exacting QoS
demands. In the realm of MC-only networks, heightened
QoS prerequisites can precipitate congestion and resource
scarcity, thereby curbing overall throughput and EE. Akin
dilemmas plague HetNets, where amplified QoS mandates
strain resources across both MC and SC, engendering a
reduction in both throughput and EE. Within the domain
of UAV-assisted HetNets, the act of elevating QoS requi-
sites may pose limitations in resource allocation due to the
constraints tied to UAV energy. Nevertheless, the proposed
technique within UAV-assisted HetNets prevails in terms of
throughput andEE amidstmountingQoS demands. By effec-
tively managing interference and resource allocation, the
H-MA approach orchestrates optimized resource utilization,
thereby fostering the amelioration of both throughput and
EE even in the face of more exacting QoS conditions. This
underscores the efficacy of the H-MA strategy as a potent

Fig. 8 Throughput (Mbps) and EE (Mbps/Watts) versus required QoS
(Mbps) in MC only network, HetNet, and UAV assisted HetNet

Fig. 9 Associated PUs and EE (Mbps/Watts) versus number of PUs in
MC only network, HetNet, and UAV assisted HetNet

means of upholding network performance amid escalating
QoS stipulations.

As depicted in Fig. 9, the progression of associated PUs
andEE (inMbps/Watts) against the backdrop of an escalating
number of PUs unfolds across MC-only networks, HetNets,
and UAV-assisted HetNets. In each of these network configu-
rations, a surge in the number of PUs yields a concurrent rise
in associatedPUsandEE.This phenomenon is a consequence
of the intensified resource distribution and network densifi-
cation engendered by an expanded PU population. In the
realm of MC-only networks, the greater influx of PUs facil-
itates more judicious resource allocation, thereby bolstering
both associated PUs and EE. The integration of MC and SC
withinHetNets further augments this trend as it optimizes the
allocation of traffic, resulting in elevated levels of associated
PUs and EE. In UAV-assisted HetNets, the dynamic deploy-
ment of UAVs targets areas with heightened PU demand,
thereby optimizing network coverage and capacity. Notably,
the proposed technique harnessed within UAV-assisted Het-
Nets not only enhances this trajectory but also accentuates
it. By adroitly managing interference and capitalizing on
multiplexing gain, the approach facilitates superior resource
allocation, ultimately fostering an augmentation of both asso-
ciated PUs and EE. This efficacy is particularly pronounced
as the number of PUs surges, thereby solidifying the H-MA-
based PUC strategy as a pivotal instrument for elevating
network performance.
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Fig. 10 Associated PUs and EE (Mbps/Watts) versus required QoS
(Mbps) in MC only network, HetNet, and UAV assisted HetNet

As depicted in Fig. 10, the trajectory of associated PUs
and EE (in Mbps/Watts) unfolds in response to escalating
required QoS (in Mbps) across MC-only networks, HetNets,
and UAV-assisted HetNets. Across these diverse network
configurations, a discernible pattern emerges: associated
PUs and EE tend to decline as the stipulated QoS for PUs
surges. This downward trend can be attributed to the exac-
erbation of resource contention and the inherent challenges
of meeting more stringent QoS demands. Within MC-only
networks, where elevated QoS requirements are encoun-
tered, the consequence is often a surge in congestion and
resource scarcity, culminating in a reduction of associated
PUs and EE. Analogously, the challenges faced by HetNets,
encompassing both MC and SC, are compounded as higher
QoS mandates strain resources across both types of cells,
thereby curbing the performance metrics. However, the strat-
egy proposed for UAV-assisted HetNets distinguishes itself
by effectively navigating interference and optimizing the
allocation of resources. This adept management ensures the
judicious use of resources, thereby engendering an enhance-
ment in both associated PUs andEE, even under conditions of
heightened QoS requisites. Consequently, as the imperative
for higher QoS among PUs gains prominence, the efficacy of
the H-MA-based PUC strategy becomes increasingly appar-
ent, solidifying its position as a potent approach in addressing
the challenges posed by more demanding QoS expectations.

