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Abstract
Caching popular files at the edge of wireless networks has been proved to be an effective strategy to reduce the content
delivery delay and alleviate the backhaul congestion. However, due to the vulnerability of the edge networks to malicious
threats, it is essential to investigate security-aware caching strategies which can combat mischievous content requesting
processes. These processes may defeat the whole purpose of edge caching by deliberately issuing requests incompatible
with the known popularity distribution. In this paper, we investigate the content placement problem in cache-enabled Small
Base Stations (SBSs) to minimize the downloading delay of contents. We consider that some users’ requesting behavior may
become compromised by an adversary and thus may not follow the known statistics of the content popularity . We formulate
the problem using the notion of a multi-leader single-follower Stackelberg game between the SBSs and the adversary. The
objective of each SBS is to minimize the congestion duration of the backhaul links and the average delay of the users within
its coverage range, whereas the adversary aims at maximizing the congestion duration of the backhaul links by generating
fictitious requests for non-cached files. Using the standard notion of a potential function in game theory, we propose an iterative
algorithm that is provably convergent toward the Stackelberg equilibrium of the formulated game. Simulation experiments
are conducted to validate the convergence of the proposed algorithm as well as to evaluate its performance under different
mixed populations of malicious/non-malicious users.

Keywords Cache security · Content placement · Edge caching · Misbehavior · Stackelberg game

1 Introduction

1.1 Research background

The idea of content caching at the edge of wireless net-
works dates back to 3G and 4G cellular networks [1–5].
With the growth of data traffic over cellular networks, the
current capacity levels cannot support this surge of traffic,
even by allocating a new cellular spectrum [2]. Thus, novel
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approaches are required to more effectively utilize the exist-
ing limited communication resources. One such approach is
to utilize the storage capacity of Small Base Stations (SBS)
to cache popular contents that may be potentially requested
repeatedly by different users. Instead of downloading popu-
lar content multiple times from remote servers via backhaul
links, we can cache them at SBSs to bring the contents closer
to Mobile Users (MUs). Thus, by locally responding to user
requests for content, edge caching can effectively improve
network performance by reducing the backhaul burden and
alleviating access delay of content [6–8].

In this paper, our concentration is on the problem of con-
tent placement in Small Cell Networks (SCNs), while giving
special attention to the security concerns alongside the per-
formance issues. In general, security in the cache can be
considered from different perspectives; for example, denial
of service and jamming may disrupt the cache system per-
formance and compromise the quality of service [27–35]. It
is also essential to provide a service of secrecy and confiden-
tiality to protect against eavesdropping [9–14] and to ensure
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data integrity in the presence of attacks like content tam-
pering [15–20]. In addition, in highly decentralized systems
such as Device-to-Device (D2D) communications, it is vital
to combat selfish behavior and to encourage the participation
of the users in the caching process to reap the benefits of the
network edge caching [21–26]. In the sequel, we identify the
research gap and state our motivations to propose a novel
scheme for maintaining the performance of edge caching in
the presence of malicious threats.

1.2 Research gap andmotivation

Among the possible security threats to content placement at
the wireless edge, there is an important threat that has been
less studied to date: the fictitious content request generation
attack. Consider the case where some compromised edge
devices are exploited by a malicious entity (e.g., attacker)
to generate content requests in an incompatible way with
the statistics of the known content popularity distribution.
If the system’s content placement strategy is computed only
based on some statistical popularity model which is oblivi-
ous to such malicious behavior, it would result in a higher
cache miss ratio, and can thus lead to increased congestion in
backhaul links as a higher number of requests get redirected
to the back-end origin servers.

To the best of our knowledge, few studies exist that
particularly address the threat of fictitious content request
generation. A related line of research contains those stud-
ies that provide a remedy against cache pollution attacks
where attackers aim to occupy the limited caching space
with unpopular contents. The main difference between our
scheme and those addressing the pollution attacks is that we
have more realistically assumed that the fictitious content
requests may be generated strategically and adaptively to
the caching decisions of the SBSs. For example, in the edge
caching scenario of [35], the attacker is less sophisticated in
the sense that it only learns the statistical content popularity
and forge unpopular requests that deviate from the statistics.
The attacker does not “strategically” react to the defender.

The only study that accounts for strategic behavior on the
part of the attacker has been conducted byGabry et al. in [27].
The authors have modeled the interaction of a caching sys-
tem with malicious users whose request generation behavior
may deviate from the established content popularity model.
However, the authors have only assumed a small-scale sys-
tem in which a centralized entity (e.g., a Macro Base Station
(MBS)) makes the decisions as to which content should be
placed in which SBS cache. They have formulated the con-
flict between the MBS and the malicious users as a standard
Stackelberg game, and have computed the Subgame Perfect
Nash Equilibrium (SPNE) [36]. In contrast, the caching deci-
sions in our proposed systemaremade in a distributed fashion
by the SBSs themselves without engaging the MBS.

Hence, our motivation is twofold: firstly, to account for
more sophisticated misbehavior in the request fabrication
process; secondly, to combat malicious behavior in dis-
tributed setups where the MBS can delegate the caching
decisions on the SBSs themselves.

1.3 Contributions

In this paper, we consider a SCN in which the MUs issue
content requests to multiple SBSs. The users may exhibit
both legitimate/malicious requesting behavior. Unlike [27],
we do not assume that the SBSs have the luxury of centralized
computation of their caching strategies. Instead, we assume
a larger setup where the SBSs themselves need to coordinate
their content placement decisions with each other to mini-
mize the delay experienced by the users located within their
coverage region. At the same time, the SBSs also need to
combat the adversarial requests that are issued to defeat the
whole purpose of edge caching by congesting the backhaul
links. The decentralized interplay between the SBSs on the
one hand, and their confrontation with the malicious party
on the other, call for a more complex problem formulation,
which distinguishes our work from the existing research. In
particular, we come up with the following contributions:

• We use a game-theoretic approach and formulate the con-
tent placement problem as a Stackelberg game between
the SBSs and an attacker. To formally capture the inter-
SBS interactions as well as the SBS-attacker conflicts, we
define the Stackelberg game as a two-stage sequential play
with a multi-leader single-follower structure. The SBSs as
the leaders (or first movers in the parlance of the Stackel-
berg game) engage in a coordination game with each other
to come up with an equilibrium-based content placement
strategy. In the meantime, they should also optimize their
joint play against the attacker (as the game’s follower or
second mover) to mitigate its adversarial impact on the
efficacy of the overall cache system.

• To compute the equilibrium of the game, we first draw
on the notion of potential function in classical game the-
ory [37] to prove that the two-stage game between the
SBS leaders and the malicious follower is equivalent to
a one-shot potential game, and possesses a pure strategy
equilibrium. We then exploit the finite improvement prop-
erty of potential games to propose an iterative algorithm
based on best response dynamics [38] which is provably
convergent toward the equilibrium of the caching game.

• We conduct experimental studies to evaluate our proposed
algorithm in terms of its convergence properties and mea-
sure its performance by varying the content popularity
statistics as well as the number of SBSs and the fraction
of malicious users.
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Table 1 Used main acronyms

Acronym Explanation

BRD Best response dynamics

D2D Device-to-device

MBS Macro base station

MU Mobile user

NE Nash equilibrium

P2P Peer-to-peer

SBS Small base station

SE Stackelberg equilibrium

SINR Signal to interference plus noise ratio

Fig. 1 Taxonomy of cache security threats

Table 1 lists the acronyms used throughout the paper. The
remainder of the paper is organized as follows: In Sect. 2,
the literature is reviewed. In Sect. 3, we present the sys-
tem model and key assumptions. In Sect. 4, we present our
game-theoretic formulation of the security-aware wireless
edge caching problem. Section 5 describes our algorithm for
computing the content placement strategies of the SBSs. In
Sect. 6, we evaluate the performance of the proposed scheme.
Finally, the paper concludes in Sect. 7.

2 Related work

In this section, we review the related studies on security-
aware content placement which address several threats to
wireless edge caching. Figure 1 shows the taxonomy of the
cache security threats:

• Cache eavesdropping: Zhou et al. [9] have used the artifi-
cial noise and developed a rate splitting-based physical-
layer security approach for cache-enabled cloud radio
access networks, without costing extra transmit power for
artificial noise. Zahed et al. [10] have investigated the allo-
cation of the security services to the offloaded tasks and
have formulated this problem as an optimization program
to minimize both the energy consumption and probable
security damage. They have also designed a heuristic algo-
rithm to approximate the optimal solution in polynomial

time. Ochia et al. [11] have used the stochastic geome-
try framework to analyze the secrecy rate performance of
a cellular network. By assuming random file sizes, they
have proposed a caching method that is aware of memory
and file size to improve the secrecy rate performance in
the presence of colluding eavesdroppers.

Authors in [12] have used encryption methods to maintain
security. Wang et al. have proposed a coded caching method
in which the central server generates random keys to encrypt
the broadcast signals for defending against an eavesdropper
who may know part of the cached file before the delivery
phase. In [13], Xia et al. have adopted Wynar’s encoding
method to ensure the security of communication. In [14],
Fazel et al. have considered an ultra-dense heterogeneous
network consisting of cache-enabled devices in the presence
of nonlegitimate eavesdroppers. In order to maximize the
sum of secure cache throughput by optimizing the cache
placement probability of contents, expressions for the sig-
nal to interference plus noise ratio, the probability of secure
and successful transmission, achievable secrecy rate, and the
sum of the secure cache throughput are derived. Then, they
presented an iterative algorithm to find a near-optimal solu-
tion for the cache throughput of devices.

• Content tampering attacks: Xu et al. [15] have constructed
the cache pollution attack model based on observations
of attacks, considering the number of unpopular contents,
malicious users, and the attack intensity. By characterizing
the state of the edge node in terms of cache missing rate
and request rate, they have used hidden markov models
to detect the attack in cache-enabled mobile social net-
works. They extended their work and used the notion of
block-chains for recording the interactions between the
MUs and edge nodes, whereby no entities can modify
and deny the caching service information [16]. Cui et al.
[17] have used a federated learning technique to encourage
edge devices to cooperate in training data and have also
used blockchain technology to securely transmit the data
of internet of things devices.

Sun et al. [18] have proposed a framework based on
blockchain to protect the privacy of users and the security
of historical data. They have decomposed the optimization
problem into two parts to jointly optimize the probabil-
ity of caching and the rate of redundancy to maximize the
probability of secure transmission. Wang et al. [19] have
leveraged the blockchain network as a platform for verifica-
tion between internet of vehicles and edge devices, exploiting
off-chain integrity and on-chain hash methods for recording
the evidence of interaction between both ends. Additionally,
integrated with identity-based blind signature technology,
they have designed a security method in which internet of
vehicles nodes request services from edge devices in an
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anonymous way. Li et al. [20] also used blockchain tech-
nology to guarantee security data caching and prevent the
tampering of cache data. In order to optimize the data caching
placement, they used a quantum particle swarm optimiza-
tion algorithm to solve the problem with the greatest content
caching gain.

• Device-to-device (D2D) caching and uncooperative
behavior: In [21], Yang et al. proposed a blockchain incen-
tive method to encourage the users to cache contents.
Theymodeled the interaction between the edge computing
server and the users as a Stackelberg game in which the
server uses the mining profits to reward the users. After
the successful implementation of the cache strategy, users
are rewarded by the system, which is a new block mining
process. In [22] auction mechanisms are exploited to drive
edge devices to cooperate in caching contents. Xiong et al.
have also adopted a reverse auction in which an intelligent
routing relay acts as the purchaser of the wireless services
and users are suppliers and consumers. In their strategy, a
popularity-based greedy algorithm is applied in the selec-
tion of winning bids. In [23], Mobile network operators
encourage content providers to store their most popular
content in edge caches,with the aim to earnmoremonetary
gain. Alioua et al. modeled the interaction between oper-
ators and providers using a multi-leader multi-follower
Stackelberg game with two non-cooperative sub-games
to model the competition between the operators and the
conflict between providers, respectively.

Weifeng et al. [24] proposed a multi-dimensional trust
evaluation mechanism between mobile users to select reli-
able users as partners for caching. In order to motivate users
to cache contents for other devices, they introduced a cooper-
ative caching game in which the trust relations and physical
distance between two users are considered to formulate the
cost function. In [25], a blockchain-based consensus proto-
col for a D2D network is proposed, where the blockchain
acts as a trusted third party to maintain transactions between
users. Rocha et al. [26] combined direct and indirect trust
for assessing of D2D nodes in content caching. They have
designed a blockchain-inspired security framework to coor-
dinate and audit evidence of indirect behavior in a secureway.
Their collaborative trust model aims tomitigate the transmis-
sion of invalid content, through the collection of indirect and
direct observations.