As illustrated in Fig. 11, the progression of associated
PUs and PUFAC (fairness index) unfolds in parallel with
the escalation of PU numbers within HetNets, and UAV-
assisted HetNets. This observable rise in associated PUs and
an enhanced fairness index can be ascribed to the adept allo-
cation of resources and the augmentation of network density.
This upward trajectory finds its foundation in the efficient
distribution of traffic and the optimization of coverage. The
proposed technique deployed within UAV-assisted HetNets
magnifies this impact by adroitly managing interference and
optimizing the effective utilization of resources, culminating
in a more balanced distribution of PU associations and the
equitable apportioning of resources. As the number of PUs

Fig. 11 Associated PUs and PUFAC (fairness index) versus number of
PUs in HetNet, and UAV assisted HetNet

continues to climb, the proficiency of the H-MA-based PUC
approach in navigating interference becomes increasingly
evident, contributing to an escalation in associated PUs and
a heightened fairness index. This robustness underscores its
efficacy in maintaining networks that are both equitable and
high-performing, even in the face of mounting PU demands.

As depicted in Fig. 12, the distribution pattern of asso-
ciated PUs and PUFAC (fairness index) in relation to the
required QoS (Mbps) unfolds distinctly across HetNets and
UAV-assisted HetNets. As the stipulated QoS expectations
for PUs are heightened, a notable decrease in associated PUs
transpires, concurrently with an improvement in the PUFAC
(fairness index). This trend is rooted in the imposition of
resource limitations due to the augmented QoS requisites,
leading to the potential inability of certain PUs to fulfill
the stringent criteria. Consequently, there is a decline in the
count of associated PUs. However, the proposed technique
within UAV-assisted HetNets counters this trend through
its adept management of interference and optimization of
resource allocation. This strategic approach culminates in
the enhancement of the equitable dissemination of resources,
thus yielding an augmentation in both associated PUs and
the fairness index in the realm of PU association. As the
QoS requirements for PUs surge, the H-MA-based PUC’s
proficiency in interference management takes center stage,
orchestrating an elevation in associated PUs and a commend-
able advancement in fairness effectively establishing it as a
potent strategy to uphold network performance amid esca-
lating QoS demands.

Illustrated in Fig. 13, the dispersion pattern of EE (Mbps/
Watts) and PUFAC (fairness index) as a function of the
number of PUs unfolds distinctly across HetNets and UAV-
assisted HetNets. As the PU count escalates in both HetNets
and UAV-assisted HetNets, a discernible escalation in EE
(Mbps/Watts) ensues, accompanied by a notable enhance-
ment in the PUFAC (fairness index). This phenomenon is
attributed to the heightened density of PUs, a factor that
facilitates more efficient resource sharing and utilization. In
this context, the proposed technique deployed within UAV-

123



586 U. Ghafoor, T. Ashraf

Fig. 12 Associated PUs and PUFAC (fairness index) versus number of
PUs in HetNet, and UAV assisted HetNet

Fig. 13 EE (Mbps/Watts) and PUFAC (fairness index) versus number
of PUs in HetNet, and UAV assisted HetNet

assisted HetNets excels by adroitly navigating interference
and optimizing the allocation of resources. This strategic
maneuvering culminates in a refined resource utilization,
which in turn accentuates EE (Mbps/Watts) and engenders a
more balanced PU fair association. The culmination of these
effects underscores the potencyof the downlinkH-MA-based
PUC strategy in sustaining network performance in the face
of an expanding number of PUs.