• Denial of service and cache pollution attack: Gabry
et al. [27] derived the achievable average backhaul rate
and investigated the system caching performance from a
game-theoretic perspective. They studied the pure-strategy
Stackelberg game between the macro-cell base station and
the malicious users. Jalalpour et al. [28] have designed
a security system to dynamically deploy security service

function chains. Their system reacts to suspicious traffic
by instantiating and reconfiguring customized security ser-
vices that are realized by security chains consisting of one
or multiple virtual security functions. Natalino et al. [29]
have formulated the problem tomaximize the robustness of
targeted link cuts. The model detects critical links, which
if removed from the network, disconnect the greatest num-
ber of users from the file. Al-share et al. [30] simulated a
collusive interest flooding attack and analyzed its effects
on named data networks. They proposed a technique utiliz-
ing the non-parametric cumulative sum algorithm to detect
malicious abnormalities in behavior and discard attacking
interest packets.

Wen et al. in [31] have investigated the impact of the
jammers on the secrecy performance of the caching sys-
tem. They have proposed a secure random caching method
to optimize the caching distribution of the contents and to
maximize the average reliable transmission probability. Xie
et al. [32] have used time-to-live approximation to study the
attack resilience of some state-of-the-art policies and derived
formulas to investigate the strategy of optimal attack under
a constant total attack rate and its effect on the cache perfor-
mance for legal requests. In [33] the blockchain technology
is employed to prevent malicious packets from leaking into
the peer-to-peer (P2P) network. In the proposed scheme, the
hash values of packets are inserted into the blocks and as each
peer has the blocks, they can easily check the authenticity of
network packets. Similar ideas have been employed to com-
bat DoS attacks in traditional P2P networks [34]. Wang et al.
[35] designed a cache pollution attack detection and defense
mechanism based on the change of request pattern is, which
helps an edge node to detect cache pollution attacks by ana-
lyzing multiple content request indicators and collaboration
between edge nodes.

Our addressed threat in Sect. 3 is also within the cate-
gory of denial of service and cache pollution attack. Table 2
summarizes the most relevant schemes from prior work.

3 Systemmodel

In this section, we describe the model of a cache-enabled
small cell network and elaborate on the key assumptions for
the content placement problem.

3.1 Networkmodel

We consider a small cell network (shown in Fig. 2) in which
an MBS and N SBSs, deployed in the coverage area of
the MBS to act as relays, serve the requests of M MUs.
The sets of SBSs and MUs are respectively indicated by
N � {1, 2, 3, . . . , N } and M � {1, 2, 3, . . . , M}. The
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Table 2 Comparison of related work

References Security threat Network type Defence mechanism Solution
approach

Overhead Complexity

[9] Cache
eavesdropping

Cloud radio access
networks

Artificial noise Centralized Communication
overhead

Polynomial

[10] Cache
eavesdropping

Internet of Things Cryptographic
algorithms

Distributed Computation
overhead

Polynomial

[11] Cache
eavesdropping

Millimeter wave
cellular networks

Stochastic geometry Centralized Computation
overhead

Linear

[12] Cache
eavesdropping

Content-centric
wireless network

Encryption methods Centralized Computation
overhead

Exponential

[13] Cache
eavesdropping

Fog computing
networks

Wynar’s encoding Centralized Computation
overhead

Exponential

[14] Cache
eavesdropping

Unmanned aerial
vehicles

Optimization
methods

Distributed Computation
overhead

Polynomial

[15] Content tampering Mobile social
networks

Analysis of
attacking behavior

Distributed Computation
overhead

Exponential

[16] Content tampering Mobile cyber
physical system

Blockchain
technology

Distributed Signalling
overhead

Polynomial

[17] Content tampering Internet of Things Federated learning Distributed Communication
and computation
overhead

Polynomial

[18] Content tampering 6G of wireless
cellular networks

Blockchain and
optimization

Centralized Computation
overhead

Exponential

[19] Content tampering 6G and Internet of
Vehicles

Blockchain and
hash methods

Centralized Signalling
overhead

Polynomial

[20] Content tampering Edge cloud
environment

Blockchain
technology

Centralized Computation
overhead

Polynomial

[21] Uncooperative
behavior

Device-to-Device
communication

Stackelberg game
with mining profit

Distributed Computation
overhead

Polynomial

[22] Uncooperative
behavior

Device-to-Device
networks

Auction
mechanisms

Distributed Computation
overhead

Linear

[23] Uncooperative
behavior

5G-enabled IoT
network

Earning monetary
gain to users

Distributed Computation
overhead

Polynomial

[24] Uncooperative
behavior

Device-to-Device
communications

Physical layer
mechanisms

Distributed Communication
overhead

Exponential

[25] Uncooperative
behavior

Device-to-Device
communications

Blockchain and
deep learning

Centralized Computation
overhead

Polynomial

[26] Uncooperative
behavior

Device-to-Device
communications

Dempster Shafer
Theory

Distributed Computation
overhead

Polynomial

[27] Denial of Service Small cell networks Stackelberg game Centralized Computation
overhead

Linear

[28] Denial of Service Content delivery
network

Virtualized security
chains

Centralized Computation
overhead

Polynomial

[29] Denial of Service Content delivery
networks

Heuristic method Centralized Computation
overhead

Exponential

[30] Denial of Service Named Data
Networking

Analysis of
attacking behavior

Centralized Computation
overhead

Polynomial

[31] Denial of Service Wireless networks Optimization
methods

Centralized Computation
overhead

Polynomial

[32] Denial of Service Software defined
networking

Analysis of
attacking behavior

Centralized Computation
overhead

Exponential
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Table 2 (continued)

References Security threat Network type Defence mechanism Solution
approach

Overhead Complexity

[33] Denial of Service Device-to-Device
communications

Blockchain
technology

Distributed Communication
overhead

Polynomial

[34] Denial of Service Device-to-Device
communications

Analysis of Chord
network

Distributed Communication
overhead

Logarithmic

[35] Cache Pollution Cloud computing
networks

Analysis of request
pattern

Centralized Communication
and computation
overhead

Linear

Proposed
algorithm

Fictitious Request
Generation

Small cell networks Stackelberg game Distributed Limited Signalling
overhead

Polynomial

Fig. 2 System model

SBSs are cache-enabled and connected to the MBS with
backhaul links with limited capacity bn for SBS n. In gen-
eral, SBSs have overlapping coverage areas, and hence one of
many potential SBSs can serve MUs. Each timeslot is split
into two intervals: an interval for receiving users’ requests
and the other interval for cache replacement. In the user
request interval, users located within the range of an SBS

send their content request. If the content exists in the SBS
cache, it will be readily downloaded without inflicting any
load on the backhaul links; otherwise, the request will be
redirected to the MBS. On the other hand, during the cache
replacement interval (which is assumed to be of negligible
duration), the cache controller module installed in each SBS
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may refresh the cached content according to the history of
content requests.

3.2 Malicious users’model

It is assumed that there exist Mml � βM malicious MUs in
the network, with β ∈ [0, 1]. TheMUs inM are divided into
two sets, Mlg and Mml representing the set of legitimate
and malicious MUs, respectively. The Mlg � (1 − β)M
legitimate MUs in Mlg request contents following a known
statistical content popularity distribution. On the other hand,
the Mml � βM MUs in Mml , have been successfully
exploited by an attacker (e.g., malware) to request contents
according to some adversarial strategy. In particular, their
objective is to maximize the congestion of backhaul links
by requesting as many non-cached contents as possible. In
Fig. 2, the legitimate MUs are shown in yellow and the mali-
cious MUs are represented in red.

3.3 Wireless channel model

The wireless channel capacity between MU m and SBS n is
shown as rn,m and can be calculated according to the standard
Shannon formula:

rn,m � W log

(
1 +

pngn,md−α
n,m∑

i∈N , i ��n pi gi ,md
−α
n,m + σ 2

)
(1)

in which W is the spectrum bandwidth and pn is the trans-
mission power of SBS n. α is the path-loss exponent and σ 2

is the noise power at each MU. gn,m and dn,m are respec-
tively the channel gain and distance between SBS n and MU
m.

3.4 Statistical content popularity model

The set of contents is indicated by F � {1, 2, 3, . . . , F}
where F is the number of contents. Each content is assumed
to be split into equal size chunks.Also,we divide the contents
in F into groups of H contents. SBSs cache contents based
on these groups, and every SBS can cache only one content
group (i.e., for simplicity, we assumed that the capacity of
cache for every SBS is H contents). Additionally, the total
number of content-groups K � F/H without loss of gener-
ality is assumed to be an integer, and the set of content groups
is denoted by K � {1, 2, 3, . . . , K }.

The Legitimate MUs request contents independently
based on their popularity which follows the standard Zipf’s
law with parameter γ . In particular, for file f ∈ F , we have:

p f � 1/ f γ∑
f∈F 1/fγ

(2)

where p f is content popularity following the well-known
Zipfian rank-frequency distribution. In other words, p f is
the fraction of time the f -th most popular file is requested.
Consequently, lower indices in the file ranking are dedicated
to files having larger popularity. As an additional comment,
the simplest case of Zipf’s law is a 1/ f function. In fact,
given a set of Zipfian distributed frequencies, sorted from
most popular to least popular, the second most popular file
will happen half as many times as the first, the third most
common frequency will happen third as many times as the
first, and the f -th most common frequency will happen 1/ f
as many times as the first. As for the role of the exponent
γ , larger values of γ cause a steeper distribution because the
requests of users are focused on a smaller set of contents (i.e.,
more queries are concentrated on a set of hot contents). Thus,
by just caching these hot contents, the SBSs can increase their
hit ratio, which reduces the total delay of MUs.

Hence, the popularity of content-group k can be obtained
by summing the popularities of contents in this group:

Pk �
f �kH∑

f �(k−1)H+1

p f (3)

3.5 User association criteria

The SBS content placement is denoted by a N × K matrix I
in which In, k is the element at the n-th row and k-th column
getting value from {0, 1}. In, k � 1 if SBS n caches the
content-group k, and 0 otherwise. Every SBS can cache only
one content group, thus there is just one non-zero number in
every row of I . From SBS n, MU m receives a file in group
k with the maximum data rate of Rn,m, k . It is equal to the
wireless capacity between MU m and SBS n if the content
is in the cache of SBS n. Otherwise, the backhaul capacity
of SBS n also limits this rate. In general, the impressive data
rate Rn,m, k can be computed as:

Rn,m, k � rn,m In, k + min
{
rn,m , bn

}(
1 − In, k

)
(4)

Given Signal to Interference plus Noise Ratio (SINR)
threshold θ , SBSs that can provide anSINRabove this thresh-
old to MUm can serve its requests. In other words, the SBSs
that can offer an SINR above the aforementioned threshold
for serving an MU requests are the neighbor set of it. Also,
this MU is a neighbor of those SBSs. The neighboring MUs
of SBS n and the neighboring SBSs of MU m are respec-
tively indicated by M(n) and N (m). When MU m requests
for a file from group k, it connects with the SBS offering the
highest rate to it. Hence, the criterion of user association is
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stated by:

n∗ � arg max
n∈N (m)

Rn,m, k (5)

3.6 Users’delay model

MU m downloads content from group k with a delay Dm, k

calculated by:

Dm, k � L/Rn∗,m, k (6)

where L is the size of a content. Therefore, the expected value
of Dm, k (w.r.t. content popularity distribution) is given by:

Dm � E
k

[
Dm, k

] �
∑
k∈K

Pk × Dm, k (7)

3.7 Backhaul congestionmodel

The attacker has control of the malicious MUs and deter-
mines for them from which content group they have to
request. The strategy of the attacker is denoted by a vector s
of size Mml , as shown in (8) in which sm is the determined
content-group for malicious MU m to request from it.

s � (
s1, s2, s3, . . . , sMml

)
, sm ∈ K, (8)

The backhaul congestion is the amount of time that the
backhaul links are occupied for transmitting the requested
non-cached contents to the associated SBSs. Non-cached
contents can be requested by legitimate or malicious MUs.
The overall congestion in the backhaul links of the network-
wide caching system is denoted by T and defined as:

T �
∑
n∈N

⎡
⎣ ∑
m∈Mlg(n)

∑
k∈K

Pk
(
1 − In, k

) × L/bn

+
∑

m∈Mml (n)

∑
k∈K

δ(sm , k)
(
1 − In, k

) × L/bn

⎤
⎦ (9)

in which δ(x , y) is the discrete delta function defined by:

δ(x , y) �
{
1, x � y
0, x �� y

(10)

In (9), the first term in the square bracket is the expected
duration of time in which the backhaul link associated with
SBS n becomes congested due to the cache misses by all
legitimate MUs’ requests. These requests are made accord-
ing to the known content popularity Pk [c.f., Eq. (3)]. On

the other hand, the second term is the expected congestion
caused by malicious MUs’ content requests. These requests
are fictitiously made according to some adversarial strategy
s (which is determined by the attacker).

Table 3 summarizes the notations used in our system
model.