Depicted in Fig. 14, the portrayal of the correlation
between EE (Mbps/Watts) and PUFAC (fairness index) in
relation to the requisite QoS (Mbps) offers distinct insights
acrossHetNets andUAV-assistedHetNets.As the demand for
elevated QoS from PUs rises in both network configurations,
a notable decline in EE (Mbps/Watts) becomes apparent,
accompanied by a discernible enhancement in PUFAC (fair-
ness index). This phenomenon is primarily attributed to the
intensified resource contention and the constraints posed by
the fulfillment of stringent QoS requisites. Notwithstand-
ing this challenge, the proposed technique in UAV-assisted
HetNets adeptly counteracts this trend by adroitly manag-
ing interference and optimizing the allocation of resources.
This strategic maneuver culminates in an elevated judicious
resource utilization, translating into a discernible improve-
ment in EE (Mbps/Watts) and a more balanced PU fair
association. This underlines the efficacy of the H-MA-based
PUC strategy in upholding network performance, even as the

Fig. 14 EE (Mbps/Watts) and PUFAC (fairness index) versus required
QoS (Mbps) in HetNet, and UAV assisted HetNet

Fig. 15 Throughput (Mbps) and PUFAC (fairness index) versus num-
ber of PUs in HetNet, and UAV assisted HetNet

network contends with the escalating demands for enhanced
QoS provisioning.

Figure15 shows the distribution trend of throughput
(Mbps) and PUFAC (fairness index) versus number of PUs
in HetNet, and UAV assisted HetNet. The augmentation of
the PU count in HetNets and UAV-assisted HetNets yields
amplified throughput and an enhanced PUFAC (fairness
index), a phenomenon stemming from improved resource
utilization and network densification. Notably, the proposed
technique in UAV-assisted HetNets outperforms its coun-
terparts in terms of both throughput and fairness index as
the PU count escalates. This pronounced effectiveness is
attributed to its adept management of interference and opti-
mized resource allocation. Through these mechanisms, the
strategy optimizes resource utilization, culminating in ele-
vated throughput and a more equitably distributed PU fair
association. As a result, the H-MA-based PUC strategy
emerges as a robust approach for sustaining network perfor-
mancewithin contexts characterized by a burgeoning number
of PUs.

Illustrated in Fig. 16, is the distribution trend of through-
put (Mbps) and PUFAC (fairness index) concerning the
required QoS (Mbps) within MC-only networks, HetNets,
and UAV-assisted HetNets. As the demanded QoS for PUs
escalates in HetNets and UAV-assisted HetNets, a reduction
in throughput is observed, while concurrently witnessing an
enhancement in PUFAC (fairness index), mainly due to the
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Fig. 16 Throughput (Mbps) and PUFAC (fairness index) versus
required QoS (Mbps) in HetNet, and UAV assisted HetNet

imposition of stringent QoS criteria that engender resource
contention. Nevertheless, the proposed technique within
UAV-assisted HetNets offsets this throughput decrease via
proficient interference management and optimal resource
allocation. This approach engenders an augmented resource
utilization, ultimately contributing to amplified throughput
and an equitable distribution of PU fair association. As the
demanded QoS of PUs ascends, the proficiency of H-MA-
based PUC in managing interference results in augmented
throughput and an elevated fairness index in PU association,
underscoring its effectiveness in maintaining network per-
formance amid exacting QoS requisites.

A comparison of the proposed strategy in this paper with
the existing work in [21] is presented in Fig. 17 that shows
the behavior of throughput (Mbps) and EE (Mbps/Watts) as
a function of increasing number of PUs. It has been observed
that both throughput and EE increase for the proposed strat-
egy in UAV-assisted HetNet and the technique used in [21] as
the number of PUs increases. This enhancement is supported
by increased resource efficiency and network densification.
In [21], employing NOMA within HetNets, the collabora-
tion of both MC and SC promotes a balanced distribution of
traffic, consequently leading to an increase in both through-
put and EE. However, in our paper, the tactical deployment
of UAVs facilitates targeted coverage improvement in areas
characterized by heightened PU demand in UAV-assisted
HetNet. Notably, in [21], when the number of PUs increases
from 80 to 100, throughput increases, and EE stabilizes
because the network reaches its maximum capacity, and a
further increase in the number of PUs will result in decreased
EE. Compared to that, in this work, both throughput and EE
increase when the number of PUs increases in the network
because thePUCprevents PUs from inter-cluster interference
that results in increased throughput and EE. Additionally, the
low-powered UAV provides coverage to those areas where
HetNet cannot provide ultimately increasing PU associa-
tion, resulting in increased throughput and EE. Overall, it
shows the superior performance of the proposed strategy in