4 Problem formulation

In this section, wemodel the competitive interaction between
the SBSs and the attacker using a game-theoretic framework.
Every SBS wants to minimize the backhaul congestion as
well as the downloading delay of contents for its neighboring
users, while the attacker wants to maximize the congestion
in backhaul links. We use the notion of the Stackelberg game
to describe this setting:

Definition (Two-stage multi-leader single-follower stack-
elberg game) [39] A Stackelberg game between the
SBSs and the attacker is defined by the triplet Gs �{
{N , J }, {A, S},

{
{cn}n∈N , c

′
0

}}
, which can be elaborated

as follows:

• Leaders: the set of SBSsN are the leaders of the game Gs .
Leaders make the first move in the sequential play.

• Leader’s strategy set: each SBS has the strategy space K.
That is, each SBS can choose among the set of content
groups to cache in its storage. A choice made by SBS
n is denoted by: an ∈ K. We use the standard notation
A � ×n∈NK to represent the entire space of the joint
strategies of the SBSs.

• Follower: THE game’s follower is the attacker (or the
malicious entity), which makes the second move in the
sequential play.

• Follower’s strategy set: the attacker chooses the malicious
MUs’ requesting profile from the space S � ×m∈MmlK.
In fact, s ∈ S shows the actions of MUs for requesting
files of content groups from the set K.

• Leader’s cost function: The objective of each SBS is to
minimize the congestion duration of the backhaul links and
the average delay of the users within its coverage range.
Associated with each SBS is a cost function of the form:
cn : A × S → R, which is defined as:

cn(an , a−n , s) � T +
∑

m∈M(n)

Dm , ∀n ∈ N (11)

in which an ∈ K is the strategy selected by SBS n, a−n is
the strategy vector of all SBSs other than n, and s ∈ S is the
attacker’s strategy. T is the amount of time that the backhaul
links are occupied for transmitting the requested non-cached
contents to the associated SBSs, as defined in (9). Dm is the
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Table 3 Summary of notations used in the system model

Description Notation

Set of mobile users (MUs) M
Set of legitimate MUs Mlg

Set of malicious MUs Mml

The number of MUs M

The number of legitimate MUs Mlg

The number of malicious MUs Mml

Set of small base stations (SBSs) N
The number of SBSs N

The capacity of cache in every SBS H

Wireless capacity between SBS n and MU m rn,m

Bandwidth W

Transmit power of SBS n pn

Path-loss exponent α

Noise power σ 2

Channel gain between SBS n and MU m gn,m

Distance between SBS n and MU m dn,m

Backhaul capacity of SBS n bn

Set of contents F
Matrix of SBS-content placement I

The number of contents F

Set of content-group numbers K
The number of content-groups K

The popularity of content f p f

The popularity of content-group k Pk

SINR threshold θ

Set of neighboring SBSs of MU m N (m)

Set of neighboring MUs of SBS n M(n)

Fraction of malicious MUs β

Set of neighboring legitimate MUs of SBS n Mlg(n)

Set of neighboring malicious MUs of SBS n Mml (n)

Content-group cached by SBS n an

Maximum data rate between SBS n and MU m when
requesting content from group k

Rn,m, k

Discrete delta function δ

Delay of MU m for downloading content from group k Dm, k

Size of a content L

Expected delay for MU m Dm

Vector of content-group numbers determined by the
attacker for malicious MUs

s

Content-group number determined by the attacker for
malicious MU m

sm

Congestion of backhaul links T

expected delay of downloading contents byMUm as defined
in (7). The second term in the right side of (11) is the sum of
expected delays for neighboring MUs of SBS n,M(n).

• Follower’s cost function: The objective of the attacker is to
maximize the congestion in backhaul links by requesting
as many non-cached contents as possible. The attacker J
has a cost function of the form c

′
0 : A × S → R which is

defined as:

(12)

c
′
0 (a, s) � −

∑
n∈N

∑
m∈Mml (n)

∑
k∈K

δ (sm , k)

× (
1 − In, k

) × L/bn

where a � (an , a−n) ∈ A is a strategy profile of all SBSs,
and s ∈ S is the strategy profile of all malicious MUs (as
determined by the attacker). δ(sm , k), defined in (10), is the
standard Kronecker delta function which is 1 if its variables
are equal, and 0 otherwise. It basically indicateswhether con-
tent k is requested as part of the strategy sm of the attacker
determined formalicious userm.When the term

(
1 − In, k

)
is

1, it indicates that the requested content k is not cached at SBS
n. L and bn are respectively the content size and the backhaul
capacity of SBS n, so division of them gives the duration of
congestion in the backhaul link n. Therefore, the summa-
tions in (12) calculates the amount of congestion duration
in backhaul links arising from transmitting non-cached con-
tents requested by neighboringmalicious users. The negative
sign in the attacker’s cost c

′
0 is to transform the maximization

problem into minimization. More specifically, the objectives
of the SBSs and the attacker are as follows:

min
an∈K

cn(an , a−n , s), n ∈ N

min
s∈S

c
′
0(a, s) (13)

Now, the StackelbergEquilibrium (SE) is a pair of strategy
profiles {a∗, s∗} that satisfy the following conditions:

cn
(
a∗
n , a

∗−n , s
∗) ≤ cn

(
a

′
n , a

∗−n , s
′), ∀n ∈ N

c
′
0

(
a∗, s∗

) ≤ c
′
0

(
a∗, s

)
(14)

where s∗ is the best reaction of the follower to the strategy
a∗ of the leaders. When SBS n’s strategy changes to a

′
n ,

the attacker’s strategy also changes to the corresponding s′.
The SE indicates that, at the equilibrium, neither the SBSs
nor the attacker will unilaterally deviate due to the result-
ing increment in cost. Unlike the traditional single leader
model, the interaction among multiple leaders affects the
Stackelberg equilibrium. Therefore, we need to model the
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interaction among the leaders and consider the Nash equilib-
rium between them.

To prove the existence of SE, we first show that the game
between the leaders (SBSs) is an exact potential game:

Definition (Potential game) [37] A game Gp �{N , K, {cn}n∈N
}
with player set N , action set K, and

cost functions {cn}n∈N is called a potential game if there
exists a potential function � : A × S → R (A � ×n∈NK)
such that for all a ∈ A and s ∈ S, it holds that ∀n ∈ N :

�
(
a

′
n , a−n , s′

)
− �(an , a−n , s)

� cn
(
a

′
n , a−n , s′

)
− cn(an , a−n , s) (15)

Theorem 1 Game Gp, with cost function defined in (11) and
potential function (16) (below), is a potential game:

�(an , a−n , s) � T +
∑
m∈M

Dm (16)

Proof . For game Gp, relation (15) can be verified as fol-
lows:

�
(
a

′
n , a−n , s′

)
− �(an , a−n , s)

�
[
T

(
a

′
n , a−n , s′

)
+

∑
m∈M

Dm

(
a

′
n , a−n

)]
−

[
T (an , a−n , s) +

∑
m∈M

Dm(an , a−n)

]

�
⎡
⎣T

(
a

′
n , a−n , s′

)
+

∑
m∈M(n)

Dm

(
a

′
n , a−n

)
+

∑
m∈(M−M(n))

Dm

(
a

′
n , a−n

)⎤
⎦

−
⎡
⎣T (an , a−n , s) +

∑
m∈M(n)

Dm(an , a−n) +
∑

m∈(M−M(n))

Dm(an , a−n)

⎤
⎦

�
⎡
⎣T

(
a

′
n , a−n , s′

)
+

∑
m∈M(n)

Dm

(
a

′
n , a−n

)⎤
⎦ −

⎡
⎣T (an , a−n , s) +

∑
m∈M(n)

Dm(an , a−n)

⎤
⎦

� cn
(
a

′
n , a−n , s′

)
− cn(an , a−n , s). (17)

�
It is noticeable that for the changed strategya

′
n , the attacker

also changes its strategy from s to s′ (to minimize its own
cost), but this change does not affect the reasoning. Hence,
the above problem is an instance of a potential game and
there exists at least one pure NE. As the attacker’s every
strategy minimizes its own cost when the SBSs reach the NE
point, the attacker would also stick to its strategy, i.e., the
attacker cannot reduce its cost any further (through unilat-
erally changing its strategy). Thus, the system’s Stackelberg
equilibrium is also guaranteed.

The attacker’s cost function c
′
0 as defined in (12) can be

easily decomposed into Mml sub-functions c
′
m , m ∈ Mml :

c
′
m(an , sm) � −

∑
k∈K

δ(sm , k) × (
1 − In, k

) × L/bn (18)

Hence, the attacker cost function c
′
0 is the sum of the mali-

cious users’ costs:

c
′
0(a, s) �

∑
n∈N

∑
m∈Mml (n)

c
′
m(an , sm) (19)

Therefore, when every malicious user minimizes its cost,
then the attacker’s cost is also minimized.

Note that each malicious userm needs to know an to min-
imize c

′
m i.e., every malicious user needs to know whether

its requested content has been cached by the associated SBS
in the previous iteration. In practice, the malicious user can
check the response header (e.g., x-cache in HTTP protocol
meta-data) to see if its request has been served from the SBS
cache or not.

5 The proposed content placement
algorithm

Based on the proof given for Theorem 1, we may employ a
modified version of the well-known Best Response Dynam-
ics (BRD) algorithm [38] to compute the Stackelberg equilib-
riumof the content cachinggameGp . Since the content-group
selection game among SBSs is proved to be an exact potential
game, it also follows the finite improvement property, which
guarantees that a best response approach will converge to
the NE. As the existence of SE was guaranteed based on the
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existence of NE, the content-group selection algorithm also
converges to the SE points. Therefore, a content-group selec-
tion algorithm based on best response dynamics has been
proposed to compute the game’s equilibirum.

The pseudo-code is shown in Algorithm 1. BRD is an iter-
ative sequential process in which at every iteration, one SBS
optimizes its own strategy; that is, the acting player chooses
the strategyminimizing its cost given the most recent play by
other players. Within the same iteration, the malicious entity
may also react immediately to update its request generation
strategy. This procedure is repeated until the strategy profile
does not change anymore (See line 12). This BRD process
will converge to NE due to standard arguments in the theory
of potential games [37]. The formation of NE between the
SBS players together with the best response of the attacker
results in the emergence of SE in the entire game.

To discuss the computational complexity of the algorithm,
we note that Algorithm1 can be executed as a distributed rou-
tine by the SBSs in the system. At each iteration, some SBS
n is chosen by the sequential scheduler to update its action.
The only costly operation is in line 8 where the SBS has
to search for the best content group (among the K avail-
able groups) that minimizes its cost function. Hence, the
per-iteration computational complexity of each SBS is lin-
ear in terms of the number of content groups, i.e., O(K ). As
for the attacker, it should determine the action profile of all
N malicious users under its control. Hence, in line 10, the
attacker has to search over an exponential space of O

(
K N

)
to maximize the backhaul congestion. However, given that
the attacker’s cost function c

′
0 is additive and separable [c.f.,

Eqs. (18) and (19)], line 10 can also be executed in a dis-
tributed and parallel fashion by each malicious user, i.e., we

may replace line 10 by s∗
m ← arg min

sm∈K
c

′
m(sm , an) for each

malicious user m ∈ Mml . This makes the computational
complexity of the attack linear as well, i.e., O(K × |Mml |).

6 Numerical results

In this section, we implement the proposed algorithm in
a simulation environment corresponding to the scenario
described in Fig. 2. First, we describe the simulation setup
which includes the simulation parameters and experiment
settings in Sect. 6.1. Then, in Sect. 6.2, we introduce the pre-
vious schemes used for comparison. In Sect. 6.3, we show
the convergence of the proposed algorithm. Furthermore, in
Sect. 6.4, we studied the impact of the some parameters
including the fraction of malicious users, content populari-

ties, the number of SBSs, the number of MUs, the number of
contents, and backhaul capacities on the average download-
ing delay of the legitimate users as well as on the congestion
of the backhaul links. However, in large scale scenarios in
which the number of contents and malicious users increase,
we have limitation in servicing MUs. When the number of
malicious users increases, the strategy space of the attacker
grows exponentially and serving MUs is out of the network
capacity.

6.1 Simulation parameters

We consider a scenario in that MUs and SBSs are uniformly
distributed in a 500 × 500 m area. The channel gains are set
as identically and independently distributed exponential vari-
ables with mean 1. The minimum capacity of a wireless link
is denoted by rmin � W log(1 + θ), so we set the backhaul
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Table 4 Simulation parameters

Description Parameter Value

Number of SBSs N Default: 10 (varies
between 4 and 16 in
the experiments)

Number of MUs M Default: 20 (varies
between 10 and 40 in
the experiments)

Number of contents F Default: 100 (varies
between 100 and 220
in the experiments)

Cache size H 20 contents

Number of
content-groups

K 5

Content size L 109 bits

Bandwidth W 107 Hz

The transmission power
of SBS n

pn 30 dBm

Path-loss exponent α 4

Noise power σ 2 10–10 W

SINR threshold θ 0.1

Zipf parameter γ 0.5

Parameter of backhaul
capacity range

ω 0.4

Fraction of malicious
MUs

β 0.3

capacities bn as random variables uniformly distributed in
[ω × rmin , rmin]. The other simulation parameters are given
in Table 4. Similar values for the number of MUs, SBSs as
well as the content files have been assumed in other studies
on content caching in small cell networks (e.g., [42–44]).