Fig. 17 Comparing the proposed strategy of this paper in UAV assisted
HetNet with the strategy proposed in [21] regarding throughput (Mbps)
and EE (Mbps) versus number of PUs

the UAV-assisted HetNet in our paper than the strategy used
in [21].

5 Conclusions and future directions

This research introduces an innovative approach that involves
the integration of PUC with downlink H-MA techniques
within UAV-assisted HetNets, aimed at collectively optimiz-
ing PU admission within clusters, cell associations, network
throughput, and EE while maintaining fairness. The reso-
lution of this intricate MINLP challenge is accomplished
through the implementation of an OAA. The efficacy of this
proposed methodology within UAV-assisted HetNets is eval-
uated and juxtaposed with the MC-only network and HetNet
scenarios currently in place. In addition to this, the perfor-
mance of the proposed strategy in UAV assisted HetNet is
compared with the strategy used in [21]. The outcomes of
this evaluation underscore the superior performance of UAV-
assisted HetNets compared to both theMC-only network and
HetNets, as evidenced by various PIs such as the maximiza-
tion of throughput, EE, PU admission in clusters, PU-cell
associations, power allocation for PUs, and PUFAC. Also,
outcomes of the comparison of the proposed strategy in UAV
assisted HetNet with the work done in [21] underscore the
superior performance of UAV-assisted HetNets compared to
work in [21], as evidenced by various PIs such as the max-
imization of throughput, EE, for increasing number of PUs,
and this comparison validates our work.

The results clearly demonstrate the newfound strategy’s
heightened efficacy within UAV-assisted HetNets when con-
trasted with both MC-only networks and HetNets and
work done in [21]. This superiority can be attributed to
the expanded coverage and enhanced connectivity achieved
through the integration ofMC, SC, andUAV technologies for
the PUs, ultimately contributing to improved throughput and
EE.These notable findings emphasize the viability of the pro-
posed approach as a strong contender for incorporation into
upcoming 6G networks. Furthermore, there’s potential for
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future exploration by applying this technique to visible light
communication (VLC) networks, considering more practical
scenarios to expand its applicability.
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Appendix A

Fractional programing and Charnes Cooper
transformation

Fractional programme (FP) contains objective function as a
ratio of two nonlinear functions generally. A FP is defined as

max
t∈S

j(t)

k(t)

subject to

C1 : gn(t) ≤ 0

(42)

where j(t), k(t) and gn(t) (where n = 1, 2, ..., N ) are
defined on set S ⊂ Rt , having real values. In (42), if j(t) is
positive and concave, k(t) is positive and convex, assuming
S is convex set, then FP is called CFP. CCT [68] use follow-
ing variable transformations to reduce a CFP to a concave
programme.

w = t

k(t)
(43)

z = 1

k(t)
(44)

The equivalent concave problem for (42) can be written
as

max
w
z ∈S

z jo
w

z

subject to

C1 : zk(w
z

) = 1,

C2 : zgn(w
z

) ≤ 0,∀ n = 1, 2, 3, ..., N .

(45)

Problem in (42) can have optimal solution if and only if
problem in (45) have optimal solution.
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29. Baştürk, İ. (2021). Energy-efficiency maximization for multi-
antenna ofdma networks. In: 29th Signal Processing and Com-
munications Applications Conference (SIU). IEEE, 2021, 1–4.

30. Mo, X., & Xu, J. (2021). Energy-efficient federated edge learn-
ing with joint communication and computation design. Journal of
Communications and Information Networks, 6(2), 110–124.

31. Abd-Elnaby, M., Sedhom, G. G., El-Rabaie, E.-S.M., & Elwekeil,
M. (2022). An optimum weighted energy efficiency approach
for low complexity power allocation in downlink NOMA. IEEE
Access, 10, 80667–80679.

32. Islam, D. M. S., Das, N., Uddin, M. F. (2022). Energy efficiency
analysis of FSO backhauled uplink noma system. In: 2022 25th
International Conference on Computer and Information Technol-
ogy (ICCIT). IEEE, pp. 159–163.

33. Katwe, M., Singh, K., Sharma, P. K., & Li, C.-P. (2021). Energy
efficiency maximization for UAV-assisted full-duplex NOMA sys-
tem: User clustering and resource allocation. IEEE Transactions
on Green Communications and Networking, 6(2), 992–1008.

34. Mahady, I. A., Bedeer, E., Ikki, S., & Yanikomeroglu, H. (2022).
Energy efficiency maximization of full-duplex NOMA systems

with improper gaussian signaling under imperfect self-interference
cancellation. IEEE Communications Letters, 26(7), 1613–1617.

35. Thi, H. N., Kieu, T. X., Truong, L. H., & Le Thi, A. (2023).
Resource allocation for noma, IRS network with energy harvesting
in presence of hardware impairment. In: IEEE 3rd International
Conference in Power Engineering Applications (ICPEA). IEEE,
Vol. 2023, pp. 169–174.

36. Kumar, M. H., Sharma, S., Deka, K., & Thottappan, M. (2022).
Reconfigurable intelligent surfaces assisted hybrid NOMA system.
IEEE Communications Letters, 27(1), 357–361.

37. Cao, S., & Hou, F. (2022). On the maximum energy efficiency of
random access-based OMA and NOMA in multirate environment.
IEEE Transactions on Wireless Communications, 21(12), 10438–
10454.

38. Venkatesh, T., &Chakravarthi, R. (2022). An energy efficient algo-
rithm in manet using monarch butterfly optimization and cluster
head load distribution. In: 2022 International Conference on Com-
munication, Computing and Internet of Things (IC3IoT). IEEE, pp.
1–5.

39. Prasad, L. C., Kamatham, Y., & Sunehra, D. (2022). An energy
efficient clustering and relay selection scheme for cognitive radio
sensor networks. In: 2022 International Conference on Innova-
tions in Science and Technology for Sustainable Development
(ICISTSD). IEEE, pp. 30–35.

40. Alhashimi, H. F., Hindia, M. N., Dimyati, K., Hanafi, E. B., Safie,
N., Qamar, F., Azrin, K., & Nguyen, Q. N. (2023). A survey
on resource management for 6g heterogeneous networks: Current
research, future trends, and challenges. Electronics, 12(3), 647.

41. Puspitasari, A. A., An, T. T., Alsharif, M. H., & Lee, B. M. (2023).
Emerging technologies for 6G communication networks: Machine
learning approaches. Sensors, 23(18), 7709.

42. Goldsmith, A. (2005). Wireless communications. Cambridge uni-
versity press.

43. Khan,H. Z., Ali,M., Naeem,M., Rashid, I., Siddiqui, A.M., Imran,
M., &Mumtaz, S. (2020). Joint admission control, cell association,
power allocation and throughput maximization in decoupled 5g
heterogeneous networks. Telecommunication Systems, pp. 1–14.

44. Ali, Z. J., Noordin, N. K., Sali, A., Hashim, F., & Balfaqih, M.
(2020). Novel resource allocation techniques for downlink non-
orthogonal multiple access systems. Applied Sciences, 10(17),
5892.

45. Rajoria, S., Trivedi, A., & Godfrey, W. W. (2021). Sum-rate opti-
mization for NOMA based two-tier hetnets with massive MIMO
enabled wireless backhauling. AEU-International Journal of Elec-
tronics and Communications, 132, 153626.

46. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A.,
& Higuchi, K. (2013). Non-orthogonal multiple access (noma) for
cellular future radio access. In: IEEE 77th vehicular technology
conference (VTC Spring). IEEE, Vol. 2013, pp. 1–5.