6.2 Comparison with previous schemes

In this section, we show the performance of the proposed
algorithmby comparing its results against [40] inwhich there
is nomechanism to combat the attacker aswell as [35] explot-
ing the Attack-aware Cache Defense (ACD) algorithm. In
[40], Yang et al. have not considered any malicious users in
the system and modeled the interaction among SBSs as a
potential game. Each SBS responds to the content requests
from its neighboring MUs with the objective of minimizing
their downloading delay. The authors have proposed a best
response dynamic algorithm in which at each iteration, every
SBS caches the content that minimizes the average delay of
neighboring users, whether legitimate or malicious.

In [35], the authors have proposed a proactive mecha-
nism called ACD algorithm that gracefully reduces the cache
probability of unpopular contents. They have utilized the

Fig. 3 Convergence of the potential function

idea of a seminal article (CacheShield [41]) for content cen-
tric networking routers which makes the caching decisions
robust against cache pollution attacks. CacheShield employs
a so-called “shielding function” to identify relatively popular
contents and filter out unpopular ones. The basic idea is to use
a parameterized logistic function to form a caching probabil-
ity for each requested content object. If the function returns
true, the corresponding content object is cached. If the func-
tion returns false, only the nameof the returned content object
and a counter are stored in the cache as a placeholder. If the
same (still not cached) content object is requested again, the
corresponding counter is increased and the shielding func-
tion is re-evaluated on the updated counter. Before the attack
occurs, the algorithm detects the average number of content
requests in the first T timeslots. Then,when the attack occurs,
the algorithm reduces the cache probabilities of unpopular
contents.

6.3 Investigating the convergence property

First, we investigate the convergence property of the pro-
posed algorithm. Figure 3 shows the evolution of the potential
function of the content caching game across the iterations of
Algorithm 1. As can be seen, the play converges relatively
fast towards equilibrium. In Fig. 4, we have also plotted the
moving average of the duration of congestion in the backhaul
links. In this figure, we compare our result with the perfor-
mance of a content placement algorithmproposed in [40] that
does nothing to counteract the impact of fictitious requests
issued by compromised MUs. More specifically, in [40], a
game-theoretic model has been proposed in which each SBS
minimizes only the average delay of its neighboring MUs
assuming simplistically that no foul play is suspected. The
standard BRD algorithm is simply employed by the SBSs to
find the equilibrium of the game. As expected, the backhaul
delay of the proposed algorithm is lower than that of [40]. In
this figure, we can see that at first, the backhaul congestion
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Fig. 4 Convergence of the backhaul congestion time

Fig. 5 Convergence of the average delay of MUs

Fig. 6 The average number of iterations versus Zipf parameter

is high, but as SBSs cache the content groups strategically,
the congestion of the backhaul links also decreases.

In Fig. 5, we plot the average delay experienced by
legitimate users for downloading content. As the proposed
algorithm accounts for malicious play and also aims for
reducing congestion, we notice a slight increase in the delay
compared to [40]. In fact, sometimes the SBSs have to cache
less popular content to accommodate the fictitious requests
made by the attacker. However, this increase in the delay
is less noticeable compared to the reduction in congestion
achieved by our algorithm.

In Fig. 6, the average number of iterations for the proposed
algorithm is displayed under different values for the Zipf

Fig. 7 The backhaul congestion time versus fraction of malicious MUs

Fig. 8 The average delay of MUs versus fraction of malicious MUs

distribution parameter. In general, a larger Zipf parameter is
associated with a steeper distribution such that requests of
users are focused on a smaller set of files (i.e., more queries
are concentrated on a set of hot contents). It can be seen that
when content popularity gets more uniform, it takes much
longer to converge.

6.4 Performancemeasurement

6.4.1 The impact of fraction of malicious users

In Fig. 7, we compare the congestion time for the different
fractions of the malicious MUs. As expected, the minimum
amount of congestion in the backhaul links is forβ � 0,when
there are no malicious users in the network. For the greater
number of malicious users, the cache miss ratio increases,
resulting in more congestion. Consistently across all the
results, we notice that the backhaul links will become less
congested under our algorithm compared to [35] and [40].

In Fig. 8, we conduct a similar experiment to compare
the average delay of the users versus different fractions of
the malicious MUs. Similar to Fig. 7, the minimum amount
of average delay is for β � 0, when there are no malicious
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Fig. 9 The backhaul congestion time versus Zipf parameter

users and with increase in the fraction, the average delay
also increases. For all fraction ofmalicious users, the average
delay for our proposed algorithm is less than that of [35] using
shielding function. In Fig. 8, we notice that the delay in our
algorithm is more than that in [40], because the SBSs have to
sometimes cache less popular content to accommodate the
requests made by the attacker. However, this increase in the
delay is less noticeable compared to the congestion reduction
achieved by our algorithm.

Although for different fraction ofmalicious users, the pro-
posed algorithm causes at most 21% increase in the average
delay compared to the defenseless method [40], its perfor-
mance in reducing the backhaul congestion is better by at
least 26%. In comparison with [35], our proposed algorithm
has 15 and 2.8% improvement in the backhaul congestion
and the average delay, respectively.

6.4.2 The impact of content popularity

Figure 9 displays the average backhaul congestion time under
different Zipf parameter values exploited in content popular-
ity distribution. Under a larger Zipf parameter (and thus a
smaller set of popular contents), the SBSs can reduce their
miss ratio by just caching hot contents in their limited mem-
ory, thereby decreasing the backhaul congestion. In Fig. 10,
we conduct a similar experiment to compare the average
delay of the users versus different Zipf parameter values.
Similar to Fig. 9, with an increase in the Zipf parameter, a
fewer number of contents need to be cached tomeet the users’
requests; hence, the average delay decreases. As the SBSs
have to sometimes cache less popular content to accommo-
date the requests made by the attacker, in Fig. 10 we see that
the delay in our algorithm is more than that in [40]. However,
this increase in the delay is less noticeable compared to the
congestion reduction achieved by our algorithm. The results
show that with increase in the Zipf parameter, our proposed
algorithm reduces the backhaul congestion by 21% with the

Fig. 10 The average delay of MUs versus Zipf parameter

Fig. 11 The backhaul congestion time versus the number of SBSs

cost of a 3% increase in the average delay in comparisonwith
the defenseless method [40]. Compared with the shielding
function [35], our performance is 5% better in the backhaul
congestion and around 20% better in the average delay.