47. Moltafet, M., Azmi, P., Mokari, N., Javan, M. R., & Mokdad,
A. (2018). Optimal and fair energy efficient resource allocation
for energy harvesting-enabled-PD-NOMA-based hetnets. IEEE
Transactions on Wireless Communications, 17(3), 2054–2067.

48. Tomida, S., & Higuchi, K. (2011). Non-orthogonal access with sic
in cellular downlink for user fairness enhancement. In: Interna-
tional symposium on intelligent signal processing and communi-
cations systems (ISPACS). IEEE, Vol. 2011, pp. 1–6.

49. Xie, H., & Xu, Y. (2022). Robust resource allocation for NOMA-
assisted heterogeneous networks. Digital Communications and
Networks, 8(2), 208–214.

50. Han, T., Gong, J., Liu,X., Islam, S.R., Li, Q., Bai, Z.,&Kwak,K. S.
(2018). On downlink noma in heterogeneous networks with non-
uniform small cell deployment. IEEE Access, Vol. 6, pp. 31 099–
31 109.

123



590 U. Ghafoor, T. Ashraf

51. Fletcher, R., & Leyffer, S. (1994). Solving mixed integer nonlin-
ear programs by outer approximation.Mathematical programming,
66(1–3), 327–349.

52. Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation
algorithm for a class of mixed-integer nonlinear programs. Math-
ematical programming, 36, 307–339.

53. Khan,H. Z., Ali,M., Naeem,M., Rashid, I., Siddiqui, A.M., Imran,
M.,&Mumtaz, S. (2020).Resource allocation and throughputmax-
imization in decoupled 5G. In: IEEEwireless communications and
networking conference (wcnc). IEEE, Vol. 2020, pp. 1–6.

54. Floudas, C. A. & Pardalos, P.M. (2008).Encyclopedia of optimiza-
tion. Springer Science & Business Media.

55. Pistikopoulos, E. N. (1998). Ca floudas, nonlinear and mixed-
integer optimization. fundamentals and applications.

56. Land, A. H.&Doig, A. G. (2010).An automatic method for solving
discrete programming problems. Springer.

57. Bonami, P. (2011). Lift-and-project cuts for mixed integer convex
programs. In: Integer Programming and Combinatoral Optimiza-
tion: 15th International Conference, IPCO. (2011). New York, NY,
USA, June 15–17, Proceedings 15. Springer, 2011, 52–64.

58. Bharany, S., Sharma, S., Alsharabi, N., Tag Eldin, E., & Ghamry,
N. A. (2023). Energy-efficient clustering protocol for underwater
wireless sensor networks using optimized glowworm swarm opti-
mization. Frontiers in Marine Science, 10, 1117787.

59. Kulmar, M., Müürsepp, I., & Alam, M. M. (2023). Heuristic radio
access network subslicing with user clustering and bandwidth sub-
partitioning. Sensors, 23(10), 4613.

60. Taneja, A., Saluja, N., Taneja, N., Alqahtani, A., Elmagzoub, M.,
Shaikh, A., & Koundal, D. (2022). Power optimization model
for energy sustainability in 6g wireless networks. Sustainability,
14(12), 7310.

61. Beitollahi, M., & Lu, N. (2022). Multi-frame scheduling for feder-
ated learning over energy-efficient 6g wireless networks. In: IEEE
INFOCOM2022-IEEEConference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, pp. 1–6.

62. Imoize, A. L., Obakhena, H. I., Anyasi, F. I., & Sur, S. N. (2022).
A review of energy efficiency and power control schemes in ultra-
dense cell-freemassiveMIMO systems for sustainable 6Gwireless
communication. Sustainability, 14(17), 11100.

63. Nurcahyani, I., & Lee, J. W. (2021). Role of machine learning
in resource allocation strategy over vehicular networks: A survey.
Sensors, 21(19), 6542.
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