6.4.3 The impact of the number of SBSs

In Figs. 11 and 12, we investigate how the number of SBSs
affects the backhaul congestion aswell as the averagedelayof
the legitimate MUs, respectively. In the case of more SBSs,
every SBS answers to fewer requests. Furthermore, more
files can be cached by all the SBSs, increasing the chance
of cache hit. Accordingly, the time of congestion in back-
haul links as well as the average delay of content download
decreases when using a higher number of SBSs. In Fig. 11,
it is noticed that the backhaul links are less congested under
our algorithm compared to [40], not reacting to the malicious
strategy of the attacker. In Fig. 12, we notice that the delay
in our algorithm is a bit more than that in [40], because the
SBSs occasionally cache unpopular content to accommo-
date the fictitious requests made by the attacker. However,
this increase in the delay is less noticeable compared to the
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Fig. 12 The average delay of MUs versus the number of SBSs

Fig. 13 The backhaul congestion time versus the number of Mus

congestion reduction achieved by our algorithm. Compared
with the defenseless method [40], when the number of SBSs
increases, the proposed algorithm performs better by 9% in
the backhaul congestion, however, it makes the average delay
worse by 1%. In comparisonwith the shielding function [35],
we have improvement in the backhaul congestion and aver-
age delay by 4 and 6%, respectively. The main reason behind
the superiority of our schemeover [35] is that our game-based
approach explicitly accounts for the strategic and adaptive
misbehavior on the part of the attacker. This is while in [35],
the attacker has been assumed to be less sophisticated in the
sense that it only learns the statistics of the content popu-
larity and fabricate requests for unpopular contents. In other
words, the attacker does not mutually react to the caching
decisions made by the system.

6.4.4 The impact of the number of MUs

Figures 13 and 14 respectively show the backhaul congestion
time and the average downloading delay versus the num-
ber of MUs. In these two figures, it can be observed that
there is an upward trend in the backhaul congestion and the

Fig. 14 The average delay of MUs versus the number of MUs

average delay of users when the number of MUs neighbor-
ing the SBSs increases. This is mostly because it is difficult
to provide the minimum rate requirements for all the MUs
who exploit the limited resources. Additionally, with a higher
population of MUs, more files are requested, decreasing the
probability of cache hit and increasing the backhaul conges-
tion. Congestion of the system slowly increases the load of
backhaul traffic deteriorating the achievable impressive data
rate (as can be noticeable for more than 20 MUs).

Since the algorithm in [40] does not react to the malicious
role of the attacker, we notice less congestion in the back-
haul links for our proposed algorithm, as shown in Fig. 13.
In Fig. 14, there is a slight increase in the delay compared
to [40]. As the proposed algorithm accounts for the attacker
role and also aims for reducing congestion, sometimes the
SBSs have to cache less popular content in order to com-
bat the attacker. However, this increase in the delay is less
important compared to the decrease in congestion achieved
by our proposed algorithm. For more MUs, the proposed
algorithm has a 9% improvement in the backhaul conges-
tion compared with the defenseless method [40], though it
makes the average delay worse by 3%. In comparison with
the shielding function [35], our algorithm performs 4% and
3% better in reducing the backhaul congestion and the aver-
age delay, respectively.

6.4.5 The impact of network settings

In Figs. 15 and 16, we change the parameter of backhaul
capacity from ω � 0.2 to ω � 1 whereas other simulation
settings are the same as those given in Table 4. As shown in
these two figures, with the increase in ω, the backhaul con-
gestion time and the average downloading delay of contents
are reduced. In Figs. 17 and 18, we vary the number of files
from 100 to 220 to study its effect on the backhaul conges-
tion and the downloading delay for MUs. With the increase
in the number of contents, the number of groups increases as
well, but when the capacity of cache at every SBS is limited,
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Fig. 15 The backhaul congestion time under different ranges of back-
haul capacity

Fig. 16 The average delay of MUs under different ranges of backhaul
capacity

Fig. 17 The backhaul congestion time for a different number of files

it causes to larger cache miss ratio and thus more delay for
downloading contents by MUs.

Fig. 18 The average delay of MUs for a different number of files

In Figs. 15 and 17, the congestion in backhaul links for our
algorithm is less than that for [40], which does not account
for the malicious actions of the attacker. In Figs. 16 and 18,
as the proposed algorithm accounts for adversarial play and
also aims for reducing congestion, we notice a slight increase
in the delay compared to [40].

7 Conclusion

In this paper,wehave addressed the problemof content place-
ment in the cache-equipped SBSs at the wireless edge in the
presence of an attacker having the control of some users.
The compromised users may generate fictitious requests not
necessarily in line with the assumed standard popularity
distribution. We have modeled the competitive interaction
between the SBSs and the attacker using a multi-leader
single-follower Stackelberg game formulation.We have then
formulated the cooperation among the SBSs as a potential
game in which they jointly decide what content to cache so
that the average delay of the MUs located within their cover-
age range, as well as the overall congestion in the backhaul
links, is reduced. We have proved that a Stackelberg equi-
librium exists for this caching game. Also, to compute the
equilibrium, we have proposed a specialized best response
dynamics algorithm in which each SBS finds its best action
independently. To evaluate the performance of the proposed
procedure, we have conducted several experiments mea-
suring how content popularity, the number of SBSs, and
the number of MUs affect the caching performance. The
obtained results have demonstrated the superiority of the pro-
posed scheme in comparison with another game-theoretic
content placement strategy which is inadvertent to the pres-
ence of malicious requests. In conclusion, our findings have
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highlighted the crucial importance of optimizing content
placement in adaptation to adversarial content requests. For
future work, we intend to generalize the proposed scheme
to a setting where the SBSs have no prior knowledge of the
wireless communications environment (e.g., channel quality
distribution, content popularity distribution, backhaul band-
width). In such cases, the utility function of the SBSs would
be unknown and need to be estimated through learning and
adaptation. Hierarchical reinforcement learning techniques
need to be proposed to learn the SBS strategies in the Stack-
elberg equilibrium.
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